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NOMENCLATURE
A Interfacial area, m?
F Helmholtz free energy, J
Ko Henry's law constant between solute 2 and solvent 1, Pa
n Number of moles, g-mol
N Total number of moles (see equations 8 and 9), g-mol
p Partial pressure of gases, Pa
P, Vapor pressure of the solvent under its own pressure with a
flat interface, Pa
P ) Pressure, Pa
r Radius of the bubble, m
R Universal gas constant, 8.313 J/g-mol/K
T Absolute temperature, K
v Molar specific volume, m3/g-mol
v Volume, m3
X Mole fraction, dimensionless
u Chemical potential, J/g-mol
¥, Chemical potential of the pure component, J/g-mol
o Surface tension, N/m
Subscripts
1 Solvent component
2 Solute component
c Condition of which a bubble starts to grow indefinitely

d Condition at which a bubble starts to dissolve completely

i Initial condition
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Liquid phase

Gas or vapor phase
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ABSTRACT

The stability of a spherical bubble in a two-component two~phase system
is examined by employing the thermodynamic theory of dilute solutions. It
is shown that a bubble can remain in a state of stable equilibrium provided
that the ratio of the total number of moles of the solute to the total num-
ber of moles of the solvent in the system is not extremely small and that
the system pressure falls between an upper bound (dissolution limit) and a
lower bound (cavitation limit). The results of the analysis provide a
theoretical basis for the persistence of microbubbles in a saturated liquid-
gas solution. Thus to a certain extent, the results also help to resolve
the dilemma that exists in the field of cavitation due to (1) the necessity
of postulating the existence of microbubbles; and (2) the lack of theoretical

justification for the persistence of such bubbles in a liquid.



I. INTRODUCTION

It is well known that the theoretical tensile strength of a liquid
is much larger than that usually observed. This discrepancy between
theory and experimental observations of tensile strength can be resolved
by postulating the existence of nuclei, or microbubbles, in the liquid.1
However, gas bubbles are considered unstable since these bubbles grow
indefinitely in a supersaturated solution and dissolve completely in an
undersaturated solution. Even in a saturated solution, gas bubbles will
dissolve because of surface tension according to the theoretical work re-
ported by Epstein and Plesset.? However, their conclusion concerning the
effect of surface tension on the stability of gas bubbles in a saturated
solution is questionable since the approximate solution obtained by them
does not satisfy the governing equation [Equation (31) of Reference 2]
which indicates that the bubble is in a state of equilibrium when the initial
concentration equals the saturation concentration of the solution. Although
gas bubbles can remain in equilibrium in a saturated solution, the stability
or instability of such bubbles in equilibrium states has never been estab-
lished from a thermodynamic viewpoint. Numerous models were proposed in the
past to explain the persistence of long-lived nuclei in a liquid.?® So far,
the most plausible explanation is the one proposed by Harvey et al.;4 they
suggested that nuclei could be stabilized in cracks on the surfaces of solid
particles in the liquid. Solid particles tend to settle down and fall to
the bottom of the liquid. However, if the solid particles were small enough,
say less than 5 x 10~7 meters in radius, they can be maintained in suspension
by the mechanism of Brownian motion.? One of the important characteristics

of cavitation is that the tensile strength or cavitation threshold tend to



increase as the waiting time increases. This effect is usually attributed
to the presence of relatively large solid vparticles which tend to settle

out in the liquid. However, as pointed out by Plesset!, this behavior

could be explained by the presence of undissolved bubbles rising out of the
liquid or completely dissolving into solution. In addition, the "free
nucleus'" model is extremely useful in clarifying many of the complex phenom-
ena assoclated with cavitation although there still rémains considerable
mystery about the nature of these microbubbles.?

