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Abstract

The influence of geometrical imperfections on the dynamic
stability of liquid-filled shells under horizontal ground excitation is
studied. Some basic concepts in the large deformation and large
deformation thin shell theory are recalled. The work done by inertal
and internal forces are given in the Gaussian surface cocrdinate
system. A general imperfection pattern in the circumferential
direction is inroduced. The emphasis is particularly dedicated to the!
analysis of the geometrical stiffness termn. Different patterns are!
studied to explain the occurrence of additional instability regions.

1.Introduction

A method of analysis for the dynamic stability = liquid-filled
shells under earthquake excitation has been introduced by Liu and
Uras (1989a). They have derived the discrete fluid-structure
interaction eguations through the use of a Galerkin/Finite element
procedure. Applications of this analysis for various Joading cases,

including horizontal ground motion have been studied in Liu and
Uras (1989%).

A comparison of experimental findings by Chiba et al. (1986) :

with the theoretical analysis by Liu and Uras (1989a) has been
discugsed in Uras and Liu (1990). The analysis by Liu and Uras
(1989a) yields the same buckling frequencies due to the (n)th and
(n+1)th circumferential modal coupling as the experiments. It is also’
found that each of the experimental instability regions consists of,
many regions due to various axial and circumferential modal:
coupling. The reasons for the occurrence of instability regions other
than the circumferential modal coupling are stated. However, the
theory presented Liu and Uras (1989a) is not able to explain the!
instability regions of higher order circumferendal coupling, i.c.’
between (n)th and (n+k)th where k is an integer. It is believed that
these regions originated from the geometrical imperfections in the
shell. The present work intends to shed some light into the influence
of various imperfection patterns cn the dynamic stabiliry. :
Preliminaries on the large deformation and large rotation theory
of thin shells, and stress and strain measures are given in Section 2.
In Section 3, the linearization of the virtual. work principle- for |

stiffness term is handled in some dewil since this term plays an
Important role in the stability analysis. In Section 4, comparison of

results between the analyses of Liu and Uras (1989a), Uras and Liu

(1990) and the experimets of Chiba et al. (1986) are presented. In

Section 5, an imperfection paniern in the circumferendal direction is
considered, and an asymptotic expansion for the geometrical

stiffness term in terms of the imperfection amplitude is given. The

influence of the sinuzoidal patterns on the stabiliry are analyzed in
Section 6. ‘

2.Preliminaries

The middle-surface of a thin shell is described by the Gaussian

coordinates, £ and £2 (Sanders (1963), Koiter (1966)) where theyg
can be chosen to be the axial and circumferential direcrions in a°
cylindrical coordinate system, ie.

El=gz g2

The posidon vector, r, from the origin of a fixed cylindrical

coordinate system to a generic point on the middle-surface of the
undeformed shell can be given as

8 (2.1)‘.i

r=R@zf)e +ze, (2.2)

where e,, e5 and e, are the unit vectors in the radial, circumferential
and axial directions, respectively. '
The covariant surface base vectors are defined by

dr
o= 3 a=12 (2.3) !
iHence, the unit normal to the surface is obtained from the cross-
1 product of the base vectors: ‘
_rgxry
- ll',] X l',zl (2'4) H
| The first and second fundamental tensors of the undeformed middle
surface can be given as
; ga3 =" T.p (2.5)
and
bai = n:ﬂ ¢ r'lﬁ (2.6)
Tespectively; the respective determinants will be denoted by g and b..
A differentil surface element is described by \
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Since the surface base vectors generally do not constitute an
orthogonal set, the changes in tensorial quantities are described by

: covanant derivatives
§ ?_ valﬁ = vu,ﬁ + I‘ﬁ; v)' (2.8)
- “ and :
=T+ TE TP+ L T 2.9)

. * where vand T denote first and second order tensars, respectively,

.- and a repeated subscript-superscript implies summation. I
i designates the Christoffel symbols of the second kind:

olh aonlumng

}

; 1
Tp= & Dap 3 Thap =5 (2hap + 2o - BaBr ) (2.10)

Aeross

vitl,

”,...—..-v_..-_..u. Ce es

* After the shell undergoes a deformation, the new position vector, F, }
" to the deformed middle surface is given by '

¥

r=r+u

centor

@11)

page 1:

]
where the displacement vector, u, s defined through its components :
along the directions of the base vectors and unit normal vector, and ’
are denoted by u® and w, respectively: .

