Keywords: DWPF, glass, IDMS, durability, Product Consistency Test, vitrification, process control

WSRC-RP-91-371 WSRC-RP--91-371

DE93 002154

DURABILITY OF GLASSES FROM THE HG-DOPED INTEGRATED DWPF MELTER SYSTEM (IDMS) CAMPAIGN (U)

CAROL M. JANTZEN

Approved by

E.W. Holtzscheiter, Research Manager **Defense Waste Processing Technology**

Publication Date: August 30, 1992

Authorized Derivative Classifier

Westinghouse Savannah River Co. Savannah River Site Aiken, SC 29808

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC09-89SR18035

This page intentionally left blank.

ABSTRACT

The Integrated DWPF Melter System (IDMS) is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF.

The durability of three glasses from each of the three runs was examined with the PCT. There was very little variation in the glass durability during run HG-1 until excess NaOH was added to adjust the glass viscosity to be in the correct processing range. The addition of the excess NaOH caused the glasses in runs HG-2 and HG-3 to be less durable than the glasses in run HG-1. The nine IDMS Hg glasses were of comparable durability to previously examined sludge-only 165 glasses and to glasses fabricated from Frit 202 with excess alkali. All the IDMS Hg glasses were over 20 times more durable than the glass that was qualified in the DWPF Environmental

Assessment (EA). The IDMS Hg campaign glasses would, therefore, meet current Waste Acceptance Preliminary Specification (WAPS) criteria for product consistency. This page intentionally left blank.

Table of Contents

Page

Abstract	3
Introduction	7
Experimental	9
Glass Homogeneity	9
Glass Composition	9
Glass Durability	9
Quality Assurance	10
Glass Sample Identification	10
Results and Discussion	11
Glass Homogeneity	11
Glass Composition	11
Glass Durability	13
Conclusions	17
References	19
Appendix I : Measured Glass Compositions	21
Appendix II: Leachate Multielement Standard Analyses	39
Appendix III: Leachate Data for the IDMS Hg Campaigns 1, 2, 3	41

This page intentionally left blank.

DURABILITY OF GLASSES FROM THE HG-DOPED INTEGRATED DWPF MELTER SYSTEM (IDMS) CAMPAIGN (U)

INTRODUCTION

Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass. The production process to be used in the Defense Waste Processing Facility (DWPF) is designed to reliably produce durable borosilicate nuclear waste glasses.

The Integrated DWPF Melter System (IDMS) was designed and constructed to be a 1/9th scale prototypic pilot plant of the full scale DWPF melter. The IDMS facility is the first engineering scale melter system operated at SRS that is capable of processing mercury, and flowsheet levels of halides and noble metals. The mercury, present in the waste due to the use of mercuric nitrate as a catalyst during nitric acid dissolution of spent fuel rods, decomposes at temperatures much less than the borosilicate glass melt temperature. Any mercury present in the waste at the time of vitrification will likely exit the melter in the off-gas. Therefore, the DWPF has planned to remove most of the mercury prior to vitrification by reduction and steam stripping.¹

In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a mercury (Hg) campaign was conducted in the IDMS. The IDMS was operated batch-style for three SRAT/SME (Slurry Receipt Adjustment Tank/Slurry Mix Evaporator) cycles. The facility was operated close to DWPF flowsheet conditions. The process/product models² developed for DWPF were used in spreadsheet format since the DWPF process control system, the Product Composition Control System (PCCS)³ had not yet been fully implemented. Mercury containing Batch 1 sludge⁴ without noble metals was blended with precipitate hydrolysis aqueous (PHA) product and Frit 202. This PHA glass was designed to have similar process and product characteristics to SRS sludge-only glasses which were formulated without PHA.⁵

A durability test, designated the Product Consistency Test (PCT), has been developed to measure the consistency of the glass product produced in the Defense Waste Processing Facility (DWPF) during routine production.⁶⁻⁸ The test was designed to meet the requirements of the Waste Acceptance Preliminary Specifications (WAPS) 1.3.⁹ Currently this specification states that based on comparative PCT analyses, a DWPF glass must have a release which is better than the glass that was qualified in the DWPF Environmental Assessment (EA).¹⁰ The PCT measurement of glass durability will take a minimum of 7 days.⁶⁻⁸ Therefore, a product quality model based on hydration free energy was developed.¹¹⁻¹⁷ The use of the hydration thermodynamic model allows the glass quality to be predicted from the composition of vitrified melter feed, and then verified after production. This study documents the final glass chemistry and the measured glass durability of glasses produced during the IDMS-Hg campaign. Over 15,000 pounds of glass was poured during the entire campaign. This represented about 5000 pounds of glass for each of the three runs (Hg-1, Hg-2 and Hg-3). Three samples of IDMS glass were taken from the beginning of each of the three runs (Hg 1-1, Hg 2-1, Hg 3-1), at the middle of each run (Hg 1-2, Hg 2-2 and Hg 3-2), and at the end of each run (Hg 1-3, Hg 2-3, Hg 3-3). This represented glass pouring intervals of ~0, 2500, and 5000 pounds of glass. The process/product properties calculated from the vitrified slurry are compared to the properties calculated from the final glass product as a function of run sequence. The measured glass durability is reported and compared to the following:

• the predicted glass durability

• •

- previously tested SRS sludge-only and PHA glasses
- the sludge-only glass qualified in the DWPF Environmental Assessment.

EXPERIMENTAL

Glass Homogeneity

X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses coupled with Energy Dispersive Analysis by X-ray (EDAX) were performed on the nine IDMS-Hg campaign glasses in order to determine the crystallinity and/or homogeneity of the glass.

1.4

Glass Composition

The elemental composition of the nine glasses was originally measured by the TNX laboratory. The glasses were reanalyzed by the Analytic Development Section of the Savannah River Technology Center because the original analyses were inconsistent. The nine glasses were analyzed for whole element chemistry and redox. The glass samples were analyzed by the following techniques:

- Dissolution by Na₂O₂ with an HCl uptake
 - ICP for Al, Ca, Fe, Mg, Mn, Li, Si, Cr, B, Sr, Ti, P, Ba, Pb, Mo, Zn, Cu, Ni, La, Cd
- Dissolution by HCl/HF microwave
 ICP for Na, Zr
 AA for Na, K
- Dissolution by H_2SO_4/HF in the presence of $NH_4VO_3^{18}$
 - Colorimetric for Fe^{2+} and $Fe_{(Total)}$

where ICP is Inductively Coupled Plasma Spectroscopy and AA is Atomic Absorption analysis.

Glass Durability

The durability of the nine glasses was studied using Version 3.0 of the PCT.⁸ In the PCT, crushed glass of 100-200 mesh is immersed in ASTM Type I water for 7 days at 90°C. The volume of solution (V) used was the recommended 10 mL per gram of glass. Leachates were filtered to remove colloids and/or particulates. At the end of triplicate analyses, both the pH and the leachate concentrations were measured for the glass species of interest. A standard glass was used as a control to eliminate bias in the experimental analysis and in the analytical data. Triplicate analyses and triplicate glass standards were run simultaneously. A multielement solution standard was used to detect any significant biases in the analysis of the leachates.

The leachate concentrations are reported as normalized elemental losses, NC_i , released from the glass in grams of glass per L of leachant. This has the advantage that the release concentrations in parts per million are normalized by the weight fraction of that element present in the glass. The

normalized release, NC_i, is calculated as:

$$NC_{i} = \frac{C_{i}}{F_{i}}$$
(1)

where

 $NC_i = normalized release (g_{glass}/L_{leachant})$

 $C_i = mass of element "i" in the solution (g_i/m³)$

 F_i = fraction of element "i" in the glass (g_i/g_{glass})

OUALITY ASSURANCE

All the vitrification activities and glass analyses were performed in accordance with DWPT Task Plan-IDMS Mercury Studies, DWPTQA-89-0041. All tasks were controlled in accordance with the task QA Plan.

The PCT Version 3.0 is a Glass Technology Category 1 Procedure requiring experimenter data input and signoff at every step (GTOP-3-025 in The Glass Technology Procedures Manual, DPSTM-88-700-5, L 13-1). All the ovens, balances, and water purification systems used for the PCT are M&TE Category 1.

Analytical Development Section (ADS) procedures were followed for all chemical and x-ray diffraction data so that the data is readily retrievable.

All the PCT data for this study are recorded in DPSTN-4789 (E-56079) and WSRC-NB-90-271. The glass composition data is recorded in DPSTN-4771 (E-56053).

GLASS SAMPLE IDENTIFICATION

The glass nomenclature Hg 1-1, 1-2, 1-3 was used to facilitate the understanding of the chemical variation occurring in the first (Hg-1) run of the IDMS Hg campaign as a function of the sequence in which the glasses were sampled.¹⁹ Glasses Hg 1-1, 1-2, and 1-3 appear in the IDMS production records as GLAS 2340, 2427, and 2518, respectively. Glasses Hg 2-1, 2-2, and 2-3 are GLAS 2630, 2838, and 2877, respectively. Glass Hg 3-1 is a combined sample of production run GLAS 2124 and 2125. Glass Hg 3-2 is a combined sample of production run GLAS 3236 and 3237. Glass Hg 3-3 is production run GLAS 3357.

RESULTS AND DISCUSSION

Glass Homogeneity

The x-ray diffraction analysis of the crushed and sieved glass indicated that there was no crystallization present in any of the IDMS-Hg glasses. During SEM/EDAX analysis of the crushed glass, small amounts of metallic Cu^o were observed. The Cu^o appeared to be on the glass surface, indicating that it may have been contamination from the brass sieves. No evidence of glass crystallization was observed during SEM/EDAX analysis.

Glass Composition

The chemical analyses indicated that there had been an excursion in Na₂O content in the glass vitrified in IDMS between runs Hg-1 and Hg-2. This excursion occurred when the vitrified slurry analyses indicated that the resulting melt would be too viscous to pour, e.g., over the viscosity process control limit of 100 poise.¹⁹ NaOH was added to run Hg-2 to adjust the feed so that it would form a glass of < 100 poise viscosity. Additional PHA, which is Na₂O rich, was added to the run Hg-3 feed instead of NaOH, so that the Hg-3 run glass would conform to the viscosity process limit of <100 poise.

Analysis of the glass used in the durability studies indicated that the glasses run during run Hg-1 (Hg 1-1, Hg 1-2, and Hg 1-3) and the very first sample taken at the beginning of run Hg-2 (Hg 2-1) were consistent in composition while the sequence of glasses after the NaOH (Hg 2-2, Hg 2-3) and the PHA (Hg 3-1, Hg 3-2, Hg 3-3) additions were consistent. The glass compositions were measured in duplicate and were determined to be biased low compared to the original analyses of these glasses at the TNX laboratory. Therefore, the reanalyzed glass compositions were biascorrected to the original IDMS Hg-1 glass data (Appendix I). The measured redox ratios (Fe²⁺/ Σ Fe) of the IDMS glasses were <0.05 during runs Hg-1 and Hg-2 and between 0.07 and 0.1 during run Hg-3 (Appendix I). The measured redox for Hg-1 and Hg-2 glasses were more oxidizing than those measured from the vitrified feed for Hg-1 and Hg-2. The measured redox for Hg-3 glasses was slightly more reduced than the redox measured from the vitrified feed for Hg-1.

The effect of the glass composition variability calculated for each of the compositionally dependent process (viscosity and liquidus) and product (durability) constraints is shown in Figure 1a-c as a function of production run sequence. The process and product parameters calculated from the average glass compositions given in Appendix I followed the same trends as the parameters calculated ¹⁹ from the vitrified melter feed for all runs. The chemical analysis of vitrified feed from run Hg 2-1 indicated that the melt would have exceeded the upper viscosity limit of 100 poise (Figure 1a) and the upper liquidus temperature of 1050° (Figure 1b) had the glass composition not been remediated to the value indicated by the Hg 2-2 glass analysis. Glass Hg 2-1 had been sampled early in run 2 before the melt volume had completely turned over after the addition of the NaOH. Moreover, Figure 1c indicates that the remediation of the glass composition within the process constraints did not adversely affect the glass durability, e.g. the calculated glass durability, expressed as the glass free energy of hydration, remained a more positive value than -7 kcal/mole.

Figure 1a. Comparison of predicted glass viscosity based on vitrified feed analyses and final glass composition analysis.

. .

i

ř

PRODUCTION RUN SEQUENCE

Figure 1b. Comparison of predicted glass liquidus based on vitrified feed analyses and final glass product analysis.

PRODUCTION RUN SEQUENCE

Figure 1c. Comparison of predicted glass liquidus based on vitrified feed analyses and final glass product analysis.

Glass Durability

The triplicate glass durability analysis pH values shown in Figure 2 also reflect the changing alkali content of the Hg campaign glass as a function of production run sequence. The leachate pH changed significantly between campaign Hg 2-1 and Hg 2-2 when the excess NaOH addition to the sludge became a significant contribution in the resulting glass. This is not surprising since excess Na₂O in the glass would cause excess OH⁻ in the leachate which causes the leachate pH to become more basic via the following reaction:

$$Na_2SiO_3 + 2H_2O \longrightarrow 2Na^+ + H_2SiO_3 + 2OH^-$$
(2)

The pH corrected free energy of hydration was calculated from the glass composition and the leachate pH (Appendix I).¹² The pH corrected free energy of hydration was plotted as a function of glass production run sequence for the IDMS-Hg glasses (Figure 3). A significant change in the free energy of hydration, ΔG_{hyd} , is noted between runs Hg 2-1 where the calculated value is about -7 kcal/mole and Hg 2-2 where the calculated value is about -8 kcal/mole. The change in the pH corrected ΔG_{hyd} coincided with the the point at which the excess Na₂O became a significant contribution to the glass.

• • •

.

.

Figure 2. Variation of leachate pH with IDMS Hg glasses in the sequence in which the glasses were produced and poured.

Figure 3. Variation of the calculated free energy of hydration (calculated from the glass composition and the solution pH) for IDMS Hg glasses shown in the sequence in which the glasses were produced and poured.

A multielement solution standard was run after every 5 leachate samples. Analysis of the solution standard data indicated that there was less than 0.5 ppm bias in the ICP analyses for Na, B, Li, Al, and Fe and in the Atomic Absorption (AA) analyses for K. The data also indicated that there was about a 1.4 ppm bias in the Na determinations made by AA and a -1.47 bias in the Si determinations by ICP analysis (Appendix II).

The raw data used to convert the leachate concentrations to NC_i is given in Appendix III. Boron

and lithium releases from glass are considered to be the most accurate indicators of glass durability since these elements are leached from glass faster than any other elements. Boron is probably the best indicator of glass durability because it does not saturate in the leachate and does not participate in precipitation reactions caused by solution supersaturation. The elemental releases measured in the leachates were checked for internal consistency by plotting the normalized releases for Li, Si, Na, and K against the normalized releases of B (Figure 4). Normalized units are plotted since the glasses before run Hg 2-2 are considerably different in composition than those after run Hg 2-2. The plots of Li, Si, Na and K versus B were all consistent, e.g. if a given glass released a great deal of B it, likewise, released a great deal of Li and/or Si, Na, or K. Figure 4 also demonstrates a consistently high bias in the Na analyses by AA over the Na analyses by ICP.

The normalized elemental release of B was plotted against the pH corrected ΔG_{hyd} . The elemental

release of B from the IDMS Hg glasses were compared with PCT results from previous experimentation (Table 1 and Figure 5). The previous experimental results had been collected prior to May 1989. Historical control charting of the ARM-1 standard glass indicated a shift in the elemental releases for all elements in May 1989. This shift correlated with a change from PCT 2.0 to PCT 3.0 when a glass powder washing procedure was introduced to remove adhering fine particles from the sieved glass. Since removal of the glass fines prior to conducting the durability test biases the PCT 3.0 leachate data lower than the historic data, the historic data was bias corrected to be consistent with the data derived from PCT 3.0.

The bias corrected normalized B release for the historic data and the PCT 3.0 leachate data for the Hg glasses was plotted against the ΔG_{hyd} calculated from the glass composition and the solution pH. This comparison indicated that the glasses from the IDMS Hg-1 campaign (Hg 1-1, Hg 1-2 and Hg 1-3) and the glass from the first sample of the Hg-2 campaign (Hg 2-1) were very similar in durability to DWPF startup glass, 165 sludge-only glasses, and Frit 202 glass with excess alkali (Figure 5). The remaining glasses in the Hg-2 campaign (Hg 2-2 and Hg 2-3) and in the Hg-3 campaign (Hg 3-1, Hg 3-2, and Hg 3-3) were higher in Na₂O content due to NaOH addition during run Hg-2 and the excess PHA addition during run Hg-3 in order to adjust the glass viscosity. These glasses were less durable than the Frit 202 glass with excess PHA but more durable than 131 sludge-only glasses. All the IDMS Hg glasses are more durable than the glass that was qualified in the DWPF Environmental Assessment (EA).¹⁰ Comparisons of the data in Table 1 for the average EA glass leachate concentrations and the data in Appendix I for the Hg Campaign glasses indicates that the Hg Campaign glasses are over 20 times more durable than the EA glass. The IDMS Hg campaign glasses would, therefore, meet current Waste Acceptance Preliminary Specification (WAPS) criteria for product consistency.

Figure 4. Internal consistency of IDMS leachate analyses. Note that the IDMS leachate analyses are significantly lower than the average values of Li, Na, B and Si for the EA glass which are 189±17, 1650±131, and 576±46, 882±105 ppm, respectively. See Table 1.

pH CORRECTED FREE ENERGY OF HYDRATION (Kcal/mole)

Figure 5. Correlation of the free energy of hydration, ΔG_{hyd} , calculated from the glass composition and the leachate pH, versus the logarithm of the normalized boron release from glasses investigated for the Defense Waste Processing Facility (DWPF). The measured durability values for the IDMS Hg-1, Hg-2, and Hg-3 campaigns with Batch 1 sludge, PHA, and 202 frit are overlain for reference.

CONCLUSIONS

LOG NC(B) g/L

Glasses produced during the three IDMS Hg run campaigns were produced using the DWPF process/product models. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The measured glass durability demonstrated that the Hg campaign glasses were as durable as previously examined Frit 202 PHA glasses and sludge-only 165 glasses and more durable than the EA glass. The IDMS Hg glasses, therefore, meet the current Waste Acceptance Preliminary Specification (WAPS) 1.3 criteria for control of product consistency.

- 17 -

Glass/Reference	pH Corrected Free Energy of Hydration (Kcal/mole)	Log NC(Si)	Log NC(B) (g. glas	Log NC(Na) s [/] Lleachat	Log NC(Li) (e) <u>pH</u>	PCT
EA Glass-Average of 24 PCT Tests ²⁰	-14.05	0.58	1.21	1.12	0.98 11.92	3.0
202 Stage 1 (AH-10) DPSTN-4724	-5.050	-0.53*	-0.39*	-0.51*	-0.35 9.59	2.1
165 Stage 1 (AH-165) DPSTN-4630	-5.62	-0.32	-0.08	-0.14	-0.061 9.73	2.1W
165 Standard (Corning) DPSTN-4575	-6.72	-0.29*	-0.12*	-0.07*	-0.14* 10.31	2.0
DWPF Startup Frit-Remelted DPSTN-4630	-6.39	-0.90*	-0.22*	-0.23*	-0.33* 10.24	2.1
202-Stage 1 Excess Alkali (Corning 202P) DPSTN-4630	-6.99	-0.41*	-0.11*	-0.08*	-0.16* 10.18	2.1
200 Average Radioactive DPSTN-4570	-9.41	-0.33	0.06	0.00	-0.01 10.55	2.1W
131 Stage 1 (AH 131) DPSTN-4630	-8.71	-0.51	0.14	0.10	0.02 10.43	2.1W
202-Stage 1 (Corning 202G) DPSTN-4631	-5.08	-0.46*	-0.28*	-0.20	-0.24 9.79	2.1

 Table 1. Calculated Free Energies of Hydration and PCT Durability of DWPF

 Borosilicate Waste Glasses

Solution data corrected for Si bias of -13.31 ppm, B bias of -4.10 ppm, Na bias of -8.4 ppm, and an Li bias of -3.34 ppm; higher solution values were noted when glass fines were not removed from the meshed glass prior to durability testing (PCT 2.0 and 2.1). PCT 2.1W indicates PCT procedure 2.1 with fines washing and these data are directly comparable to data from PCT 3.0 without bias correction.

