$LONF - 8810423 - 1$

Received **ⁱ***ⁱ*

MAY 0 4 1990

CONF-8810423—1

HYPERHNE INTERACTIONS ASSOCIATED WITH IRON SUBSTITUTED SUPERCONDUCTING OXIDES*

DE90 010411

D. E. Ellis and B. D. Dunlap Argonne National Laboratory Argonne, IL, USA

E. Baggio Saitovitch, I. Souza Azevedo and R. B. Scorzelli Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro, RJ, Brazil

> C. W. Kimball Northern Illinois University DeKalb, IL USA

> > June 1989

The submitted manuscript has been authored by a contractor of the U. S. Government under contract No. W-31 -109-ENG-38. Accordingly, the U. S. Government retains a nonexclusive, royalty-free license to publish reproduce the published form **contribution, or allow ethers to do so, for U. S. Government purposes.**

Presented at the Latin American Conference on Applications of Mössbauer Effect, November 1988.

*Work supported by the U. S. Department of Energy, Division of Materials Sciences, Office of Basic Energy Sciences, under Contract W-31-109-ENG-38.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States County Sponsored by an agency of the United States Government. Neither the United States Government nor any agency of the United States
employees, makes any warranty States Government nor any agency thereof, nor any of their employees, makes any warrow onces ouvernment nor any agency thereof, nor any of their
bility for the accuracy, completes or implied, or assumes any legal liability or responsience herein to any specific community are would not infringe privately owned rights. Refermantly experience in the second rights. Refermantly and the second rights. Refermantly manufacturer, or otherwise does not necessarily constitute or imply its endorsement, trademark
mendation, or favoring by the 1 niot necessarily constitute or imply its endorsement, recommendation, or favoring the United States Government or imply its endorsement, recom-
and opinions of authors by the United States Government or any agency thereof. The view and opinions of authors expressed herein do not necessarily state or reflect lines of the
United States Government or answer herein do not necessarily state or reflect those of the process disclosed, or represents that its use would not initinge privately owned rights.
ence herein to any specific conts that its use would not initinge privately owned rights. Jnited States Government or any agency thereof.

DISCLAIMER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

HYPERFINE INTERACTIONS ASSOCIATED WITH IRON SUBSTITUTED SUPERCONDUCTING OXIDES

D.E. Ellis and B.D. Dunlap, Argonne National Laboratory, Argonne, IL, USA

E. Baggio Saitovitch, I. Souza Azevedo and R.B.Scorzelli Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro, RJ, Brazil

> C.W. Kimball **Northern Illinois University DeKalb, IL, USA**

Theoretical and experimental MiJssbauer spectroscopy studies have been made concerning charge and spin densities and magnetic hyperfine fields (H_{LF}) in iron-substituted superconducting oxides. Calcu**lations were carried out in the self-consistent-field embedded cluster** model using local density theory (SCF-Xa) with a variational atomic **orbital basis. Spectral densities and changes in charge and spin density were monitored around neighboring Cu sites, as well as Fe impurity** site, in La₂Cu_{1-x}Fe_xO₄ and YBa₂Cu_{3-x}Fe_xO_{7-v} compounds. MUssbauer isomer shifts (IS), quadrupole splittings (QS) and H_{hf} are obtained by fitting **multiline models to the observed spectra and are compared with SCF-Xa results for specific lattice sites. The influence of oxygen vacancies and partial oxygen disorder is modelled and compared with the experimental data on variable oxygen content and disorder.**

 \mathbf{r}

I. INTRODUCTION

Hyperfine interactions provide a local probe of electric and magnetic fields which in turn provide information on the probe nucleus location and surrounding electronic structure. Nuclear magnetic resonance (NMR),

Mössbauer spectroscopy (MS), and the gamma-ray perturbed angular correlation (PAC) techniques have thus been used in extensive efforts to elucidate the electronic and site properties of the superconducting oxides. In order to gain more information than that obtainable from copper isotopes in the La_2CuO_4 and YBa₂Cu₃O_{7-v} compounds a variety of substituents have been considered, on virtually every crystal lattice site.

