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Abstract

The effect of self-consistency on Hamiltonian systems with a large number of degrees-
of-freedom is investigated for the beam-plasma instability using the single-wave model
of O'Neil, Winfrey, and Malmberg. The single-wave model is reviewed and then
rederived within the Hamiltonian context, which leads naturally to canonical acticn-
angle variables. Simulations are performed with a large (10*) number of beam par-
ticles interacting with the single wave. It is observed that the system relaxes into a

time asymptotic periodic state where only a few collective degrees are active; namely,
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a clump of trapped particles oscillating in a modulated wave, within a uniform chaotic
sea with oscillating phase space boundaries. Thus self-consistency is seen to effec-
tively reduce the number of degreos-of-freedom. A simple low degree-of-freedom model
is derived that treats the clump as a single macroparticle, interacting with the wave
and chaotic sea. The uniform chaotic sea is modeled by a fluid waterbag, where the
waterbag boundaries correspond approximately to invariant tori. This low degree-of-

freedom model is seen to compare well with the simulation.



1 Introduction

Chaotic motion in Hamiltonian systems is common whenever there are more than one degree-
of-freedom [1]. Often, the systems studied are low-dimensional approximations of many
degree-of-freedom systems. In some cases, such as planetary dynamics, highly accurate
descriptions can be given with only a few degrees-of-freedom. However, there are many
situations, such as galactic dynamics, where the number of degrees-of-freedom is essentially
infinite. Generally, one expects sucl: systems to exhibit greater cha,os. when the dimension
increases; furthermore, some effects such as “Arnold diffusion” are possible only with a larger
number of degrees-of-freedom. Even in high dimensional cases it is often of interest to study
a low dimensional approximation, for example to ctudy the motion of a single star in a given
galactic gravitational potential — this was the motivation for the classic study of Hénon
and Heiles (see references in [1]). Such an approximation is not self-consistent. Other well-
studied examples of this type include the motion of charged particles in electromagnetic
fields, where the fields produced by the particles are ignored; the motion of tracer particles
in a fluid, where the influence of these particles on the fluid velocity field is ignored (the
passive advection problem); and the so-called “kinematic” dynamo, where a velocity field
can intensify a magnetic field, but the back-reaction of the field is ignored.

There has been little work on the effect of self-consistency. In this paper we show how
it is possible in a system with a large number of degrees-of-freedom for the.inclusion of
self-consistency to result in dynamics with “effectively” few degrees-of-freedom.

The model considered here treats sélf—consistency in the simplest possible way. A large
number of noninteracting particles is influenced by a time-dependent potectial. The Hamil-
tonian for each particle has one and one half degrees-of-freedom, and so the motion can

be chaotic. However, each of the particles is charged and therefore contributes to the



potential — this is the self-consistent effect. In the model, we assume that the field has
a single degree-of-freedom: i.e., that the spatial dependence of the field is given. Thus each
particle experiences forces due to the others, but only to the extent that the other particles
contribute to the single mode of the field. This is in contrast to the fully self-consistent n-
body dynamics, where each particle interacts directly with every other particle. This latter
case is considerably more difficult.

Models similar to the one described above may be appropriate for many physical sit-
uations; for example, a galaxy with a predominantly axisymmetric gravitational potential
that is perturbed by a small number of modes, say those corresponding to spiral density
waves. Each star contributes to these modes, and also has a possibly chaotic motion in
the corresponding field. Similar effects occur for planetary rings, beam-beam interactions in
accelerators, tearing mode-plasma interactions in tokamaks, etc.

The specific problem we consider is the beam-plasma instability. The formulation is
due to O'Neil, Winfrey and Malmberg (hereafter referred to as OWM) [2]. Here a beam
of charged particles moves in a background neutral plasma. The system is unstable to the
formation of electrostatic plasma waves. Following (2] we suppose that the most unstable
of these waves predominates, and neglect the remainder of the modes. OWM showed that
the wave grows in amplitude until it traps the beam particles. It then saturates and begins
to oscillate in amplitude as the beam particles slosh in the wave potential. In a later study
Mynick and Kaufman (3] developed a simple model to account for these oscillations — they
assumed that the beam could be represented by a rigid bar in phase space. When the beam
is trapped in the wave, the rigid bar begins to rotate. Mynick and Kaufman computed the
frequency shift and amplitude oscillations of the wave as it interacts with this rigid bar.
Smith and Pereira [4] noted that since the amplitude of the plasma wave oscillates, the
beam particles can experience chaotic motion. They studied the motion of a test particle

in a model of this oscillating field and showed that much of the test particle phase space is



indeed chaotic. However, there is an island in the phase space where the motion is regular;
they noted that some fraction of the beam particles in the numerical experiments of QWM
should find themselves in the correct region of phase space to be trapped in this oscillating
island. Later Adam, Laval and Mendonca (3] studied a model in which a single bunch of
particles, what we will call a macroparticle, interacts with the plasma wave. As we will show
below using the Hamiltonian formulation, this two degree-of-freedom system is integrable
due to the existence of a phase symmetry. In [5] it was shown that the macroparticle system
has solutions which correspond to periodic oscillations of the bunch in the wave.