1

- i
@12’

|
The strain tensor is defined through the metric tensors geg and gop i

of the deformed and undeformed middle surfaces, respectively

u=ulro+wn

o : -
Eo3=3 (£ap - Bap) (2.13)
The stress tensor can be related to the sirain tensor through the use
of the elasticity tensor C2fr*
§eh = Cofth Eyp, (2.14)

The curvamure tensor is defined through the metric tensors bgp and
, bog of the deformed and undeformed middle surfaces, respectively

Kop =5 (o - beg) (2.15) :

The moment tensor can be related to the curvature tensor through the :
use of the elasticity tensor Cef

Start page 1, beginning with abstract—m

MoB = CoBA K.p (2.16) ¢

'

!3.Linearization of virtual work term

The virtual work done by the inertial forces censists of two parts
! representing the shell inertial effects and the fluid added inerda, I-:j :
|
: i
o . o . '
oIl = J[hp Su; G +du; I; JdI' =173 3.1
r

where a superposed dot denotes the temporal derivative
The viral work done by a thin shell undergoing a small strain,
large deformarion and large rotatons can be expressed as

motm e oy

Sl L Ui

3
811 = j[hSEagSuB+?—25K35MaB]dI‘ af=12 (32)
r

where h is the shell thickness.

+ The contibution of the material effzcts ta the werk done by internal
- forces yields the material stiffness term

: a J !
| SP= J[hSEuB L[S B]+%8KQB M ar wp=12
. r :
(3~3)l ;
+ where L[] is the linearization operator. !
- The effect of the initial stresses and moments is represented by the " :
: geogncmcal stiffness term. The identification of modal coupling, and |
. its influence on determining the buckling criteria are possible'
' through swudying the geomerrical stiffness matrix (Liu and Uras,

i (198%9a)). Thus, the rearment of this stiffness term will be given in !
. more datail: |

!

SUOTICTTTIAV ‘oaminy

sG= J(n L{8Eqp) ™ + T—;L[BKQB] M ar
: 3

1
l
H
)
1

(3.4)°

'
where sv-ﬂ and McIB are interpreted as the initial stress and the inidal -
moment tensors, respectively. The initial moment term is eliminated -
due 1o its negligible contribution to the overall stability response. i
The linearized strain tensor can be expressed in terms of the
displacement vector l

L[8Eop] = 8u,a- Auyp (3.5) |
|
- .- ]

The displacement components can be discretized using their
respective mode shapes

M.
ul(z0. = E‘i Z:Oum(l) Ui(2) Un(®) (3.62)

-
=

N
Y vinl) Vi(2) V(0

n=

: I
A DEDY

i=1

(3.6b)

I N
Wz =2, 2 winlt) Wi2) W,(@)

l i=l n=0

(3.6¢)

'; where £2 are replaced by z and 6.‘Following similar guidelines
: presented in Liu and Uras (1989a), the geometrical stiffness matrix
] is obtained
i
G L. 2z
L Kigm= Oj h (B)' [OJ (B1o)" S (Bma) Vg de] (By) dz
|
i 3.7)

where tie marrices are tabulated in Table 3.1. For a geometrically

- perfect shell Eqn. (3.7) recuces to its counterpart given in Liu and

'i Uras (1989a).
I .
!4.Comparison of Results and Stabilit- Charts

H
% The results for a 75% full tall shell obtained from the analysis
-of Liu and Uras (1989b) and Uras and Liv (1990) are compared to |

"
t)

]
w
~.
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thosc of Lhe e‘(penmenml sludy by Chlba et al (1986) Stabxhxy
chart*(a) is established by applying the constant maximum
membrane stress criterion presented in Lin and Uras (1989b).
Stability chart (b) represents the results obtaizned through the new
method proposed in Uras and Liu (1990) which is based on
-evaluating the membrane forces through the use of horizontal
ground acceleration. The experimental results by Chiba et al. (1986)
- are duplicated in the stability chart (c). In order to obtain all relevant
bucleg frequencies, a small amount of damptng ({imin = 0.1%) is
., used in the present analysis. :