REFERENCES

- 1. R. E. Eibling and J.R. Fowler, "Mercury Reduction and Removal During High-Level Radioactive Waste Processing and Vitrification," Scientific Basis for Nuclear Waste Managment, IV, S.V. Topp (Ed.), Elsevier Publishers, New York, 617-622 (1982).
- C.M. Jantzen, "Relationship of Glass Composition to Glass Viscosity, Resistivity, Liquidus Temperature, and Durability: First Principles Process-Product Models for Vitrification of Nuclear Waste," Proceedings of the 5th International Symposium on Ceramics in Nuclear Waste Management, G.G. Wicks, D.F. Bickford, and R. Bunnell (Eds.), American Ceramic Society, Westerville, OH, 37-51 (1991).
- 3. K.G. Brown, R.L. Postles, and R.E. Edwards, "The Product Composition Control System (PCCS)," Proceedings of the 5th International Symposium on Ceramics in Nuclear Waste Management, G.G. Wicks, D.F. Bickford, and R. Bunnell (Eds.), American Ceramic Society, Westerville, OH, 37-51 559-568 (1991).
- 4. Waste Form Compliance Plan for the Defense Waste Processing Facility," USDOE Report WSRC-SW4-6, Rev. 0, Westinghouse Savannah River Co., Savannah River Laboratory, Aiken, SC (March, 1990).
- 5. C. M. Jantzen, "Glass Compositions and Frit Formulations Developed for DPWF," USDOE Report DPST-88-952, E.I. duPont deNemours & Co., Savannah River Laboratory, Aiken, SC (November, 1988).
- 6. C. M. Jantzen and N. E. Bibler, "Product Consistency Test (PCT) and Test Protocol," USDOE Report DPST-87-575, E.I. duPont deNemours & Co., Savannah River Laboratory, Aiken, SC (1987).
- C.M. Jantzen and N.E. Bibler, "The Product Consistency Test for the DWPF Wasteform," Requirements for Waste Acceptance and Quality Control, Proceedings of the 2nd International Seminar on Radioactive Waste Products, E. Warnecke, R. Odoj, and R. Simon (Eds.), Kernforschunganlanger (KFA) Research Centre Julich, Federal Republic of Germany, 609-622 (1990).
- 8. C.M. Jantzen and N.E. Bibler, "Nuclear Waste Glass Product Consistency Test (PCT)-Version 3.0," USDOE Report WSRC-TR-90-539, Rev. 1, Westinghouse Savannah River Co., Aiken, SC (November, 1990).
- 9. Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form, U. S. Department of Energy, Office of Civilian Radioactive Waste Management, USDOE Document OGR/B-8, Washington, DC (1988).
- 10. U.S. Department of Energy, "Environmental Assessment Waste Form Selection for SRP High-Level Waste," U.S. DOE Report DOE-EA-0179 (July, 1982).

- 11. M.J. Plodinec, C.M. Jantzen, and G.G. Wicks, "Thermodynamic Approach to Prediction of the Stability of Proposed Radwaste Glasses," <u>Advances in</u> <u>Ceramics. 8</u>, 491-495 (1984).
- 12. C.M. Jantzen and M.J. Plodinec, "Thermodynamic Model of Natural, Medieval, and Nuclear Waste Glass Durability," J. Non-Cryst. Solids. 67, 207-233 (1984).
- 13. M.J. Plodinec, C.M. Jantzen, and G.G. Wicks, "Stability of Radioactive Waste Glasses Assessed from Hydration Thermodynamics," <u>Sci. Basis for Nuclear</u> Waste Management, VIL G.L. McVay (ed). Elsevier Publ., New York 755-762 (1984).
- 14. C.M. Jantzen, "Prediction of Nuclear Waste Glass Durability from Natural Analogs" <u>Advances in Ceramics, 20</u>, D.E. Clark, W.B. White and A.J. Machiels (Eds.), American Ceramic Society, Westerville, OH, 703-712 (1986).
- C.M. Jantzen, "Prediction of Glass Durability as a Function of Environmental Conditions", Proceedings of the Sympsoium on Materials Stability and Environmental Degredation," A. Barkatt et. al. (Eds.), Materials Research Society, Pittsburgh, PA, 143-159 (1988).
- 16. C.M. Jantzen, "Prediction of Glass Durability as a Function of Glass Composition and Test Conditions: Thermodynamics and Kinetics", <u>Proceedings of the First Intl. Conference on Advances in the Fusion of Glass.</u> American Ceramic Society, Westerville, OH, p. 24.1-24.17 (1988).
- 17. C.M. Jantzen, "Thermodynamic Approach to Glass Corrosion," <u>Corrosion of</u> <u>Glass, Ceramics, and Ceramic Superconductors</u>, Noyes Publications, Park Ridge, NJ, 153-215 (1992).
- 18. E.W. Baumann, "Colorimetric Determination of Iron (II) and Iron (III) in Glass," Analyst. v. 117, 913-916 (1992).
- N.D. Hutson, J.R. Zamecnik, M.E. Smith, D.H. Miller and J.A. Ritter, "Integrated DWPF Melter System (IDMS) Campaign Report: Mercury Operation," USDOE Report WSRC-TR-91-0363, Westinghouse Savannah River Co., Savannah River Laboratory, Aiken, SC (May, 1991).
- 20. C.M. Jantzen, "Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material," USDOE Report WSRC-TR-92-346, Rev. 0, Westinghouse Savannah River Co., Savannah River Laboratory, Aiken, SC (September, 1992).

		GRAV	OXIDE	FACTORS FOR	BIAS CORRECT	NORMORDE	MW.	MOLE	NORMOXIDE	COMPONENT	FREE BNBRGY	¥ 89	CALKG
	XIX	FACTOR	XIX	BIAS CORRECT	OXIDEWT%	WT%		FRACTION	NOLE %	FREE BNBAGY	HYDRATION		
A1203	2.3410	1.8895	4.4233	1.21	5.35	5.2009	101.9600	0.0524	3.3227	3.0400	0.1010	-0.0665	1.5943
8	0.7770	1.3992	1.0872	1.11	1.21	1.1748	56.0794	0.0215	1.3646	-16.1160	-0.2199	0.0273	-3.4711
Fa203	8,1820	1.4297	11.6512	1.04	12.09	11.7573	159.6922	0.0757	4.7959	15.5000	0.7434	-0.0959	11.7326
Ģ	N/A	1.2865	0.0419	1.00	0.04	0.0408	71.8464	0.006	0.0370	-14.6090	-0.0054	0.0007	-0.0853
OW	0.7980	1.6583	1.3233	1.12	1.49	1.4474	40.3114	0.0369	2.3388	-13.6680	-0.3248	0.0468	-5.1266
Q	1.4320	1.2912	1.8490	1.31	2.42	2.3541	70.9374	0.0341	2.1617	-14.8710	-0.3215	0.0432	-5.0737
OCEN I	6.5850	1.3480	8.8766	1.03	9.14	8.8857	61.9790	0.1474	9.3368	-28.8150	-2.6910	0.1868	-42.4721
	1.9660	2.1525	4.2318	1.06	4.48	4.3589	29.8774	0.1500	9.5034	-22.7400	-2.1611	0.1901	-34.1084
	0.5720	1.2726	0.7279	1.18	0.86	0.8375	74.7094	0.0115	0.7302	-14.3470	-0.1048	0.0146	-1.6534
	23.0310	2.1393	49.2702	1.10	54.17	52.6910	60.0848	0.9016	57.1238	5.5900	1.6396	0.000	25.8783
Cierce Ci	0.1620	1.4616	0.2368	1.59	0.38	0.3668	151.9974	0.0025	0.1571	37.3600	0.0587	-0.0031	0.9264
8203	2.1240	3.2201	6.8395	1.02	6.96	6.7673	69.6204	0.0999	6.3317	-9.9300	-0.6287	0.000	-9.9235
2		1.1344	0.000	1.00	0.00	0.000	270.0398	0.000	0.000	-6.8000	0.0000	0.000	0.0000
		1.1379	0.000	1.00	0.00	0.000	264.0400	0.0000	0.000	-2.5330	0.000	0.000	0.0000
05	0.0220	1.1826	0.0260	1.00	0.03	0.0253	103.6194	0.0003	0.0159	-24.4000	-0.0039	0.0003	-0.0613
202	0.1180	1.3508	0.1594	1.00	0.16	0.1547	123.2188	0.0013	0.0818	45.1000	0.0369	0.0033	0.5820
102	0.2170	1.6680	0.3620	0.98	0.35	0.3436	79.8988	0.0044	0.2801	15.9900	0.0448	0.0112	0.7069
00	2.4100	1.2046	2.9031	0.92	2.67	2.5961	94.2034	0.0283	1.7952	-41.7350	-0.7492	0.0359	-11.8250
0550	0.0650	1.0602	0.0689	1.00	0.07	0.0670	281.8094	0.0002	0.0155	-46.8200	-0.0073	0.0003	-0.1145
Sh2O3		1.1970	0.0000	1.00	0.00	0.0000	291.4982	0.0000	0.0000	0.0000	0.000	0.0000	0.0000
808	0.0120	2.2910	0.0275	1.00	0.03	0.0267	141.9370	0.0002	0.0123	-53.6200	-0.0068	0.0000	-0.1039
Nd2O3		1.1660	0.0000	1.00	0.00	0.000	336.4782	0.000	0.0000	-28.3200	0.000	0.0000	0.0000
1 1 2 0 3		1.1728	0.000	1.00	0.00	0.000	325.8100	0.000	0.000	-31.1400	0.000	0.0000	0.0000
2024		1.2699	0.000	1.00	0.00	0.0000	225.8082	0.000	0.0000	-12.9500	0.0000	0.0000	0.0000
2	0.0620	1.1165	0.0692	1.14	0.08	0.0786	153.3394	0.0005	0.0326	-30.5700	-0.0100	0.0007	-0.1571
2	0.0940	1.0772	0.1013	2.11	0.21	0.2078	223.1900	0.0010	0.0606	-8.8100	-0.0053	0.0012	-0.0843
8		1.2284	0.0000	1.00	0.00	0.0000	172.1200	0.0000	0.000	11.3450	0.000	0.000	0.0000
MECO		1.5003	0.000	1.00	0.0	0.0000	143.9382	0.0000	0.0000	-21.7500	0.000	0.0000	0.0000
02	0.1630	1.2447	0.2029	2.00	0.41	0.3955	81.3800	0.0050	0.3166	-2.4000	-0.0076	0.0063	-0.1199
8	0.1560	1.2518	0.1953	1.18	0.23	0.2244	79.5454	0.0029	0.1838	1.7900	0.0033	0.0037	0.0519
Fe2+/Fe3+	0.0040												
	51 2890		84.6743		102.8107	100.000		1 5783	100.0000		-4.6193	0.4069	-72.9076
										IS Hd + MINS	-5.4066		
ALK/SiO2 =		0.362								SUM + PHB	-7.1494		
ALK+ B203/SI02	"	0.472				TIME=				Ŧ	10.43		
B203/SiO2 =		0.111											
VISCOSITY @TEM	1P(°C)	85.319				SA/V=							
LIQUIDUS RATIO :		0.084											
= (j.) snandit		967											
NOTE LIQUIDUS A	AND VISCOSITY	FORMULAS CHA	NGED TO CA	ILCULATE ALL P	-E AS PEZUS (UC	1086H 23, 1890)							

APPENDIX I Measured Glass Compositions

(SPREADSHEET REVISION 5.0, OCTOBER 23, 1990)

GLASS ID= HG1-1A

						GLASS ID- HC	31-1 8	•	SPREADSHEET	r revision 5.0	, OCTOBER 23, 19	60)	
	REAGHT	GRAV		FACTORS FOR	BIAS CORRECT	NORMORE	MW.	MOLE		CONFONENT	FREE DUBICY	09 9	KCALKG
	×1M	FACTOR	×TW	BIAS CORRECT	OXIDE WT%	×1×		FRACTION	MOLE %	HEEBNEHGY	HYDRATION		
AI203	2.4220	1.8895	4.5764	1.21	5.5321	5.4931	101.9600	0.0543	3.5547	3.0400	0.1081	11/0-0-	1.6494
8	0.9160	1.3992	1.2817	1.11	1.4238	1.4139	56.0794	0.0254	1.6635	-16.1160	-0.2681	0.0333	-4.0920
Fe203	9.3400	1.4297	13.3002	1.04	13.7986	13.7013	15(6922	0.0864	5.6611	15.5000	0.8775	-0.1132	13.3931
2	N/A	1.2865	0.0479	1.00	0.0479	0.0475	71.8464	0.0007	0.0437	-14.6090	-0.0064	0.000	-0.0973
9	0.8500	1.6583	1.4096	1.12	1.5850	1.5738	40.3114	0.0393	2.5760	-13.8880	-0.3578	0.0515	-5.4607
OW	1.1310	1.2912	1.4603	1.31	1.9115	1.8980	70.9374	0.0269	1.7654	-14.6710	-0.2625	0.0353	-4.0072
NECO	6.6510	1.3480	8.9655	1.03	9.2270	9.1619	61.9790	0.1489	9.7536	-28.8150	-2.8105	0.1951	-42.8978
1120	1.9120	2.1525	4.1156	1.06	4.3583	4.3276	29.6774	0.1459	9.5570	-22.7400	-2.1733	0.1911	-33.1716
ON	0.5720	1.2726	0.7279	1.18	0.8610	0.6549	74.7094	0.0115	0.7550	-14.3470	-0.1083	0.0151	-1.6534
SIQ2	21.3870	2.1393	45.7532	1.10	50.3051	49.9503	60.0848	0.8372	54.8522	5.5900	1.4837	0.000	22.6470
Cr203	0.1360	1.4616	0.1988	1.59	0.3164	0.3142	151.9974	0.0021	0.1364	37.3600	0.0510	-0.0027	0.7777
B203	2.1650	3.2201	8.9715	1.02	7.0918	7.0418	69.6204	0.1019	6.6737	-9.9300	-0.6627	0.000	-10.1151
agn		1.1344	0.0000	1.00	0.000	0.000	270.0388	0.000	0.0000	-6.8000	0.000	0.000	0.0000
204L		1.1379	0.000	1.00	0.000	0.000	264.0400	0.000	0.0000	-2.5330	0.0000	0.000	0.0000
So So	0.0030	1.1826	0.0035	1.00	0.0035	0.0035	103.6194	0.000	0.0022	-24.4000	-0.0005	0.0000	-0.0084
202	0.1180	1.3508	0.1594	1.00	0.1590	0.1579	123.2168	0.0013	0.0845	45.1000	0.0381	0.0034	0.5820
TiO2	0.3540	1.6680	0.5905	0.98	0.5763	0.5722	79.6968	0.00/2	0.4725	15.9900	0.0756	0.0189	1.1533
8	2.4080	1.2046	2.9007	0.92	2.6669	2.6481	94.2034	0.0283	1.8548	-41.7350	-0.7741	0.0371	-11.8152
Cerso	0.0650	1.0602	0.0689	1.00	0.0689	0.0664	281.8094	0.0002	0.0160	-46.8200	-0.0075	0.0003	-0.1145
Sezog		1.1970	0.0000	1.00	0.000	0.000	291.497.	0.0000	0.0000	0.000	0.000	0.0000	0.0000
P205		2.2910	0.0000	1.00	0.0000	0.0000	141.9370	0.000	0.0000	-53.6200	0.000	0.0000	0.0000
Netocs		1.1660	0.0000	1.00	0.0000	0.0000	336.4782	0.0000	0.0000	-28.3200	0.0000	0.0000	0.0000
La203		1.1728	0.0000	1.00	0.0000	0.0000	325.8100	0.000	0.0000	-31.1400	0.000	0.000	0.0000
¥203		1.2699	0.0000	1.00	0.000	0.000	225.8082	0.000	0.0000	-12.9500	0.0000	0.000	0.0000
28	0.1160	1,1165	0.1295	1.14	0.1474	0.1464	153.3384	0.0010	0.0630	-30.5700	-0.01\$3	0.0013	-0.2939
8		1.0772	0.0000	2.11	0.0000	0.000	223.1900	0.000	0.0000	-8.8100	0.000	0.0000	0.0000
80		1.2204	0.0000	1.00	0.0000	0.0000	172.1200	0.000	0.0000	11.3450	0.000	0.0000	0.0000
MeO3		1.5003	0.000	1.00	0.0000	0.0000	143.9382	0.0000	0.0000	-21.7500	0.000	0.0000	0.0000
2	0.0870	1.2447	0.1083	2.00	0.2170	0.2155	81.3600	0.0327	0.1747	-2.4000	-0.0042	0.0035	-0.0640
8	0.2790	1.2518	0.3493	1.18	0.4127	0.4098	79.5454	0.0052	0.3399	1.7900	0.0061	0.0068	0.0929
Fe2+/Fe3+	0.0040												
SUMS	50.9120		93.1186		100.7103	100.000		1.5263	100.0000		-4.8151	0.4065	-73,4957
										IS Hd + WNS	-5.6024		
ALK/SiO2 =		0.386				TEST=				SUM + PHB	-7.3452		
ALK+ B203/SI02		0.508				TIME=				Ŧ	10.43		
B203/SiO2 =		0.122											
VISCOSITY @TEI	uP(°C)	61.798				SA/V=							
LIQUIDUS RATIO	11	0.105											
= (5.) snaindit		1034											
NOTE LIQUIDUS /	AND VISCOSITY	FORMULAS CHA	NGED TO CA	LOULATE ALL PI	E AS FEZUS (UU	TOBEN ZA, TWW							

- 22 -

IF • •

.,

n i i i

HG1-2A	
GLASS ID=	

(SPREADSHEET REVISION 5.0, OCTOBER 23, 1990)

