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abstract

The influence of geometrical imperfections on the dynamic
stability of liquid-filled shells under horizontal ground excitation is
studied. Some basic concepts in the large deformation and large
deformation thin shell theory are recalled. The work done by inerrial
and internal forces are given in the Gaussian surface coordinate
system. A general imperfection pattern in the circumferential
direction is introduced. The emphasis is particularly dedicated to the
analysis of the geometrical stiffness term. Different patterns arc
studied to explain the occurrence of additional instability regions.

.Introduction

A method of analysis for the dynamic stability of liquid-filled
shells under earthquake excitation has been introduced by Liu and .
Uras (1989a). They have derived the discrete fluid-structure I
interaction equations through the use of a Galeridn/Finite element i
procedure. Applications of this analysis for various loading cases, I
including horizontal ground motion have been studied in Liu and ;
Uras (1989b). j

A comparison of experimental findings by Chiba et al. (1986) j
with the theoretical analysis by Liu and Uras (1989a) has been I
discussed in Uras and Liu (1990). The analysis by Liu and Uras j
(1989a) yields the same buckling frequencies due to the (n)th and
(n+l)lh circumferential modal coupling as the experiments. It is also
found that each of the experimental instability regions consists of.
many regions due to various axial and circumferential modal;!
coupling. The reasons for the occurrence of instability regions other 1
than the circumferential modal coupling are stated. However, the'j
theory presented Liu and Uras (1989a) is not able to explain theh
instability regions of higher order circumferential coupling, i.e.1

between (n)th and (n+k)th where k is an integer. It is believed that I
these regions originated from the geometrical imperfections in the
shell. The present work intends to shed some light into the influence
of various imperfection patterns on the dynamic stability.

Preliminaries on the large deformation and large rotation theory
of thin shells, and stress and strain measures are given in Section 2.
In Section 3, the linearization of the virtual-work principle for
inertia! and internal forces is briefly mentioned. The geometrical
stiffness term is handled in some detail since this term plays an
important role in the stability analysis. In Section 4, comparison of
results between the analyses of Liu and Uras (1989a), Uras and Liu
(1990) and the cxpcrimcts of Chiba et al (1986) are presented. In

I Section 5, an imperfection pattern in the circumferential direction is
'considered, and an asymptotic expansion for the geometrical
stiffness term in terms of the imperfection amplitude is given. The

•influence of the sinuzoidal patterns on the stability are analyzed in
Section 6.

2.Preliminaries

The middle-surface of a thin shell is described by the Gaussian
icoordinates, £ l and^2 (Sanders (1963), Koiter (1966)) where they;
jean be chosen to be the axial and circumferential directions in a:

I cylindrical coordinate system, Le.
|

V = z S2 = 6 (2-1)

The position vector, r, from the origin of a fixed cylindrical
coordinate system to a generic point on the middle-surface of the
undeformed shell can be given as

= R(z,9)et + (2.2):

where ej, eg and e2 are the unit vectors in the radial, circumferential
and axial directions, respectively.
The covariant surface base vectors are defined by

drr ~=— a =1,2 (2.3)

j Hence, the unit normal to the surface is obtained from the cross-
j product of the base vectors:

C
P-

o

r,i x r,2
n = lr,ixr,2l

(2.4)

The first and second fundamental tensors of the undeforrned middle
surface can be given as

and
(2.5)

(2.6)

respectively; the respective detemrnants will be denoted by g and b.'. I
j A differential surface element is described by | |

-ac-a r.ur.csr-
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(2.7)

Since the surface base vectors generally do not constitute an
orthogonal set, the changes in tensorial quantities are described by
covariant derivatives

;•• - ' and

a, a
v lp = v ,p + (2.8)

(2.9)

where v and T denote first and second order tensors, respectively,
: and a repeated subscript-superscript implies summation. F ^
designates the Christoffel symbols of the second kind:

1 (2.10)

! • After the shell undergoes a deformation, the new position vector, f,
J ' to the deformed middle surface is given by

i f = r + u (2.11)

I

p
i where the displacement vector, u, is defined through its components !
I along the directions of the base vectors and unit normal vector, and '

arc denoted by ua and w, respectively: . j

u = ua r,a + w n (2.12)

The strain tensor is defined through the metric tensors g?8 and
of the deformed and undeformed middle surfaces, respectively

( i (2.13)

C-. The stress tensor can be related to the strain tensor through the use
.5 of the elasticity tensor ^

G1

a

(2.14)

The curvature tensor is defined through the metric tensors bap and
-T bap of the deformed and undeformed middle surfaces, respectively

(b
i

- I

(2.15) .