‘ ' Experimental and theoretical values of the first cos8-mode are 110 '
'Hz, and 115 Hz., respectively. Major buckling modes around this

- mode are identified as cos96 and cos106. The comparison of results
i by Liu and Uras (1989b), the present analysis and Chiba et al. -
. (1986) experiments are depicted in Figures 4.1a, 4.1b, and 4.1c,
.trespectively. The instability regions within the frequency scattering

“in the vicinity of the first cos8-mode are summarized as follows: _
Wuhm a £10% margin of the (1,1) cos8-mode frequency, ie. '
m“—HS Hz., the shell will buckle with €., < 0.4 at the following -

e K mea b

\ mode shapes and frequencies (see Figures 4.1a and 4.1b, and Table .
.. 4.1a, the numbers are highlighted by bold iralics): L
- a) axial mode (1,1) and circumferential moede coupling (2,3) and al :
s frequencies (67 and 43 Hz.);
& b) axial mode (1,2) and circumferental mode coupling (6,7) and al
S frequencies (31 and 81 Hz.); i
c) axial mode (1,2) and circumferential mode coupling (5,6) and at !
frequencies (28 and 87 Hz.); |
d) axial mode (1,1) and circumferential mode coupling (9,10) and at |
frequencies (53 and 63 Hz.); !
e) axial mode (1,2) and circumferential mode coupling (7,8) and al i
frequencies (37 and 83 Hz.);
f) axial mode (2,1) and circumferential mode coupling (6,7) and at
frcquenmcs (87 a.nd 37 Hz)

I

'As can be seen from Figures 4.1, the above six buckling mode

shapes (as indicated by the first thick curve in Figures 4.1a and
4.1b) obtained from Uras and Liu (1990) agree with the region
obtained by Chiba et al. as shown in Figure 4.1c. From their
experiment, they can identfy only the axial mode (1,1) and the
circumferental mode (9,10). Therefore, the buckling modes cannot
be precisely determined from their shaking table experiments.
The locations of the instability regions representing the axial mode
(1,1) and the (m)th and (n+1)th circumferential modai coupling !
obtained through the present analysis and from Chiba et al. (1986) |
are tabulated in Table 4.1b. The difference in predicting the buckling |
frequencies is within 1.8 % of those by Chiba et al. (1986). It
should be noted that only six buckling frequencies are available for
comparison (see Figures 4.1).
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S.Influence of imperfection on the dynamic stability

For a geometrically perfect shell the base vectors and the unit
normal of the middle surface coincide with the cylindrical coordinate
directions. However, the addition of an imperfection necessitates the
use of the large deformation theory, briefly outlined in the
preliminaries section.

. Inthis study, an imperfection pattern only in the circumferential
; . direction will be considered:

R=R[I+1f8)] (5.1)

‘where R is the average radius, j is the normalized imperfection
amplitude, and f represents the spatial imperfection pattern. :
Some of the terms in Egn. (3.7) can be expanded in p

I

1

Boo=Bra+ 0B+ p2 B3+ Od) (5.2)

S=Sp+pS; +p28;+ Ood) (5.3)
where the matrices are tabulated in Table 5.1. After substituting

Eqns. (5.2) and (5.3) into Eqn. (3.7), a second-order expansion for
the geometrical stiffness marrix is obtained

KC=KG+pKS + n2KS + o) (5.4)

where

L 2
K§= OJ h (Bz;)T[

OJ (B 1) So (Be) de] Bydz (5.9
L

2%
KS§ = Oj h (B) [OJ (B ab)" So (Br)

(5.6) ‘

+ (B1o)" So(Be) + (BT Sy (B de] (B,;) dz

2n
K$ = Jh(Bz,) [J (B 2)" S2 (Bmg) + (Be)' S1 (Brd)

+ B SoBL)+BY) S B

—
|
i:

+ (Bog)' So(Bog) + (BJa)' So (Be) de] Bz dz (57)
I
|
|

6. A special case

Assume that the imperfection can be characterized by one
sinuzoidal function

£(8) = cos(pb) 61) ;

v A complex Fourier expansion for the displacersent components

in the circumferential direction can be employed whereas the mode |
shapes in the axial direction are the same as presented in Liu ang !
Uras (1989a): ) i