In Sec. 2 we review the derivation of the OWM model, deriving the Hamiltonian formu-
lation of (3] directly from the Vlasov-Poisson equations. Sec. 3 discusses numerical solutions
of the OWM equations with up to 10° beam particles. The simulations show that the linear
instability saturates and oscillates about a finite amplitude for at least 100 periods; as far as
we can determine, the oscillations persist and the system becomes asymptotically periodic.
We study the motion of a single test particle in this periodic potential, showing that a sub-
stantial portion of the original beam is indeed trapped in a stable island in the test particle
phase space. However more than half the beam finds itself in the chaotic region of phase
space, and spreads more or less uniformly over this region. The upper and lower boundaries
of this “chaotic sea” are formed from invariant tori of the test particle system.

In Sec. 4 we construct a four degree-of-freedom model. One degree-of-freedom is the wave,
the second corresponds to the trapped bunch of beam particles -— the macroparticle, and
the last two describe the chaotic sea. These two degrees-of-freedom describe the oscillations
of the boundary of the chaotic sea and are derived from the “waterbag” approximation. A
waterbag consists of a constant phase space density between two moving boundaries. In
our case the simulations show that the phase space density of the chaotic particles is indeed
nearly constant and the boundaries of the chaotic zone are formed from invariant surfaces well

outside the oscillating separatrix of the wave. We model these boundaries with sinusoidal



curves, an assumption consistent with that of the single mode in the potential. Finally,
the frequency shift of the trappr ' rarticle oscillations due to the chaotic sea is computed

analytically from this model.

2 Single Wave Model

O’Neil, Winfrey, and Malmberg (OWM) [2] introduced the single wave model to describe the
growth and saturation of the weak beam-plasma instability. In this section we briefly review
the approximations made in their derivation, rederive the model within the Hamiltonian
context and obtain the Hamiltonian form previously presented by Mynick and Kaufman (3],
discuss linear instability, and finally consider a special case where only a single beam particle

is included.

2.1 Derivation

To obtain the single wave model, the response of the plasma and beam to the fields are treated
separately. We consider only the one-dimensional, collisionless, nonrelativistic, electrostatic
case. The total electron density

N

n(z,t) = np(a,t) + ns(z,t) = ny(z,t) + Y 8(z — z;(t))

=1

—~
p—
~ -

is a sum of contributions from the plasma and from a set of N beam particles at positions

z;(t). Beam particles evolve according to the fully conlinear force equation
mi; = —eE(z;,t) , (2)

where the electron charge is —e.
A basic assumption of the model is that the phase velocity of the resulting instability is
much larger than the velocities of particles in the background plasma: the plasma responds

non-resonantly, and trapping effects of plasma particles in the wave can be neglected. This



implies that the plasma responds approximately linearly to the wave so that we can define

a linear hermetian dielectric operator € such that

dmeny(z.t) = (1 — " (z,1) . (3)
where ¢ is the electrostatic potential, £ = —¢'. Substituting this into Poisson’s equation
for ¢ yields

&p = dmeny(z,t) . (4)

For a homogeneous plasma, € is a convolution operator in both z and ¢, and Poisson’s
equation is most easily treated by Fourier transform. In this representation the dielectric
becomes a real function, €(k,w). For a weak beam, the right-hand side of eq. (4) is “small”
implying that the electrostatic response is dominated by the zeros, e(k,wo(k)) = 0, of the
dielectric. It is a reasonable approximation to expand € about one such zero retaining only
the first derivative of € with respect to w:

clkyw) = e(k,wo) + -?aw (w=wp) = €'(w—wo) . (5)

w=wo

For example, for a cold plasma € = 1 — w?/w?, and O¢/Ow|y=u, = € = 2/w,. Transforming

back to the time dumain and using eq. (4) then gives

: dre X _,
Be+iwnBy = 772 3o, (6)

i=1
where we have used the Fourier transform of the beam density of eq. (1)
ny(k,t) / dz e~ * ny(z,t) Ze""”(‘) (7)
L3
with L defining the periodicity length of the system.
At this point we assume that the electrostatic field has only one spatial Fourier compo-
nent, i.e., that there is a single wave. It is expected that the single wave approximation is

appropriate when the width of the unstable spectrum in k-space is relatively narrow in units
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of 2r/L. In this case, if k represents the most unstable mode, the amplitude of all other
Fourier components will be exponentially smaller than the single wave during the linear
growth stage. Of course, some time after nonlinear saturation of the instability, the other
modes will become important. As is well known, the width of the unstable spectrum depends
on the small parameter (n,/n,)!/3, so that the single wave model will be most appropriate
in the weak beam case.

Under the single wave assumption eq. (2) yields
i?.j = pj/m
[3,' = —¢ (Ekeikx’ + E_ke_‘kr’) . (8)

Equation (8) together with eq. (6) are the closed dynamical system that governs the inter-

action of a single wave with the beam particles.

2.2 Hamiltonian Structure and Derivation

Now consider the derivation of the equations of motion, eqgs. (6) and (8), within the Hamilto-
nian context. The derivation proceeds by first considering the kinematics, i.e. the dynamical
variables used to describe the state of the system, and then the dynamics, obtained by finding
the appropriate Hamiltonian.

