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Abstract

[n previous work, we developed a database system to support analysis of the E. coli genome.
That system provided a pidgin-English query facility, rudimentary pattern-matching capabil-
ities, and the ability to rapidly extract answers to a wide variety of questions about the or-

ganization of the E. coli genome. To enable the comparative analysis of the genomes from
different species, we have designed _nd implemented a new prototype database system, called
the Integrated Genomic Database (IGD). IGD extends our earlier effort by incorporating a set
of curator's tools that facilitate the incorporation of physical and genetic data, together with
the results of genome organization analysis, into a common database system. Additional tools
for extracting, manipulating, and analyzing data are planned.

1 Introduction

With the current advances in molecular biology and genome science, the ability to perform com-

parative analysis of the genome organization between species is rapidly becoming a reality. Such

comparative analysis requires access to a variety of genomic map information [4]. This map infor-

mation includes genetic maps as defined by genetic linkage analysis, genome mapping data such as

clone hybridization results, restriction enzyme fragment mapping (high-resolution maps from clones

and electrophoresis fragment maps for a chromosome), and physical data from DNA sequencing.

Providing flexible access to such diverse data presents a challenging problem in data representa-

tion. |n earlier work on the E. coi_ genome [1-3], we designed a database based on the programming

language Prolog. We chose Prolog because of its inherent relational database characteristics, pow-

erful query capabilities, and ability for rapid prototyping. After we added a pidgin-English query

interface, biologists were able to begin analyzing the integrated clone, physical map, sequence frag-

ment, and genetic data.
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To enable comparative analysis of genomes from different species, we have designed and imple-
mented a new prototype database called the Integrated Genomic Database (IGD). IGD initially will
help those users attempting to organize and curate genomic data, including maps, sequence, and

alignments. Eventually, the system will include facilities for easy visual access and pidgin-English
access to a wide variety of types of data relating to a collection of genomes. Ultimately, we envision
that IGD will be used both by research biologists and by teachers in classroom instruction.

1.1 Components of the IGD System

The IGD system is currently composed of a number of distinct tools that we are integrating into a
coherent framework:

1. A set of tools designed to extract data from archival databases (such as GenBank [5], EMBL
[6], and PIR [7]). These tools reformat the data into Prolog for insertion into our database.

2. A Prolog datzba.se that supports flexible access to the data, along with a toolkit designed
to support curatorial functions (such as redundancy control, recognition of similarity, maid
support, and positioning of sequence fragments on chromosomes). There is also a pidgin-
English command framework for common queries).

3. GenoGraphics [8], a system that supports visual display and reasoning about the data in the
Prolog database. (Note that GenoGraphics can function as a stand-alone tool, accepting data
from outside the Prolog database as long as it is properly formatted. GenoGraphics has its
own internal database system, separate from the Prolog database. We transfer data from
the Prolog database to this database when we want visual display.) lt can produce displays
of physical maps, genetic maps, cytogenetic maps, sequence fragments, attached features, GC
content, and a variety of other forms of the data. In addition, it includes facilities for searching
sequence for patterns (not as sophisticated as what can be done in the Prolog database, but
quite good) and for attaching comments to objects (including graphics images, a feature of
interest in documenting specific curatorial decisions).

Each of these three components addresses a critical problem facing anyone attempting to curate
or access genomic data. We will maintain basic documentation on ali three components as they
evolve.

1.2 Use of the IGD System

The IGD system is intended to be used as follows. First, genomic data is extracted and reformatted
into Prolog clauses, which constitute the "logical integration" of the data. This initial step converts
data from available archival sources into a consistent representation that offers flexible access.

Then, using the tools offered by the Prolog database component, a curator goes through the
following steps:

1. generation of a non-redundant data collection by removing redundant sequence fragments
from the different data collections (often making decisions concerning which of several possible
versions of the data to keep), and then

2. placing sequence fragments on locations or intervals of the relevant genome (using information
in physical maps, genetic maps, and sequence similarity to related genomes). Clearly, issues
relating to multiple versions of sequence fragments are controversial (when to keep alleles,
when to discard possible sequencing errors, identification of included vector sequences, and so
on). The proper handling of these "social" issues is not completely worked out yet. These are

problems for a domain expert to decide. However, we are making every effort to produce a
framework where such issues can be addressed in a productive manner.



Once an initial version of the data has been determined, a visual presentation of the integration
is created by using GenoGraphics. We have found that numerous curatorial decisions are more easily
made when the effects of such decisions can be visually summarized. (We are tightly integrating
GenoGraphics to the Prolog database component. The flow of data from the Prolog database into
GenoGraphics is already automated and simple, but options will be added so that the transfer

will become even easier to perform for display of features on the genome that contain complex
patterns.) Once an initial integration has been achieved, the curator can construct a variety of
detailed GenoGraphic maps that visually portray many useful aspects of the data, including the
distribution of interesting sequence features and the GC content of regions.

1.3 Availability

We are making stand-alone versions of GenoGraphics available in the public domain. These will be
the main form of mass distribution of the integrated data from multiple genomes. GenoGraphics
runs both under MS-DOS on PCs and on Sun workstations under Unix and X-Windows. The MS-

DOS version of GenoGraphics contains its own windowing environment and does not need Microsoft
Windows.