Un(8) = V(8)

= W,(0) = exp(-jnB)
and

for du 6.2)

Un(®) = Vn(6) 63"
where j=-1. |

The analysis regarding the zeroth-order geometrical stiffness
terrn, Eqn. (5.5) is already been presented in depth by Liu and Uras l
!

|

=Wn(8) = exp(m8)  foru

(1989a). Hence, the emphasis will be devoted to the additional first-
. order terms due to the existence of imperfection.
Since only the horizontal excitation is considered, the initial sresses

are expected to be functions of sin® or cosB. The overall response
of the structure is expected to be altered due to the imperfection, |
however, this effect is neglected in this study. Thus, the sresses of |
the zeroth-order response are left unchanged. Moreover, the ;
coupling introduced by the second order terms is higher order, i.e. |

e
oy
3}
U

L
|
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hardly encountered in the experiments of Chiba et al. (1986), and i is'
neglected. From Table 5.1, through the use of Eqn. (6.1), itcan be
shown that

: |
B,?e~exp(ijn9) ;

B~ exp(x jn0) sin(pB) and/or exp(* jnB) cos(pb)

R R

Sg ~ cosB and/or sind

\

r.

S ~ cosB cos(ph) and/or sinB cos(pd)

¢ where a tilde identifies the terms associated with the circumferential
. direction. The resulting integrals can be summarized as:

3= cos@ cos(p8)
1= Oj exp(- jn€) {sine} exp(jm8) {sin(pe)} dé

‘ The orthogonality of the sinuzoidal functions yields the following
™ coupling among the circurnferential modes

[ TY PRGN I

NI NR IR

(6.4) |

Contes
!

The form of mperfecuon characterized by p, gives rise’to addidonal |
coupling regions in the b:ickling analysis. Hence, a qualitative study ;
on the choice of p reveals the fol]owmg conclusmn

z (i)  nand neptl !
= @) nandntp-l -
[, (@) nandn-p+l
(iv) nandn-p-1 |
i

Y &

Thc casc whcrc p—O yu:ldf. no 51gmﬁcant information, since it
represents the case in which the radius differs from the original one;
by a constant amount. |
For p=1 case, the additional modal couplings are identified as (n,n) ‘
and (n,n+2). The appearance of the uncoupled mode case, ie.
(n.n), is a curious outcome, since these regions are expected 1o arise '
only if there is vertical ground motion. An inspection of the spectra H
from the experiments by Chiba et al. (1986) shows that {n,n) type of
modes have been encountered. A possible explanation is that, ‘
although small in amplitude, an imperfection can introduce |!
additional instability regicns. t
| The cases where p>1 different coupling combinations are identified,
thowever, the experimental spectrum hardly shows any effects of
{these.

!

Start p;u]r-.' 1, beqinning with abstract

For failure conditions in which the buckling modes arz not
exactly known from the shaking table experiments, the significant |
bifurcation solutions can be identfied from the analysis presented by |:
"Liu and Uras (1989a). The present study extends the applicability of | 1
the above-mentioned analysis to liquid-filled shells with geometrical :

- imperfections.

i
|
!
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Table 3.1. The explicit forms of the matrices in the geometrical stiffness matrix
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Parameters governing the instability regions
2 2
(®, €ar); 0=3.6-108 (Win+00j pe1)
Lonin= 0.0001; @pin= 27.76 Hz.

i=1

i=2 a b C

d

n Wn

Wy | (nn+1),(1,1) | (0n+1),(1,2) | (n,n+1),(2,1)
(@, &) (@, &er) (@, €er)

(n,n+1),(2,2)
(@, )

115.40

256.96{ (182.90,0.31)| (328.59,***) | (324.46,***)

(470.14,**%)

67.50

213.19} (110.43,0.05){ (228.45,***) | (256.12,0.19)

(374.14,0.22)

42.94

160.96] (74.13,0.01)} (167.25,0.08) | (192.15,0.04)

(285.27,0.10)