We begin the first part by supposing that the electrons are described by specifying their
phase space coordinates (z;,p;), where j = 1,2,... M. The first N(< M) of these particles
is singled out to represeni the beam dynamics, while the remaining M — N particles rep-
resent the background plasma. The phase space density, i.e. distribution function, can be

represented as follows:

f(z,p,t) = fb(xvpvt) + fp(x$pat)

N M
=2 8(z —z;(t)6(p - p;(t) + EN: §(z — z;(t))6(p — pi(t)) - (9)
i=1 J=N+1



The Poisson bracket in terms of (r;,p;), where ; = 1,2,....M, has the standard canonical

M (09 Oh Oh Og )
vh] = =
. 4 J; (5%‘ dp; 0Oz, Op,

form

(9, h]s + (9, R]5 (10)

where g and h are functions defined on phase space.

It is desired to describe the state of system in terms of the above phase space coordinates
for the beam particles. However, for the background plasma, the phase space coordinates
of these particles will be replaced by a Vlasov type distribution function, f,. This can
be achieved by mapping the Poisson bracket of eq. (10) to these variables; but f,, unlike
(zj,p;), is not a canonically conjugate set of coordinates, i.e. f, is a noncanonical variable,
therefore the resulting Poisson bracket possesses noncanonical form [6]. In order to effect

this transformation the chain rule for functional derivatives is required. Suppose

9(z;,p;) = G[f,] , (11)

where j = N + 1. NV +2,... M. Here G[f,] is a functional of fp; the relationship between
the phase space function g and the functional G is obtained by inserting the representation
defined by eq. (9) into the functional G. The chain rule is obtained by varying both sides of

this equation:

Mo/ b dg M (5], 55,
=Y (0%5 t o 5) 5G = /%‘_ (wé 5 5p,)dzdp

j=N+1 N+1
o 6f, §fp
'"J:%l (5:5]/(-;_7) 6de zdp + 6p; /( j) 5—f;d d) . (12)

The operators é f,/6z; and 8f,/6p; are obtained by variation of eq. (9) with respect to the

plasma particles, and t denotes the formal adjoint. The result is finally

0 (D86 s s (046G
(9.’13] /(ax 6fp) x])é(p“p:l)dxdp"’(az 6fp)

% _ (856 (8 &G

9

(z3.95)

(13)

(3) vP)



Insertion of eq. (13) into the second term of eq. (10) yields the bracket

4 N .
[G,H]:/fp{(m ﬁ} drdp+Z(aGaH C)HBG) ’ (14)

5f," 6f i \0z;0p; 9z, 0p,
where
_0g 0h  Oh g ;
{g,h}=a—x§;"§£%- (15)

Here the quantities G and H are functionals of f,, but according to eq. (9) they can
be thought of as ordinary functions of the beam particle coordinates (z;,p;) where j =
1,2,...N.

The Hamiltonian for a hybrid system composed of the beam electrons coupled to the

background Vlasov pla.ina electrons is obtained by inserting

N
flz,p,t) = fo(z,p,t) + - 8(z — z;(t))8(p — ps(2)) (16)

i=1

into the following energy expression:

H[f]:g-/vzfdmdpﬁ-él;/E’dx. (17)

This results in

1 2 e Al P? e \
H(fpizj,p5] = %/P fpdzdp — §/fp9°p dz + Z Coel epy(z5) — 5%(%’/ ,  (18)
=1

where ¢,(z;) and (z;) are the contributions to the electrostatic potential of the plasma
and beam charge, respectively. The Hamiltonian of eq. (18) together with the bracket of
eq. (14) yields the hybrid system.

Now we can turn to the task of obtaining, from the hybrid system, the approximate sys-
tem of Sec. 2.1. First, the background plasm: s assumed to be described by an equilibrium
distribution function of compact support in velocity, plus the single linear wave, whose phase
velocity is outside the equilibrium support. In this way wave-particle effects are eliminated
in the background plasma. Upon inserting the w-ve perturbation I the distribution func-

tion, the analysis of [7] and [8] implies that the linearization of the plasma energy becomes
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identically the well-known expression for the dielectric energy of a plasma wave. Second, the
self-interaction potential of the beam, v, is neglected in comparison to that of the plasma

¥

¥, a justifiable assumption in light of smallness of ny/n,. Thus, eq. (18) becomes

L , N pz ) . ) .
H(Ek, E_k,;Z‘J,pJ') = ITFWOE [Ek|2 + Z (5;1’1— — %Eke'kr’ + %E_ke“k’%) . (19)
1=1

It remains to find the appropriate Poisson bracket in terms of Ex and E_ instead of f,.
Since the plasma is in essence being modeled as a fluid, an easy way to obtain this is to
map the first term of eq. (14) to fluid variables, a transformation that is easily effected by
incorporating techniques similar to those used in obtaining eq. (14), and then transforming

to the variables E;x and E_ [9]. This results in

N (89 0h Oh Og i 4r ( Og Oh dh dg
9.k =2 (5—5; " %, ‘a?) A <8Ek 35 OE; aE_k) S

The bracket of eq. (20) with eq. (19) produces egs. (6) and (8) in the form
Ey=(Ey, H), i;=[z;,H], p;=I[p;,H]. (21)