~ 1 The moment tensor can be related to the curvature tensor through the ;
^ i _ . . . . Q-.1 ij use of the elasticity tensor C 1 ^

(2.16)

i
I 3.Lineariz2tion of virtual work term

The virtual work done by the inertial forces consists of two parts

representing the shell inertial effects and the fluid added inertia, Ij

51?= J[hp5ui uj
r

u; lf]dT i=l,3 (3.1)

where a superposed dot denotes the temporal derivative
The virtual work done by a thin shell undergoing a small strain,

large deformation and large rotations can be expressed as

5n = J [ h
r

+ y^ °P
]df a,P = 1,2 (3.2)

where h is the shell thickness.
• The contibution of the material effects to the wcrk done by internal
' forces yields the material stiffness term

• • J i
r

5rP = J [ h 5EaiJ L[S° V ~ 5Kap L[Ma|J] ] dr a.p = 1.2

(3.3)
' where L[.] is the linearization operator.
' The effect of the initial stresses and moments is represented by the
', geometrical stiffness term. The identification of modal coupling, and
. its influence on determining the buckling criteria are possible'
' through studying the geometrical stiffness matrix (Liu and Uras!
'• (1989a)). Thus, the treatment of this stiffness term will be given in ! j
i more detail: j :

(3.4)

, where S and M are interpreted as the initial stress and the initial •
I moment tensors, respectively. The initial moment term is eliminated
due to its negligible contribution to the overall stability response. i
The linearized strain tensor can be expressed in' terms of the !
displacement vector I

L[6Eap] = 8u,a • Au.p (3.5)

The displacement components can be discTetized using their
respective mode shapes

I N
uHz.O.t) = 1 I ObW U;(z) UB(B)

i=l n=0

I N

i=l n=0
V;(z) Vn(9)

I N
w(z,e,t) = X X WinW Wi(z) Wn(9)

i=l n=0

(3.6a)

(3.6b)

(3.6c)

I where ^° are replaced by z and 6. Following similar guidelines
'• presented in Liu and Uras (1989a), the geometrical stiffness matrix

is obtained

L • r 2JC

K&»= Jh(Bz i)
T

(Bzj)dz

(3.7)

j where me matrices are tabulated in Table 3.1. For a geometrically
• perfect shell Eqn. (3.7) reduces to its counterpart riven in Liu and

! Uras (1989a).

! 4.Comparison of Results and Stabilit- Charts
i

i The results for a 75% full tall shell obtained from the analysis
; of Liu and Uras (1989b) and Uras and Liu (1990) are compared to
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those of the experimental study by Chiba et al. (19S6). Stability
chart'(a) is established by applying the constant maximum
membrane stress criterion presented in Liu and Uras (1989b).
Stability chan (b) represents the results obtained through the new
method proposed in Uras and Liu (1990) which is based on

• evaluating the membrane forces through the use of horizontal
ground acceleration. The experimental results by Chiba et al. (1986)
are duplicated in the stability chan (c). In order to obtain all relevant'
buckling frequencies, a small amount of damping (Cm;n = 0.1%) is

, used in the present analysis. :
1 Experimental and theoretical values of the first cos6-mode are 110
• Hz. and 115 Hz., respectively. Major buckling modes around this
• mode are identified as cos96 and cos 108. The comparison of results
; by Liu and Uras (1989b), the present analysis and Chiba et al.
: (1986) experiments are depicted in Figures 4.1a, 4.1b, and 4.1c,
respectively. The instability regions within the frequency scattering

'. in the vicinity of the first cos9-mode are summarized as follows:
1 ; Within a +10% margin of the (1,1) cos8-mode frequency, i.e.

, i cou=115 Hz., the shell will buckle with eCT < 0.4 at the following
mode shapes and frequencies (see Figures 4.1a and 4.1b, and Table
4.1a, the numbers are highlighted by bold italics):
a) axial mode (1,1) and circumferential mode coupling (2,3) and at
frequencies (67 and 43 Hz.);
b) axial mode (1,2) and circumferential mode coupling (6,7) and at
frequencies (31 and 81 Hz.);

r— c) axial mode (1,2) and circumferential mode coupling (5,6) and at
. frequencies (28 and 87 Hz.);

I d) axial mode (1,1) and circumferential mode coupling (9,10) and at
AJ frequencies (53 and 63 Hz.);
'i e) axial mode (1,2) and circumferential mode coupling (7,8) and at
j5 frequencies (37 and 83 Hz.);
n f) axial mode (2,1) and circumferential mode coupling (6,7) and at
1= frequencies (87 and 37 Hz.);
_ 1—