We also plan to make the Prolog database, along with the GenoGraphics teel, available to
labs capable of supporting the associated computational environment. (Unix is needed at present,
together with Quintus prolog and, as a matter of practicality, some sort of Unix shell such as
Gnu-Emacs, which allows post facto access to the screen output stream; we are, however, actively

pursuing the transfer of the Prolog database to a version of Prolog that runs under MS-DOS so that
the entire IGD system will run on an IBM PC or PC-clone.) The initial forms of this release will be
of a system that is still openly viewed as a prototyping environment and will be intended for users

that are comfortable with Unix workstation computing environments.
Since the IGD system is in an initial and evolving stage, original users must be aware of the

basic function of each of the distinct tools and how they interact. The remainder of this document

addresses these points.

2 Converting Archived Data into the Prolog Representa-
tion

The conversion of archived data to IGD system format is a three-step process.

1. (;enBank or EMBL locus entries are converted to Prolog clause format. Essentially, each field
of an entry (locus, definition, comment, features, etc.) is translated into one argument of a
clause. Also, some information is extracted fronl the surrounding text and stored in sepa-
rate arguments: the locus td, the (first) accession number, and the base listing concatenated
together as one unbroken string, among others. The locus entries taken as input can be in

any of four formats: NCBi GenBank, lntelligenetics GenBank, GCG GenBank, or EMBL. In
addition, we are currently implementing the same sort of import/expert facility to the new

"ace(II)" database [9], which has been adopted by the C. elegans and Arabidopsis thaliana
research communities.

Optzonal step: At this point, the user may enter into the IGD some subset of the original loci
data (now converted into Prolog format) rather than ali of the data. A procedure exists that
allows the user to select out only those loci that meet one (or a combination) of the following
criteria:

• A specific locus_td is found. A match is looked for in the locus_td field against a user-
defined list, of locus_ids.
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• A specific accession number is found. A match is looked for in the accession number field
against a user-defined list of accession numbers.

* A specific source organism is found. A match is looked for in the source_organism field
against a user-defined list of organisms. Example of such a list: ['E.coli','E. coli','Esch
coli'].

• A specific string is found. A match is looked for across ali fields against a user-defined
list of strings.

2. Each feature and associated sequence from the feature table for each locus (now in Prolog
format) is extracted and converted to Prolog clause format. The base sequence of the feature
is analyzed and information is stored on whether (a) a join was used, (b) the sequence was an
integer multiple of three, (c) the "direct" or "complement" strand was used, (d) a start codon
begins the sequence, and (e) a stop codon appears before, at, or immediately after the end of
the sequence (or is missing entirely).

3. The Prolog-formatted locus entries and features are entered into the actual IGD system by
conversion into IGD objects. Locus entries become objects of type "sequence_fragment". The
original locus id is assigned as the unique id of each such object. Feature objects fall into many
classes or types, depending on how they were labeled in the original feature table in the archived

data. For example, a coding-sequence feature labeled "cds" in the feature table would be given
the type "cds". Similarly, we would obtain these types: "mRNA", "tR.NA", "prim_transcript",
"mist_feature", "promoter", etc. If the feature describes a gene, the conversion program tries
to automatically pull out the name of the gene from the associated note lines for that feature
so that it may serve as the primary identifier. Otherwise, a unique number is assigned to the
feature. The locus entry and feature base sequence data are broken out and placed in separate
clauses in another file for faster, more efficient access.

3 Detailed Format of the Prolog Database

At the present stage of IGD's development, a curator is expected to have a basic understanding of
how data is represented in the Prolog database. Eventually, we hope to hide as much of this detail
as possible. Wo begin with some examples and then discuss the general form.

3.1 Examples of Data in Prolog Representation

CIOIlCS:

_ormat:

object(CloneId,Level,ListOfAttributes).

example:

object(' [I01]9E4'(clone,'E.coli'),0,[length(17100)]).

format:

precisely_bound(ObjectId,ListOfSubPiecesOfParent).

example:

precisely_bound('[101] 9E4'(clone,'E.coli'),

[to('ECI'(chromosome,'E.coli'),387,17486)]).



(The value 'ECI' denotes the first--and in this case sole--chromosome of E. coli. The chromosome

number is concatenated onto the genomic abbreviation 'EC' to form this identifier.)
restriction enzyme cutting sites (rsites):

object('EcoR5'(restriction_site),O,[site("GATATC"),cuts_at(3)]).

precisely_bound('EcoRS'(restriction_site),

[to('ECl'(chromosome,'E.coli'),6800,6808)]).

sequence fragments:

Example derived from a GenBank entry:

object('STYARALC'(sequence_fragment,'Salmonella'),O,

[length(1286),nuc_seq_ref(94290)]).

object('STYARALC'(sequence_fragment,'Salmonella'),l,
[constituents([constituent('STYARALC',O,1285,direct,1286)])]).

imprecisely_bound('STYARALC'(sequence_fragment,'Salmonella'),

[to('SAl'(chromosome,'Salmonella'))]).

Example of a meld:

object(meld13(sequence_fragment,'Salmonella'),O,

[length(S277),nuc_seq_ref(171681)]).

object(meld13(sequence_fragment,'Salmonella'),1,

[constituents([constituent('STYFLIG',O,2754,direct,2755),

constituent('STYFLIHIJ',132,2653,direct,2654)])]).

precisely_bound(meldl3(sequence_fragment,'Salmonella'),

[to('SAl'(chromosome,'Salmonella'),2023079,2028355)]).

features:

object(aphC(cds,'Salmonella'),O,

[note("alkyl hydroperoxide reductase C22 protein (aphC)"),
codon_start(1)]).

precisely_bound(aphC(cds,'Salmonella'),

[to('STYAHPCFA'(sequence_fragment,'Salmonella'),165,719,direct)]).