The bracket of eq. (20) is not quite canonical; however, with the substitution

Ap V2 A 4 1/ .
Ek=—i[f§] A E_k=i[f§] T3 (22)

it assumes canonical form

N (89 0h Ok ag) (ag Oh Ok ag)
h] = = -2+ 2= - , 23
[g ] ;__1(68’:, 0p,- 8:111‘ Bpj ( )

while the Hamiltonian of eq. (19) becomes

N 2 A
Do e P _2e(4m\T o4 o
H(ﬂ,J,x,,p,)—woJ+;[2m p <L6,) J 3% cos(kz; .9)} i (24)

To complete the derivation, it is convenient to introduce scaled, dimensionless variables

based on the fundamental frequency,

s 4melN
b

w

— T (25)
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Here wp is a harmonic mean of the beam’s plasma frequency and 1/¢€', which is of order the
background plasma frequency. Note that the small parameter (ny/n,)!/* is represented by
the ratio ws/wo. By a sequence of time-dependent canonical transformations and scalings,

the Hamiltonian of eq. (24) becomes
1
2

N .
H(J,0,p;,6,) Z[ 57 -2 (%) cos(ej—e)] , (26)

=1

where the dimensionless variables are defined by

k2
T=wyt, E(r)=kzj—wt, J=—T, 0=0—-wet. (27)

mwy
Thus in terms of the new canonically conjugate pair, (8, J), the fast frequency, wy, has been
climinated. The new position variable, ¢;, which is canonically conjugate to p;, is defined in
a frame moving at the phase velocity wy/k. This Hamiltonian was (in essence) previously
discovered (but not derived) by Mynick and Kaufman (3].

It is often convenient to use a noncanonical wave amplitude variable instead of action-
angle variables. This is easily done if we use as independent variables the amplitude ® and

its complex conjugate ®* defined by

(r) = (7{[-); e . (28)
In these coordinates the Poisson bracket becomes
[®°,®]) =¢/N (29)
and the Hamiltonian takes the form
H= Z [ — B — B~ | (30)

This is a natural form for the Hamjltonian since the first term is the particle kinetic energy
and the last two represent the electrostatic potential energy. The equations of motion are

obtained from the Poisson bracket,

2 - (o.H] = [0,07] 22t (31)
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E 1T [ —

which together with the canonical bracket for (&, p;) produces

d i &

— m — e—'f

dr R )zr.:l
dzf;’ . i€ cxw i€
-(Z:r_{iﬂbe’—z@e 1, (32)

Note that these equations hold for arbitrary choices of the physical parameters, such as
e/m and the beam density; it is only the relationship between scaled variables and physical
variables which changes. (Of course, the single wave model is appropriate only when the
beam is sufficiently weak, and such a parameter free formulation is possible only in the single
wave case. )

The Hamiltonian, eq. (26), has one obvivus symmetry (we don’t know of any non-obvious
symmetries) which is the translation, §{; — §; + a , 8 — 6 + a. This implies that the total

momentum

Paip,-+.] (33)

i=1
is conserved. To take advantage of this, define the canonical transformation generated by
F; = PO+5 p)(€, -0) which gives the new momenta, (p} = p;, P), and angles, (¢; = {;~6,6).
The new Hamiltonian is
1
N,

N 2
H(pj, ;) =" 5?,-—-\72}7(1’-2?::) cos ;| , (34)

i=1 k=1

which has effectively N degrees-of-freedom since P is an ignorable coordinate.

2.3 Linear Instability

To establish the fact that the Hamiltonian of eq. (30) properly describes at least the linear
stage of the weak beam-plasma instability, consider an initial condition consisting of a cold-

beam: £ = 27j/N , p} = 0, and no field, ° = 0. Linearizing the Hamiltonian about this

13
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equilibrium, one obtains the quadratic form

L sp? — 1608, € + i60°56, 7S . (35)

-
J=1

(X

The resulting linear equations of motion can be straightforwardly diagonalized to obtain
the characteristic polynomial w?*¥~4(w® — 1) = 0, where the solutions have been assumed
to vary as e~*t, This has the solutions w® = %1, which include the standard beam-plasma
instability frequencies together with their conjugate roots as required because of the Hamil-
tonian nature of the flow (recall that if w is an eigenvalue then w*, ~w and —w* must also

be eigenvalues). In dimensional units, using eq. (27), we have
G =wye’™, j=0,1,...,5, . (36)

which the includes the unstable beam-plasma mode (the case j = 2). We can physically
identify the eigenmodes by considering the equations of motion. Differentiating the equation

for ® twice and substituting for € gives

PAY.T J WL AP
'-27_—3—=7V—26 EI&EJ‘:Z&Q, (37)
i=1

upon noting that 3 e~%¢ = 0. This shows that the nonzero frequencies are associated with
nonzero ®. The eigenmodes for the conjugate roots, w*, —w and —w*, are the same as that
for w except for varying choices of signs. The remaining roots of the characteristic equation
(w = 0 of multiplicity 2N — 4) have eigenmodes with §¢ = §@* = 0 and positions given
by the N — 2 independent solutions of Ze"eg 6¢; = 0. The double multiplicity of each of
these roots arises from allowing the momenta to be nonzero, ép; « 6¢; so the mode is rigidly
translating.