Here we will concentrate on the iron substituted superconducting oxides, of special interest for Mössbauer spectroscopy. Complex multiline spectra have been reported by many groups, including ourselves /1,2/, and a general consensus has begun to emerge about the shape of the spectra. However, a general understanding of the meaning of the three or more sites invoked to fit the data has been more difficult to obtain. Theoretical calculations of the hyperfine parameters at plausible sites are required to help develop adequate interpretation of the MS data.

 ϵ We have carried out self-consistent-field local density calculations on clusters embedded in the crystalline solid, using the Discrete Variational (DV-Xa) method. Numerical atomic orbital basis functions are used to generate an expansion of the cluster eigenfunctions, and Mulliken population analysis is employed in the Self-Consistent- -Charge approximation to the potential /3,4/. Long range Coulomb terms were included by a modified Ewald summation, and the exchange-correlation interaction was treated by the Kohn-Sham-Slater spin polarized approach. Cluster ranging in size from nine to thirty five atoms were used to represent different sites in the La- and YBa- based compoounds. Charge and spin densities were evaluated by direct summation of eigenfunction densities, multiplied by Fermi-Dirac occupation numbers. Electric Field Gradient (EFG) matriz elements were evaluated numerically, using techniques previously developed /5/.

 $-2-$

II. SELF-CONSISTENT CHARGE AND SPIN DISTRIBUTIONS

In Table I are presented the calculated self- -consistent Mulliken atomic orbital charge and spin populations for Cu, Fe, and Ni at copper sites in La_2CuO_4 and $YBa_{2}Cu_{2}O_{7}$. One can see here the great stability of the $cu^{\tilde{I}}d^{\tilde{g}}$ configuration in the electronic ground state at various sites in these hosts. In these and computations on other related crystal structures we find little or no evidence for the Cu $^{\rm III}$ d $^{\rm 8}$ configuration often invoked $^{\rm in}$ constructing superconducting pairing models. Although $\mathtt{Cc}^{\mathtt{III}}$ may be available as a low energy excitation, it apparently does not enter into the static lattice as envisioned in the classical valence counting schemes starting from a formal $0²$ ionic picture. On the other hand, the population of the diffuse Cu 4s, 4p states is variable, responding to the local oxygen bonding environment. As oxygen is removed from the variational clusters, we do see evidence (not presented here) of formation of the Cu $^{\bf I}{\bf d}^{\bf 10}$ reduced oxidation state. These results are in general agreement with recent X-ray photoelectron and XANES measurements and experimental interpretation /6/.

In all the sites studied, iron shows a strong tendency to form the " Fe^{3+} d^{5} " configuration, modified by admixture of 0.5-0.8 d electrons due to covalent mixing with oxygen ligand orbitals. This identification is based upon analysis of the density of states, which shows in addition to crystal-field-split levels dominated by Fe 3d character, a broad band of oxygen-dominated levels with some bonding Fe-d character. The resulting d-electron populations (5.5-5.8) and net charge (2.3-1.7) are very consistent with those calculated for trivalent sites in materials like wustite $Fe_{1-x}O$ and magnetite $Fe_{3}O_{A}$. The diffuse 4s, 4p character is seen to be similar to that of Cu on the same site. A high spin configuration of $3.0-4.4\mu_B$ is found, and a significant polarization is also induced on neighboring oxygen and copper sites. Both Cu and Fe are seen to be noticeably more ionic in the La-compound, in comparison to the YBa-compound.

 $-4-$

The nickel substituent is also given in Table I for comparison with Fe; as expected its magnetism is considerably reduced. In fact, the moment of $1.5\mu_\text{R}$ in the La-system is consistent with its ionicity, while the order La-system is consistent with its ionicity, while the order of magnitude smaller values in the Y-compound indicate the more extensive mixing with neighbor sites with resulting
damping of moment.