		1400				NORMORE	MM	MOLE	NORMOXIDE	CONFONENT	FHEE BNBPGY	¥ 08N	CALKG
				BIASCOBRECT		MTW		FRACTION	MOLEY	THEE BUENCY	HYDRATION		
	2 2600		A 2872	1.21	5.18	4.9863	101.9600	0.0508	3.1800	3.0400	0.0967	-0.0636	1.5452
200	0.0010		0.0710		1 0.8	1.0379	58.0794	0.0192	1.2035	-16.1160	-0.1940	0.0241	-3.1003
			11 6713		12 00	11 5502	159,6922	0.0752	4.7032	15.5000	0.7290	-0.0941	11.6522
rezus	0.1340	3996 1	0.050		0.05	0.0501	71.8464	0.0007	0.0453	-14.6090	-0.0066	0.0009	-0.1059
		C007.1	1300.0	51 F	1.51	1 4568	40.3114	0.0376	2.3499	-13.6560	-0.3264	0.0470	-5.2165
<u></u>	0.6120	1.0003	0135 1	1.21	66 6	2.2050	10.9374	0.0323	2.0212	-14.8710	-0.3006	0.0404	-4.8044
	00001	0076 -		1 03	8 90	8.563.8	61.9790	0.1436	8.9848	-28.8150	-2.5890	0.1797	-41.3621
	0.4100	1.3400	0.0700 1 3674	1 06	4.63	4.4498	29.8774	0.1548	9.6846	-22.7400	-2.2023	0.1937	-35.2014
	2.0230	1 9756	0.675.0	1 18	0.80	C.7690	74.7094	0.0107	0.6693	-14.3470	-0.0960	0.0134	-1.5349
	0.55.0	0001 0	50.2005	110	55 29	53.1972	60.0848	0.9202	57.5715	5.5900	1.6677	0.0000	26.6569
202	0/05/0	2.1393 1 4818	00-2002 0 2285	1.59	0.36	0.3469	151.9974	0.0024	0.1484	37.3600	0.0555	-0.0030	0.8863
	0.1330	1020 6	B 8170	1.02	6.93	6.6719	69.6204	0.0996	6.2315	-9.9300	-0.6188	0.0000	-9.8908
		1 1344		1.00	0.00	0.000	270.0388	0.000	0.0000	-6.8000	0.000	0.000	0.0000
		1379	0000	1.00	0.00	0.000	264.0400	0.0000	0.000	-2.5330	0.000	0.0000	0.0000
ž S	0000	1 1826	0.0260	1.00	0.03	0.0250	103.6194	0.0003	0.0157	-24.4000	-0.0038	0.0003	-0.0613
e Se	0.0640	1 3508	0.0865	1.00	0.09	0.0830	123.2188	0.0007	0.0438	45.1000	0.0197	0.0018	0.3156
207	0.0040	1 6680	0.2886	0.98	0.28	0.2710	79.8988	0.0035	0.2205	15.9900	0.0353	0.0088	0.5638
2	0.11.0 9 1660	1 2048	3 8138	0.92	3.51	5.3736	94.2034	0.0372	2.3287	-41.7350	-0.9719	0.0466	-15.5344
3 2	0.0650	1.0602	0.0689	1.00	0.07	0.0663	281.8094	0.0002	0.0153	-46.8200	-0.0072	0.0003	-0.1145
	00000	1 1970	0000 0	1.00	0.00	0.0000	291.4982	0.0000	0.0000	0.000	0.0000	0.000	0.000
		01000	0.0664	1.00	0.07	0.0639	141.9370	0.0005	0.0293	-53.6200	-0.0157	0.0000	-0.2510
	20. 20.0	1 1660	0000 0	1.00	0.00	0.000	336.4782	0.0000	0.0000	-28.3200	0.000	0.0000	0.0000
Makous		0001.1		1.00	0.00	0.000	325.8100	0.000	0.0000	-31.1400	0.0000	0.0000	0.0000
		1.1760			0.00	0,0000	225.8082	0.000	0.0000	-12.9500	0.000	0.000	0.0000
AZOS	0100 0	3911 1	0.000	411	0.08	0.0746	153.3394	0.0005	0.0316	-30.5700	-0.0097	0.0006	-0.1546
	0100.0	691 - 1 622 6 - 1	0.000	011	0 18	0.1727	223.1900	0.008	0.0503	-8.8100	-0.0044	0.0010	-0.0709
	0.0790	7 10.1			00.0	0000.0	172.1200	0.000	0.0000	11.3450	0.0000	0.000	0.0000
		1 5002		1.00	0.00	0.000	143.9382	0.000	0.000	-21.7500	0.0000	0.0000	0.0000
	0 1630	2000-1	0.1904	2.00	0.38	0.3672	81.3800	0.0047	0.2934	-2.4000	-0.0070	0.0059	-0.1126
	0.1530	1 2518	0.1915	1.18	0.23	0.2177	79.5454	0.0028	0.1780	1.7900	0.0032	0.0036	0.0509
Fe2+/Fe3+	0.0050		I										
-			7000 30		103 8371	102.000		1.5984	100.0000		-4.7463	0.4074	-75.8646
SUNS	0098.10		2000.08							SH4 + MOS	-5.4929		
ALMIELO2		0 365				TEST=				SUM + PHB	-7.1839		
ALNOICE =	2	0.473				TIME=				ł	10.39		
B203/SIO2 =		0.108											
VISCOSITY @TE		83.480				SA/7=							
		10.0											

••

LIQUIDUS RATIO = 0.081 Liquidus (°Ç) = 958 Note Liquidus and Viscosity Formulas changed to calculate all fe as fe203 (october 23, 1990)

						GLAS3 ID= H	G1-2B		SPREADSHEE	T REVISION 5.0	, OCTOBER 23, 19	(08(
	REMENT	GRAV	OXDE	FACTORS FOR	BAS CORRECT	NOPMORDE	MW.	MOLE	NORMOKIDE	COMPONENT	FREE ENERGY	8	KCALKG
	XTX	FACTOR	XIX	BMS CORRECT	OXIDE WTX	XIX X		FRACTION	NOLE %	FREE BUERGY	HYDRATION		
A1203	2.2480	1.8895	4.2476	1.21	5.13	4.9933	101.9600	0.0504	3.1748	3.0400	0.0965	-0.0635	1.5309
8	0.7010	1.3592	0.9808	1.11	1.09	1.0597	56.0794	0.0194	1.2250	-16.1160	-0.1974	0.0245	-3.1315
Fe203	8.1240	1.4297	11.5571	1.04	11.99	11.6602	159.6922	0.0751	4.7335	15.5000	0.7337	-0.0947	11.6379
Q.	N/A	1.2865	0.0520	1.00	0.05	0.0506	71.6464	0.0007	0.0458	-14.6090	-0.0067	0.000	-0.1057
Q	0.8160	1.6583	1.3532	1.12	1.52	1.4797	40.3114	0.0377	2.3797	-13.3680	-0.3305	0.0476	-5.2422
OW	1.3580	1.2912	1.7534	1.31	2.30	2.2320	70.9374	0.0324	2.0398	-14.8710	-0.3033	0.0408	-4.8115
NECO	6.2400	1.3480	8.4115	1.03	8.66	6.4188	61.9790	0.1397	8.8058	-28.6150	-2.5373	0.1761	-40.2469
LI20	2.0300	2.1525	4.3696	1.06	4.63	4.4999	29.8774	0.1549	9.7640	-22.7400	-2.2203	0.1953	-35.2188
QN	0.5200	1.2726	0.6618	1.18	0.78	0.7912	74.7094	0.0 '05	0.6605	-14.3470	-0.0948	0.0132	-1.5031
SIO2	23.5330	2.1393	50.3441	1.10	55.35	53.8294	60.0548	0.9212	58.0789	5.5900	1.7285	0.000	27.4171
Cr203	0.1420	1.4616	0.2075	1.59	0.33	0.3213	151.9974	0.0022	0.1370	37.3600	0.0512	-0.0027	0.8120
B203	2.1270	3.2201	6.8492	1.02	6.97	6.7756	69.6204	0.1001	6.3092	-9.9300	-0.6265	0.000	-9.9375
ĝ		1.1344	0.0000	1.00	0.0	0.000	270.0388	0.0000	0.000	-6.8000	0.0000	0.000	0.0000
2041		1.1379	0.0000	1.00	0.00	0.0000	264.0400	0.0000	0.000	-2.5330	0.0000	0.000	0.000
so So	0.0210	1.1826	0.0248	1.00	0.02	0.0242	103.6194	0.0002	0.0151	-24.4000	-0.0037	0.0003	-0.0585
ZiO2	0.0640	1.3508	0.0865	1.00	0.09	0.0839	123.2188	0.0007	0.0441	45.1300	0.0199	0.0018	0.3156
1102	0.1710	1.6680	0.2852	0.98	0.28	0.2707	79.6988	0.0035	0.2198	15.9900	0.0351	0.0088	0.5571
80	2.3720	1.2046	2.8573	0.92	2.63	2.5547	94.2034	0.0279	1.7581	-41.7350	-0.7337	0.0352	-11.6385
8	0.0650	1.0602	0.0689	1.00	0.07	9.0670	281.6094	0.0002	0.0154	-46.8200	-0.0072	0.0003	-0.1145
SECCI		1.1970	0.0000	1.00	0.00	0.0000	291.4982	0.0000	0.0000	0.000	0.0000	0.000	0.000
502	0.0140	2.2910	0.0321	1.00	0.03	0.0312	141.9370	0.0002	0.0142	-53.6200	-0.0076	0.000	-0.1212
Netoca		1.1660	0.0000	1.00	0.00	0.0000	336.4782	0.000	0.000	-28.3200	0.0000	0.000	0.0000
La203		1.1728	0.0000	1.00	0.00	0.0000	325.8100	0.0000	0.0000	-31.1400	0.0000	0.000	0.0000
Y203		1.2699	0.000	1.00	0.0	0.0000	225.8082	0.0000	0.000	-12.9500	0.0000	0.0000	0.0000
08	0.0580	1.1165	0.0648	1.14	0.07	0.0717	153.3394	0.0005	0.0303	-30.5700	-0.0093	0.0008	-0.1470
ð	0.0930	1.0772	0.1002	2.11	0.21	0.2055	223.1900	0.000	0.0597	-8.8100	-0.0053	0.0012	-0.0834
වි		1.2284	0.0000	1.00	0.00	0.000	172.1200	0.000	0.0000	11.3450	0.0000	0.000	0.0000
MbO3		1.5003	0.0000	1.00	0.00	0.0000	143.9382	0.000	0.000	-21.7500	00000 0	0.000	0.0000
042	0.1630	1.2447	0.2029	2.00	0.41	0.3954	81.3800	0.0050	0.3150	-2.4000	-0.0076	0.0063	-0.1199
8	0.1490	1.2518	0.1865	1.18	0.22	0.2143	79.5454	0.0028	0.1747	1.7900	0.0031	0.0035	0.0496
Fe2+/Fe3+	0.0050												
SLING	51.0090		94.6970		102.8301	120.000		1.5862	100.0)00		-4.4232	0.3954	-70.1601
										IS Hd + MNS	-5.1698		
ALK/SIO2 =		0.350				TEST≖				SUM + PHB	-6.8608		
ALK+ B203/SI02	H	0.458				TIME				H	10.39		
B203/Si02 =		0.109											
VISCOSITY @TEL	NP(°C)	92.898				SA/V=							
LIQUIDUS RATIO	14	0.080											
riguidas ("ç) =		957				TODTO 00 10001							
NOTE LIQUIDUS ,	AND VISCOSIN T	FORMULAS CHA	NGED 10 CM	LOULATE ALL F	E AS PEZUS (V	I UBER 29, 1994							

•
ņ
5
Ĩ
ģ
ASS
ಠ

(SPREADSHEET REVISION 5.0, OCTOBER 23, 1990)

		NOC		EACTINGS FINE	BIAS CODECT	NOUCHUE	MM	MOLE	NORMOXIDE	COMPONENT	FREE BNBACY	8	CALKG
		EACTOR	WTY -	RIASCORPECT		NTW.		FRACTION	NOLEX	FREE BUERGY	h-rDRATION		
	0 2 1 8 0	1 RAGE	4 1871	1.21	5 06	4.9279	101.9600	0.0496	3.1240	3.0400	0.0950	-0.0625	1.5091
202	0.6060	2002	ACT0 0	Ē	801	1.0518	58.0794	0.0193	1.2127	-16.1160	-0,1954	0.0243	-3.1047
		70C7 1	0.0124		11 78	11.4717	159.6922	0.0738	4.6446	15.5000	0.7199	-0.0929	11.4367
	0.0000 N/A	1 2865	0.1533	1.00	0.15	0.1492	71.8464	0.0021	0.1343	-14.6090	-0.0196	0.0027	-0.3117
	0 8150	1 6583	1 3515	1.12	1.52	1.4796	40.3114	0.0377	2.3731	-13.8880	-0.3296	0.0475	-5.2358
	1 3370	1.2012	1.7263	1.31	2.26	2.2000	70.9374	0.0319	2.0052	-14.8710	-0.2982	0.0401	-4.7371
	0.1080	1 3480	R 6245	1.03	8.88	8.6416	61.9790	0.1432	9.0147	-28.8150	-2.5976	0.1803	-41.2660
	2.0430	2,1525	4.3976	1.06	4.66	4.5339	29.8774	0.1559	9.8115	-22.7400	-2.2311	0.1962	-53.4443
	0.4940	1.2726	0.6287	1.18	0.74	0.7240	74.7094	0.0100	0.6265	-14.3470	-0.0899	0.0125	-1.4280
	23 5500	2 1 3 0 3	50 3995	1.10	55.41	53.9506	60.0848	0.9223	58.0543	5.5900	1.7183	0.0000	27.2976
2000	0 1230	1.4616	0.1798	1.59	0.29	0.2786	151.9974	0.0019	0.1185	37.3600	0.0443	-0.0024	0.7033
3203	2 1390	3.2201	6.8878	1.02	7.01	6.8216	69.6204	0.1006	6.3351	-9.9300	-0.6291	0.000	-9.9936
		1 1344	0000 0	1.00	0.00	0.000	270.0388	0.0000	0.000	-6.6000	0.000	0.000	0.0000
		1.1379	0,000	1.00	0.00	0.000	264.0400	0.0000	0.000	-2.5330	0.0000	0.0000	0.0000
	0 0 0 0	1 1 826	0.0260	1.00	0.03	0.C253	103.6194	0.0003	0.0158	-24.4000	-0.0039	0.0003	-0.0613
	0.0020	1.3508	0.0027	1.00	0.00	0.0026	123.2188	0.000	0.0014	45.1000	0.0006	0.0001	0.0099
	0.1820	1.6680	0.2702	0.98	0.26	0.2567	79.8988	0.0033	0.2078	15.9900	0.0332	0.0083	0.5278
	2 3390	1.2046	2.8176	0.92	2.59	2.5221	94.2034	0.0275	1.7310	-41.7350	-0.7224	0.0346	-11.4766
	0.0650	1.0602	0.0689	1.00	0.07	0.0671	281.8094	0.0002	0.0154	-46.8200	-0.0072	0.0003	-0.1145
	00000	1.1970	0.000	1.00	0.00	0.0000	291.4982	0.0000	0.0000	0.0000	0.000	0.0000	0.0000
206	0.0250	2.2910	0.0573	1.00	0.06	0.0558	141.9370	0.0004	0.0254	-53.6200	-9.0136	0.0000	-0.2164
E Can		1.1660	0000	1.00	0.00	0.000	336.4782	0.000	0.0000	-28.3200	0.0000	0.0000	0.0000
		1.1728	0,000	1.00	0.00	0.0000	325.8100	0.000	0.000	-31.1400	0.0000	0.000	0.0000
		1.2699	0.000	1.00	0.00	0.0000	225.8082	0.000	0.000	-12.9500	0.000	0.0000	0.0000
	0 0500	1 1165	0.0659	1.14	0.07	0.0730	153.3394	0.0005	0.0308	-30.5700	-0.0094	0.0006	-0.1495
	0.0660	1.0772	0.0926	2.11	0.20	0.1903	223.1900	0.000	0.0551	-8.8100	-0.0049	0.0011	-0.0771
2		1 2284	0000	1.00	0.00	0.000	172.1200	0.0000	0.0000	11.3450	0.0000	0.000	0.0000
		1.5003	0,000	1.00	0.00	0.000	143.9382	0.000	0.000	-21.7500	0.0000	0.0000	0.0000
ģ	0.1490	1.2447	0.1855	2.00	0.37	0.3619	81.3800	0.0046	0.2875	-2.4000	-0.0069	0.0058	-0.1096
g	0.3490	1.2518	0.1865	1.18	0.22	0.2146	79.5454	0.0028	0.1744	1.7900	0.0031	0.0035	0.0496
Fe2+/Fe3+	0.0150												
								1 SARA	100 000		-4.5443	0.4004	-72.1921
SUMS	50.9400		84.6383		102.1124	00000				SUM + PH S	-5.2909		
ALK/SiO2 =		0.354				TE37=				SUM + PHB	-6.9619		
ALK+ B203/SK	02 =	0.463				TIME=				Ŧ	10.39		
B203/Si02 =		0.109											
VIECOEITY OT	Condinal.	89.825				SA/V=							

VISCOSITY @TEMP(°C) 89.825 LIQUIDUS RATIO = 0.079 LIQUIDUS (°C) = 954 NOTE LIQUIDUS AND VISCOSITY FORMULAS CHANGED TO CALCULATE ALL FE AS FE2O3 (OCTOBER 24, 1990) .