As will be seen in the next section, the linear beam-plasma instability saturates by

trapping the particles in the electrostatic well of the wave.
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2.4 Single Particle Case

The only exactly solvable case of the Hamiltonian eq. (26) appears to be that of a single
particle. Use of the conservation of total momentum, eq. (33), reduces this case to one
effective degree-of-freedom, and it can be integrated by quadrature. When N is larger than
unity we expect to lose integrability. It will be of interest later to consider the case when
there are N,, particles clumped together, and we temporarily ignore the remaining particles.

We call the clumped particles a macroparticle. In this case, eq. (26) becomes

2 Py

J\2
H = K- 2N, (N) cos(€ - 0) , (38)
where p = Npn,p1 = Npp2... is the macroparticle momentum. The Hamiltonian H can be

reduced to one degree-of-freedom by defining the total momentum P = p + J as before to

obtain

HeP _oN P-p)i 39
TN, "‘( N)msw' (39)

The equations for this case were studied in detail by Adam, Laval and Mendonca (5],

who did not use the Hamiltonian approach.
There are, in general, three nondegenerate fixed points of the motion implied by eq. (39).

These occur at the points defined by

pg—ng+Nm%=0, Yo=0 or w. (40)

The fixed point with (po < 0, %o = 0) is stable and corresponds to the macroparticle sitting
in the bottom of the potential well. The two fixed points with (pg > 0,9 = =) are less
intuitive. These exist only if P > 3N, (%{;)1/3. They correspond to a particle perched on
the top of the potential well. The lower momentum particle is unstable, while the larger
momentum particle is actually stable. This can be seen in fig. 1 which shows contours of

constant A in the (p, ) phase space. Small oscillations about the stable fixed point are such
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that as the particle starts to fall off the potential hill, the wave phase shifts so as to catch
the particle.

The final “fixed point” is the degenerate case (p = P, = arbitrary) for which the wave
amplitude is zero. This corresponds to the unstable equilibrium from which the beam plasma
instability results, as discussed in the previous section.

Small oscillations about these fixed points, with (Jo = P — po) are governed by the

linearized Hamiltonian

6p2 Jo %
o= e () 0
H 2Me+N N 6¢* ;
2Jo
M,.=N,, —— .
1. = N, 0 — o (41)

Here M. is the effective mass due to the self-consistent coupling. Note that since po < 0, the
effective mass is smaller than that of a particle in a fixed potential well. This gives a bounce

frequency of

L
wg=2<i‘;)’(1—-2’—’;—0) . (42)

The first factor is just the bounce frequency of a particle in a fixed well, normalized in accord
with eq. (27). The latter term provides an increase in the frequency, as also discussed in [3].
To compare these with the simulations in the next section, we set the total momentum,

P, to zero, corresponding to the initial conditions J(0) = p(0) = 0. In this case J(r) = —p(1)

and there is only one fixed point

0

From the simulations we will find N, >~ .4N, and thus that

Q= —0.74
|®| = 0.29
wp = 0.94 . (44)

16



3 Simulations

Simulations of the model of eqs. (32) were carried out for several initial conditions and a
number of different integration algorithms. The results shown below were obtained with a

symplectic, leap frog method.

3.1 OWM Model

In the simulations the particles are initialized as a cold beam with uniform spacing ¢&; =
2rj/N ,7 = 0,... N, and zero momentum p; = 0. The initial wave amplitude is set to be
very small. In fig. 2, the wave amplitude is shown as a function of time for eq. (32) with
N = 10%. For small 7 the wave amplitude grows exponentially in time at the rate predicted
by eq. (36) and at the phase velocity v, = R(e*™/3) = —0.5. and ours is. As the wave grows,
the beam experiences a growing sinusoidal perturbation, and as can be seen in the density
plot of fig. 3, the beam density also varies sinusoidaly. Near 7 = 16 the beam curls over as
the particles begin to oscillate in the wave. Consequently, the amplitude of the wave reaches
a maximurm.

At this stage the beam density, ny(€, 7), develops cusps at the positions where the beam
curls over; see fig. 3. Note that though there are many spatial harmonics in the beam
density, the single wave model does not allow the development of similar harmonics in the
potential. These would lead to the growth of other waves and undoubtedly greatly change
the subsequent behavior of the system.

Nonetheless, the subsequent development of the OWM dynamics is quite inferesting. As
the beam particles begin to oscillate in the wave, their oscillation frequencies depend upon
their energy, just as for a single particle in a fixed potential. Thus as the beam begins to
rotate about the potential minimum, those particles closer to the center have larger oscillation

frequencies than those near the “separatrix.”
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If the wave amplitude were fixed, one would see phase mixing of the particles (visualized
as an ever tighter spiral in the particle phase space), and the oscillations in the particle total
energy would damp away — this is the mechanism of Landau damping in a large amplitude
wave discussed by O'Neil [10].