In this paper, the mystery of these microbubbles will be unraveled
partially by examining the stability of a spherical bubble in a saturated
dilute liquid-gas solution. Conditions of equilibrium and stability criteria
are derived for a two-component two-phase system by employing the thermo-
dynamic theory of dilute solutions. Numerical examples are presented. The
results show that, for a given two-component two-phase system, a ''free" bubble
can remain in a state of stable equilibrium in a saturated liquid-gas solution
under certain circumstances which depend primarily on the system pressure,
the radius of the bubble, and the total number of moles of the solute and

and the solvent in the system.

ITI. CONDITIONS OF EQUILIBRIUM

Consider a spherical bubble in a dilute liquid-gas solution. A solution
is dilute when the amount of solute is small compared to the amount of solvent.

Let the solution be composed of ni moles of solvent and né moles of solute,

then for dilute solutions,
nj << nj, (1)

where the superscript ' refers to the liquid phase of the system; and sub-



scripts 1 and 2 refer to the solvent and the solute, respectively. When
the solution is sufficiently dilute and can be assumed to be ideal, the

chemical potential of each component in the solution can be written as

u{ = 1o} (T, P') + RT 1n x{, (2)

and

u3 = Hgs (T, P ) + RT 1n x3, (3)

where u; and uj are the chemical potentials of the solvent and the solute,
respectively; uoi and g5 are the chemical potentials of the pure components
1 and 2, respectively; P is the pressure in the liquid phase; R is the
universal gas constant; T is the absolute temperature; and xj and x) are
the mole fractions of the solvent and the solute, respectively.

Assuming that the spherical bubble contains a mixture of ideal gases,

then the chemical potential of each component in the ideal mixture can be

written as

1y " 1"

ul = uol (T) + RT 1n pj, (4)
and u2 = uos (T) + RT 1n pj, (5)

where the superscript " refers to the gaseous phase of the system; u] and
uy are the chemical potentials of components 1 and 2 in the gaseous phase,
respectively; uo] and uoh are the chemical potentials of components 1 and
2 in its pure states at unit pressure (sometimes referred to as standard
chemical potential), respectively; and py} and p} are the partial pressures
of the components 1 and 2 in the ideal mixture, respectively.

During a reversible isothermal transformation, the variation in free

energy of the system is



7"
dF = dF + dF + odA
) ] ' ' ' ' " "
= -P dV + pidny + usdny - P 4V

+ uYdn] + ujdny + oda, (6)

1
where F is the Helmholtz free energy of the system; F and F are the
Helmholtz free energies of the liquid and the gaseous phases, respectively;

11
o is the surface tension; A is the interfacial area; P 1is the total pressure

r 1]
of the ideal gas mixture; V and V are the volumes of the liquid and the
gaseous phases, respectively; and nj] and nj are the number of moles of com-
ponents 1 and 2 in the ideal mixture, respectively. The total volume of the

system and the total number of moles of each component in the system remain

constant during the transformation,

1 "

V 4+ V = constant, (7)

n} + n] = N; = constant, (8)
and

nj + nj) = Np = constant. ’ (9

In addition, we have

vV = 4urd/3, (10)

A = 4nr?, (11)
and

xij +x3 = 1. (12)

Substituting equations (7) through (11) into equation (6),

? 1" - "
dF = (P - P + 20/r)dV + (u] - u})dn] + (u5 - ud)dnj. (13)

The following equilibrium equations are obtained by letting dF = 0,



P - P + 20/xr = 0. (14)

ui = ui, (15)
and

u3 = u3. (16)

By assuming that the liquid is incompressible, it can be shown that

equation (15) leads to the following equation (see APPENDIX A):

p; = xipv exp [vi(P' - EV)/Rf], an
where Rv is the vapor pressure of the pure solvent over a flat interface;
and v] is the molar specific volume of the solvent. For dilute solutiomns,
xi is very close to unity. If the molar specific volume of the vapor of the
solvent is large compared to that of the solvent, the difference between p)

and P, will be small and can be neglected.