						GLASS ID= H	31-38	-	SPREADSHEET	REVISION 5.0	OCTOBER 23, 19	(08	
	BLEMENT WT%	grav Factor	OXDE WTW	FACTORS FOR BIAS CORRECT	BIAS CORRECT	NORMORE	WW.	MOLE	NORMOX(DE NOLE %	COMPONENT FREE ENERGY	FREE BAGROY HYDRATION	8	KCALKG
A1203	2.1670	1.8895	4.0945	1.21	4.85	4.8536	101.9600	0.0485	3.0766	3.0400	0.0935	-0.061	1.4758
8	0.7380	1.3992	1.0326	1.11	1.15	1.1240	56.0794	0.0205	1.2965	-16.1160	-0.2089	0.0251	-3.2968
Fe203	6.0190	1.4297	11.2953	1.04	11.72	11.4912	159.6922	0.0734	4.6507	15.5000	0.7209	-0.093(11.3743
2	N/A	1.2865	0.1525	1.00	0.15	0.1495	71.8464	0.0021	0.1345	-14.6090	-0.0196	0.002	-0.3100
Q	0.8050	1.6583	1.3349	1.12	1.50	1.4720	40.3114	0.0372	2.3600	-13.6880	-0.3278	0.047	-5.1716
QW	1.3290	1.2912	1.7160	1.31	2.25	2.2028	70.9374	0.0317	2.0067	-14.8710	-0.2984	0.040	-4.7087
Na2O	6.3710	1.3480	8.5881	1.03	8.84	8.6671	61.9790	0.1426	9.0377	-28.8150	-2.6042	0.180	-41.0918
LI20	2.0290	2.1525	4.3674	1.06	4.63	4.5353	29.8774	0.1548	9.8105	-22.7400	-2.2309	0.196	-35.2014
QN	0.5080	1.2726	0.6465	1.18	0.76	0.7495	74.7094	0.0102	0.6487	-14.3470	-0.0931	0.013(-1.4684
SIO2	23.3800	2.1393	50.0168	1.10	54.99	53.9258	60.0845	0.9153	58.0048	5.5900	1.7080	0.000	26.9502
Cr203	0.1220	1.4616	0.1783	1.59	0.28	0.2783	151.9974	0.0019	0.1183	37.3600	0.0442	-0.002	0.6976
8203	2.1140	3.2201	6.8073	1.02	6.92	6.7904	69.6204	0.0995	6.3036	-9.9300	-0.6259	0.000	-9.8768
ğ		1.1344	0.0000	1.00	0.00	0.000	270.0388	0.0000	0.0000	-6.8000	0.0000	0.000	0.000
2011		1.1379	0.000	1.00	0.00	0.000	264.0400	0.0000	0.0000	-2.5330	0.0000	0.000	0.0000
SO SO	0.0240	1.1826	0.0264	1.00	0.03	0.0276	103.6194	0.0003	0.0174	-24.4000	-0.0042	0.000	-0.0668
ZiO2	0.0020	1.3508	0.0027	1.00	0.00	0.0026	123.2168	0.0000	0.0014	45.1000	0.0006	000'0	0.0099
1102	0.1580	1.6680	0.2635	0.96	0.26	0.2522	79.6968	0.0032	0.2040	15.9900	0.0326	0.008	0.5147
8	2.3540	1.2046	2.8356	0.92	2.61	2.5565	94.2034	0.0277	1.7539	-41.7350	-0.7320	0.035	-11.5502
0260	0.0650	1.0602	0.0689	1.00	0.07	0.0676	281.8094	0.0002	0.0155	-46.8200	-0.0073	0.000	-0.1145
Sh2CG		1.1970	0.0000	1.00	0.00	0.000	291.4982	0.000	0.0000	0.000	0.000	0.000	0.0000
P205	0.0190	2.2910	0.0435	1.00	0.04	0.0427	141 9370	0.0003	0.0194	-53.6200	-0.0104	0.000	-0.1644
Nd2O3		1.1660	0.0000	1.00	0.00	0.000.0	336.4782	0.0000	0.0000	-28.3200	0.000	0.000	0.000
La203		1.1728	0.0000	1.00	0.00	0.000	325.8100	0.0000	0.0000.0	-31.1400	0.0000	0.000	0.0000
Y203		1.2699	0.0000	1.00	0.00	0.0000	225.8082	0.0000	0.0000	-12.9500	0.0000	0.000	0.000
048	0.0570	1.1165	0.0636	1.14	0.07	0.0710	153.3394	0.0005	0.0299	-30.5700	-0.0092	0.000	-0.1444
22	0.0720	1.0772	0.0776	2.11	0.16	0.1605	223.1900	0.0007	0.0465	-8.8100	-0.0041	0.000	-0.0646
2000		1.2284	0.0000	1.00	0.0	0.000	172.1200	0.0000	0.0000	11.3450	0.000	0.000	0.000
Mb03		1.5003	0.000	1.00	0.00	0.000	143.9382	0.0000	0.000	-21.7500	0.0000	0.000	0.0000
042	0.1500	1.2447	0.1867	2.00	0.37	0.3669	81.3800	0.0046	0.2914	-2.4000	-0.0070	0.0051	-0.1104
8	0.1450	1.2518	0.1828	1.18	0.22	0.2118	79.5454	0.0027	0.1721	1.7900	0.0031	0.0034	0.0488
Fe2+/Fe3+	0.0150												
SUNS	50.6290		93.9837		101.9789	100.0000		1.5779	100.000		-4.5801	0.403	-72.2699
										IS Hd + MNS	-5.3268		
ALK/SIO2 =		0.355				TEST=				SUM + pH B	-7.0177		
ALK+ B203/SI02	#	0.464				TINE				ł	10.39		
3203/SI02 =		0.109											
VISCOSITY @TEM	IP(*C)	88.602				SA/V=							
LIQUIDUS RATIO :		0.079											
= (j.) snaindit		954											
NOTE LIQUIDUS A	ND VISCOSITY I	FORMULAS CHAI	NGED TO CA	LOUIATE ALL FI	E AS FE203 (OC	TOBER 23, 1990)							

						GLASS ID= M	G2-1A	Ü	SPREADSHEE	I REVISION 5.0	, OCTOBER 23, 196	(08	
		GRAV	OXIDE	FACTORS FOR	BIAS CORRECT	NORMORDE	МW	MOLE	NORMORE	CONFONENT	FREE BNERGY	8	CALKG
		FACTOR		RIAS CORRECT	CODEWIN	×1×		FRACTION	MOLE %	FIEE BNBFGY	HYDRATION		
	2 25.00	1 AROS	A PARA	1.21	5.15	5.0169	101.9600	0.0506	3.1887	3.0400	0.0960	-0.0638	1.5364
200	D ROAD	1 3992	0.9766	1.11	1.09	1.0550	56.0794	0.0193	1.2181	-16.1160	-0.1965	0.0244	-3.1161
Feom	A 2610	1.4297	11.7287	1.04	12.17	11.8312	159.6922	0.0762	4.8012	15.5000	0.7442	-0.0960	11.6106
	N/N	1.2865	0.0739	1.00	0.07	0.0718	71.8464	0.0010	0.0648	-14.6090	-0.0095	0.0013	-0.1502
2 2		1 458.1	1 3440	1.12	1.51	1.4704	40.3114	0.0375	2.3638	-13.8880	-0.3283	0.0473	-5.2101
	1 3640	1 2012	1.7612	1.31	2.31	2.2415	70.8374	0.0325	2.0477	-14.8710	-0.3045	0.0410	-4.6327
	0 25 B	1 2 4 8 0	A 5706	1 03	8.82	8.5763	61.9790	0.1423	8.9672	-28.8150	-2.5839	0.1793	-41.0080
		9 1 5 2 5	1 3806	1.06	4 63	4.4992	29.8774	0.1549	9.7587	-22.7400	-2.2191	0.1952	-35.2188
	2.0300	1 2726	0.6554	1.18	0.78	0.7537	74.7094	0.0104	0.6538	-14.3470	-0.0938	0.0131	-1.4887
	0.0100	2 1 201	50.4511	1.10	55.47	53.9344	60.0848	0.9232	58.1709	5.5900	1.7364	0.000	27.5573
	0.1480	1 4816	0.2163	1.59	0.34	0.3348	151.9974	0.0023	0.1427	37.3600	0.0533	-0.0029	0.8463
0203	2 0880	10201	6.7236	1.02	6.84	6.6502	69.6204	0.0962	6.1902	-9.9300	-0.6147	0.0000	-9.7553
		1 1 2 4 4	0000 0	1.00	0.00	0.000	270.0388	0.0000	0.000	-6.8000	0.000	0.0000	0.0000
		1.1379	0.000	1.00	0.0	0.0000	264.0400	0.000	0.000	-2.5330	0.0000	0.000	0.0000
≩ ۶	0000	ACAL 1	0.0280	1.00	0.03	0.0253	103.6194	0.0003	0.0158	-24.4000	-0.0039	0.0003	-0.0613
	0.0020	1 3508	0.0027	00.1	0.0	0.0026	123.2188	0.000	0.0014	45.1000	0.006	0.0001	0.0099
202	0.0020	1 6680	0.2635	0.98	0.26	0.2501	79.8986	0.0032	0.2028	15.9900	0.0324	0.0081	0.5147
ž ş	0.1300	1 2046	2.658.6	0.92	2.44	2.3766	94.2034	0.0259	1.6349	-41.7350	-0.6823	0.0327	-10.8289
28	0.0460	1 0602	0.0477	1.00	0.05	0.0464	281.8094	0.0002	0.0107	-46.8200	-0.0050	0.0002	-0.0793
	0.00	1.1070		1 00	0.00	000-0	291.4982	0.0000	0.000	0.000	0.0000	0.0000	0.0000
	00000	2.2910	0.0458	1.00	0.05	0.0446	141.9370	0.0003	0.0203	-53.6200	-0.0109	0.0000	-0.1731
	2010	1 1840	0000	1.00	0.00	0.000	336.4782	0.0000	0.0000	-28.3200	0.0000	0.0000	0.000
		1.1728	0.000	1.00	0.00	0.000	325.8100	0.000	0.000	-31.1400	0.0000	0.0000	0.000
		1.2699	0.000	1.00	0.00	0.0000	225.8082	0.0000	0.0000	-12.9500	0.0000	0.0000	0.000
	0.0590	1.1165	0.0659	1.14	0.07	0.0729	153.3394	0.0005	0.0308	-30.5700	-0.0094	0.0006	-0.1483
	0.0750	1.0772	0.0808	2.11	0.17	0.1657	223.1900	0.000	0.0481	-8.8100	-0.0042	0.00.0	6/90.0-
8		1.2284	0.000	1.00	0.00	0.000	172.1200	0.0000	0.000	11.3450	0.0000	0.0000	0.000
		1.5003	0.0000	1.00	0.00	0.000	143.9362	0.0000	0.0000	-21.7500	0.0000	0.0000	0.0000
	0.1510	1.2447	0.1879	2.00	0.38	0.3662	81.3800	0.0046	0.2916	-2.400	-0.0070	0.0056	-0.10
8	0.1490	1.2518	0.1665	1.18	0.22	0.2143	79.5454	0.0028	0.1748	1.7900	0.0031	0.0035	0.0440
Fe2+/Fe3+	0.0070												
	61 0030		04 705A		102.8479	100.000		1.5871	100.000		-4.4060	0.3912	-69.9255
SMIS	0000.10									SHd + MNS	-5.2036		
ALK/SIO2 =		0.350				TEST=				8 Hd + MNS	-6.9594		
ALK+ B203/SI02	и	0.457				TIME=				Ĩ	10.44		
B203/SI02 =		9.106											
VISCOSITY OTEN	P(*C)	92.986				SA/V=							
LIQUIDUS RATIO		0.031											
FIGUIDUS ("C) =		961											
NOTE LIQUIDUS A	ND VISCOSITY	FORMULAS CHA	INGED TO CA	LOULATE ALL P	E AS FEZUS (UL	TOBER 23, 1994							

						GLASS ID= H(32-1 B	•	SPREADSHEET	r revision 5.0	, OCTOBER 23, 19	(04	
	REVENT	GRAV	OXDE	FACTORS FOR	BIAS CORRECT	NORMORDE	M.W.	NOLE	NORMORE	COMPONENT	FHEE BNBFGY	8	KCALKG
	×IN	FACTOR	WTX	BMS CORRECT	OXIDE WT%	NT%		FRACTION	MOLEY	FREE BNEHGY	HMDHATION		
AI203	2.2490	1.8895	4.2495	1.21	5.14	5.0035	101.9600	0.0504	3.1810	3.0400	0.0967	-0.0636	1.5316
8	0.7010	1.3992	0.9508	1.11	1.09	1.0814	56.0794	0.0194	1.2268	-16.1160	-0.1977	0.0245	-3.1315
Fe203	8.2420	1.4297	11.7017	1.04	12.14	11.8247	159.6922	0.0760	4.7998	15.5000	0.7440	-0.0960	11.7835
2	N/N	1.2865	0.0737	00.1	0.07	0.0715	71.8464	0.0010	0.0645	-14.6090	-0.0095	0.0013	-0.1499
8	0.8110	1.6583	1.3449	1.12	1.51	1.4730	40.3114	0.0375	2.3686	-13.8880	-0.3290	0.0474	-5.2101
Q	1.3620	1.2912	1.7586	1.31	2.30	2.2421	76.9374	0.0325	2.0488	-14.8710	-0.3047	0.0410	-4.8257
NECO	6.4000	1.3480	8.6272	1.03	6.88	8.6481	61.9790	0.1433	9.0447	-28.8150	-2.6062	0.1809	-41.2789
1120	2.0250	2.1525	4.3588	1.06	4.62	4.4960	29.8774	0.1545	9.7544	-22.7400	-2.2181	0.1951	-35.1320
Q	0.5260	1.2726	0.6694	1.18	0.79	0.7712	74.7094	0.0106	0.6691	-14.3470	-0.0960	0.0134	-1.5205
SIO2	23.4820	2.1393	50.2350	1.10	55.23	53.7977	60.0648	0.9192	58.0388	5.5900	1.7202	0.000	27.2452
Cr203	0.1460	1.4616	0.2134	1.59	0.34	0.3308	151.9974	0.0022	0.1411	37.3600	0.0527	-0.0028	0.8349
B203	2.0850	3.2201	6.7139	1.02	6.83	6.6323	69.6204	0.0981	6.1937	-9.9300	-0.6150	0.000	-9.7413
ğ		1.1344	0.0000	1.00	0.00	0.000	270.0368	0.000	0.000	-6.8000	0.000	0.000	0.0000
1402		1.1379	0.0000	1.00	0.00	0.000	264.0400	0.000	0.000	-2.5330	0.0000	0.0000	0.000
SrO SrO	0.0210	1.1826	0.0248	1.00	0.02	0.0242	103.6194	0.0002	0.0151	-24.4000	-0.0037	0.0003	-0.0585
202	0.0020	1.3506	0.0027	1.00	0.00	0.0026	123.2166	0.000	0.0014	45.1000	0.0008	0.0001	0.0099
102	0.1560	1.6630	0.2602	0.98	0.25	0.2473	79.8986	0.0032	0.2007	15.9900	0.0321	0.0080	0.5082
8	2.2330	1.2046	2.6899	0.92	2.47	2.4088	94.2034	0.0263	1.6575	-41.7350	-0.6918	0.0332	-10.9565
8	0.0450	1.0602	0.0477	1.00	0.05	0.0465	281.8094	0.0002	0.0107	-46.8200	-0.0050	0.0002	-0.0793
Sh203		1.1970	0.000	1.00	0.00	0.000	291.4982	0.000	0.0000	0.000	0.000	0.0000	0.0000
506	0.0140	2.2910	0.0321	1.00	0.03	0.0312	141.9370	0.0002	0.0143	-53.6200	-0.0077	0.000	-0.1212
Nd2O3		1.1660	0.0000	1.00	0.00	0.000	336.4782	0,000	0.0000	-28.3200	0.000	0.0000	0.0000
La203		1.1728	0.0000	1.00	0.00	0.000	325.8100	0.000	0.000	-31.1400	0.0000	0.0000	0.0000
Y203		1.2699	0.0000	1.00	0.00	0.000	225.6382	0.000	0.000	-12.9500	0.0000	0.0000	0.0000
2	0.0580	1.1165	0.0648	1.14	0.07	0.0718	153.3394	0.0005	0.0304	-30.5700	-0.0093	0.0006	-0.1470
8	0.0880	1.0772	0.0948	2.11	0.20	0.1946	223.1900	0.009	0.0566	-6.8100	-0.0050	0.0011	-0.0789
80		1.2284	0.000	1.00	0.00	0.000	172.1200	0.000	0.0000	11.3450	0.0000	0.000	0.0000
MeO3		1.5003	0.000	1.00	0.0	0.000	143.9382	0.0000	0.000	-21.7500	0.000	0.000	0.0000
2	0.1640	1.2447	0.2041	2.00	0.41	0.3985	81.3800	0.0950	0.3174	-2.4000	-0.0076	9.0063	-0.1206
8	0.1400	1.2518	0.1753	1.16	0.21	0.2017	79.5454	0.0026	0.1644	1.7900	0.0029	0.0033	0.0466
Fe2+/Fe3+	0.0070												
SUNG	50.9500		94.5233		102.6676	100.000		1.5839	100.000		-4.4570	0.3942	-70.5920
										IS Hd + MNS	-5.2548		
ALK/SiO2 =		0.353				TEST=				BHd+ MNS	-7.0103		
ALK+ B203/SIC	2 =	0.459				TIME=				Ŧ	10.44		
B203/SK02 =		0.107											
VISCOSITY @TE	(Dublic)	91.060				8A/V=							
LIQUIDUS RATK	=	0.082											
= (2) snanon		961											
NOTE LIQUIDUS	AND VISCOSITY	FORMULAS CHA	NGED TO CA	LOULATE ALL FI	E AS FEZOS (UC	TOBER 23, 1999)							

	A PAGNT	GRAV	OXDE	FACTORS FOR	BIAS CORRECT	NORMORE	MM	MOLE	NORMORDE	CONFONENT	FREE BNGROV	8	CALKG
	×L×	FACTOR	XTX	BIAS CORRECT	CODE WTX	WT%		FRACTION	NOLEX	FREE BNEFICY	HYDRATION		
A1203	2.4620	1.6895	4.6519	1.21	5.62	5.3662	101.9600	0.0552	3.4490	3.0400	0.1048	-0.0690	1.6767
8	0.7420	1.3992	1.0382	1.11	1.15	1.1048	56.0794	0.0206	1.2862	-16.1160	-0.2073	0.0257	-3.3147
Fe203	8.8710	1.4297	12.6072	1.04	13.08	12.5278	159.6922	0.0819	5.1219	15.5000	0.7939	-0.1024	12.6953
2	N/N	1.2865	0.0681	1.00	0.07	0.0652	71.8464	0.000	0.0592	-14.6090	-0.0087	0.0012	-0.1384
0 M	0.7510	1.6583	1.2454	1.12	1.40	1.3413	40.3114	0.0347	2.1724	-13.8660	-0.3017	0.0434	-4.8246
QW	1.4610	1.2912	1.3864	1.31	2.47	2.3651	70.9374	0.0348	2.1767	-14.8710	-0.3237	0.0435	-5.1764
NEO	7.5770	1.3480	10.2138	1.03	10.51	10.0682	61.9790	0.1696	10.6058	-28.8150	-3.0561	0.2121	-46.8703
1120	1.9790	2.1525	4.2598	1.06	4.51	4.3207	29.8774	0.1510	9.4417	-22.7400	-2.1470	0.1888	-34.3340
QN	0.5210	1.2726	0.6630	1.18	0.78	0.7511	74.7094	0.0105	0.6564	-14.3470	-0.0942	0.0131	-1.5060
SIO2	23.3810	2.1393	50.0190	1.10	55.00	52.6749	60.0845	0.9153	57.2369	5.5900	1.6235	0.0000	25.9626
Cr203	0.1330	1.4616	0.1944	1.59	0.31	0.2964	151.0074	0.0020	9.1273	37.3600	0.0476	-0.0025	0.7605
B203	1.8840	3.2201	6.0667	1.02	6.17	5.9110	69.6204	0.0886	5.5432	-9.9300	-0.5504	0.0000	-8.8022
ğ		1.1344	0.000	1.00	0.00	0.000	270.0388	0.000	0.0000	-6.8000	0.000	0.0000	0.000
1102		1.1379	0.000	1.00	0.00	0.000	284.0400	0.0000	0.000	-2.5330	0.000	0.000	0.000
Ş	0.0240	1.1826	0.0284	1.00	0.03	0.0272	103.6194	0.0003	0.0171	-24.4000	-0.0042	0.0003	-0.0665
202	0.1550	1.3508	0.2094	1.00	0.21	0.2000	123.2188	0.0017	0.1060	45.1000	0.0478	0.0042	0.7644
102	0.1420	1.6680	0.2369	0.98	0.23	0.2214	79.8986	0.0029	0.1809	15.9900	0.0289	0.0072	0.4626
8	1.6970	1.2046	2.0442	0.92	1.88	1.8002	94.2034	0.0200	1.2476	-41.7350	-0.5207	0.0250	-8.3265
050	0.0350	1.0602	0.0371	1.00	0.04	0.0355	281.8094	0.0001	0.0082	-46.8200	-0.0039	0.0002	-0.0616
Sh203		1.1970	0.000	1.00	0.00	0.000	291.4982	0.0000	0.000	0.000	0.000	0.000	0.000
P205	0.0230	2.2910	0.0527	1.00	0.05	0.0505	141.9370	0.0004	0.0232	-53.6200	-0.0124	0.0000	-0.1291
NdZOB		1.1660	0.000	1.00	0.00	0.000	336.4762	0.0000	0.000	-28.3200	0.000	0.0000	0.0000
La203		1.1728	0.000	1.00	0.00	0.000	325.8100	0.0000	0.0000	-31.1400	0.000	0.0000	0.0000
7203		1.2699	0.0000	1.00	0.0	0.000	225.8082	0.000	0.000	-12.9500	0.000	0.0000	0.0000
048	0.0680	1.1165	0.0759	1.14	0.09	0.0828	153.3394	0.0008	0.0352	-30.5700	-0.0108	0.0007	-0.1723
02	0.1040	1.0772	0.1120	2.11	0.24	0.2264	223.1900	0.0011	0.0662	-8.8100	-0.0058	0.0013	-0.0933
2000		1.2284	0.0000	1.00	0.00	0.000	172.1200	0.000	0.000	11.3450	0.000	0.000	0.0000
MeCa		1.5003	0.000	1.00	0.00	0.000	143.9382	0.000	0.0000	-21.7500	0.000	0.0000	0.0000
02	0.1640	1.2447	0.2041	2.00	0.41	0.3916	61.3800	0.0050	0.3144	-2.4000	-0.0075	0.0063	-0.1208
8	L.1070	1.2518	0.1339	1.18	0.16	0.1516	79.5454	0.0020	0.1244	1.7900	0.0022	0.0025	0.0356
Fe2+/Fe3+	0.0060												
	52.2810		96.0486		104.4050	100.0000		1.5991	100.0000		-4.6056	0.4017	-73.6492
										IS HID + MINS	-5.6949		
ALK/Sło2 =		0.372				TEST=				SUM + pHB	-7.7940		
ALK+ B203/SIO	2 =	0.469				TIME=				ł	10.7		
B203/SiO2 =		9.097											
VISCOSITY @TE	INP("C)	80.753				8A/V=							
LIOUIDUS RATIC	"	0.098											
		386											