(Note that if the last, argument been "complement" rather than "direct", it would have meant "take

the subsequence of STYAHPCFA in the range 165 to 719, and then take the reverse complement of

the result".)

m apped_ge nes:

object (atbB(mapped_gene, 'Salmonella' ),0,

[posit ion(7.60) ,map( 'Sanderson' )]).

obj ect (atbB (mapped_gene, 'Salmonella' ),1,

[
mnemonic ("Attachment"),

desc("attP27II; second attachment site for prophage P27"),



refs(" [410,412,4183")
]).

precisely_bound(atbB (mapped_gene, ' Salmonella' ),
[to('SAI'(chromosome,'Salmonella'),384238,384338)]).

(Not ali mapped genes need to be thought of as "bound to the chromosome at an approximate
base pair position, but they should move to that state fairly rapidly.)

3.2 General Format

Facts describing objects in the Prolog database are of the form

obj ect(Id ,Level, [Attributes] ).

These are referred to as 'object/3" clauses, since the name (in Prolog terminology, the "functor")
of the clause is "object", and the clause has three arguments. There may be (and typically is) more
than one object/3 clause associated with a given object. Such multiple clauses have the same ld, but

differ in the Level and Attributes arguments. (The reasons for the parceling out of an object's data
over more than one object/3 clause are described in Section 3.2.1.) The brackets ("[ ]") in the third
argument above signify that we place a list of attributes (which consists of one or more members),
rather than just one attribute, in that argument.

Facts constraining location of the object are placed in the form

precisely_bouad(Id,[WhatItIsBoundTo])

or

imprecisely_bound(Id,[WhatItIsBoundTo]).

An object is precisely bound to a "containing" object (or set of objects) in which its relative po-
sition is known. The containing set would include more than one entry only for objects that are
discontiguous pieces within a containing object (i.e., a gene with introns in a sequence fragment)
or, irl ali even more general case, for objects that are composed of pieces from distinct "containing
objects". (These will be rare.) In the case of precisely bound objects, the WhatltlsBoundTo entries
will be of the form

to(Id,Beg,End) or to(Id,Beg,End,Direction)

where Beg and End are offsets (in base pairs, no matter how approximate) and Direction will be

either 'direct' or 'complement'. ld will be the ld of the containing object (more on this below).
An object is imprecisely bound if the contained object occurs somewhere in the circumscribed

interval. In the case of imprecisely bound objects, the WhatltlsBoundTo entries will be of the form

to(Id) or to(Interval)

where Interval is of the form



interval(Id,Beg,End) or interval(Pointl,Point2)

where Beg and End are offsets (again, in bp), and Pointl/Point2 would be points described by facts
of the form

point(PointName,Id,Offset)

defining PointName as Offset into ld.
In the current database, objects of most types have either one precisely_bound/2 clause or one

imprecisely_bound/2 clause. However, there is no theoretical factor barring us from placing the same
object onto multiple larger objects or placing an object at multiple locations on the same object
(which is exactly what we do for restriction sites).

Our framework allows us to have a hierarchy of objects, with each object being precisely (or
imprecisely) bound to a location in a larger object. At present, we typically have a three-part
hierarchy:

feature or clone or rsite -- bound to -->

sequence fragment -- bound to-->
chromosome.

or a two-part hierarchy:

mapped gene or rsite -- bound to --> chromosome

(Sequence fragments, which are objects themselves, of course, have just a two-part hierarchy: se-
quence fragment -_. chromosome. The largest source of sequence fragments for our database at
present are the locus entries in the GenBank and EMBL databases, or melds thereof. For the E.

eolz genome, substantial additional information has come from the ECOSEQ5 database compiled by
Kenneth Rudd [10-11]. Genetic linkage data has been taken from the Bachmann E. coli map [12]

and the Sanderson Salmonella map [13].)

3.2.1 El_icieucy Issues

When the built-in Prolog query-answering "engine" accesses a clause containing a string of charac-
ters, it must convert that string into another format for internal use. There is no way to shut off
this automatic conversion. Therefore, to keep the response time of queries to the system as small
as possible, we try to avoid accessing clauses containing long strings. One way to do this is to
introdtlce levels in the definition of objects in order to segregate attributes into classes. The levels
are numbered 0, l, 2, ... The clauses corresponding to these levels occur in the appropriate sequence
(i before j ifr i i J). Attributes are of the form

keyword(value)



Attributes at level 0 typically have fairly small values (and are few in number); they should be just
the most commonly referenced attributes. Longer attributes (such as "constituents" of a sequence
fragment or "descriptions") are relegated to high levels. Our system is written so that the level 0
clause is tried first. If the desired data is not present in the list of Attributes in that clause, we then
access the level l clause for the object, then the level 2 clause, and so on, until the query is either
satisfied or we have run out of levels (clauses) to try for that object. We store long strings (such
as, say, the comment field from a GenBank entry describing a sequence fragment) at higher levels
(typically level 2).

A second technique that we have implemented to increase efficiency involves indexing. The ld
of an object may include many "fields". An Id is intended to be an unambiguous designator of the
object. The natural way to specify such an id would be

type(KI,K2,K3...) [e.g., prim_transcript(aphC,'E.coli')]

Unfortunately, this would incur an enormous performance penalty, due to the first-argument indexing
scheme used in Prolog systems. (Since the type - prim_transcript in our example- could be expected
to be duplicated many times, rather than being a unique case, response time will grow as the system
searches through ali the possibilities.) Hence, we try to use the most discriminating of the fields
as the functor. For sequence fragments derived from GenBank, for example, this means using the
GenBank locus id as the functor of an object's id. This does not offer perfect indexing, but is a

good compromise (with the alternative of forming an atom made up of the relevant fields).
The intent of these representational conventions is to leave us with an extremely flexible, exten-

sible system. We believe that we will be able to absorb the complexity of GDB and GenBank into
a single framework using these conventions.