The calculated Fe^{3+} high spin configuration is The calculated Fe high spin configuration is consistent with observed magnetic splittings in the MS and heat capacity measurements. However a range of magnetic \mathbf{H} is a set of \mathbf{H} appears to be present at low temperatures, and the isomer shifts (IS) deduced by fitting three of four line spectra do not correspond very well with values commonly seen in trivalent compounds. Since it is probable that several sites are simultaneously occupied by substituent Fe, one is faced with difficulties in assigning a particular spectrum to a particular site and valence state. Thus calculations were undertaken to characterize the IS, EFG, and H_{hf} at several plausible sites. The following section gives a preliminary report of our findings.

III. HYPERFINE INTERACTIONS FOR Fe AT Cu SITES

In Table II are presented valence electron contributions to the electric and magnetic hyperfine interaction parameters at Cu sites in La₂CuO₄ and YBa₂Cu₃O₇. We have considered not only the substitution site in the La-compound and the chain (Cu(1)) and plane (Cu(2)) substitution sites in the YBa-compound, but also two additional geometries: (i) The Cu(l) site with octahedral coordination

due to two additional oxyanions in the nominally vacant 0(5) site. Since the lattice is observed to take up oxygen upon doping by iron, and Fe^{3+} is often found in octahedral coordination, this is an interesting possibility.

•.•'

(ii) A (110) displacement from the Cu(l) site giving approximately tetrahedral coordination. Not only is the tetrahedral coordination of Fe^{3+} very common in oxides, but neutron diffraction data can be fitted better with a two- -site model with significant population of displaced Fe ions.

Here $V_{77} = \frac{1}{2} (3z^2 - r^2) / r^3$, $V_{xy - yy} = \frac{1}{2} (x^2 - y^2) / r^3$, V_{out} = $\langle \rho_{\mu} x y / r^2 \rangle$ and ρ_{μ} (0) and ρ_{μ} (0) are the charge and spin density at the nuclear site, respectively. Note that x,y,z here refer to crystalline a,b,c axes and not necessarily to field gradient principal axes.

The isomer shift difference for 57 Fe between two sites is $\Delta \delta$ = $A_{\rm C}^{\rm } \rho_{\rm C}^{\rm }$ (0) and the contact magnetic hyperfine field is given by $H_{\text{hf}} = A_{\text{S}} \rho_{\text{S}}(0)$ with $A_{\text{C}} = -0.25$ mm/(a₀ -s) and A_s = 524 kG/a₀°. The IS constant, which depends upon the nuclear excited and ground state mean-square radius, is fairly well determined so that A_n is uncertain to perhaps +/- 15%. The range of calculated IS differences covers the range of observed values.

The observed quadrupolar splittings range from 0.3 to 2.0 mm/s, and are related to the EFG parameters by $\Delta E = BV_{ZZ} (1 + \eta^2 / 3)^{-1/2}$ where V_{ZZ} now refers to the local principal field gradient axis and the asymmetry parameter cipal field gradient axis and the asymmetry parameter $n = |V_{XX-YY}/V_{ZZ}|$ is the ratio of the principal and secondary axis values. Using the currently favored value of the 57 Fe quadrupole moment of Q = 8.2 fm² the value of B \sim 0.83mm-a_n 3/s; the older value of 21 fm² would more than double this coupling constant $/7/$.

Lattice sums with point ions /8/ having the formal valence charges give very similar values for the EFG at the Cu site in La- and at Cu(1) and Cu(2) in the YBa-based mate-

rials. These off-site terms, given in Table III, contribute of the order of 5-7% of the observed 57 Fe EFG, using the value $Q = 8.2 \text{ fm}^2$. The formal lattice sums for Cu(l) and Cu(2) sites are somewhat problematical; we placed trivalent ions at Cu(l) and divalent ions at Cu(2), but evidence for the former is weak. Recently $SCF-X\alpha$ calculations have been made which variationally determine the crystalline charges without making any assumptions about site ionicity /9/. The self-consistent ionic charges and the resulting lattice sums are given in Table III; the SCF lattice sums are 80-90% of the formal lattice sums by virtue of the reduced theoretical ionic charges. Thus \sim 95% of the experimental EFG can be attributed to local electronic response, which requires detailed SCF modelling. In other words, Sternheimer Shielding (antishielding) factors of the order of 20 are indicated.