(SPREADSHEET REVISION 5.6, OCTOBER 23, 1990)

GLASS ID= HG2-2A

LIQUIDUS ("C) = 986 NOTE LIQUIDUS AND VISCOSITY FORMULAS CHANGED TO CALCULATE ALL FE AS FEZOS (OCTOBER 23, 1990)

						GLASS ID- H	G2-2B		SPREADSHEE	T REVISION 5.0	, OCTOBER 23, 19	(06)		
	BUBNT	GRAV		FACTORS FOR	BIAS CORRECT	NORMORDE	M.W.	NOLE	NORMOXIDE	COMPONENT	FREE DUERCY	Q	KCALKG	
	AIN C	FACION	×IM	BWS COHHECT	CODE WIN	×13		FRACTION	NOLEY	FREE BUENCY	HYDRATION			
	2.4350	1.0595	4.6009	1.21	5.56	5.3403	101.9600	0.0545	3.4203	3.0400	0.1040	-0.0684	1.65	583
	0.7080	1.3992	0.9906	1.11	1.10	1.0568	56.0794	0.0196	1.2306	-16.1160	-0.1983	0.0246	-3.16	328
Fe203	6.8690	1.4297	12.6044	1.04	13.08	12.5561	159.6922	0.0819	5.1345	15.5000	0.7958	-0.1027	12.69	25
	N/N	1.2865	0.0661	1.00	0.07	0.0653	71.8464	0.000	0.0594	-14.6090	-0.0087	0.0012	-0.13	104
	0.7540	1.6583	1.2504	1.12	1.41	1.3500	40.3114	0.0349	2.1670	-13.8680	-0.3037	0.0437	-4.84	39
	1.4800	1.2912	1.9110	1.31	2.50	2.4018	70.9374	0.0353	2.2110	-14.8710	-0.3288	0.0442	-5.24	137
N-SO	7.6970	1.3480	10.3756	1.03	10.68	10.2530	61.9790	0.1723	10.8028	-28.8150	-3.1120	0.2161	-49.64	143
	1.9740	2.1525	4.2490	1.06	4.50	4.3205	28.8774	0.1506	8.4432	-22.7400	-2.1474	0.1889	-34.24	12
ON	0.5280	1.2726	0.6719	1.18	0.79	0.7631	74.7094	0.0106	0.6670	-14.3470	-0.0957	0.0133	-1.52	83
SIO2	23.2310	2.1393	49.6981	1.10	54.64	52.4669	60.0848	0.9094	57.0230	5.5900	1.6009	0.000	25.53	0
Cr203	0.1270	1.4816	0.1856	1.59	0.30	0.2837	151.9974	0.0019	0.1219	37.3600	0.0455	-0.0024	0.72	82
B203	1.6930	3.2201	6.0956	1.02	6.20	5.9539	69.6204	0.0591	5.5847	-9.9300	-0.5546	0.000	-8.84	64
ğ		1.1344	0.0000	1.00	0.00	0.0000	270.0388	0.0000	0.0000	-6.8000	0.000	0.000	0.00	8
1102		1.1379	0.0000	1.00	0.00	0.0000	264.0400	0.0000	0.0000	-2.5330	0.000	0.000	0.00	8
So So	0.0230	1.1826	0.0272	1.00	0.03	0.0261	103.6194	0.0003	0.0165	-24.4000	-0.0040	0.0003	-0.06	9
202	0.1550	1.3508	0.2094	1.00	0.21	0.2005	123.2188	0.0017	0.1063	45.1000	0.0479	0.0043	0.76	4
102	0.1410	1.6680	0.2352	0.98	0.23	0.2204	79.8988	0.0029	0.1801	15.9900	0.0288	0.0072	0.45	å
8	1.6500	1.2046	1.9676	0.92	1.83	1.7546	94.2034	0.0194	1.2163	-41.7350	-0.5076	0.0243	-8.09	28
CERO	0.0350	1.0602	0.0371	1.00	0.04	0.0356	281.8094	0.0001	0.0083	-46.8200	-0.0039	0.0002	-0.06	9
Secon		1.1970	0.000	1.00	0.00	0.000	291.4982	0.0000	0.0000	0.000	0.000	0.000	0.00	8
P205	0.0310	2.2910	0.0710	1.00	0.07	0.0682	141.9370	0.0005	0.0314	-53.6200	-0.0165	0.000	-0.26	83
N4203		1.1660	0.000	1.00	0.00	0.0000	336.4762	0.0000	0.0000	-28.3200	0.000	0.000	0.00	8
1203		1.1728	0.0000	1.00	0.00	0.000	325.8100	0.0000	0.000	-31.1400	0.000	0.0000	0.00	8
1203		1.2699	0.000	1.00	0.00	0.000	225.8082	0.0000	0.0000	-12.9500	0.000	0.000	0.00	8
	0.0670	1.1165	0.0748	1.14	0.09	0.0618	153.3394	0.0006	0.0348	-30.5700	-0.0106	0.0007	-0.16	86
ŝ	0.1120	1.0772	0.1206	2.11	0.25	0.2444	223.1900	0.0011	0.0715	-8.8100	-0.0063	0.0014	-0.10	05
8		1.2284	0.000	1.00	0.00	0.000	172.1200	0.0000	0.0000	11.3450	0.000	0.0000	0.00	8
Mb03		1.5003	0.0000	1.00	0.00	0.0000	143.9382	0.0000	0.0000	-21.7500	0.000	0.000	0.00	8
04	0.1720	1.2447	0.2141	2.00	0.43	0.4120	61.3600	0.6053	0.3306	-2.4000	-0.0079	0.0066	-0.12	65
8	0.1020	1.2518	0.1277	1.18	0.15	0.1449	79.5454	0.0019	0.1169	1.7900	0.0021	0.0024	0.03	Ş
Fe2+/Fe3+	0.0060													
SIMS	52.1840		95.8059		104.1484	100.000		1.5948	100.0000		-4.6821	0.4059	-74.67	6
										IS Hd + MNS	-5.8078			2
ALK/SiO2 =		0.377				TEST=				SUM + PHB	-7.9471			
ALK+ B203/SIO2	H	0.474				TIME				H	10.73			
B203/Si02 =		0.09 8												
VISCOSITY @TEA	HP(-C)	77.343				54/V=								
LIQUIDUS RATIO	11	0.090												
= (J.) SNOINDIT		938												
NOTE LIQUIDUS	NND VISCOSITY F	ORMULAS CHAI	NGED TO CAL	CULATE ALL FE	AS FE203 (OCT	OBER 23, 1990)								

						GLASS ID=	HG2-3A	U	SPREADSHEE	T REVISION 5.0	, OCTOBER 23, 19	60)	
	BABNT	GRAV	OXIDE	FACTORS FOR	BIAS CORRECT	NORMORDE	NW.	NOLE	NORMOXIDE	COMPONENT	FREE BUENCY	08N	CALKG
	XIX	FACTOR	VIX	BIAS CORRECT	OXIDEWTX	WTX		FRACTION	MOLE %	FREE ENERGY	HYDRATION		
A1203	2.3760	1.8895	4.4895	1.21	5.43	5.2730	101.9600	0.0532	3.3642	3.0400	0.1023	-0.0673	1.6181
8	0.7160	1.3992	1.0018	1.11	1.11	1.0014	56.0794	0.0198	1.2544	-16.1160	-0.2022	0.0251	-3.1985
Fe203	8.6220	1.4297	12.2534	1.04	12.71	12.3518	159.6922	0.0796	5.0315	15.5000	0.7799	-0.1006	12.3390
Ĉ.	N/A	1.2865	0.0662	1.00	0.07	0.0643	71.8464	0.000	0.0582	-14.6090	-0.0085	0.0012	-0.1345
QW	0.7470	1.6583	1.2388	1.12	1.39	1.3534	40.3114	0.0346	2,1640	-13.8680	-0.3033	0.0437	-4.7989
QW	1.4390	1.2912	1.8580	1.31	2.43	2.3631	70.9374	0.0343	2.1670	-14.8710	-0.3223	0.0433	-5.0985
Neco	7.5090	1.3480	10.1221	1.03	10.42	10.1217	61.9790	0.1681	10.6234	-28.8150	-3.0611	0.2125	-48.4318
120	1.9700	2.1525	4.2404	1.06	4.49	4.3631	29.8774	0.1503	9.4996	-22.7400	-2.1602	0.1900	-34.1778
QN	0.5050	1.2726	0.6427	1.18	0.76	0.7386	74.7094	0.0102	0.6431	-14.3470	-0.0923	0.0129	-1.4598
SIO2	23.2600	2.1393	49.7601	1.10	54.71	53.1583	60.0848	0.9106	57.5520	5.5900	1.6455	0.0000	26.0335
Cr203	0.1260	1.4616	0.1842	1.59	0.29	0.2848	151.9974	0.0019	0.1219	37.3600	0.0455	-0.0024	0.7205
B203	1.8590	3.2201	5.9862	1.02	6.09	5.9167	69.6204	0.0875	5.5283	-9.9300	-0.5490	0.000	-8.6854
20		1.1344	0.000	1.00	0.00	0.000	270.0388	0.000	0.0000	-6.8000	0.0000	0.000	0.0000
204L		1.1379	0.000	1.00	0.00	0.000	264.0400	0.0000	0.000	-2.5330	0.000	0.000	0.0000
ŝ	0.0230	1.1826	0.0272	1.00	0.03	0.0264	103.6194	0.0003	0.0166	-24.4000	-0.0040	0.0003	-0.0640
ZOZ	0.0510	1.3508	0.0689	1.00	0.07	0.0668	123.2188	0.0006	0.0353	45.1000	0.0159	0.0014	0.2515
TIO2	0.1370	1.6680	0.2285	0.98	0.22	0.2167	79.8988	0.0028	0.1764	15.9900	0.0282	0.0071	0.4463
8	1.6450	1.2046	1.9816	0.92	1.82	1.7702	94.2034	0.0193	1.2224	-41.7350	-0.5102	0.0244	-8.0714
Ceso	0.0650	1.0602	0.0689	1.00	0.07	0.0670	281.6094	0.0002	0.0155	-46,6200	-0.0072	0.0003	-0.1145
Sb203		1.1970	0.000	1.00	0.00	0.000	291.4982	0.0000	0.000	0.000	0.0000	0.000	0.0000
P205		2.2910	0.0000	1.00	0.0	0.0000	141.9370	0.0000	0.000	-53.6200	0.0000	0.0000	0.0000
Nd2O3		1.1660	0.0000	1.00	0.00	0.000	336.4782	0.0000	0.000	-28.3200	0.0000	0.0000	0.0000
La203		1.1728	0.000	1.00	0.0	0.000	325.8100	0.000	0.0000	-31.1400	0.0000	0.0000	0.0000
Y203		1.2699	0.0000	1.00	0.00	0.0000	225.8082	0.0000	0.000	-12.9500	0.0000	0.0000	0.0000
Beo	0.0650	1.1165	0.0726	1.14	0.08	0.0803	153.3394	0.0005	0.0341	-30.5700	-0.0104	0.0007	-0.1647
8	0.0820	1.0772	0.0883	2.11	0.19	0.1811	223.1900	0.0008	0.0528	-8.8100	-0.0046	0.0011	-0.0736
2000		1.2284	0.000	1.00	0.0	0.000	172.1200	0.000	0.000	11.3450	0.0000	0.0000	0.0000
MbO3		1.5003	0.000	1.00	0.0	0.000	143.9382	0.000	0.0000	-21.7500	0.0000	0.0000	0.0000
042	0.1600	1.2447	0.1992	2.00	0.40	0.3878	81.3800	0.0049	0.3100	-2.4000	-0.0074	0.0062	-0.1177
80	0.0930	1.2518	0.1164	1.18	0.14	0.1337	79.5454	0.0017	0.1093	1.7900	0.0020	0.0022	0.0310
Fe2+/Fe3+	0.0060												
SUNS	51.4500		94.6948		102.9203	100.000		1.5821	100.000		-4.6235 -5 7250	0.4019	-73.1512
											7 69 7		
ALK/SiO2 =		0.371				1631=					-1.03/4		
ALX+ B203/SI02	"	0.467				TIME				E.	10.01		
B203/SIO2 =		960.0											
VISCOSITY @TEN	IP(°C)	81.796				24/V=							
LIQUIDUS RATIO		0.087											

(SPREADSHEET REVISION 5.9, OCTOBER 23, 1990)

LIQUIDUS (°C) = 978 NOTE LIQUIDUS AND VISCOSITY FORMULAS CHANGED TO CALCULATE ALL FE AS FE203 (OCTOBER 23, 1990)

HG2-3R	
ģ	
GI A SS	

(SPREADSHEET REVISION 5.8, OCTOBER 23, 1990)

	BENENT	GRAV	CXDE	FACTORS FOR	BIAS CORRECT	NORMORDE	MW.	MOLE	NORMONDE	COMPONENT	FREE EVENCY	Q	KCAL KG
	WT%	FACTOR	XIX	BMS CORRECT	OXIDEWTX	XTX		FRACTION	MOLE %	FREE BNEFIGY	HYDRATION		
AI203	2.3690	1.8895	4.4762	1.21	5.41	5.1391	101.9600	0.0531	3.3167	3.0400	0.1008	-0.0663	1.6133
8	0.7060	1.3992	0.9878	1.11	1.10	1.0423	56.0794	0.0196	1.2231	-16.1160	-0.1971	0.0245	-3.1539
Fe203	8.6450	1.4297	12.2860	1.04	12.75	12.1060	159.6922	0.0795	4.9884	15.5000	0.7732	9660.0-	12.3719
2	N/N	1.2865	0.0663	1.00	0.07	0.0630	71.6464	0.009	0.0577	-14.6090	-0.0084	0.0012	-0.1349
0 1	0.7450	1.6583	1.2354	1.12	1.38	1.3194	40.3114	0.0345	2.1538	-13.8880	-0.2991	0.0431	-4.7861
QW :	1.4340	1.2912	1.8516	1.31	2.42	2.3018	70.9374	0.0342	2.1352	-14.8710	-0.3175	0.0427	-5.0808
NH2O	7.6570	1.3480	10.3216	1.03	10.62	10.0889	61.9790	0.1714	10.7114	-28.8150	-3.0865	0.2142	-49.3863
L120	1.9720	2.1525	4.2447	1.06	4.50	4.2692	29.8774	0.1505	9.4027	-22.7400	-2.1382	0.1881	-34.2125
QN	0.5230	1.2726	0.6656	1.18	0.79	0.7477	74.7094	0.0105	0.6586	-14.3470	-0.0945	0.0132	-1.5118
SI02	23.2420	2.1393	49.7216	1.10	54.67	51.9214	60.0848	0.9099	56.8629	5.5900	1.6135	0.0000	25.8177
Cr203	0.1390	1.4616	0.2032	1.59	0.32	0.3071	151.9974	0.0021	0.1330	37.3600	0.0497	-0.0027	0.7948
B203	1.8650	3.2201	6.0055	1.02	6.11	5.8021	69.6204	0.0877	5.4840	-9.9300	-0.5448	0.000	-8.7134
a i		1.1344	0.000	1.00	0.00	0.0000	270.0388	0.000	0.0000	-6.8000	0.000	0.000	0.0000
		1.1379	0.0000	1.00	0.00	0.000	264.0400	0.000	0.0000	-2.5330	0.000	0.000	0.0000
0 S S	0.0220	1.1826	0.0260	1.00	0.03	0.0247	103.6194	0.0003	0.0157	-24.4000	-0.0038	0.0003	-0.0613
202	0.0510	1.3508	0.0689	1.00	0.07	0.0653	123.2188	0.0006	0.0349	45.1000	0.0157	0.0014	0.2515
102	0.1360	1.6680	0.2268	0.98	0.22	0.2103	79.6986	0.0028	0.1732	15.9900	0.0277	0.0069	0.4431
8	1.6440	1.2046	1.9804	0.92	1.82	1.7293	94.2034	0.0193	1.2079	-41.7350	-0.5041	0.0242	-8.0665
Cerso	0.0650	1.0602	0.0689	1.00	0.07	0.0655	281.8094	0.0002	0.0153	-46.8200	-0.0072	0.0003	-0.1145
SP2C3		1.1970	0.0000	1.00	0.00	0.000	291.4982	0.0000	0.0000	0.0000	0.000	0.000	0.0000
505		2.2910	0.000	1.00	0.00	0.0000	141.9370	0.000	0.0000	-53.6200	0.000	0.0000	0.0000
Nd2O3		1.1660	0.0000	1.00	0.00	0.000	336.4762	0.0000	0.000	-28.3200	0.0000	0.0000	0.0000
La203		1.1728	0.000	1.00	0.00	0.000	325.8100	0.0000	0.0000	-31.1400	0.0000	0.0000	0.0000
7203		1.2699	0.0000	1.00	0.00	0.000	225.8082	0.000	0.0000	-12.9500	0.000	0.000	0.0000
2	0.0640	1.1165	0.0715	1.14	0.08	0.0773	153.3394	0.0005	0.0332	-30.5700	-0.0101	0.0007	-0.1622
8	0.0820	1.0772	0.0883	2.11	0.19	0.1770	223.1900	0.0008	0.0522	-8.8100	-0.0046	0.0010	-0.0736
80		1.2284	0.000	1.00	0.00	0.000	172.1200	0.0000	0.0000	11.3450	0.000	0.000	0.0000
Meca	1.4340	1.5003	2.1514	1.00	2.15	2.0433	143.9382	0.0149	0.9341	-21.7500	-0.2032	0.000	-3.2510
2	0.1550	1.2447	0.1929	2.00	0.39	0.3672	51.3800	0.0048	0.2969	-2.4000	-0.0071	0.0059	-0.1140
8	0.0940	1.2518	0.1177	1.18	0.14	0.1321	79.5454	0.0017	0.1092	1.7900	0.0020	0.0022	0.0313
Fe2+/Fe3+	0.0060												
SUNS	53.0440		97.0585		105.2904	100.000		1.6001	100.000		-4.8434	0.4010	-77.4990
									•,	IS Hd + WN	-5.9449		
ALNSIU2 =		0.375				TEST₌			•	8Hd+MN	-8.0573		
ALK+ 8203/5102	11	0.472				TIME=				ł	10.71		
B203/S102 =		960-0											
VISCOSITY @TEN	IP(°C)	78.940				SA/V=							
LIQUIDUS RATIO		0.087											
		8/8											
NOTE LIQUIDUS A	AND VISCOSILY I	FORMULAS CHAP	AGED TO CAL	CULATE ALL FE	: AS FE203 (OCI	rober 23, 1990)							

4

· · · · · ·

1.1.1.1.1.1.1.1.1.1.1.1.