31.20

124.31] (58.96,0.00) | (131.67,0.02) | (152.08,0.02)

(224.79,0.05)

21.76

100.48] (58.41.0.00) { (174.44,0.01)} (131.12,0.02)

(187.15,0.02)

30.65

86.67} (67.54,0.00)|(112.10,0.01) (123.57,0.02)

(168.13,0.01)

36.89

81.46] (81.37,0.01) | (J20.01,0.02); (125.93,0.81)

(164.58,0.01)

44.47

83.12] (97.45,0.01){ (132.42,0.06) | (136.10,0.07)

(171.07,0.01)

w0 oo [~ fen b | v [ |

52.98

87.95| (116.01,0.01)] (147.49,0.18) ! (150.99,0.10)

{182.47,0.01)

—
o

63.04

94.52| (138.01,0.01)] (16€.40,0.17)| (169.49,1.09)

(197.88,0.01)

Table 4.1a Frequency spectrum and buckling frequencies for a 75% full 1all shell

n |n+1 | experimental | theoretical | % difiercnce
frequencies | freguencies
(Hz.) (Hz.)
5|6 58 58 0
6 | 7 66 67 1.51
718 80 81 1.25
819 96 97 1.04
9 (10 114 116 1.75
10 | 11 136 138 1.47

Table 4.1b. Comparison of experimental and theoretical
buckling frequencies due to (n)th and (n+1)th
circumferential coupling for a 75% full tall shell

[EANI ] [".)l"[ IR EAL




_“..E..Z,;.

Auidears,

ArLliations

68 == M
©'1)(5D

-
i A2
=

%

O o =

axial wave numbers

A A S s

rrr I r

circumferential wave numbers

[
o wOED

80

o

<t

—r)-orn
(6'2)-(8'1)
(s'1)-(v'T)
(8'0-L'D)
-9

-6 |

(9'7)3(s'1)
€Ny

(6'1)-®'1

s'D-'n
?.s.ﬁ.m.:
@w-e'n

0@
G-

50

140

(rrn-or'n

orn-6'n
[

110 =1

P 7 7 2 2T X

- @D

n-omn

o' |

E D8 §
P T r=————
varar —— ol

e

140

o (Hz.)

110

80

50

o
vy

0.1 A

=
=1

Jovagysqe 3ra butuurhaq

1

REL:STY

Figure 4.1. Stability charts for 75% fuli tall shell using: ‘analysis by Li
¢ < 7 ' g: (a) the analysis by Liu and
(198?b), (b) the analysis Uras and Liu (199C); and (c) the cxpcrimem.! by C¥1iba einal.l(‘llr;s%)




¥ e
e selaa U0 L

e
Gl
1%}

B8
ot

Conlo

A

Lot

Co Y nmie wn
/.I!‘l'r.? NI

R - -
e

SUOTIDTTII IV ‘i Ty, PL Teiene

5 St L : 1‘ l : . el et ‘ page 1 witle, Setloc:,
’ ' ostarlt page ’ alsly : abstract
e Pt ginnlng wilh absty ‘i—‘ —.j e IEEERECRTIEN
.
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0 Va 0 0 0 i
0 0 W, 0 0 0 :
“.?o = w“ . |
0 0 0 Un,o 0 0
0 0 0 Vo -WoR ' \
L o 0 0 V.R W, -~
115 12
- 0 0 0 0 ) 0 - ' Sg= S0 Go S0Go
0 0 0 ] 0 0 S3'Ga 5%Go
B = 0 0 0 0 0 0
0 0 0 0 0 0 ,
—_ —— -
0 0 0 0 VoA - WhA; 511150.512&0 S})l(":l S(’;z(—i,
- 0 0 0 0 VA O 5§ = _ I s _ _
g s¥Go SPGo s2'G; S3G,
Ay=fg .
A2=R(f-fo00)
Ar=-(F+fe)/ R ’ ¢ si'Go SI%Go sVG, si%G, si'G, shG,
2= + +
$2Go 3G TG, sPG, S3G, S,
- 0 0 0 0 0 0 -
0 0. 0 0 0o .0
n 0 0 0 0 0 0 100 1 0 0
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. Table 5.1, Explicit forms of the matrices up 1o the second-order
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