Substituting equations (3) and (5) into equation (16) we get:

p2/x3 = exp [(uoé - Ho2) /RT] . (18)

In general, uy,; is a function of temperature and pressure. However, if the
solution is assumed to be incompressible, uoé becomes a function of tempera-

ture only,> and equation (18) becomes,
P3/x; = Ka(T), (19)

where Ky is the Henry's law constant between the solute and the solvent with
a curved interface. It will be assumed that the effect of curvature on the

solubility of the gas in the liquid is small and can be neglected. Thus, K,
is taken to be the same as the Henry's law constant between the solute and

the solvent with a flat interface (see APPENDIX B).



For dilute solutions, the following approximation can be employed for

equation (19),
p% = KyxJ = Kynd/(n] + nj) = Kond/nf . (20)

For the ideal mixture in the bubble,

P" = pf +p% , (21)
where

pY = niRT/V", (22)

pj = nyRT/V". (23)

Substituting equations (20) and (23) into equation (9) and employing equations

(8) and (22), it can be shown that

Py = N /[N1/K2 +Vv 1 - p&'/Kz)/RT] . (24)
Substituting equations (21) and (24) into equation (14),

P'=pl + NZI[NI/KZ + V' (1 - p&'/Kg)/RT] - 20/r. (25)

Equation (25) is the equilibrium equation which, together with equations (12),
(17), (19), and (24), determines the equilibrium conditions of the system. It
should be noted that equation (25) is different from the equilibrium equation

reported by Mori, Hijikata, and Nagatani.6 They employed n{ and nj, which are
variables, in the equilibrium equation whereas equation (25) employs N; and Np
which are constants for a given system.

If the gas is insoluble (K,»«), equation (25) reduces to
P' = pY + RIN,/V" - 20/r. (26)

TII. STABILITY CRITERIA

Applying Taylor expansion to F,



AF = dF + da2F/2! + 43F/3! + ...,

where dF 1s given by equation (13) and determines the equilibrium conditions.
In order that the bubble be in a state of stable equilibrium, d?F must be

greater than zero. For the present system, it can be shown that

d?F = aj; (dV")2 + aj; dv"dn{ + aj3 dv'dnj

+ a; dv"dnY + aj, (dn})2 + a3 dnYdn}

+ a3y dnjdV" + a3, dnYjdn} + az3 (dn})?2, (27)
where
ay) = [?(zc/r - p">/eV'] - (3p'/3V") , (282)
n}, n} nj, nj
azp = (du}/on}) + (3u}/eny) , (28b)
nj, V' ny, V"
agg = (3u3/end) + (3u¥/an}) , (28¢)
V', nj V", nf
ajp = az; = (dui/3v?) +  (dul/av") . (284)
nf’ nz' nY, nj
a3 = azs = (8u{/on3) + (oul'/on}) s (28¢)
V', nf V", ny
a1z = azy = (Buz/av') + (3uj/av™) . (28f)
ni{, n} n§, n}

Equation (27) is of the quadratic form in variables dV'", dnj., and dn%. This

quadratic form must be positive-definite in order to make d?F > 0. A necessary



: and sufficient condition that the quadratic form be positive-definite is

given by the following expressions:

a;; > 0, (29)
a1 a2

> 0, (30$)
a1 az2

and

ajl 212 a3
az] azz a3 | > O. (3D

az} agzz ass

- Employing equations (2) to (5) and the assumption that the liquid is incompres-

sible, it can be shown that

(3p'/3vY) = 0, (32a)
nis ni
[a(ZUIr - P")/aV"] = P"/V" - 20/(3xV"), (32b)
ny, nj
(3ui{/ani) = RT x3/n] , (32¢)
ni, V' .
(3uy/3nYy) = RT/ny , (324d)
a3, V"'
" (3u3/anj) = RT x{/nj , (32e)

V', nj



(5u'%/5n%) = RT/nY , (32f)
V', nY

(3ui/av") = (3u3/3v") = (du{/3n}) =0, (32
ni, n} nj, nJ V', nY

(3u'/sv") = (3u8/3v") = -RT/V" , (32h)
ny, n% ny, n%

(3u{/an3) = -RT/(n] + nj). (321)
V', nf

Substituting equations (14), (28), and (32) into the inequalities (29), (30),

and (31), the stability criteria becomes,

P' > -40/3r, (29a)