However since vy = —0.5 and the beam is initialized at v = 0, when the beam particles
oscillate in the wave, their net moimnentum also oscillates. Hence, because of the conservation
of total momentum, eq. (33), the wave momentum, J, must also oscillate as well. Therefore
the wave amplitude is not fixed and each beam particle experiences an oscillating potential.
As is well known, the phase space for a single beam particle in a given oscillating potential
has chaotic zones, especially for the regions near the oscillating separatrix. In the beam
particle phase space, fig. 4, we show the phase space positions of each of the beam particles
at a fixed time. Note the two distinct regions: one chaotic in appearance with a nearly
uniform density, and the other a more coherent cluster of particles. In the cluster one still
sees evidence of the initial beam, though it has wrapped around a number of times.

In the simulations, which were carried out up to 7 = 650, the oscillations in the potenti:i
persisted, and indeed, as can be seen in fig. 2 the oscillations become increasingly periodic
with vime. Furthermore as we varied N up to 10° and the changed integration accuracy, we
noted that these oscillations became more periodic and constant in amplitude as the number
of particles increased and as the accuracy improved. Thus we believe that the asymptotic
state is a periodic one.

Meanwhile, the particle phase space exhibits quite complicated behavior. About 60% of
the particles — those with relatively large energies in the wave frame — experience chaotic
motion, and spread out roughly uniformly in a region of phase space whose average width
is Aw = 4.7. We called the chaotic particles the “stochastic sea” in 1983 — a more modern
terminology is the “chaotic sea”. The remaining 40% of the particles are clustered tightly

together in a clump which has a width of order 7/2 and a density about 6 times larger than
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the background, recall fig. 3. These particles continue to oscillate coherently in the wave,
as seen in the sequence of phase spa;ce pictures, fig. 5. Also shown in the figures is the
instantaneous separatrix of the wave — that is the separatrix that a single beam particle
would see in a fixed potential at the current amplitude. Note that wave amplitude and the
momentum of the cluster oscillate 180° out of phase. This clump of particles is treated as a
single particle, the macroparticle, in the model of Sec. 4.

In addition to the uniform cold beam, several different initial conditions have been par-
tially studied. For example we started particles on a circular ring, 2 + p? = r2, and also
considered a bunched beam with particles placed uniformly in a limited range, -1 < £ < 1
with p # 0. In these cases some subset of the particles remained coherently bunched as a
macroparticle, and the system did not appear to settle into an equilibrium. We have not
investigated this in any generality and do not know the extent of the initial conditions which

will give rise to a periodic final state.

3.2 Test Particle

To investigate further dynamics of the beam particles, consider the “test particle” motion
of a single particle in a given oscillating potential. These are obtained from the nonself-

consistent, one and one-half degree-of-freedom Hamiltonian

1
Hip&r) = 312 () coste - ot (49

where J and 6 are considered to be given periodic functions of 7. This system has been
studied in the same context by Smith and Pereira [4], who used a simple model for J(7) and
0(r).

Here we determine J and # numerically, from the simulations of Sec. 3.1, building these
functions from an average over a number of periods of the oscillations.

A stroboscopic plot of the test particle dynamics is shown in fig. 6 for several different

values of 8. The dots represent the trajectories of a number of different test particles. As was

19



also noted in [4], there is a prominent stable island in the test particle phase space which
oscillates exactly out of phase with the potential; much of the rest of the phase space is
chaotic. Also shown in fig. 6 are the corresponding plots of the beam particle phase space —
here of course each point in the plots is the position of one of the 10,000 beam particles.
Note that the macroparticle clump sits, as near as can be ascertained, at the position of
the test particle island. This verifies an assertion in {4], where it was merely noted that
some fraction of the beam particles initially stretched across the position of the test particle

island.

4 Chaotic Sea Model

As we have seen from the simulations, the asymptotic state of the cold beam initial condition,
evolved under the OWM Hamiltonian, appears to be almost exactly periodic. Approximately
40% of the initial beam forms the clump of particles that oscillates in the potential well
formed by the wav:. The remaining particles spread out approximately uniformly in phase
space between two oscillating boundaries, which are approximately invariant surfaces of the
test particle Hamiitonian H,.

In this section we use these ideas to obtain a reduced Hamiltonian model of four degrees-
of-freedom, which approximately describes the full 10,001 degree-of-freedom system. In the
model, as noted above, we assume that the clump of regularly oscillating particles is localized
enough so that all these particles can be treated as one located at (£, p). This macroparticle
contains N, particles and hence a mass mN,, and charge —eN,,. The approximation that
the NV,, particles can be treated as a single particle ignores any internal degrees-of-freedom
of the cluster (of which there are N, — 1). It is clear that a correction to the model would
include, at the least:, some sort of rotational degree-of-freedom; this would be similar to the
analysis of Mynick and Kaufman [3] who assumed that the cluster of particles formed a “bar”

in phase space (an assumption that is reasonable only for the first few trapping oscillations).
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In our case the particles in the macroparticle could be thought of as rotating on the invariant
surfaces of the test particle Hamiltonian, eq. (45), about the central periodic orbit. This
behavior could be modeled by the addition of an nscillator degree-of-freedom to the system:;
however, we neglect this motion here.