.

THE F

1 **1** 1 1 1

HG3-1A
GLASS ID=

(SPREADSHEET REVISION 5.9, OCTOBER 23, 1990)

	BEMENT	GRAV	OXDE	FACTORS FOR	BIAS CORRECT	NORMORDE	MW.	MOLE	NORMOKIDE	COMPONENT	FREE BUERCY	8	CALKG
	XIX	FACTOR	X IX	BIAS CORRECT	OXIDEWTX	XTV		FRACTION	MOLE %	FREE BNERGY	HYDRATION		
A1203	2.4560	1.8895	4.6406	1.21	5.61	5.4887	101.9600	0.0550	3.5181	3.0400	0.1070	-0.0704	1.6726
8	0.7340	1.3892	1.0270	1.11	1.14	1.1164	56.0794	0.0203	1.3010	-16.1160	-0.2097	0.0260	-3.2790
Fe203	8.8660	1.4297	12.0952	1.04	12.55	12.2776	159.6922	0.0786	5.0246	15.5000	0.7788	-0.1005	12.1797
ĝ.	N/A	1.2865	0.5224	1.00	0.52	0.5111	71.8464	0.0073	0.4650	-14.6090	-0.0679	0.0093	-1.0623
CP N	0.7350	1.6583	1.2189	1.12	1.37	1.3410	40.3114	0.0340	2.1741	-13.8880	-0.3019	0.0435	-4.7219
Q	1.4720	1.2912	1.9006	1.31	2.49	2.4342	70.9374	0.0351	2.2426	-14.8710	-0.3335	0.0449	-5.2154
OSEN	7.2720	1.3480	9.8027	1.03	10.09	9.8708	61.9790	0.1628	10.4083	-28.8150	-2.8992	0.2082	-46.9031
	1.9160	2.1525	4.1242	1.06	4.37	4.2732	29.8774	0.1462	9.3472	-22.7400	-2.1255	0.1869	-33.2410
Q	0.5310	1.2726	0.6758	1.18	0.80	0.7820	74.7094	0.0107	0.6641	-14.3470	-0.0981	0.0137	-1.5349
SIO2	22.7000	2.1393	48.5621	1.10	53.39	52.2413	60.0848	0.8886	56.8226	5.5900	1.5815	0.000	24.7327
C1203	0.1400	1.4616	0.2046	1.58	0.33	0.3187	151.9974	0.0021	0.1370	37.3600	0.0512	-0.0027	0.8008
B203	1.8700	3.2201	6.0216	1.02	6.13	5.9933	69.6204	0.0880	5.6260	-9.9300	-0.5587	0.000	-8.7366
g		1.1344	0.000	1.00	0.00	0.000	270.0385	0.0000	0.0000	-6.8000	0.0000	0.0000	0.0000
204L		1.1379	0.0000	1.00	0.00	0.000	264.0400	0.0000	0.0000	-2.5330	0.0000	0.000	0.000
Q ₂	0.0230	1.1826	0.0272	1.00	0.03	0.0266	103.6194	0.0003	0.0168	-24.4000	-0.0041	0.0003	-0.0640
ZOZ	0.1300	1.3508	0.1756	1.00	0.18	0.1714	123.2188	0.0014	0.0909	45.1000	0.0410	0.0036	0.6411
102	0.1410	1.6680	0.2352	0.98	0.23	0.2246	79.6968	0.0029	0.1837	15.9900	0.0294	0.0073	0.4594
8	1.8160	1.2046	2.1876	0.92	2.01	1.9678	94.2034	0.0214	1.3652	-41.7350	-0.5698	0.0273	-8.9104
080	0.0300	1.0602	0.0316	1.00	0.03	0.0311	281.8094	0.0001	0.0072	-46.8200	-0.0034	0.0001	-0.0528
SECOS		1.1970	0.0000	1.00	0.00	0.000	291.4982	0.000	0.0000	0.0000	0.000	0.0000	0.0000
P205	0.0230	2.2910	0.0527	1.00	0.05	0.0516	141.9370	0.0004	0.0237	-53.6200	-0.0127	0.0000	-0.1991
NAZOG		1.1660	0.0000	1.00	0.00	0.000	336.4782	0.0000	0.0000	-28.3200	0.000	0.000	0.000
La203		1.1728	0.000	1.00	0.00	0.000	325.8100	0.000	0.0000	-31.1400	0.000	0.000	0.0000
Y203		1.2699	0.0000	1.00	0.00	0.000	225.8082	0.0000	0.0000	-12.9500	0.000	0.000	0.0000
048	0.0660	1.1165	0.0737	1.14	0.08	0.0821	153.3394	0.0005	0.0350	-30.5700	-0.0107	0.0007	-0.1672
Q	0.1020	1.0772	0.1099	2.11	0.23	0.2268	223.1900	0.0010	0.0664	-8.8100	-0.0059	0.0013	-0.0915
2000		1.2284	0.0000	1.00	0.00	0.0000	172.1200	0.0000	0.000	11.3450	0.000	0.0000	0.000
Mb03		1.5003	0.0000	1.00	0.00	0.000	143.9382	0.0000	0.0000	-21.7500	0.0000	0.0000	0.0000
20	0.1670	1.2447	0.2079	2.00	0.42	0.4076	61.3800	0.0051	0.3273	-2.4000	-0.0079	0.0065	-0.1229
8	0.1120	1.2518	0.1402	1.18	0.17	0.1621	79.5454	0.0021	0.1332	1.7900	0.0024	0.0027	0.0373
Fe2+/Fe3+	0.0480												
SUNS	51.3020		94.0373		102.2054	100.000		1.5639	100.0000		-4.7177	0.4089	-73.7790
										SHd + MNS	-5.8434		
ALK/SiO2 =		0.372				test=				SUM + PH B	-7.9827		
ALK+ B203/SI02	"	6.471				TIME=				H	10.73		
B203/Si02 =		0.099											
VISCOSITY @TE	NP("C)	79.802				SA/V=							
LIQUIDUS RATIO	"	0.089											
= (j_) snandi		188											
NOTE LIQUIDUS,	AND VISCOSITY	FORMULAS CHA	NGED TO CA	LOULATE ALL F	E AS FEZUS (UC	I OBEN 23, 18M)							

•

GLASS ID= HG3-1B

(SPREADSHEET REVISION 5.6, OCTOBER 23, 1990)

.

	BLENENT	GRAV	OXIDE	FACTORS FOR	BMS CORRECT	NORMORE	MW.	MOLE	NORMOKIDE	COMPONENT	FREE BUCHOY	NBO KC	DXTN
	XIX XIX	FACTOR	VIX	BMS CORRECT	OXIDE WT%	WT%		FRACTION	NOLE %	FREE BUERGY	HYDRATION		
AI203	2.4690	1.8895	4.6652	1.21	5.64	5.5129	101.9600	0.0553	3.5345	3.0400	0.1074	-0.0707	1.6814
8	0.7290	1.3992	1.0200	1.11	1.13	1.1078	56.0794	0.0202	1.2913	-16.1160	-0.2081	0.0258	-3.2566
Fe203	8.8510	1.4297	12.0747	1.04	12.53	12.2460	159.6922	0.0784	5.0129	15.5000	0.7770	-0.1003	12.1591
2	N/N	1.2865	0.5215	1.00	0.52	0.5098	71.6464	0.0073	0.4639	-14.6090	-0.0875	0.0093	-1.0605
9	0.7350	1.6583	1.2189	1.12	1.37	1.3398	40.3114	0.0340	2.1727	-13.8880	-0.3017	0.0435	-4.7219
QW	1.4610	1.2912	1.8864	1.31	2.47	2.4138	70.9374	0.0348	2.2244	-14.8710	-0.3308	0.0445	-5.1764
NAZO	7.2930	1.3480	9.8310	1.03	10.12	9.6906	61.9790	0.1632	10.4316	-28.8150	-3.0059	0.2086	-47.0386
	1.9110	2.1525	4.1134	1.06	4.36	4.2583	29.6774	0.1458	9.3169	-22.7400	-2.1187	0.1863	-33.1542
Q	0.5350	1.2726	0.6808	1.18	0.81	0.7872	74.7094	0.0108	0.6888	-14.3470	-0.0988	0.0138	-1.5465
SIQ2	22.6930	2.1393	48.5471	1.10	53.38	52.1790	60.0645	0.8884	56.7691	5.5900	1.5777	0.000	24.6889
Cr203	0.1430	1.4616	0.2090	1.59	0.33	0.3252	151.9974	0.0022	0.1399	37.3600	0.0523	-0.0028	0.8177
B203	1.8820	3.2201	6.0602	1.02	6.16	6.0264	69.6204	0.0885	5.6585	-9.9300	-0.5619	0.0000	-8.7929
g		1.1344	0.000	1.00	0.00	0.000	270.0368	0.0000	0.000	-6.8000	0.0000	0.000	0.0000
204		1.1379	0.0000	1.00	0.00	0.000	264.0400	0.000	0.000	-2.5330	0.000	0.000	0.0000
SS SS	0.0230	1.1826	0.0272	1.00	0.03	0.0266	103.6194	0.0003	0.0168	-24.4000	-0.0041	0.0003	-0.0640
202	0.1300	1.3508	0.1756	1.00	0.18	0.1712	123.2188	0.0014	0.0908	45.1000	0.0410	0.0036	0.6411
TIO2	0.1440	1.6680	0.2402	0.98	0.23	0.2292	79.6968	0.0029	0.1875	15.9900	0.0300	0.0075	0.4691
8	1.8350	1.2046	2.2104	0.92	2.03	1.9867	94.2034	0.0216	1.3786	-41.7350	-0.5754	0.0276	-9.0037
Cero Cero	0.0300	1.0602	0.0318	1.00	0.03	0.0311	281.8094	0.0001	0.0072	-46.8200	-0.0034	0.0001	-0.0528
Sh2CG		1.1970	0.0000	1.00	0.00	0.0000	291.4982	0.000	0.0000	0.000	0.000	0.000	0.0000
P206	0.0150	2.2910	0.0344	1.00	0.03	0.0336	141.9370	0.0002	0.0155	-53.6200	-0.0083	0.000	-0.1298
NECOS		1.1660	0.000	1.00	0.00	0.0000	336.4782	0.0000	0.0000	-28.3200	0.000	0.000	0.000
La203		1.1728	0.000	1.00	0.00	0.000	325.8100	0.000	0.0000	-31.1400	0.000	0.000	0.0000
Y203		1.2699	0.000	1.00	0.00	0.000	225.8082	0.000	0.0000	-12.9500	0.0000	0.000	0.000
28	0.0670	1.1165	0.0748	1.14	0.09	0.0832	153.3394	0.0006	0.0355	-30.5700	-0.0108	0.0007	-0.1696
8	0.1020	1.0772	0.1099	2.11	0.23	0.2266	223.1900	0.0010	0.0664	-8.8100	-0.0058	0.0013	-0.0915
2000		1.2284	0.000	1.00	0.00	0.0000	172.1200	0.0000	0.0000	11.3450	0.000	0.000	0.000
Macoa		1.5003	0.0000	1.00	0.00	0.000	143.9382	0.0000	0.0000	-21.7500	0.000	0.0000	0.000
02	0.1840	1.2447	0.2290	2.00	0.46	0.4487	81.3800	0.0056	0.3604	-2.4000	-0.0087	0.0072	-0.1354
8	0.1150	1.2518	0.1440	1.18	0.17	0.1663	79.5454	0.0021	0.1367	1.7900	0.0024	0.0027	0.0383
Fe2+/Fe3+	0.0480												
SUNS	51.3470		94.1056		102.2959	100.000		1.5649	100.0000		-4.7224	0.4092	-73.8988
										IS Hd + MJS	-5.8481		
ALK/SiO2 =		0.372				TEST=				8Hq+MUX	-7.9874		
ALK+ B203/Si02	"	0.472				TIME=				Ŧ	10.73		
B203/Si02 =		0.100											
VISCOSITY @TEI	NP(C)	79.607				SA/V=							
LIQUIDUS RATIO	11	0.089											
rioudus ("G") =		282											
NOTE LIQUIDUS	AND VISCOSITY	FORMULAS CHAI	NGED TO CAI	LOULATE ALL F	E AS FE203 (OC	TOBER 23, 1990)							

1.

GLASS ID.= HG3-2A

(SPREADSHEET REVISION 5.0, OCTOBER 23, 1990)

			OVDE	EACTORS FOR	RIAS CORRECT	NORMORE	MW	MOLE	NORMOKIDE	COMPONENT	FREE BUGFOY	89 99	ALKG
				RIAS CORRECT	CKIDEWIC	MTV.		FRACTION	NOLE %	FREE BNBPGY	HYDRATION		
			7446	1 21	5 74	5 5807	101.9600	0.0563	3.5914	3.0400	0.1092	-0.0718	1.7100
AIZU3	2.110	C600.1		1.1.1		1 1450	58.0794	0.0210	1.3397	-16.1160	-0.2159	0.0268	-3.3817
	0.02.0	7880' I	3200'I		1.10	1011	160 8022	0.001	5.1153	15.5000	0.7929	-0.1023	12.418
Fe203	9.2210	1.4297	12.3323		2. Z	0 7450	71 8464	0.0107	0.6804	-14.6090	-0.0994	0.0136	-1.557(
		1.6003	0.7037		1 36	1 3200	40.3114	0.0337	2.1501	-13.6660	-0.2986	0.0430	-4.676
	0.7280	1.6563	1.2074	1.12	1.00 1.00 1.00	2 5095	70.0374	0.0364	2.3213	-14.8710	-0.3452	0.0464	-5.406
	097C'I	2182.1	0000 0	10.1 10.1	000	0.6504	61.9790	0.1600	10.2166	-28.8150	-2.9439	0.2043	-46.109
	1.1490	1040			1 20	A 1808	20 8774	0.1434	9.1575	-22.7400	-2.0824	0.1832	-32.616
	1.5800	2.1525	4.0401			0.2875	74.7094	0.0106	0.6741	-14.3470	-0.0967	0.0135	-1.514
	0.5240	07/21	0.000		53 15 53 15	51 7154	60.0848	0.8546	56.4757	5.5900	1.5579	0.0000	24.400
SICZ	0080.22	C. 1.335		1 50	0.30	0 2875	151.9974	0.0019	0.1241	37.3600	0.0464	-0.0025	0.726
Cr203	0.12/0	1.4010			6.95 6.25	6.0782	69,6204	0.0897	5.7285	-9.9300	-0.5688	0.000	606.8-
B203	0/08.1	1022.6		100		0000	270.0388	0.000	0.0000	-8.6000	0.0000	0.000	0.000
201				001	000	0,000	264.0400	0.000	0.0000	-2.5330	0.000	0.0000	0.000
	0.000	8/C1.1	0.000		0.03	0.0288	103.6194	0.0003	0.0182	-24.4000	-0.0044	0.0004	-0.069
200	0620.0	1.1020	0.1743		0.17	0.1691	123.2188	0.0014	0.0901	45.1000	0.0406	0.0036	0.636
202	0.1290	0000 1			1 24	0.2376	79.8988	0.0031	0.1951	15.9900	0.0312	0.0078	0.485
102	0.1500	1.0000	70C7.0	0.00	0.07	2.2092	94.2034	0.0241	1.5388	41.7350	-0.6422	0.0308	-10.058
8	20100	1.2040	1010	1.00	0.04	0.0413	281.8094	0.0002	0.0096	-46.8200	-0.0045	0.0002	-0.070
	0.0400	1.0006	0.000		00 0	0.000	291.4982	0.0000	0.000	0.0000	0.000	0.000	0.000
SP2CG		0/81.1			0.00	0.0223	141.9370	0.0002	0.0103	-53.6200	-0.0055	0.000	-0.056
5	0.0100	1 1 1 1 1 1			00 0	0.000	336.4782	0.0000	0.0000	-28.3200	0.0000	0.000	0.000
NAZOB	0000 0	1.1000	0.000			0.0034	325.8100	0.0000	0.0007	-31.1400	-0.0002	0.000	-0.003
1203	0.0030	1.1/20			000	0.000	225.8082	0.0000	0.0000	12.9500	0.000	0.000	0.00
AZG	0010 0	3011	0.000	411	50 O	0.0866	153.3394	0.000	0.0370	90.5700	-0.0113	0.0007	-0.177
	0.0700	1.1723	0.000	211	0.22	0.2123	223.1900	0.0010	0.0624	-8.8100	-0.0055	0.0012	-0.088
2 ²		AACC +		100	0.00	0.000	172.1200	0.0000	0.0000	11.3450	0.0000	0.0000	0.000
8		+ 0777 +			00.0	0.000	143.9382	0.0000	0.0000	0 -21.7500	0.000	0.0000	0.00
		2000.1	0.1975	2.00	0.40	0.3859	81.3800	0.0049	0.3112	-2.4000	-0.0075	0.0062	-0.117
	0.1390	1.15.1		118	0.19	0.1842	79.5454	0.0024	0.1520	1.7900	0.0027	0.0030	0.042
8	0.1260	0107.1	0.100										
Fe2+/Fe3+	0.0690												
	1960		04 6273	~	102.7718	100.000		1.5663	100.000		-4.7514	0.4082	-74.419
SMIS	31./600									IS HO + MINS	-5.8528		
AI K/SłO2 -		0.370				TEST=				SUM + pH B	-7.9653		
AI KA 8203/SI02	=	0.472				TIME=				ł	10.71		

 ALK/SIO2 =
 0.370
 TEST=

 ALK+ B203/SIO2 =
 0.472
 TIME=

 B203/SIO2 =
 0.472
 TIME=

 B203/SIO2 =
 0.101
 SA/V=

 VISCOSITY @TEMP(°C)
 78.450
 SA/V=

 LIQUIDUS RATIO =
 0.091
 LIQUIDUS (°C) =
 1012

 MOTE LIQUIDUS AND VISCOSITY FORMULAS CHANGED TO CALCULATE ALL FE AS FE203 (OCTOBER 23, 1990)

2

0.0

00

5

0

HG3-28
LASS ID=

(SPREADSHEET REVISION 5.8, OCTOBER 23, 1990)