P' > pY / [xi + x3 N1/(N; - pYV"/RT) ] - 40/3r, (30a)
and

P' > (x3p4Ny + x{pYIN,)/(x{2Ny + x}°N;) - 4o/3r. (31a)

Since the first terms on the righthand sides of (30a) and (31la) are positive
quantities, it is obvious that (30a) and (3la) are more stringent than (29a).

To compare (30a) with (31la), let

P; = P'l'/ [Xi + x3N;/(Np - p'{V"/RT)] - 40/3r ,
and

PI; = (x3p¥Ny + x{pYN,) /(x{?Ny + x32N;) - 4o/3r. (33)

It can be shown that,

o, x3niNip8(1 - x} - pY/Kp) + x32NfpY + x{xjN;NypY
P - P = .
b a
(xszz + x2'2N1) (nfx{ + lei)

4
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Thus, Pé > Pé provided that the following condition is satisfiled,

1 -x} - pY/K, > 0. (34)°

K, is usually very large compared to py and x} is small compared to unity
for dilute solutions. Therefore, (34) is satisfied for most practical appli-
cations. Under such circumstances, (3la) alone is sufficient to determine

the stability of the system.

If the gas is insoluble (x{ = 1 and x} = 0), P; becomes equal to P/,
! = p! = AU
1 34 Pb pY - 4o/3r. (35)

Equation (35), together with equation (26), gives the critical pressure below
which there is no equilibrium radius for a bubble. This result, which is a
special case of the present analysis, has been frequently employed to explain

the onset of cavitation in a lJ'.quid.3’7

IV. NUMERICAL RESULTS
As an example, the results of a nitrogen (solute) and water (solvent)
system will be presented. Numerical constants employed in the calculations
are: T = 293K, p = 2.337 x 103 Pa, R = 8.313 J/g-mol/K, ¢ = 7.32 x 1072 N/m,
and Ky = 8.13 x 108 Pa. At this temperature, p}| is nearly equal to P,. There-
fore, only equation (25) is needed to calculate the equilibrium radii for given
values of P', Ny, and Np. It is also obvious that K; is much larger than pY
and (34) is satisfied. The stability of the system is then determined by (31la).
Figure 1 shows the typical variation of system pressure (P') with equili-
brium radius for given values of Ny and N, calculated by employing equation (25).

The dashed line in Fig. 1 is the limiting conditions obtained by letting
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t = p!
P P, (36)

where P' and Pé are given by equations (25) and (33), respectively. Stability
criterion (3la) indicates that the equilibria are stable if the slopes of the
equilibrium curves in Fig. 1 are negative (3P'/3r < 0) and the equilibria are
unstable if the slopes of the equilibrium curves are positive (3P'/5r > 0).
For example, Fig. 2 shows the stable and unstable regiéns of a particular case
(N,/N; = 10™%) in Fig. 1. If the ratio of N,/N; is relatively small, say

less than 5 x 107° in Fig. 1, the equilibria are always unstable. As the
ratio of N,/N; is increased beyond 5 x 10-5, the equilibria can either be
stable or-unstable, and the stability of the equilibrium depends on the values
of r and P'. The dashed line in Fig. 1 provides the stability boundary for a
given value of N;. The upper right corner bounded by the dashed line in Fig. 1
is in the stable equilibrium region and the rest of the area is in the unstable
equilibrium region. By varying the value of Nj, a number of stability bound-
aries can be generated and they are shown in Fig. 3. For relatively large
values of N; (>107° g-mol), only relatively large bubbles can remain in stable
equilibria when the system pressure is above the vapor pressure of the solvent
and no bubble can remain in stable equilibrium when the system pressure is
below the vapor pressure of the solvent. As N; is decreased, smaller bubbles
can remain in stable equilibria even when the system pressure is negative.