Much more interesting is the treatment of the chaotic particles. As noted in Sec. 3.1,
the phase space density of these particles appears to be nearly constant up to fairly sharp
boundaries in velocity space. We assume that these particles can be treated as a continuum

with a constant phase space density f., between the boundaries v, (z,t) and v_(z,t); thus,

ne(z,t) = /" fedv = fo(vy —v.) (46)

is the density of the chaotic sea. The total number of such particles in the length L will be
denoted by N, = N — N,,,. Particles in the chaotic sea evolve according to eq. (2), and hence
f. evolves according to the Vlasov equation. As is well known, and easy to see, the Vlasov
equation in this situation can be exactly reduced to two equations for the evolution of the

boundaries [11]. These equations are called the waterbag equations:

3v+ 3v+ _

FA T

Ov_. Ov_

W'*‘U_E-——CE. (47)

Following the philosophy of the derivation of the OWM model, where only a single

wavenumber in ¢ is kept, we retain only one wavenumber in vi(z):
ve = V2 + Uy e 4+ 5 ek (48)
The equations of motion then become
.o\~
5 kv | Tx = —eEy , (49)

where v} are the mean velocities (which do not change in time according to eq. (47)). Note

that this implies that the boundary of the chaotic sea, an invariant surface of H,, is sinusoidal
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in shape. We see from fig. 5 that this is reasonable since the boundary deviation is small
and it is not too close to the “separatrix”™ of the wave.
The evolution of the field is obtained irom Poisson’s equation, as previously, except that

the density of the chaotic sea, as given by eq. (46), must be included. Thus eq. (6) becomes
. , dre - -~ A'Vm —ikz
By + i B = 7o [Je(By = 02) 4 S emhen | (50)
These equations are nondimensionalized, using eq. (27); in addition defining

wy = —— Vt = ;vt CMO‘ . (51) :

In terms of these variables the equations of motion become

. v N .
— - ; m -k
(D—zNAw(V+ Vo) +1 N &
E=idet —id e,
Vi = —iws Vi + 19, (52)

where Aw = w, — w_ is the average, nondimensional width of the chaotic sea.
This set of equations is also a Hamiltonian system, with the wave action-amplitude
variables defined in eq. (28), and the new action-amplitude variables for the chaotic sea

defined by

1 1
V, = (J+NA‘-”-)' e+ Vo= (J‘A‘?“’) etif- (53)

which results in the Poisson bracket relations

Aw

Vi, Ve| = i N

(54)

The Hamiltonian takes the form

2 Now_

Aw

N,
Aw

N,
PP, Newy

H= IN. | Aw

Vil? -

(/LR STUA —V.)+Nm<1>'e“€+c.c.} . (55)
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1

In terms of canonical variables this becomes

2

H = _ij:/m twiJp ~woJ. -2a [\/JJ+ cos(@ —04)—+/JJ- cos(8 + 9-)] —23VJ cos(0—-¢) .

where the coefficients are given by

1/2
-(RE)" . o2 .
The first three terms in the Hamiltonian represent the total particle kinetic energy as a sum
of macroparticle energy and harmonic terms for the oscillations of the chaotic sea boundary.
The last three terms give the electrostatic interaction energy.
Thus we have reduced the 10,001 degree-of-freedom Hamiltonian to one of four degrees-
of-freedom, which describes well the motion in the periodic final state of the simulations,

provided the three parameters w;,w_ and N,, are given.

4.1 Symmetry, Equilibrium, and Stability

The chaotic sea Hamiltonian conserves the total momentum, given by

N.

Here the first two terms represent the momentum in the wave and macroparticle, and the last
three are the contributions of the chaotic sea. These latter tefms include the momentum in
the oscillations of the waterbag boundary, J, — J_, and the mean momentum in the chaotic
sea represented by the last term in eq. (58). This equation can also be derived from eq. (33)
by splitting off the contribution of the particle momentum for the N, particles in the chaotic
sea, treating them as a Vlasov fluid in the waterbag.

As far as we know, there are no other conserved quantities besides the energy. Thus the
system has three effective degrees-of-freedom, and should exhibit the full complexity of such

systems, including chaotic motion and Arnold diffusion.
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The stable equilibrium of eq. (56) corresponding to the macroparticle sitting in the po-

tential minimum is given by the equations

1 1 J¢]
QZQZ(Q—‘%_Q"W-)——W

From the simulation results of fig. 5, we found N, = 0.4N, w, = 1.9, and w_ &~ ~2.8. This

gives o = .36, 3 = 40, and Aw = 4.7. For these parameters we can solve eq. (59) to obtain
N=-066, |®=0.73
Vil =029, |V.|=0.35. (60)

On the other hand, using fig. 5 to determine the average phase velocity of the wave in the
simulations we obtain ¥ & —0.67. The average value of |®| from fig. 2 is 0.75. Both of
these values certainly agree with eq. (60) more closely than they do with the single particle
equilibrium eq. (44). In fact, if we take the measured value of ) as given, then eq. (59) gives
the macroparticle fraction as 42% and |®| becomes 0.74, both of which are consistent with
our estimates from the numerics.