4 Use of the Prolog Database

The Prolog database offers access to integrated data across multiple genomes. It can be used to
support curatorial activity, prepare maps for GenoGraphics, or to support comparative analysis
of genomes. There are two basic levels of use: through a pidgin-English interface and with "raw
Prolog." Since the most common use will be through the pidgin-English interface, we present a brief
overview.

To gainaccessto the Prologdatabase,one simplytypes

IGD

and the system should respond (after some initialization messages) with

I ?-

which is the Prolog prompt. The user then types

query.

which causes tile system to initialize and respond with the pidgin English prompt,



query:

At such a prompt, the user types in a command. Each command can spread over multiple lines, but

it is terminated when a period is the last character of a line. The system will attempt to parse the

command and then respond appropriately. For example, here is a record of a "session" composed of
exactly two simple queries:

query: print ali sequence_fragments of Vaccinia.

print all sequence_fragments of Vaccinia

sequence_fragment VACCG of Vaccinia

(location=chromosome VAI[0,191736]):

accession_num: M35027

constituents: VACCG[O,191736,direct]

length: 191737

query: print occurrences of pattern in VACCG.

print occurrences of pattern in sequence_fragment VACCG of Vaccinia

pattern: pi=14...14 3...20 "pl

2 found

interval [16071,16112] of sequence_fragment VACCG of Vaccinia
GCCGGTGTAATAGA ATTATATATATCTA TCTATTACACCGGC

interval [130102,130134] of sequence_fragment VACCG o2 Vaccinia
AAAAAAACTATCTA TGCGG TAGATAGTTTTTTT

The first query

print ali sequence_fragments of Vaccinia.

caused the system to determine how many sequence fragments were included in the genome of

Vaccinia. There was only one, VACCG (which covers the entire genome). The second query

print occurrences of pattern in VACCG.

caused the system to prompt for the particular pattern for which it should scan. Note that the end

of the pattern is detected by an end-of-line (i.e., it is not delimited by a period). The pattern typed

in by the user requested a search for hairpins with perfect stems of length 14 and a cap (loop) of 3

to 20 characters. The I(ID found two matches to this pattern to report.



The general format for search patterns goes as follows. We think of a pattern as a sequence of

pattern units, each of which can be (a) a string of DNA characters (including the codes to represent
ambiguous characters), (b) a pattern unit that matches an arbitrary string of characters, where the

length of the string varies between specified bounds, (c) a pattern unit that "matches" the reverse
complement of a string matched by a previous pattern unit, or (d) a pattern unit that matches a
string identical to a previously matched pattern unit. Both of the last two types of pattern units

allow one to specify an allowable number of mismatches, insertions, and deletions (which gives an
"approximate" matching capability).

For example, we would think of the pattern

pI=AYGG 3...5 -pl pl

as consisting of four subunits: pl, followed by three to five bases of any composition, followed by
the reverse complement of pl, followed by pl again.

Hence this pattern is capable of matching a sequence like ACGGTTCGCCGTACGG. (ACGG
fits p l's AYGG pattern, TTCG falls within the allowed three to five arbitrary bases, CCGT fits p 1,
and ACGG fits the last pl subunit.)

The IGD session is terminated with the command:

query : quit.

The set of possible queries/corrunands will eventually be far richer than the current set (it will
certainly include ali of the query ci:,.sses implemented in our previous E. coli database system).

As with our previous system, _,:,ebelieve that the easiest way to describe the set of allowable
queries is by showing examples. Our hope is that the user with a specific query in mind will be

able to mimic one of the examples (if not, the required functionality probably is not yet in the
pidgin-English interface). So, here are typical examples, along with short explanations of what is
produced.

(1) Retrieving the data for the gene fliC
A user would type the following:

query: print flit.

The response is:

4 possible interpretations

I: print eds fliC of E.coli

2: print mapped_gene fliC of E.coli

3: print cds fliC of Salmonella

4: print mapped_gene fliC of Salmonella

Which would you like? [I]: 3

The system understands that there is more than one interpretation of the request, and allows the
user to choose which is correct. Once a choice is made (the third interpretation is chosen in the

above example), the following appears:

10



print cds fliC of Salmonella

cds fliC of Salmonella

(location= *** multiple locs:

sequence_fragment STYFLICA[0,851] complement;

sequence_fragment STYFLID[O,63] complement):

mnemonic: Flagella

desc: Hl; Flagellar synthesis; flagellin (filament structural protein);

phase I flagellin gene

refs: [143,199,205,222,243,247,302,410,412,418,507,508]

Note that the query system first prints out the query, as it understands it, before executing it. This

is useful as a check on what the system is actually doing, as compared to what the user might think

it is doing.

(2) Finding data for a specific coding region (cds)
The following interaction requests all information about the cds "AI3L". Since there is only one

database entry for A13L, there is no interpretation conflict to be resolved.

query: print the sequence of AI3L.