It is obvious from Fig. 3 that, depending on the value of Nj, bubbles with
radii as small as 10~/ m and as large as 1072 m can remain in stable equili-
bria in the absence of gravity. In practice, however, larger bubbles tend to
rise to the surface and only very small bubbles with radii in the order of

r = 1077 m can be maintained in suspension by the mechanism of Brownian motion

as mentioned previously. Larger bubbles rise faster than smaller bubbles.
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For example, it takes approximately thirty seconds for a bubble with a radius
of 107" m to rise a distance of one meter, whereas it may take one hundred
hours for a bubble with a radius of 107® m to rise the same distance. Thus,
in a system that contains microbubbles of various sizes in stable thermodynamic
equilibria, this "aging effect" is inevitable. In order to obtain consistent
results in laboratory tests, sufficient waiting time must be allowed so that
only extremely small bubbles with radii in the order of 1077 m can remain in
the liquid. In summary, the results of the present analysis provide a theoret-
ical basis for the persistence of microbubbles in a saturated liquid-gas
solution and a possible explanation of the '"aging effect” in such a solution.
It can be observed from Fig. 1 that the stability boundary calculated by
employing equation (36) appears to coincide with the loci of maxima and minima
of the equilibrium curves. The loci of maxima and minima of the equilibrium

curves in Fig. 1 can be obtained by setting 3P'/dr equal to zero in equation

(25),
(BP'/ar)Nl’ Ny 20/r? - 47r2P32(1 - P{/Ky)/(N,RT) = 0. (37)

It is obvious that equations (36) and (37) are not identical. Figure 4 shows
the comparison between the stability boundary obtained by employing equation
(36) and the loci of maxima and minima of the equilibrium curves obtained by
employing equation (37) for N; = 10-10 g-mol over a wide range of system pres-
sure. When the bubble is relatively large and the system pressure is relatively
low, the difference between equation (36) and equation (37) is negligible. This
difference increases as the bubble becomes smaller and the system pressure be-
comes higher. The basic assumption made in the present analysis is that the

solution be dilute so that the inequality (1) can be satisfied. This assumption

requires that the system pressure be relatively low so that the solution can
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remain dilute. Figure 5 shows the variation of the ratio nj/n] with r for the
same case as that shown in Fig. 4 with Ny = 10710 g-mol, It is obvious that
nj/n{ increases as r decreases for a given value of Nj. Figure 4 indicates
that deviation between equations (36) and (37) begins to appear when r ap-
proaches 10~ m. At this radius, it can be observed from Fig. 5 that the ratio
nj/n] becomes very large and the assumption expressed by the inequality (1)

can no longer be satisfied., However, as long as the solution is dilute and

the inequality (1) is strictly satisfied, the difference between equation (36)
and equation (37) is small and can be neglected. Under such circumstance,

(31a) becomes equivalent to

(3P'/3r) <0, (38)

Ni, N2

and the stability of the system can be determined directly by examining the
equilibrium curves without employing (3la). This result was found to be valid
for other values of N; in a nitrogen-water system and for other combinations

of solute and solvent (see APPENDIX C).

V. CAVITATION AND DISSOLUTION LIMITS

Based on the equilibrium theory described previously, a cavitation and
a dissolution limit can be defined. Referring to Fig. 2, if a bubble is
initially in a state of stable equilibrium, then the relative minimum corre-
sponds to the lowest pressure and the relative maximum corresponds to the
highest pressure that such a bubble can remain in stable equilibrium. The
minimum pressure can be considered as the highest pressure required to initiate
the indefinite growth of the bubble and therefore will be defined as the
cavitation limit (P;) of the bubble. The maximum pressure can be considered

as the lowest pressure required to dissolve completely the bubble and therefore
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will be defined as the dissolution limit (P&) of the bubble. It can be
observed from Fig. ] that Pé and P& are functions of Nj and N;. For a