To compute the frequency of small oscillations about the equilibrium, we first eliminate
the action J using the conservation law (58), defining phases 1 = 6 — £, and ¥3 = 0, F
6, conjugate to the momenta p and J; respectively. Upon linearization the Hamiltonian
becomes

62H=%6P-M“~5p+%6¢~K-6¢, (61)

where ép = (8p,6J4,6J-) and 6y = (6, 8v,,8Y_) are the deviations from equilibrium.

The matrix M, the effective mass matrix, is positive definite. The matrix K, the effective
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spring constant matrix, turns out to be diagonal. In order that the three terms in K be
positive, we must assume that p = v, = 0, while »_ = 7. This is consistent with the fact
that the lower boundary of the chaotic sea is observed to have a 180° phase lag with respect
to the upper boundary.

The frequencies of small oscillation are given by the square roots of eigenvalues of the
matrix KM~!. For the parameters of the simulation, the mass matrix is diagonal to a good
approximation. The element M[;' turns out to be identical to 1/M, of eq. (41); neglecting

terms of order J+/J, the other diagonal elements are

g 1 Q-wy o 10 —-w.
‘M22 bl "':2" J+ = A’[aa -_ ‘2' J_ . (62)
The matrix K is
K = dia (2/3\/7, 2a/TTs , 2a JJ+) . (63)

Using the values obtained before for the equilibrium, we determined the eigenvalues numer-

ically from the fuli matrix. The three oscillation frequencies are
wp = (1.33, 2.61, 2.11) . (64)

The first of these corresponds to the large oscillations observed in the simulations. The
eigenfunction of this mode corresponds primarily to the ép degree-of-freedom that describes
oscillation of the macroparticle. From fig. 2 we measure the frequency of oscillations of the
asymptotic state, obtaining wp = 1.28 — again a good agreement with the calculated value.
We have no evidence for the excitation of the other two normal modes; however, it might be
possible to determine these through careful simulation.

Thus we conclude that the chaotic sea model agrees with the simulations extremely well,

and much better than the single particle calculation, eq. (44).
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5 Conclusions

We have studied the long time dynamics of the electrostatic interaction of many particles
with a plasma wave. The wave arises from an instability (the beam-plasma instability) of the
initial state corresponding to a cold beam of particles. In the simulations, the asymptotic
state corresponds to a periodically oscillating wave amplitude together with a trapped clump
of particles. About 42% of the particles are trapped by approximate invariant surface within
the oscillating wave, while the remaining particles move chaotically — becoming successively
trapped and detrapped.

We modeled this motion by a four degree-of-freedom Hamiltonian system, where one
degree-of-freedom corresponds to the clump, two to the chaotic sea, and one to the wave.
This model quantitatively captures the asymptotic state of the effectively infinite degree-of-
freedom system.

One would like to speculate that there are other physical systems for which the effect of
self-consistency would be similar. For example, in the case of galactic dynamics, the self-
consistent propagation of a density wave would lead to chaotic dynamics for many stars, but
there could be a set of stars which are coherently interacting with the wave.

As usual, 2 number of open questions remain:

e The periodic asymptotic state appears to arise for a number of different initial con-
ditions in the OWM model. What is the “basin” of initial conditions which lead to
such a state? One could, for example, consider a warm beam initial state, or widely

different initial states such as those discussed at the end of Sec. 3.1.

o Is there a way of self-consistently calculating the quantities N,,, and ws, which we

took from the simulations, for the chaotic sea model?

e For the single particle Hamiltonian, there is a second stable equilibrium corresponding
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to the particle at rest at the maximum of the potential. Is there a periodic state of the

many particle system near this equilibrium?

e In the OWM model. orly a single Fourier harmonic of the electrostatic field is kept.

What is the effect of adding additional harmonics?

e The chaotic sea Hamiltonian should exhibit the full array of possible Hamiltonian

motions. Are there many particle states that correspond to these motions?
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Figure Captions

1.

(1]

Contours of H, eq. (39), in the single particle phase space (p,¥). Units of p (and P)
3
are N, (‘—%?)1/ . In the upper figure P = 0 and there is one fixed point; in the lower

figure P = 2 and there are three fixed points.

Plot of |®(7)|, the normalized wave amplitude, for N = 10,000 particles initialized as

a cold beam.

Plot of the beam density as a function of position. The sinusoidal distortion of the
density due to the growing wave is shown in (a) at 7 = 12.6. By 7 = 69.3, in (b),
about 10 bounces have occurred and the macroparticle has formed, represented here
by the sharp peak around & = 0. The remaining, chaotic sea particles have a sinusoidal

density variation.

. Plot of the beam particle phase space at 7 = 641 showing a well-defined macroparticle

and chaotic sea.

Sequence of beam phase space plots over one bounce period. Note that the macroparti-
cle bounces coherently in the wave, and the wave amplitude and chaotic sea boundaries

also oscillate periodically.

Phase space plots comparing the full simulation of Sec. 3 with the dynamics of a test
particle in a given time-dependent potential ®(7) as determined by the simulation.

Shown are several test particle initial conditions at three different times during a cycle.
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