The response is:

print the sequence of cds AI3L of Vaccinia

eds AI3L of Vaccinia

(location=sequence_fragment VACCG[126535,126747] complement):
note: AI3L

codon_start: I

sequence

0 ATGATTGGTA TTCTTTTGTT GATCGGTATT TGCGTAGCAG TTACCGTCGC

50 CATCCTATAC TCGATGTATA ATAAGATCAA GAACTCACAA AATCCGAATC

100 CAAGTCCGAA TTTAAATTCG CCTCCTCCAG AACCAAAAAA TACCAAGTTT

150 GTAAATAATC TGGAAAAGGA TCATATTAGT TCATTGTATA ATCTAGTTAA

200 ATCTTCTGTA TAA

(3) Retrieving the sequence around a specific point

To get the sequence that includes 20 bases on either side of the start for cds AI3L, the following
is entered:

query: print the sequence of the interval from the start of AI3L - 20

query: to the end of AI3L + 20.

The response is:

li



print the sequence of the interval from the start of
cds AI3L of Vaccinia - 20 to the end of cds AI3L of Vaccinia + 20

interval [126515,126767,complements of sequence_fragment VACCG of Vaccinia

sequence

0 AGTGAAGTTA TTGTCAATAA ATGAT _ TTCTTTTGTT GATCGGTATT

50 TGCGTAGCAG TTACCGTCGC CATCCTATAC TCGATGTATA ATAAGATCAA

100 GAACTCACAA AATCCGAATC CAAGTCCGAA TTTAAATTCG CCTCCTCCAG

150 AACCAAAAAA TACCAAGTTT GTAAATAATC TGGAAAAGGA TCATATTAGT

200 TCATTGTATA ATCTAGTTAA ATCTTCTGTA TAAATAAAAA TATTTTTAGC

250 TTC

(4) Finding upstream and downstream regions relative to chromosome features

The following is an example of such a regional description:

query: print the sequence of upstream(Al3L,IC).

The response is:

print the sequence of the interval from the start of
cds AI3L of Vaccinia - 10 to the start of cds AI3L of Vaccinia - I

interval [126748,126757,complements of sequence fragment VACCG of Vaccinia

sequence

0 TTGTCAATAA

Alternatively, one can ask to see the downstream region.

query: print the sequence of downstream(A13L,lO).

The response is:

print the sequence of the interval from the end of
cds AI3L of Vaccinia + 1 to the end of cds AI3L of Vaccinia + 10

interval [126525,126534,complement] of sequence_fragment VACCG of Vaccinia

sequence

0 ATAAAAATAT

12



(5) Finding common substrings

One of the earliest queries often made to compare similar regions between species involves looking
for sequences in common for specific gene regions that are believed to have similar functions. The

following is an example of such a request.

query: print all sequences of length at least 10 common to {aceA,aceE}.

The response is:

9 possible interpretations

I: print all sequences of length at least I0 common to

{cds aceA of E.coli, cds aceE of E.coli}

2: print all sequences of length at least I0 common to

{cds aceA of E.coli, mapped_gene aceE of E.coli}

(rest of output omitted)

Which would you like? [I]: I

_r the user makes her choice above, the following is displayed:

print all sequences of length at least I0 common to

{cds aceA of E.coli, cds aceE of E.coli}

14 sequences in common in the following objects:

...... I

eds aceA of E.coli

(location=sequence_fragment hydGecoM[14191,15495] direct):
accession: EGI0022

SwissProt: P05313

2

cds aceE of E.coli

(location=sequence_fragment ampDecoM[4713,7373] direct):
accession: EGIO024

SwissProt: P06958

ATCTGGAACTGG length=f2

positions in object I are [880]

positions in object 2 are [223]

(omitted)

13



TCGAAAAAAG length=t0

positions in object I are [180]

positions in object 2 are [291]

(6) Searching for patterns

Structural patterns such as hairpins can be searched for inside specific regions. This capability is

demonstrated in the following interaction. Here the user is looking for ali hairpin structures with a

fully base paired stem of 7-8 bases in length and a loop of 3-8 bases in the DNA fragment rrnDecoM.

query: print occurrences of pattern in rrnDecoM.

The response is:

print occurrences of pattern in sequence_fragment rrnDecoM of E.coli

pattern: pi=7...8 3...8 "pl
8 found

interval [3290,3307] of sequence_fragment rrnDecoM of E.coli
AGTGTGT CGAA ACACACT

interval [4088,4109] of sequence_fragment rrnDecoM of E.coli
TGGAGTC G_GTTGCA GACTCCA

(7) Searching sets of objects

The following interaction demonstrates how to use the previously defined haaripin pattern to

search through the 20 base region surrounding the start of every cds feature defined for the Vaccinia
genome.

query: for each cds in Vaccinia SX, print occs of pat in the interval

query: from the start of SX - 20 to the start of $X + 20.

The response is:

for all cds of Vaccinia SX, print occurrences of pattern in the interval
from the start of SX - 20 to the start of $X + 20

pattern: pi=7...7 3...8 "pl
-==:<< context >>:::-

1

cds AIOL of Vaccinia
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(location=sequence_fragment VACCG[122285,124960] complement):
note: AIOL

codon_start: I

interval [2,23] of interval(VACCG(sequence_fragment,Vaccinia),124940,124980,

complement)
TCATTTA ATACTAAA TAAATGA

======<< context >>====

I

cds I8R of Vaccinia

(location=sequence_fragment VACCG[70073,72103] direct):
note: I8R

codon__tart: 1

interval [8,26] of interval(VACCG(sequence_fragment,Vaccinia),70053,70093,

direct)

TTTCCAT TTATC ATGGAAA

(8) fastA comparison of two sequence fragments

Access is also provided to established sequence comparison programs. For example, the following

shows how to use the fastA algorithm [14] to compare two sequenced regions from different genomes.

query: fastA comparison of STYADA and rrnDecoM showing best 2.