given value of N3, Fig. 1 indicates £hat a system with a smaller value of

N, has lower values of Pé and P& compared to systems with higher values of

N;. Instead of calculating Pé and Pé in terms of N; and N,, an alternate

. approach will be adopted. If a bubble is initially in a state of equilibrium,

from equation (25),
Pi = p'l' - 20'/1'1 + Nzl[Nl/Kz + 47!’1'2(1 - P.!l'/KZ)/(BRT)] ’ (39)

where Pi is the initial system pressure; and T, is the initial radius of the

bubble. Let r. and r, be the two positive solutions of equation (36) with

d
r, > ry, then
PL=pl - 20/x_ + Nz [Nl/Kz + lmrg(l - P‘l'/Kz)/(3RT)] , (40)
and
P} = pY ~ 20/r  + Ng/[N]/Kg + 4mrd(L - p‘f/Kz)/(BRT)] , (41)

For given values of P;, s and N;, equation (39) can be used to calculate N,
and equations (36), (40), and (41) can then be employed to calculate T T
Pé, and Pé . Results of such calculations for a Ny - Hy0 system initially at
atmospheric pressure and room temperature are shown in Fig. 6 and Fig. 7. 1In
Fig. 6, values of —(Pé - p1) are plotted against r,ona log-log paper. The
reason for using —(Pé - pY) instead of —Pé is to avoid passing through zero
"on a log scale. As shown in Fig. 6, there is a curve associated with each
value of N; and éach curve has a relative maximum. However, bubbles with

initial radii less than the radius at the maximum point are unstable (dashed

lines in Fig. 6) and therefore can not be expected to exist if sufficient time
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were allowed to eliminate these bubbles. For bubbles that are initially

in a state of stable equilibrium, it can be observed from Fig. 6 that,

for a given value of Nj, the smaller the initial radius of the bubble, the
.lower the cavitation limit. In other words, a system that contains smaller
bubbles can withstand a higher tension. Also shown in Fig. 6 is the cavi-
tation limit calculated by employing equations (35) and (26) for the special
case of an insoluble gas. For a given value of Ny, the difference in cavi-
tation limit between a soluble and an insoluble gas 1s small when the initial
radius of the bubble is relatively large. This difference increases as r, is
decreased.

Figure 7 shows the variations of the dissolution limits with the initial
radius of the bubble. Again, the dashed line to the left of the minimum point
of each curve is in the unstable equilibrium region and should not be expected
to exist if sufficient time were allowed to eliminate these bubbles. The solid
curves in Fig. 7 indicate that the pressure required to force a bubble into
solution increases with ry for a given value of Nj. In other words, it
requires a higher pressure to dissolve a larger bubble in a given system.

The foregoing examples provide the means of determining the cavitation
and the dissolution limits of a bubble at a given system temperature. Similar
calculations can be performed to determine the relation between the system
temperature and the equilibrium bubble radius at a given system pressure
provided that the variations of K;, o, P, and v{ with temperature are known.
This would enable one to determine the amount of superheat and subcooling that

a bubble can sustain at a given system pressure.
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APPENDIX A - DERIVATION OF THE RELATIONSHIP BETWEEN p} AND Py

In order to obtain equation (17), we start with equation (15)

[A]

Hl = uf .
It follows that,

duf = duf . (A1)
For an isothermal transformation,

(5u{/3P")dp"' + (duj/ox{)dx{ = v{dP' + (RT/x{)dx{ , (A2)

duy

and

Gut/apY)dpY = (RT/pY)dpY . (A3)

du}
Substituting equations (A2) and (A3) into equation (Al),

v{dP' + (RT/x{)dx] = (RT/pY)dp} . (a4)
If the liquid is incompressible, equation (A4) can be integrated directly,

vi(P' - P§) + RT 2n x{ = RT 2a(pY/p¥o),
or

pl = x{pYp exp[%{(P' - Pd)/RT] s (AS)

where pYo is the vapor pressure of the pure solvent over a curved interface;
and P} is the corresponding pressure of the solvent in its pure state. pYy

can be expressed in terms of P, by employing the Kelvin equation,

Plo = P, ©XP [Vf(Pd - pv)/RT] . (A6)
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Substituting equation (A6) into equation (A5),
pY = xl'pv ‘exp [v{(P' - pv)/RT] . (A7)