In order to make a comparison with experiment, the valence electron contributions of Table II have to be combined with core electron and nuclear contributions from the cluster, and with a lattice summation for ions exterior to the cluster. Thus

cluster $_{c}$ $_{c$ V_{77} (total) = $\qquad \qquad \left(\begin{array}{cc} Q_{0}^{+}(3z_{0}^{2}-r_{0}^{2})/r_{0}^{2} & -\frac{1}{2}Q_{0}^{+}(3z^{2}-r^{2})/r^{3} \end{array} \right)$ \bar{v} $+\int_{v}^{exterior} q_{v}(3z_{v}^{2}-r_{v}^{2})/r_{v}^{5}$

where $Q_v^C = Z_v - N_v^C$ is the charge of the ionic core for the ion at site v, q_u are net ionic charges. For example, we $\begin{bmatrix} \text{find} & V_{zz}(total) & = & + & 0.20 \\ 0.20 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ for Cu in $\begin{bmatrix} \text{La}_2 \text{CuO}_4 \\ \text{Na}_2 \text{CuO}_4 \end{bmatrix}$ +0.83 a₀ for re at the same site. Using smaller value of Q for 57 Fe we obtain a predicted ΔE of 0.69 mm/s, with the older value $Q = 21$ fm², we obtain a predicted ΔE of 1.77 mm/s . In the Mössbauer spectra of Fe:La₂CuO₄ two doublets with $\Delta E = 1.48$ mm/s and 1.73 mm/s are found

and the understanding of the behavior of these two species with Ba doping needs still to be clarified /10/.

Detailed comparison with experiment for various sites in YBa₂Cu₃O_{7-v} will be given elsewhere. At present we can say that lattice contributions exterior to the local cluster (31 atoms were used for La_2CuO_A and 9-39 atoms for YBa₂Cu₃O₇) amount to less than 5% of the total EFG_f and are thus of the same order or less than uncertainty in the variational calculations. The calculated electronic contributions span about half of the range of the splittings deduced for a three or four line spectrum in $YBa_{2}Cu_{2}O_{7}$. While it is clear that a more accurate determination of the origins of the EFG at different sites will not of itself completely resolve the questions about site occupancy and valency, we believe that taken with other data this result can be very useful.

ACKNOWLEDGEMENTS

Work supported by the U.S. Department of Energy, Basic Energy Sciences under Contract W-31-109-ENG-38, by the National Science Foundation (RUI) DMR87-19738 and INT-8714780 and by Conselho Nacional de Desenvolviriento Científico e Tecnológico (CNPq).

REFERENCES

1. E. Baggio-Saitovitch, I. Souza Azevedo, R.B. Scorzelli, H. Saitovitch, S.F. da Cunha, A.P. Guimarães, P.R. Silva and A.Y. Takeuchi, Phys. Rev. B37, 7967 (1988).