The response is:

fastA comparison of sequence fragment STYADA of Salmonella and

rrnDecoM of E.coli showing best 2

comparing STYADA/SalmonelIa and rrnDecoM/E.coli:

STYADA/SalmonelIa will show as tmp_fasta

78.6_ identity in 28 nt overlap

860 870 880 890 900 910

tmp_fa CGCCGTTGCTGCGCGCGCGCATTATCCGGCTGACAGCGCTTGCAGGGGCGAAAACCGGCG
X::: :::: ::::: :::::: : :X

rrnDec CAATGGCATAAGCCAGCTTGACTGCGAGCGTGACGGCGCGAGCAGGTGCGAAAGCAGGTC

4730 4740 4750 4760 4770 4780

920 930 940 950 960 970

tmp_fa TCCAGCGCCTGCTGCGCGTTGGCAAAAAAGCGAACATTTTTACGTAACGCCCGCTTCGAG
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rrnDec ATAGTGATCCGGTGGTTCTGAATGGAAGGGCCATCGCTCAACGGATAAAAGGTACTCCGG

4790 4800 4810 4820 4830 4840

rrnDecoM-reversed 66 66 68

68.4_ identity in 38 nt overlap

290 300 310 320 330 340

tmp_fa CTGTTGAAACGCGGTTCCCTGGATATCCAGCGGCAACGAGAGCAGCACATCGCGTGTGTT
: X::::::: ::: : : : : : ::::

rrnDec AGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCT'ITGTT

1500 1510 1520 1530 1540 1550

350 360 370 380 390 400

tmp_fa GATAGCCGCGACAACCTGCCGCACCCGTTGCTGAAAAAGCGCGTCAGCAGGTTCGTGGCG
: ::X :

rrnDec GCCAGCGGTCCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGG

1560 1570 1580 1590 1600 1610

Library scan: 0:00:01 total CPU time: 0:00:03

(9) Getting codon usage and n-mer decompositions

lt is also possible to evaluate the simple statistics for nucleotide composition for a genome. The

following interaction shows how to get both codon usage for the defined cds features of a genome
and the full trinucleotide statistics.

query: print the codon usage of cds in Vaccinia.

The response is:

print the codon usage of all cds of Vaccinia

number valid codons = 60974

number invalid codons = 0

alanine: 2310 3.79_

GCA: 690 1.13_

GCC: 409 0.67_

GCG: 440 0.72Z

GCT: 771 1.26_

valine: 3753 6.16Z

GTA: 1425 2.34_

GTC" 535 0.88Z
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0

GTG: 558 0.92_

GTT: 1235 2.03_

query: print the 3-met decomposition of cds in Vaccinia.

The response is:

print the 3-mer decomposition of all cds of Vaccinia

AAA: 7572 4.15_

AAC: 3493 1.92_

AAG: 3180 1.74_

AAT: 6247 3.42_

TTC: 3031 1.66%

TTG: 2889 1.58_

TTT: 5086 2.79%

(10) Directing output to files

For further statistical analysis, data files can be generated that could be used by some external

statistical package. The following shows how to create such output files.

query: to file.

Where should the output go? imp

The response is:

to file [imp]

\begin{verbatim}

query: print the 4-met decomposition of cds of Vaccinia.

The response is:

print the 4-met decomposition of all eds of Vaccinia

*** This writes suitably formatted output to the file "imp". Here are the first
*** few lines:

2757 AAAA

1394 AAAC

1237 AAAG

2184 AAAT
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1274 AACA

431AACC

Redirection back to the terminal is done by the following:

query: to person•

The response is:

to person

(11) Conducting basic curating functions with the "undo" facility

The assembly of a genome requires a domain expert who has sufficient knowledge of the genetics

and an understanding of how the data was derived. That curator would begin by gathering genetic
and physical mapping data to assemble a view of the genome. This task requires tools that allow

consistent mapping of features to the constituent fragments that will be melded. A melding tool

is needed to generate contigs that accurately reflect the features assigned to the constituents. We

also need a means of backing out of changes to the genome view (i.e., of "rolling back") as new

information becomes available. The IGD system accomplishes ali of these tasks through the use of

an update log that records the necessary manipulations of sequence assignments and assembly in

memory. This allows nondestructive manipulations that can be reversed at any time. The following
curator's interaction demonstrates many of these functionalities.

query: print features on STYGLGC.

The response is:

print features on sequence fragment STYGLGC of Salmonella

2 found

cds glgA of Salmonella

(location=sequence_fragment STYGLGC[0,87] complement):

mnemonic: Glycogen

desc: Starch (bacterial glycogen) synthase (ECr 2.4.1.21)

refs: [290,291,412,418]

cds glgC of Salmonella

(location= *** multiple locs: sequence_fragment STYGLGC[87,1382] complement;

sequence_fragment STYGLGCG[0,2] complement):

mnemonic: Glycogen

desc: Glucose-l-phosphate adenylyltransferase (EC 2.7.7.27)
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refs: [290,291,412,418]

query: delete STYGLGCG.

The response is:

delete sequence_fragment STYGLGCG of Salmonella

query: show update history.

The response is:

show update history

********************

I. delete sequence_fragment STYGLGCG of Salmonella
********************

query: print cds glgC of Salmonella.