Equation (A7) is the same as equation (17).
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APPENDIX B -~ EFFECT OF CURVATURE ON THE SOLUBILITY OF A GAS IN A LIQUID

" It follows from equation (16) that between the equilibrium of the

solute in the two phases,
duj = dul . (1)
For an isothermal transformation,

dul = (3us/oP")dP' + (du}/9xj)dx] = vidP' + (RT/x})dx} , (B2)
and
dui = (u3/9p3)dp3 = vidp} = (RT/p})dp} , (83)

where v] and v} are the molar specific volumes of the solute in the liquid and

gas phases, respectively. Substituting equations (B2) and (B3) into equation

(81),

v3dP' + (RT/x4)dx3} = (RT/pY)dpY . (B4)

Assuming that vj is independent of P', equation (B4) can be integrated,

v3(P' - P!) + RT on(x3/x} ) = RT 2a(p4/p¥ ),
b ] } ]
or

2n [(p'z'/Xé)/(p'z',w/X£,m)] = v3(2' - B))/RT, (85)

where the subscript «» refers to the condition of a flat interface. The differ-

ence between P' and P! is due to the presence of a curved interface, thus,

Introducing the following Henry's law constants,
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P'2'/Xé = K2:
and

P'z"m/xé’m = sz’w . (B7)
Substituting equations (B6) and (B7) into equation (B5),

Ka/Ky ,, = exp [—Zovél(rRT)] R (B8)

where vJ is the molar specific volume of the solute in the dissolved state.
Since dissolved molecule; generally bear a greater resemblance to liquid mole-
cules than to those in the gaseous state, vj is expected to be a small quantity
under most circumstances. Thus, if r is not extremely small, the difference
between Ko and Kz’m can be neglected. This requirement is comparable with
another requirement, i.e., that the radius of the bubble be large compared with
the thickness of a few molecules (10”2 m) so that surface tension is indepen&ent

of the radius of curvature of the interface, which is also necessary in the

present analysis.
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APPENDIX C - DIFFERENCE BETWEEN EQUATION (36) AND EQUATION (37) FOR A HIGHLY
SOLUBLE GAS

The difference between equation (36) and equation (37) depends not only
on N; and N,, but also on K3, o, etc. As an additional example, we shall con-
sider the case of a highly soluble gas, such as CO in Freon 21. Numerical
constants employed in the calculations are: T = 298K, py = 1.827 x 105 Pa,
o =1.80 x 1072 N/m, and Ko = 1,274 x 107 pa. Figure 8 shows the comparison
between the results obtained by employing equations (365 and (37) for a
CO, - Freon 21 system with N} = 10714 g-mol. The corresponding variation of
n}/n{ with r is shown in Fig. 9. For the purpose of comparison, the results
of a Ny - Hy0 system with N; = 10”1% g-mol are shown in Fig. 10 and Fig. 11.
Figure 8 indicates that the difference between equation (36) and equation (37)
for a CO, - Freon 21 system begins to appear at a system pressure equal to
approximately 2.3 atmospheres. As can be observed from Fig. 10, the difference
between equation (36) and equation (37) for a N, - H,0 system begins to appear
at a system pressure of approximately 30 atmospheres. As mentioned in Section IV,
when the difference between equation (36) and equation (37) begins to appear, thé
assumption of dilute solution expressed by the inequality (1) can ho longer be.
satisfied strictly. This is also true for the cases shown in Figs. 8 and 9,

and in Figs. 10 and 11. Therefore, for a highly soluble gas, the pressure limit

below which the present analysis applies is much lower than the case of a less

soluble gas.
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