н

	BLEMENT	GRAV	OXDE	FACTORS FOR	BIAS CORRECT	NORMODE	M.W.	MOLE	NORMOKIDE	COMPONENT	FREE BUBROY	8	KCALKG
	XTX	FACTOR	XIX	BMS CORRECT	CODE WTX	X1X		FRACTION	MOLE %	FREE BNBPGY	HYDRATION		
AI203	2.5080	1.8895	4.7389	1.21	5.73	5.5665	101.9600	0.0562	3.5824	3.0400	0.1089	-0.0716	1.7080
8	0.7620	1.3992	1.0662	1.11	1.18	1.1510	58.0784	0.0211	1.3468	-16.1160	-0.2171	0.0265	-3.4040
Fe203	9.3050	1.4297	12.4447	1.04	12.91	12.5459	159.6922	0.0808	5.1552	15.5000	0.7991	-0.1031	12.5316
9	N/N	1.2865	0.7727	1.00	0.77	0.7508	71.8464	0.0108	0.6657	-14.6090	-0.1002	0.0137	-1.5711
2	0.7360	1.6583	1.2205	1.12	1.37	1.3336	40.3114	0.0340	2.1709	-13.8880	-0.3015	0.0434	-4.7283
QW	1.5400	1.2912	1.9884	1.31	2.60	2.5292	70.9374	0.0367	2.3395	-14.8710	-0.3479	0.046	-5.4563
NECO	7.0610	1.3480	9.5182	1.03	9.60	9.5166	61.9790	0.1581	10.0777	-26.6150	-2.9039	0.2016	-45.5422
LI20	1.8950	2.1525	4.0790	1.06	4.32	4.1974	29.8774	0.1446	9.2186	-22.7400	-2.0963	0.1644	-32.8766
QN	0.5230	1.2726	0.6658	1.18	0.79	0.7650	74.7094	0.0105	0.6719	-14.3470	-0.0964	0.0134	-1.5118
SIO2	22.6250	2.1393	48.4017	1.10	53.22	51.7121	60.0848	0.8857	56.4745	5.5900	1.5615	0.000	24.4896
Cr203	0.1210	1.4616	0.1769	1.59	0.28	0.2735	151.9974	0.0019	0.1161	37.3600	0.0441	-0.0024	0.6919
8203	1.9250	3.2201	6.1987	1.02	6.31	6.1273	69.6204	0.0906	5.7751	-9.9300	-0.5735	0.000	-6.9938
ğ		1.1344	0.0000	1.00	0.00	0.0000	270.0388	0.000	0.0000	-6.6000	0.000	0.000	0.0000
2041		1.1379	0.0000	1.00	0.00	0.0000	264.0400	0.0000	0.0000	-2.5330	0.0000	0.000	0.0000
So So	0.0250	1.1826	0.0298	1.00	0.03	0.0287	103.6194	0.0003	0.0182	-24.4000	-0.0044	0.004	-0.0696
202	0.1290	1.3508	0.1743	1.00	0.17	0.1689	123.2168	0.0014	0.0899	45,1000	0.0406	0.0036	0.6362
102	0.1500	1.6680	0.2502	0.98	0.24	0.2373	79.8988	0.0031	0.1949	15.9900	0.0312	0.0076	0.4857
8	1.9940	1.2046	2.4020	0.92	2.21	2.1459	94.2034	0.0234	1.4948	-41.7350	-0.6238	0.0299	-9.7638
0300	0.0400	1.0602	0.0424	1.00	0.04	0.0412	281.8094	0.0002	0.0096	-46.8200	-0.0045	0.000	-0.0705
Sh203		1.1970	0.0000	1.00	0.0	0.0000	291.4962	0.000	0.000	0.000	0.000	0.0000	0.0000
P206	0.0110	2.2910	0.0252	1.00	0.03	0.0245	141.9370	0.0002	0.0113	-53.6200	-0.0061	0.000	-0.0952
N42O3		1.1660	0.000	1.00	0.00	0.000	336.4782	0.000	0.0000	-28.3200	0.000	0.000	0.0000
La203		1.1728	0.0000	1.00	0.00	0.0000	325.8100	0.0000	0.0000	-31.1400	0.0000	0.000	0.0000
7203		1.2699	0.0000	1.00	0.00	0.000	225.8082	0.000	0.000	-12.9500	0.000	0.000	0.0000
2	0.0690	1.1165	0.0770	1.14	0.09	0.0852	153.3394	0.000	0.0365	-30.5700	-0.0111	0.0007	-0.1748
8	0.1040	1.0772	0.1120	2.11	0.24	0.2297	223.1900	0.0011	0.0875	-8.8100	-0.0059	0.0014	-0.0933
2000		1.2284	0.000	1.00	0.0	0.000	172.1200	0.0000	0.0000	11.3450	0.000	0.000	0.000
MeCa		1.5003	0.000	1.00	0.00	0.000	143.9382	0.0000	0.0000	-21.7500	0.0000	0.000	0.000
2	0.1600	1.2447	0.1992	2.00	0.40	0.3878	81.3800	0.0049	0.3127	-2.4000	-0.0075	0.0063	-0.1177
8	0.1250	1.2518	0.1565	1.18	0.18	0.1797	79.5454	0.0023	0.1462	1.7900	0.0027	0.0030	0.0416
Fe2+/Fe3+	0.0690												
SUNG	51.8080		94.7397		102.9103	100.000		1.5683	100.0000		-4.7122	0.4062	-73.9015
										IS Hd + MNS	-5.8136		
ALK/SIO2 =		0.368				TEST=				8Hq+MUS	-7.9261		
ALK+ B203/SI02	H	0.471				TIME				ł	10.71		
B203/SiO2 =		0.102											
VISCOSITY @TEI	up(-c)	78.940				SA/V=							
LIQUIDUS RATIO	11	0.092											
= (j.) snanon		1014											

LIQUIDUS ("7) = 1914 NOTE LIQUIDUS AND VISCOSITY FORMULAS CHANGED TO CALCULATE ALL FE AS FEZOS (OCTOBER 23, 1990)

and the state of the state

.

		GRAV	OXDE	FACTORS FOR	BAS CORRECT	MORMORE	MW.	MOLE	NORMOXIDE	COMPONENT	FREE DUERGY	S S S S S	SALKG
	×1×	FACTOR	XTX	BIAS CORRECT	OXIDE WT%	XTX		FRACTION	MOLE %	FREE BNEHGY	HYDRATION		
A1203	2.5300	1.8895	4.7804	1.21	5.78	5.5930	101.9600	0.0567	3.5927	3.0400	0.1092	-0.0719	1.7230
8	0.7950	1.3992	1.1124	1.11	1.24	1.1961	56.0794	0.0220	1.3969	-16.1160	-0.2251	0.0279	-3.5515
Fe203	9.3100	1.4297	12.1336	1.04	12.59	12.1837	159.6922	0.0788	4.9969	15.5000	0.7745	-0.0999	12.2184
2	N/N	1.2865	1.0591	1.00	1.06	1.0250	71.8464	0.0147	0.9344	-14.6090	-0.1365	0.0187	-2.1535
QW	0.7420	1.6583	1.2305	1.12	1.38	1.3392	40.3114	0.0343	2.1758	-13.6680	-0.3022	0.0435	-4.7668
QW	1.5560	1.2912	2.0091	1.31	2.63	2.5453	70.9374	0.0371	2.3500	-14.8710	-0.3495	0.0470	-5.5130
Naco	6.9670	1.3480	9.3915	1.03	9.67	9.3548	61.9790	0.1559	9.8854	-28.8150	-2.8485	0.1977	-44.9359
L120	1.9070	2.1525	4,1048	1.06	4.35	4.2072	29.8774	0.1455	9.2227	-22.7400	-2.0972	0.1845	-33.0848
ON	0.5250	1.2726	0.6681	1.16	0.79	0.7649	74.7094	0.0106	0.6705	-14.3470	-0.0962	0.0134	-1.5176
SIO2	22.6950	2.1393	48.5514	1.10	53.38	51.6661	60.0845	0.8884	56.3160	5.5900	1.5407	0.000	24.3048
Cr203	0.1050	1.4616	0.1535	1.59	0.24	0.2364	151.9974	0.0016	0.1019	37.3600	0.0351	-0.0020	0.6004
B203	1.9660	3.2201	6.3307	1.02	6.44	6.2330	69.6204	0.0925	5.8636	-9.9300	-0.5823	0.0000	-9.1853
ã		1.1344	0.000	1.00	0.00	0.000	270.0368	0.000	0.000	-6.8000	0.000	000010	0.0000
Thos		1.1379	0.000	1.00	0.00	0.000	264.0400	0.000	0.000	-2.5330	0.0000	0.000	0.0000
SrO SrO	0.0250	1.1826	0.0296	1.00	0.03	0.0286	103.6194	0.0003	0.0181	-24.4000	-0.0044	0.0004	-0.0696
ZO2	0.1170	1.3505	0.1580	1.00	0.16	0.1526	123.2166	0.0013	0.0811	45.1000	0.0366	0.0032	0.5770
TIO2	0.1550	1.6680	0.2585	0.98	0.25	0.2442	79.8988	0.0032	0.2002	15.9900	0.0320	0.0080	0.5050
8	2.1270	1.2046	2.5622	0.92	2.36	2.2800	94.2034	0.0250	1.5851	-41.7350	-0.6616	0.0317	-10.4364
050	0.0100	1.0602	0.0106	1.00	0.01	0.0103	261.6094	0.0000	0.0024	-46.8200	-0.0011	0.0000	-0.0178
Sb203		1.1970	0.0000	1.00	0.0	0.000	291.4982	0.0000	0.000	0.000	0.000	0.0000	0.0000
P205	0.0150	2.2910	0.0344	1.00	0.03	0.0333	141.9370	0.0002	0.0153	-53.6200	-0.0082	0.0000	-0.1298
Nd2O3		1.1660	0.000	1.00	0.00	0.000	336.4782	0.000	0.000	-28.3200	0.0000	0.0000	0.0000
La203		1.1728	0.000	1.00	0.0	0.000	325.8100	0.0000	0.0000	-31.1400	0.000	0.000	0.0000
Y203		1.2699	0.0000	1.00	0.0	0.000	225.8082	0.000	0.000	-12.9500	0.0000	0.0000	0.000
048	0.0680	1.1165	0.0759	1.14	0.09	0.0836	153.3394	0.0008	0.0357	-30.5700	-0.0109	0.0007	-0.1723
22	0.1000	1.0772	0.1077	2.11	0.23	0.2200	223.1900	0.0010	0.0645	-8.8100	-0.0057	0.0013	-0.0897
2000		1.2284	0.000	1.00	0.00	0.000	172.1200	0.000	0.000	11.3450	0.000	0.000	0.0000
MbCB		1.5003	0.0000	1.00	0.0	0.000	143.9382	0.0000	0.000	-21.7500	0.000	0.0000	0.000
C.5	0.1720	1.2447	0.2141	2.00	0.43	0.4153	61.3600	0.0053	0.3342	-2.4000	-0.0080	0.0067	-0.1265
8	0.1310	1.2518	0.1640	1.18	0.19	0.1875	79.5454	0.0024	0.1544	1.7900	0.0028	0.0031	0.0436
Fe2+/Fe3+	0.0970												
SUMS	52.0180		95.1400		103.3205	100.0000		1.5775	100.000		-4.8036	0.4140	-75.7785
										SHd + MNS	-5.8728		
ALK/SIO2 =		0.367						1.4988		8Hd+MNS	-7.9490		
ALK+ B203/SIO	2 =	0.472				TIME:				Ŧ	10.663		
B203/SH02 =		0.104											
VISCOSITY @TE	IMP(°C)	79.301				SA/V=							
LIQUIDUS RATK		0.090											

(SPREADSHEET REVISION 5.0, OCTOBER 23, 1990)

GLASS ID= HG3-3A

LIQUIDUS ('C) = 1014NOTE LIQUIDUS AND VISCOSITY FORMULAS CHANGED TO CALCULATE ALL FE AS FEZOS (OCTOBER 23, 1990)

						glass id= H	63-38)	SPREADSHEET	F REVISION 5.0	, OCTOBER 23, 19	(06)	
	BUENT	GRAV	OXDE	FACTORS FOR	BIAS CORRECT	NOPMORDE	WW.	MOLE	NORMOKIDE	COMPONENT	FREE BUERGY	8	KCALKG
	×1×	FACTOR	X	BIAS CORRECT	COODE WT%	XLM		FRACTION	MOLE %	FREE BUBICY	HYDRATION		
AIZO3	2.5360	1.6895	4.7916	1.21	5.79	5.6259	101.9600	0.0568	3.6070	3.0400	0.1097	-0.0721	1.7271
	0.7970	1.3992	1.1152	1.11	1.24	1.2033	56.0794	0.0221	1.4027	-16.1160	-0.2261	0.0281	-3.5604
F0203	9.1530	1.4297	11.9289	1.04	12.38	12.0201	159.6922	0.0775	4.9205	15.5000	0.7627	-0.0984	12.0123
	N/N	1.2865	1.0412	1.00	1.04	1.0113	71.8464	0.0145	0.9201	-14.6090	-0.1344	0.0164	-2.1172
	0.7420	1.6583	1.2305	1.12	1.38	1.3438	40.3114	0.0343	2.1792	-13.8860	-0.3026	0.0436	-4.7668
	1.4000	1.2912	1.8077	1.31	2.37	2.2981	70.9374	0.0334	2.1178	-14.8710	-0.3149	0.0424	-4.9603
	7.0210	1.3480	9.4643	1.03	8.74	9.4602	61.9790	0.1572	9.9779	-28.8150	-2.8751	0.1996	-45.2842
	1.9090	2.1525	4.1091	1.06	4.35	4.2283	29.8774	0.1456	9.2471	-22.7400	-2.1028	0.1649	-33.1195
ON .	0.5210	1.2726	0.6630	1.18	0.78	0.7617	74.7094	0.0105	0.8665	-14.3470	-0.0956	0.0133	-1.5060
SIO2	22.7500	2.1393	45.6691	1.10	53.51	51.0724	60.0848	0.6906	56.5444	5.5900	1.5611	0.000	24.5883
Cr203	0.1060	1.4616	0.1549	1.59	0.25	0.2395	151.9974	0.0018	0.1030	37.3600	0.0385	-0.0021	0.6061
B203	1.9610	3.2201	6.3146	1.02	6.42	6.2389	69.6204	0.0923	5.8580	-9.9300	-0.5817	0.000	-9.1620
8		1.1344	0.0000	1.00	0.00	0.0000	270.0388	0.000	0.000	-6.8000	0.000	0.000	0.000
		1.1379	0.0000	1.00	0.00	0.000	264.0400	0.000	0.000	-2.5330	0.0000	0.000	0.000
S S	0.0250	1.1826	0.0296	1.00	0.03	0.0287	103.6194	0.0003	0.0181	-24.4000	-0.0044	0.004	-0.0696
ZQ2	0.1170	1.3508	0.1580	1.00	0.16	0.1531	123.2185	0.0013	0.0812	45.1000	0.0366	0.0032	0.5770
102	0.1500	1.6680	0.2502	0.98	0.24	0.2372	79.8988	0.0031	0.1940	15.9900	0.0310	0.0078	0.4887
8	2.1120	1.2046	2.5441	0.92	2.34	2.2718	94.2034	0.0248	1.5765	-41.7350	-0.6579	0.0315	-10.3625
8	0.0100	1.0602	0.0106	1.00	0.01	0.0103	281.8094	0.0000	0.0024	-46.8200	-0.0011	0.000	-0.0176
Strade		1.1970	0.0000	1.00	0.00	0.0000	291.4982	0.0000	0.0000	0.0000	0.000	0.000	0.0000
SOZ		2.2910	0.0000	1.00	0.00	0.0000	141.9370	0.0000	0.0000	-53.6200	0.000	0.000	0.000
Net Co		1.1860	0.0000	1.00	0.00	0.0000	336.4782	0.0000	0.0000	-28.3200	0.0000	0.000	0.000
		1.1728	0.0000	1.00	0.0	0.0000	325.8100	0.0000	0.0000	-31.1400	0.000	0.000	0.000
		1.2699	0.0000	1.00	0.00	0.0000	225.8082	0.0000	0.0000	-12.9500	0.0000	0.000	0.000
8	0.0700	1.1165	0.0782	1.14	0.09	0.0864	153.3384	0.0006	0.0368	-30.5700	-0.0113	0.0007	-0.1774
P (0.0960	1.0772	0.1034	2.11	0.22	0.2119	223.1900	0.0010	0.0621	-8.6100	-0.0055	0.0012	-0.0861
80		1.2284	0.000	1.00	0.00	0.0000	172.1200	0.000	0.0000	11.3450	0.000	0.0000	0.0000
MeCa		1.5003	0.000	1.00	0.00	0.000	143.9382	0.0000	0.0000	-21.7500	0.000	0.0000	0.0000
	0.1690	1.2447	0.2104	2.00	0.42	0.4095	81.3800	0.0052	0.3269	-2.4000	-0.0079	0.0066	-0.1243
8	0.1320	1.2518	0.1652	1.18	0.20	0.1896	79.5454	0.0025	0.1558	1.7900	0.0026	0.0031	0.0439
Fe2+/Fe3+	0.0970												
SUMS	51.770		94.8400		102.9606	100.000		1.5750	100.000		-4.7790	0.4122	-75.2708
									•.	SHd + WNS	-5.8480		
ALN'SIUZ =		9.365				TEST=			•••	SUNA + PH B	-7.9244		
ALK+ B203/Si02		0.472				TIME=				H	10.683		
B203/SIO2 =		0.104											
VISCOSITY @TEN	1P(-C)	80.313				SA/V=							
LIQUIDUS RATIO	11	0.088											
riguidas (°C) =		1008											
NOTE LIQUIDUS A	NND VISCOSITY F	ORMULAS CHAP	NGED TO CAL	CULATE ALL FE	: AS FE203 (OC)	FOBER 23, 1990)							

APPENDIX II Leachate Multielement Standard Analyses

Element	Concentration	Run before	Run before	Run after 5	Run after 5	Run after 10	Run after 10	Run after 15	Run after 15
	of Multielement	Samples-1	Samples-2	Samples-1	Samples-2	Samples-1	Samples-2	Samples-1	Samples-2
	Standard ug/mL)	ug/mL	ug/mL	ug/mL	ug/mL	ug/mL	ug/mL	ug/mL	ug/mL
Na (ICP)	50.00	49.72	49.86	50.48	50.14	49.59	49.62	48.97	49.40
NEL (AA)		51.82	52.32	52.16	52.82	51.49	51.49	49.51	51.00
SI	50.10	48.41	48.67	49.79	49.08	48.78	48.54	48.25	48.42
8	20.10	20.23	20.29	20.57	20.38	20.17	20.17	19.82	19.97
κ	10.00	9.99	9.92	9.74	10.00	9.85	9.66	9.24	9.77
Li	10.00	10.01	10.03	10.16	10.08	9.97	9.98	9.79	9.88
AL	4.00	3.64	3.66	3.72	3.72	3.64	3.65	3.62	3.63
Fe	4.00	3.92	3.94	3.99	4.00	3.92	3.92	3.91	3.93
Element	Concentration	Average Bias		Average Blas		Average Bias		Average Blas	
	of Multielement before	ore Leachate	atte	r 5 Leachate	after	10 Leachate	atter	15 Leachate	
	Standard	Analysis		Analyses		Analyses		Analyses	
	ug/mL	ug/mL		ug/mL		ug/mL		ug/mL	
Na (ICP)	50.00	-0.21		0.31		-0.40		-0.82	
Na (AA)		2.07		2.49		1.49		0.26	
Si	50.10	-1.56		-0.68		-1.44		-1.77	
8	20.10	0.16		0.38		0.07		-0.21	
ĸ	10.00	-0.05		-0.13		-0.25		-0.50	
LI	10.00	0.02		0.12		-0.02		-0.17	
AL	4.00	-0.35		-0.28		-0.36		-0.38	
Fe	4.00	-0.07		0.00		-0.08		-0.08	

Element	Concentration of Multielement Standard ug/mL)	Run after 20 Sampies-1 ug/mL	Run after 20 Samples-2 ug/mL	Run after 25 Samples-1 ug/mL	Run after 25 Samples-2 ug/mL	ELEMENT	TOTAL AVERAGE BIAS ug/mL
Na (ICP) Na (AA) SI B K LI AI Fe	50.00 50.10 20.10 10.00 4.00 4.00	49.43 51.33 48.79 19.90 9.87 9.88 3.58 3.91	49.31 51.00 48.41 19.84 10.35 9.85 3.80 3.96	49.69 51.82 48.34 19.93 9.9 9.94 3.55 3.9	49.48 50.00 48.14 19.85 10.03 9.89 3.56 3.9	Na (ICP) Na (AA) SI B K Li A1 Fe	-0.38 1.40 -1.47 -0.01 -0.14 -0.05 -0.37 -0.07

Element	Concentration of Multielement Standard ug/mL	Average Blas after 20 Leachate Analyses ug/mL	Average Bias after 25 Leachate Analyses ug/mL
Na (ICP)	50.00	-0.63	-0.42
Na (AA)		1.16	0.91
SI	50.10	1.50	-1.86
8	20.10	-0.23	-0.21
ĸ	10.00	0.11	-0.04
ü	10.00	-0.14	-0.09
AI	4.00	-0.41	-0.45
Fe	4.00	-0.07	-0.10

This page intentionally left blank.