The response is:

print cds glgC of Salmonella

cds glgC of Salmonella

(location=sequence_fragment STYGLGC[87,1382] complement):

mnemonic: Glycog6_

desc: Glucose-l-phosph;_te adenylyltransferase (EC 2.7.7.27)

refs: [290,291,412,418]

query: undo.

The response is:

undo

query: print cds glgC of Salmonella.

The response is:
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print cds glgC of Salmonella

cds glgC of Salmonella

(location= *** multiple locs: sequence fragment STYGLGC[87,1382] complement;

sequence fragment STYGLGCG[0,2] complement):

mnemonic: Glycogen

desc: Glucose-l-phosphate adenylyltransferase (EC 2.7.7.27)

refs: [290,291,412,418]

query: fastA comparison of STYGLGC and STYGLGCG.

The response is:

fastA comparison of sequence fragment STYGLGC of Salmonella and STVGLGCG of

Salmonella showing best I

comparing STYGLGC/Salmonella and STYGLGCG/Salmonella: STYGLGC/Salmonella

will show as tmp_fasta 88.9_ identity in 27 nt overlap

1360 1370 1380 1390 1400

tmp_fa CATTACACGATCGTTCTTCTCTAAACTCACCATAGTTAACTCCTTTTTTA-CCTCTCAAG
X:: ::::::::::::::: v'::::

STYGLG CATGATTAACTCCTTTTTTATCCTCTCTGG

10 20 30

1410

tmp_fa G

STYGLG AACACACACAGTCCATGCGCAGGTCCCTGCCAGAGCGCCGTTATCACCGGATTATCCTCT

40 50 60 70 80 90

Library scan: 0:00:00 total CPU time: 0:00:00

query: print the sequence of STYGLGC.

The response is:

print the sequence of sequence_fragment STYGLGC of Salmonella

sequence_fragment STYGLGC of Salmonella

(location=chromosome SA111226202,1227611]):

length: 1410

sequence

0 GTCGCGCAGG CAACGCGCCT ATCACATCCG CCAGCCCCCC AGTCTTCAGC

50 AGGGGGAACA TCTCTGAACA TACATGTAAA ACCTGCATTA TCGCTCCTGT
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1350 CATTACACGA TCGTTCTTCT CTAAACTCAC CATAGTTAAC TCCTTTTTTA

1400 CCTCTCAAGG

query: print the sequence of STYGLGCG.

The response is:

print the sequence of sequence_fragment STYGLGCG of Salmonella

sequence_fragment STYGLGCG of Salmonella

(location=chromosome SAI[3589324,3589781]):

length: 458

sequence

0 CATGATTAAC TCCTTTTTTA TCCTCTCTGG AACACACACA GTCCATGCGC

50 AGGTCCCTGC CAGAGCGCCG TTATCACCGG ATTATCCTCT CCAGCGAATG

100 GGGGAACGGC GCGCCATTCC CCTTCGGGTA AAACTATATC TGTCACCTCA

150 AGCGTGGCAT TTATCGCAAT CAGAAAACGG TCCGACAACA GAATTTGCAT

200 CNAGCTTAGG CCCGTTTTGC CACTCANTCC GCACTCAAGG GTTGCGCGTT

250 TTTATTCAGC CAACGCACGT TGCCATCGCC TTCTTCCCAC CAGCTATTGC

300 CGGTTAAAGC CGGTATCTGC TGACGCAAAC GAATCAGCGC GGCGGTAAAC

350 GTGGTTAACC CACGATTTGC CTGCTGCCAG TCCAGCCAGG TTAAGGCATT

400 ATCCTGACAG TAGGCGTTAT TGTTGCCATG CTGGCTATGG CCGTGTTCAT

450 CGCCTGCC

query" meld STYGLGC positions 0 to 1399 with STYGLGCG positions 20 to 457.

The useris prompted _rthe name ofthe resulting meld"

giving? glgC_meld

The response is:

meld sequence fragment STYGLGC of Salmonella positions 0 to 1399 with

sequence fragment STYGLGCG positions 20 to 457 [giving glgC_meld]

query: print cds glgC of Salmonella•

The response is"
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print cds glgC of Salmonella

cds glgC of Salmonella

(location=sequence fragment glgC_meld[87,1382] complement):

mnemonic: Glycogen

desc: Glucose-l-phosphate adenylyltransferase (EC 2.7.7.27)

refs: [290,291,412,418]

Note that the cds "gig(:" now appears on the newly created mold.

query: relocate glgC_meld to SAI+45670.

The response is:

relocate sequence_fragment glgC_meld of Salmonella to chromosome SAI
of Salmonella+4S670

query: show update history.

The response is:

show update history

********************

I. mold sequence fragment STYGLGC of Salmonella positions 0 to 1399 with

sequence fragment STYGLGCG positions 20 to 457 [giving glgC_meld]

2. relocate sequence_fragment glgC mold of Salmonella to chromosome SA1
of Salmonella+45670

********************

query: undo.

The response is:

undo

query: show update history.

The response is:

show update history
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I. meld sequence fragment STYGLGC of Salmonella positions 0 to 1399 with

sequence fragment STYGLGCG positions 20 to 457 [giving glgC_meld]
********************

(12) Handling related objects (a meager start)
Two sample queries in this area are shown below.

query: print all objects related to cds fliC of Salmonella.

The response is:

print all objects related to cds fliC of Salmonella

cds fliC of E.coli

(location=sequence_fra_ent fliCecoM[lOl,1597] complement):
accession: EGI0321

SwissProt: P04949

query: print all objects related as same_function to fliC of Salmonella.