As can be seen fiom Figures 4.1, the above six buckling mode
shapes (as indicated by the first thick curve in Figures 4.1a and
4.1b) obtained from Uras and Liu (1990) agree with the region
obtained by Chiba et al. as shown in Figure 4.1c. From their
experiment, they can identify only the axial mode (1,1) and the
circumferential mode (9,10). Therefore, the buckling modes cannot
be precisely determined from their shaking table experiments.
The locations of the instability regions representing the axial mode
(1,1) and the (n)th and (n+l)th circumferential modal coupling '
obtained through the present analysis and from Chiba et al. (1986) !
are tabulated in Table 4.1b. The difference in predicting the buckling i
frequencies is within 1.8 % of those by Chiba et al. (1986). It j
should be noted that only six buckling frequencies are available for \
comparison (see Figures 4.1). i

5.1nfluence of imperfection on the dynamic stability

For a geometrically perfect shell the base vectors and the unit
normal of the middle surface coincide with the cylindrical coordinate
directions. However, the addition of an imperfection necessitates the
use of the large deformation theory, briefly outlined in the
preliminaries section.
In this study, an imperfection pattern only in the circumferential

; direction will be considered:

= R[ l+u . f (9 ) ] (5.1)

where R is the average radius, u. is the normalized imperfection
amplitude, and f represents the spatial imperfection pattern.
Some of the terms in Eqn. (3.7) can be expanded in \L

(5.2)

(5.3)

where the matrices are tabulated in Table 5.1. After substituting
Eqns. (5.2) and (5.3) into Eqn. (3.7), a second-order expansion for
the geometrical stiffness matrix is obtained

K (5.4)

where

L r 2rc
K o = j h (B2 i)

T J (B n°9)T So (Bm°e) d8 (BZJ) dz (5.5) • •;;

L r 2:t

' " V a Lo n8

+ (B j,1,,)7 So (B,2e) + (Bn°9)T Si (Bm°e) d8 I (Bzj) dz (5.6)

L r 2 *

= J h ( B i ; )
T J (B n°9)T S 2 (Bm°6) + (Bn°B)T S ,

+ (B V So (BJ[B) + (Bn
2

9)T So (Bm°e) d9 (Bzj) dz (5.7)

6. A special case

Assume that the imperfection can bf. characterized by one
sinuzoidal function

f(8) = cos(p6) (6.1) ;

A complex Fourier expansion for the displacement components '•
in the circumferential direction can be employed whereas the mode [
shapes in the axial direction are the same as presented in Liu and i
Uras (1989a): . j

and
Un(e)=Vn(e)=Wn(9) forSu

foru

(6.2) :

(6.3) '

where j=V-T. '
The analysis regarding the zeroth-order geometrical stiffness !

term, Eqn. (5.5) is already been presented in depth by Liu and Uras j
(1989a). Hence, the emphasis will be devoted to the additional first- 1
order terms due to the existence of imperfection. j
Since only the horizontal excitation is considered, the initial stresses 1
are expected to be functions of sin6 or cos9. The overall response
of the structure is expected to be altered due to the imperfection, j
however, this effect is neglected in this study. Thus, the stresses of j
the zeroth-order response are left unchanged. Moreover, the ;
coupling introduced by the second order terms is higher order, i.e. |



hardly encountered in the experiments of Chiba et al. (19S6), and is
neglected. From Table 5.1, through the use of Eqn. (6.1), it can be
shown that ,

I
Bn°e-exp(±jn6) :

B̂ 'a ~ exp(± jr.8) sin(p8) and/or exp(± jnG) cos(p8)

'. So - cos8 and/or sinG

. Si-cos8 cos(pG) and/or sin6 cos(p8)

' , where a tilde identifies the terms associated with the circumferential
:: • direction. The resulting integrals can be summarized as:

I = f exP(- j sinGJ
exp(jm8) dG (6.4)

]
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( The orthogonality of the sinuzoidal functions yields the following
.. '" coupling among the circumferential modes

~ (i) n and n+p+1

— (ii) nandn+p-1

(iii) n and n-p+1

(iv) n and n-p-1

The form of imperfection, characterized by p, gives rise'to additional'.
coupling regions in the buckling analysis. Hence, a qualitative study'
on the choice of p reveals the following conclusion:

The case, where p=0, yields no significant information, since it
represents the case in which the radius differs from the original one
by a constant amount.
For p=l case, the additional modal couplings are identified as (n,n)
|and (n,n+2). The appearance of the uncoupled mode case, i.e.
i (n,n), is a curious outcome, since these regions are expected to arise
only if there is vertical ground motion. An inspection of the spectra j
from the experiments by Chiba et al. (1986) shows that (n,n) type of •
modes have been encountered. A possible explanation is that,

i although small in amplitude, an imperfection can introduce
j additional instability regiens-
jThe cases where p>l different coupling combinations are identified,
(however, the experimental spectrum hardly shows any effects of,!
these. I

For failure conditions in which the buckling modes are not:j
. exactly known from the shaking table experiments, the significant j
j bifurcation solutions can be identfied from the analysis presented by j:
1 Liu and Uras (1989a). The present study extends the applicability of j;
the above-mentioned analysis to liquid-filled shells with geometrical':

: imperfections. ; i
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n

1

2

- 3

4

5

6

7

8
c

10

Frequency

axiai mode

i=l

tain

115.40

67.50

42.94

31.20

27.76

30.65

36.89

44.47

52.98

63.04

i=2

256.96

213.19

160.96

124.31

100.48

86.67

81.46

83.12

87.9

94.5

Parameters governing the instability regions

(05, £„); o=3.6-10-« (co£+coj>n+i)

Un= 0.0001; (0,™= 27.76 Hz.

*•* represents £„ > 0.4

a
(n,n+l),(l,i)

(O.ECT)

(182.90.0.31)

(770.43,0.05)

(74.13.0.01)

(58.96,0.00)

(58.41,0.00)

(67.54,0.00)

(81.37.0.01)

(97.45,0.01)

(116.01,0.01

(138.01,0.01)

b

(n.n+l),(1.2)
(CS.ECT)

(328.59,***)

(228.45.***)

(167.25,0.08)

(131.67,0.02)

(JW.44,0.01)

(772.10,0.01)

(720.07,0.02)

(132.42,0.06)

(147.49,0.18)

(166.40,0.17)

c

(n.n+l),(2,l)

(O, eCT)

(324.46,***)

(256.12,0.19)

(192.15,0.04)

(152.08,0.02)

(131.12,0.02)

(723.57,0.02)

(125.93,0.81)

(136.10,0.07)

(150.99,0.10)

(169.49,1.09)

d

(n,n+l).(2,2)

(G3,O

(470.14,***)

(374.14,0.22)

(285.27,0.10)

(224.79,0.05)

(187.15,0.02)

(168.13,0.01)

(164.58,0.01)

(171.07,0.01)

(182.47,0.01)

(197.88.0.01)

Table 4.1a Frequency spectrum and buckling frequencies for a 75% full tall shell

n

5

6

7

8

9

10

n+1

6

7

8

9

10

11

experimental
frequencies

(Hz.)

58

66

80

96

114

136

theoretical
frequencies

(Hz.)

58

67

81

97

116

138

% difference

0

1.51

1.25

1.04

1.75

1.47

i ^

Table 4.1b. Comparison of experimental and theoretical
buckling frequencies due to (n)th and (n+l)th

circumferential coupling for a 75% full tall shell
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Figure 4.1. Stability charts for 75% full tall shell using: (a) the analysis by Liu and Uras
(1989b); (b) the analysis Uras and Liu (1990); and (c) the experiments by Chiba et al. (1986)
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M
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(V
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>l

T

nn°0

Un

0

0

0

0

0

0

vn

0

0

0

0

0
0

wn
0

0

0

0
0

0

Un.e

0

0

0

0

0

0

Vn.e

VnR

0

0

0

0

-Wn/R

BnO

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 VnA, -WnA3

0 0 0 0 VnAi 0 -J

Ai = f,B

A2 = R(f-f,oo)

A3=-(f+f.oe)/R

0 0 0

0 0 . 0

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0

0

Ai=f,a(f.oo-f)
§ f,o)

! f,20)/R

0

0

0

0

VnA,

VnA2

o -
0

0

0

-W n A 3

o J 1

So =

S , -

S2 =

S o Go So Go

So Go So Go

S i Go' Sj Go

S?'Go sfGo

S 2 Go S2 Go

S2 Go S2 Go

G0 = R

1 0 0

0 R2 0
0 0 1

+

+
SoG] So Gi

So G] So Gj

& 1 l»] Si l ij

sVc.i S"G,
+

S o G2 So G2

So G2 So G2

G, = fG0 G2sif,oR
1 0 0

0 3R2 0
0 0 1

Table 5.1. Explicit forms of the matrices up to the second-order
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