.*

and the second second

•

GLASS ANALYSIS ID'S	ADS #	NOTEBOOK/REF	# CALCULATED FREE ENERGY HYDRATION w/o pH	AVG. CALC. FREE ENERGY HYDRATION W/o pH	CALCULATED FREE ENERGY HYDRATION SI DISS. pH	CALCULATED FREE ENERGY HYDRATION H + B DISS. pl	AVG. CALC. FREE ENERGY HYDRATION WITH pH
HG-1-1A	200057660	DPSTN-4771	-4.62		-5.48	-7.20	
HG-1-1B	200057661	DPSTN-4771	-4.82		-5.50	-7.25	
HG-1-1-AVG				-4.72	·3.52	-7.20	-7.25
HG-1-2A	200057863	DPSTN-4771	-4.75		-5.34	-7.05	
HG-1-2B	200057664	DPSTN-4771	-4.42		-5.33	-7.02	
HG-1-2-AVG				-4.58	-5.32	-7.00	-7.02
HG.1.3.7.1	200057665	DF.JTN-4771	-4.54		-5.31	-7.00	
HG-1-3-7-2	200057666	DPSTN-4771	-4.58		-5.31	-7.00	
					-5.31	-7.00	.7.00
HG-1-3-AVG				-4.56			-7.00
HG-2-1-7-1	200057668	DPSTN-4771	-4.41		-5.23	-6.98	
HG-2-1-7-2	200057669	DP 3TN-4771	-4.46		-5.22	-6.96	
					-5.23	-6.98	.6 98
HG-2-1-AVG				-4.43			-0.80
HG-2-2-7-1	200057671	DPSTN-4771	-4.61		-5.73	-7.83	
HG-2-2-7-2	200057673	DPSTN-4771	-4.68		-5.78	-7.93	
				4 6 4	-5.78	-7.93	.7 90
HG-2-2-AVG				-4.04			-1.00
HG-2-3-7-1	200057675	DPSTN-4771	-4.62		-5.83	-7.95	
HG-2-3-7-2	200057676	DPSTN-4771	-4.84		-5.85	-7.97	
					-5.81	-7.90	.7 04
HG-2-3-AVG				-4.73			-7.44
HG-3-1-7-1	200057677	DPSTN-4771	-4.72		-5.83	-7.96	
HG-3-1-7-2	200057678	DPSTN-4771	-4.72		-5.85	-7.98	
					-5.86	-8.01	7 08
HG-3-1-AVG				-4.72			- / . 30
HG-3-2-7-1	200057679	DPSTN-4771	-4.75		-5.82	-7.92	
HG-3-2-7-2	200057680	DPSTN-4771	-4.71		-5.82	-7.92	
					-5.86	-8.00	7.05
HG-3-2-AVG				-4./3			•/.80
HG-3-3-7-1	200057791	DPSTN-4771	-4.80		-5.86	-7.93	
HG-3-3-7-2	200057682	DPSTN-4771	-4.78		-5.86	-7.93	
HG-3-3-AVG				4 70	-5.87	-7.95	.7.04
				-4./9			

•

GLASS ANALYSIS ID'S	B WT. % IN GLASS	LI WT.% IN GLASS	Na WT. % IN GLASS	SI WT. % IN GLASS	K WT.% IN GLASS
HG-1-1A	2.17	2.08	6.78	25.33	2.22
HG-1-1B	2.21	2.03	6.85	23.53	2.22
HG-1-1-AVG	2.19	2.05	6.82	24.43	2.22
HG-1-2A	2.16	2.15	6.61	25.86	2.91
HG-1-28	2.17	2.15	6.43	25.89	2.18
HG-1-2-AVG	2.17	2.15	6.52	25.87	2.55
HG-1-3-7-1	2.18	2.17	6.59	25.92	2.15
HG-1-3-7-2	2.16	2.34	6.56	25.71	2.17
HG-1-3-AVG	2.17	2.26	6.57	25.81	2.16
HG-2-1-7-1	2.13	2.15	6.55	25.94	2.03
HG-2-1-7-2	2.13	2.15	6.59	25.83	2.05
HG-2-1-AVG	2.13	2.15	6.57	25.89	2.04
HG-2-2-7-1	1.92	2.10	7.80	25 72	1 68
HG-2-2-7-2	1.93	2.09	7.93	25.55	1.52
HG-2-2-AVG	1.93	2.10	7.87	25.63	1.54
HG-2-3-7-1	1.90	2.09	7.73	25.59	1 51
HG-2-3-7-2	1.90	2.09	7.89	25.56	1.51
HG-2-3-AVG	1.90	2.09	7.81	25.5 8	1.51
HG-3-1-7-1	1.91	2.03	7.49	24.97	1.67
HG-3-1-7-2	1.92	2.03	7.51	24.96	1.6¥
HG-3-1-AVG	1.92	2.03	7.50	24.96	1.68
HG-3-2-7-1	1.95	1.99	7.36	24 RE	1 80
HG-3-2-7-2	1.96	2.01	7.27	24.89	1.83
HG-3-2-AVG	1.95	2.00	7.32	24.87	1.86
HG-3-3-7-1	2.01	2 02	7 18	24.00	
HG-3-3-7-2	2.00	2.02	7.23	27.96 25.03	1.96 1.94
HG-3-3-AVG	2.00	2.02	7.20	24.99	1.95

PCT LEACHATE IDS	ADS #	RESEARCHER	NOTEBOOK/REF #	PCT VERSION	MEASURED pH	MEASURED B (ICP) (ppm)	NORMALIZED B (ICP) (g/L)	LOG NORM. B (ICP) (g/L)
HG-1-1-7-1	200052676	B.J. Waters	DPSTN-4789	3.0	10.41	14.37	0.66	-0.18
HG-1-1-7-2	200052677	B.J. Waters	DPSTN-4789	3.0	10.43	14.99	0.69	-0.16
HG-1-1-7-3	200052678	B.J. Waters	DPSTN-4789	3.0	10.45	15.32	0.70	-0.15
HG-1-1-AVG					10.43	14.89	0.68	-0.17
HG-1-2-7-1	200052679	B.J. Waters	DPSTN-4789	3.0	10.40	15.65	0.72	-0.14
HG-1-2-7-2	200052680	B.J. Waters	DPSTN-4789	3.0	10.39	15.71	0.73	-0.14
HG-1-2-7-3	200052681	B.J. Waters	DPSTN-4789	3.0	10.38	15.91	0.73	-0.13
HG-1-2-AVG					10.39	15.76	0.73	-0.14
HG-1-3-7-1	200052684	B.J. Waters	DPSTN-4789	3.0	10.39	14.81	0.68	-0.17
HG-1-3-7-2	200052685	B.J. Waters	DPSTN-4789	3.0	10.39	14.74	0.68	-0.17
HG-1-3-7-3	200052686	B.J. Waters	DPSTN-4789	3.0	10.39	14.93	0.69	-0.16
HG-1-3-AVG					10.39	14.83	0.68	-0.17
HG-2-1-7-1	200052687	B.J. Waters	WSRC-NB-90-271	3.0	10.44	14.15	0.66	-0.18
HG-2-1-7-2	200052688	B.J. Waters	WSRC-NB-90-271	3.0	10.43	14.75	0.69	-0.16
HG-2-1-7-3	200052689	B.J. Waters	WSRC-NB-90-271	3.0	10.44	15.20	0.71	-0.15
HG-2-1-AVG					10.44	14.70	0.69	-0.16
HG-2-2-7-1	200052692	B.J. Waters	WSRC-NB-90-271	3.0	10.70	14.85	0.77	-0.11
HG-2-2-7-2	200052693	B.J. Waters	WSRC-NB-90-271	3.0	10.74	14.87	0.77	-0.11
HG-2-2-7-3	200052694	B.J. Waters	WSRC-NB-90-271	3.0	10.74	14.86	0.77	-0.11
HG-2-2-AVG					10.73	14.86	0.77	-0.11
HG-2-3-7-1	200052695	B.J. Waters	WSRC-NB-90-271	3.0	10.71	15.02	0.79	-0.10
HG-2-3-7-2	200052696	B.J. Waters	WSRC-NB-90-271	3.0	10.72	14.94	0.79	-0.10
HG-2-3-7-3	200052697	B.J. Waters	WSRC-NB-90-271	3.0	10.69	14.96	0.79	-0.10
HG-2-3-AVG					10.71	14.97	0.79	-0.10
HG-3-1-7-1	200052700	B.J. Waters	WSRC-NB-90-271	3.0	10.72	14.08	0.74	-0.13
HG-3-1-7-2	200052701	B.J. Waters	WSRC-NB-90-271	3.0	10.73	14.36	0.75	-0.13
HG-3-1-7-3	200052702	B.J. Waters	WSRC-NB-90-271	3.0	10.74	14.86	0.78	-0.11
HG-3-1-AVG					10.73	14.43	0.75	-0.12
HG-3-2-7-1	200052703	B.J. Waters	WSRC-NB-90-271	3.0	10.70	15.36	0.79	-0.10
HG-3-2-7-2	200052704	B.J. Waters	WSRC-NB-90-271	3.0	10.70	15.04	0.77	-0.11
HG-3-2-7-3	200052705	B.J. Waters	WSRC-NB-90-271	3.0	10.73	15.19	0.78	-0.11
HG-3-2-AVG					10.71	15.20	0.78	-0 .11
HG-3-3-7-1	200052709	B.J. Waters	WSRC-NB-90-271	3.0	10.68	14.24	0.71	-0.15
HG-3-3-7-2	200052710	B.J. Waters	WSRC-NB-90-271	3.0	10.68	14.60	0.73	-0.14
HG-3-3-7-3	200052712	B.J. Waters	WSRC-NB-90-271	3.0	10.69	15.09	0.75	-0.12
HG-3-3-AVG					10.68	14.64	0.73	-0.14

PCT LEACHATE IDS	MEASURED Li (ICP) (ppm)	NORMALIZED Li (ICP) (g/L)	LOG NORM. Li (ICP) (g/L)	MEASURED K (AA) (ppm)	NORMALIZED K (AA) (g/L)	LOG NORM K (AA) (g/L)
	13.14	0.64	-0.19	8.80	0.40	
HG.1.1.7.2	13.64	0.66	-0.18	9.43	0.40	-0.40
HG-1-1 AVO	13.89	0.68	-0.17	9.65	0.43	-0.37
HO-P-PAYO	13.56	0.66	-0.18	9.29	0.42	-0.36
HG.1.2.7.1						-0.36
HG-1-2.7.2	14.44	0.67	-0.17	9.29	0.36	-0.44
HG-1-2.7.2	14.40	0.67	-0.17	9.25	0.36	-0.44
HG-1-2-AVG	14.63	0.68	-0.17	8.95	0.35	-0.44
	14.51	0.67	-0.17	9.16	0.36	-0.45
HG-1-3-7-1	14.00		_			0.44
HG-1-3-7-2	13.00	0.62	-0.21	8.94	0.41	-0.38
HG-1-3-7-3	14.07	0.62	-0.21	8.90	0.41	-0.38
HG-1-3-AVG	13.99	0.62	-0.20	8.95	0.41	-0.38
		0.62	-0.21	8.93	0.41	-0.38
HG-2-1-7-1	13.39	0.62				
HG-2-1-7-2	13.88	0.62	-0.21	8.08	0.40	-0.40
HG-2-1-7-3	14.28	0.65	-0.19	8.30	0.41	-0.39
HG-2-1-AVG	13.85	0.64	-0.18	8.72	0.43	-0.37
		0.04	-0.19	8.37	0.41	-0.39
HG-2-2-7-1	15.20	0.73	.0.14	7.00		
HG-2-2-7-2	15.25	0.73	-0.14	7.03	0.46	-0.34
HG-2-2.7.3	15.21	0.73	-0.14	7.01 6.00	0.46	-0.34
HG-2-2-AVG	15.22	0.73	-0.14	6.00	0.45	-0.35
			0.14	0.00	0.45	-0.34
HG 2 0 7 0	15.12	0.72	-0.14	7 38	0.40	
HG 2 0 7 0	14.92	0.71	-0.15	6.41	0.49	-0.31
HG 2 2 AVO	14.90	0.71	-0.15	6.65	0.42	-0.37
110-2-3-AVG	14.98	0.72	-0.14	6.81	0.44	-0.36
HG.3.1.7.1					0.45	-0.35
HG-3-1-7-2	14.22	0.70	-0.15	7.38	0.44	0.00
HG-3-1.7.2	14.51	0.71	-0.15	7.71	0.46	-0.36
HG-3-1-AVG	14.90	0.73	-0.13	8.16	0.49	-0.34
	14.54	0.72	-0.14	7.75	0.46	-0.31
HG-3-2-7-1	14 53					-0.34
HG-3-2-7-2	14.57	0.73	-0.14	10.16	0.55	-0.26
HG-3-2-7-3	14.40	0.72	-0.14	6.24	0.44	-0.35
HG-3-2-AVG	14.03	0.73	-0.14	8.28	0.45	-0.35
_	14.00	0.73	-0.14	8.89	0.48	-0.32
HG-3-3-7-1	13.45	0.07	_			
HG-3-3-7-2	13 78	U.D/ 0.co	-0.18	8.30	0.43	-0.37
HG-3-3-7-3	14.12	0.00	-0.17	8.79	0.45	-0.35
HG-3-3-AVG	13.78	0.70	-0.16	8.98	0.46	-0.34
		0.00	•0.17	8.69	0.45	-0.35

PCT LEACHATE IDS	MEASURED Na (ICP) (ppm)	NORMALIZED Na (ICP) (g/L)	L:DG NOFINI. -Via (ICP) (g/L)	MEASURED Na (AA) (ppm)	NORMALIZED Na (AA) (g/L)	LOG NORM. Na (AA) (g/L)	MEASURED Si (ICP) (ppm)	NORMALIZED SI (ICP) (g/L)	LOG NORM. Si (ICP) (g/L)
HG-1-1-7-1	43.81	0.64	-0.19	45 70	0.67	-0.17	01 22	0.97	0.42
HG-1-1-7-2	45.60	0.67	-0.17	47.68	0.07	-0.17	91.22	0.37	-0.43
HG-1-1-7-3	46.76	0.69	-0.16	49.18	0.70	-0.10	95 70	0.39	-0.41
HG-1-1-AVG	45.39	0.67	-0.18	47.52	0.70	-0.16	93.75	0.38	-0.42
HG-1-2-7-1	45.29	0.69	-0.16	46.36	0.71	-0.15	100.06	0.39	-0.41
HG-1-2-7-2	45.11	0.69	-0.16	47.85	0.73	-0.13	99.67	0.39	-0.41
HG-1-2-7-3	45.51	0.70	-0.16	48.02	0.74	-0.13	100.58	0.39	-0.41
HG-1-2-AVG	45.30	0.69	-0.16	47.41	0.73	-0.14	100.10	0.39	-0.41
HG-1-3-7-1	42.99	0.65	-0.18	44.04	0.67	-0.17	96.23	0.37	-0.43
HG-1-3-7-2	42.62	0.65	-0.19	44.70	0.68	-0.17	94.12	0.36	-0.44
HG-1-3-7-3	43.17	0.66	-0.18	44.54	0.68	-0.17	95,19	0.37	-0,43
HG-1-3-AVG	42.93	0.65	-0.19	44.43	0.68	-0.17	95.18	0.37	-0.43
HG-2-1-7-1	42.61	0.65	-0.19	44.37	0.68	-0.17	93.23	0.36	-0.44
HG-2-1-7-2	44.45	0.68	-0.17	46.53	0.71	-0.15	96.86	0.37	-0.43
HG-2-1-7-3	45.76	0.70	-0.16	46.69	0.71	-0.15	99.86	0.39	-0.41
HG-2-1-AVG	44.27	0.67	-0.17	45.86	0.70	-0.16	96.65	0.37	-0.43
HG-2-2-7-1	62.82	0.80	-0.10	64.90	0.83	-0.08	105.23	0.41	-0.39
HG-2-2-7-2	62.84	0.80	-0.10	65.07	0.83	-0.08	105.36	0.41	-0.39
HG-2-2-7-3	62.57	0.80	-0.10	63.41	0.81	-0.09	104.75	0.41	-0.39
HG-2-2-AVG	62.74	08.0	-0.10	64.48	0.82	-0.09	105.11	0.41	-0.39
HG-2-3-7-1	61.76	0.79	-0.10	62.59	0.80	-0.10	105.40	0.41	-0.38
HG-2-3-7-2	61.31	0.79	-0.11	62.09	0.80	-0.10	106.75	0.42	-0.38
HG-2-3-7-3	61.29	0.78	-0.11	61.76	0.79	-0.10	106.34	0.42	-0.38
HG-2-3-AVG	61.45	0.79	-0.10	62.15	0.80	-0.10	106.16	0.42	-0.38
HG-3-1-7-1	56.49	0.75	-0.12	57.95	0.77	-0.11	98.54	0.39	-0.40
HG-3-1-7-2	57.79	0.77	-0.11	60.10	0.80	-0.10	100.20	0.40	-0.40
HG-3-1-7-3	59.48	0.79	-0.10	60.76	0.81	-0.09	102.09	0.41	-0.39
HG-3-1-AVG	57.92	0.77	-0.11	59.60	0.79	-0.10	100.28	0.40	-0.40
HG-3-2-7-1	56.73	0.78	-0.11	58.45	0.80	-0.10	100.08	0.40	-0.40
HG-3-2-7-2	56.18	0.77	-0.11	56.79	0.78	-0.11	99.61	0.40	-0.40
HG-3-2-7-3	56.78	0.78	-0.11	58.12	0.79	-0.10	99.89	0.40	-0.40
HG-3-2-AVG	56.56	0.77	-0.11	57.79	0.79	-0.10	99.86	0.40	-0.40
HG-3-3-7-1	51.57	0.72	-0.15	53.31	0.74	-0.13	92.48	0.37	-0.43
HG-3-3-7-2	53.00	0.74	-0.13	54.97	0.76	-0.12	95.15	0.38	-0.42
HG-3-3-7-3	54.66	0.76	-0.12	54.14	0.75	-0.12	97.49	0.39	-0.41
HG-3-3-AVG	53.08	0.74	-0.13	54.14	0.75	-0.12	95.04	0.38	-0.42

This page intentionally left blank.

•

i.

DATE FILMED 3 / 16 / 93