2 possible interpretations

I: print all objects related as same_function to cds fliC of Salmonella

2: print all objects related as same_function to mapped_gene fliC
of Salmonella

Which would you like? [1]: 2

The response is:

print all objects related as same_function to mapped_gene fliC of Salmonella

mapped_gene fliC of E.coli

(location=chromosome ECI [2017641,20177413 ):

position: 4.252E+01

map : Bachmann

(13) ('hecking constituents

Melded sequences are built from constituent sequences. One of the curator checks to validate

the assembly process is demonstrated below.

query: check constituents of alkBecoM.

Tho response is:

23



check constituents of sequence_fragment alkBecoM of E.coli

alkBecoM is ok

query: check constituents of appAecoH.

The response is:

check constituents of sequence_fragment appAecoM of E.col±

appAecoM can not be constructed from constituents (see position 577)

99.9_ identity in 2076 nt overlap

10 20 30 40 50 60

tmp_fa GATCTCCAGCCTGACGTTGTGGGACAGTACTTCCAGTCAGCTGACGCTGAGCATTATGTT
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

appAec GATCTCCAGCCTGACGTTGTGGGACAGTACTTCCAGTCAGCTGACGCTGAGCATTATGTT
10 20 30 40 50 60

550 560 570 580 590 600

imp_la CAACCTGGCCGGTAAAACTGGGTTGGCTGACACCGCGNGGTGGTGAGCTAATCGCCTATC
• .°°...,...°,....,°°°...,..,........, .....,....,.,,..,...,.
°,....°,..,...,.,°..,°..,....,....°°.°........,..,,....°....

appAec CAACCTGGCCGGTAAAACTGGGTTGGCTGACACCGCGTGGTGGTGAGCTAATCGCCTATC
550 560 570 580 590 600

2050 2060 2070

imp_la TCGTTCGCCCATTCCAGTAATTGACGCATCCGATCG
::::::::::::::::::::::::::::::::::::

appAec TCGTTCGCCCATTCCAGTAATTGACGCATCCGATCG

2050 2060 2070

Library scan" 0:00"00 total CPU time: 0:00:01

This concludes our set of sample pidgin-English queries.

5 GenoGraphics and Its Use

The basic fimctionality of the GenoGraphics system is described in detail in the GenoGraphics users'

manual. In this section, we describe how a curator may visualize his work in the IGD by means of

GenoG raphics.
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GenoGraphics is used to graphically peruse the results of a series of map construction operations.
An example of the IG D interaction for making a collection of computed map data is demonstrated
below.

query: make maps for E.coli.

The response is:

make maps for E.coli.

completed making map ECOISF

completed making map ECOISG

completed making map ECOIGC

query: make maps for Salmonella.

The response is:

make maps for Salmonella.

completed making map SAOISF

completed making map SAOISG

completed making map SAOIGC

completed making map SAOIMG

completed making map SAOOSF

completed making map SAOOSG

completed makzng map SAOOGC

query: compose {ECOICL,ECOIRS,ECOOGC,ECOOSF,

query: ECOOSG,ECOIGC,ECOISF,ECOISG,

query: ECOIMG,SAOIMG,SAOISG,SAOISF,

query: SAOIGC,SAOOGC,SAOOSF,SAOOSG}.

Where should the output go? Maps/EC_SA

In this session, the composite map information for E. coli and Salmonella is computed separately

for each map. Then aligned maps are "composed" for viewing with GenoGraphics. The IGD places

the selected composition of maps in the file "EC_SA" in the directory "Maps." To view the maps,

the user starts Geno(;raphics as a separate process. Once inside GenoGraphics, the EC_SA file is

accessed as a normal GenoGraphics data file. Figure 1 shows a subset (seven of the E. coli maps) of

the set of aligned maps created above. Figure 2 shows a zoomed window of the map data revealing

the details of the sew_ral of the E. coli and Salmonella aligned maps. The connecting lines between

objects on separate maps indicate sequences of high similarity between E. coli and S. typhimurium

(strain LT2).
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6 Conclusion

We set out to create a flexible database system that would allow the integration of several different
types of genomic data. The IGD prototype presented here has proven to be adaptable enough to
allow the incorporation of data from several archival database systems as well as laboratory data
supplied directly. In this paper we have provided an overview of the IGD system. We have described

how one interacts with the system, using the incorporated data from several model organisms. We
have already used this system to incorporate the cosmid/YAC hybridization data for ali three chro-
mosomes of S. pombe, the complete DNA sequence for chromosome 3 of yeast, and clone restriction
fragment mapping data.

We intend to continue expanding the breadth of chromosome analysis tools that can take advan-
tage of this database technology. We have already implemented portions of David Searls's GenLang
grammar/parser for DNA sequence patterns [15, 16]. Tile tRNA subgrammar has been used suc-
cessfully to identify ali of the sequenced tRNAs for E. coli found in the integrated data. The results
of this analysis will be presented in another paper.

We also intend to expand the Prolog database "upward" so that it contains information on
proteins (alignments, evolutionary relationships, and other information of the sort stored in the

Swiss Protein Database, which we are currently putting into Prolog format) and on metabolic
pathways. In addition, we will be adding interfaces for other existing genome database management
tools, including "acedb" and other commercial DBMS systems. The goal is to provide an integrated

database and analysis environment that is capable of dealing with the ever more complex questions
concerning the comparisons of chromosome organization between species.
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