- 2. B.D. Dunlap, J.D. Jorgensen, W.K. Kwok, C.W. Kimball, J. L. Matykiewicz, H. Lee, and C.U. Segre, Physica C 153 - 155, 1100 (1988).
- 3. A. Rosen, D.E. Ellis, H. Adachi and F.W. Averill, J. Chem. Phys. 65, 3629 (1976).
- 4. D.E. Ellis, G.A. Benesh and E. Byrom, Phys. Rev. B20,1198 (1979).
- 5. D. Guenzburger and D.E. Ellis, Phys. Rev. B22,4203 (1980) .
- 6. P. Steiner, V. Kinsinger, I. Kinsinger, I. Sander, B. Siegwart, S. Hufner, C. Politis, T. Hoppe and H.P.Muller, Z. Phys. B67,497(1987); A. Fujimori, E. Takayama-Mulomachi, Y. Uchida and B. Okai (to be published); D.E. Ellis, D.J. Lam and B.W. Veal, Progress in High Temperature Superconduc tivity 9, 259 (1988).
- 7. The quadrupole moment $Q(S^7)$ Fe) is not experimentally known; estimated value depend upon comparison of electronic structure calculations and measured electric field gradients. Bominaar et al. discuss the current status of this problem, preferring the value 15 fm^2 : E. Bominaar,
	- $\sqrt[n]{J}$. Guillin, V.R. Marathe, A. Sawaryn, and A.X. Trautwein, Hyperfine Interact. 4Q, 111 (1988); S. Lauer, V.R.Marathe and A. Trautwein, Phys. Rev. A19, 1852 (1979). Arguments in favor of the value 8.2 fm^2 are given in K.J. Duff, K. C. Mishra and T.P. Das, Phys. Rev. Lett. 46, 1611 (1981); for a discussion of host-matrix effects on the FeCl, and FeBr₂ molecules used as references see D.E. Ellis, D. Guenzburger and H.B. Jansen, Phys. Rev. B28, 3697 (1983).
- 8. We have modified an Ewald summation procedure originally written by C. Stager.
- 9. G.L. Goodman, D.E. Ellis, L. Soderholm and E.E. Alp (submitted).
- 10. E. Baggio Saitovitch, R.B. Scorzelli, I. Souza Azevedo and C.A. dos Santos - To appear in this issue.

a) Spin-restricted calculation.

 $\mathcal{L}_{\mathcal{L}}$

 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$

 $\overline{}$

$site \rightarrow$	La_2CuO_4	$YBa2Cu3O7$:		chain	: plane
Cu V_{zz}	-0.72	-0.68			-0.32
v_{xx-yy}	0.0	-0.02			0.10
Fe V_{zz}	-1.35	-0.24^{d}	0.18^{b}	-0.71°	0.12
v_{xx-yy}	0.0	0.58	0.01	0.26	0.0
v_{xy}	0.0	0.0	0.0	0.36	0.0
$\rho_c(0)$	2.86	7.21	5.76		5.51
$\rho_{\rm g}(0)$	0.24	1.66	0.76		0.72

Table II - Valence Electron Contributions (e/a_0^3) to hyperfine interactions at the copper sites in La_2CuO_4 and $YBa_2Cu_3O_7$ for Cu and Fe substituent.

a) Normal site: 0(5) vacant.

b) Octahedral coordination: 0(5) occupied.

c) Tetrahedral coordination: offset in (110) direction.

			charges		
	La_2CuO_4				
	Ion	formal	SCF		
	La	$+3$	2.8004		
	Cu	$+2$	1.7198		
	O(1)	-2	-1.7935		
	O(2)	-2	-1.8672		
	YBa ₂ Cu ₃ O ₇		charges		
	<u>Ion</u>	formal	SCF		
	Y	$+3$	2.7300		
	Ba	$+2$	1.9936		
ं	Cu(1)	$+3$?	1.7192		
	Cu(2)		1.7584		
	O(1)	-2	-1.6193		
	O(2) O(3)		-1.7336		
			-1.7637		
O(4)		-2	-1.6665		
	$(a_0^{\{-3\}})$ EFG at Cu sites				
		v_{xx}	$\mathbf{v}_{\mathbf{y}\mathbf{y}}$ v_{zz}		
La ₂ CuO ₄	formal charges	-0.0462	-0.0462 $+0.0924$		
	SCF	-0.0403	-0.0403 $+0.0807$		
	YBa ₂ Cu ₃ O ₇ formal charges Cu(1)	$+0.1684$	-0.0555 -0.1130		
	SCF	$+0.1321$	-0.0483 -0.0824		
	formal charges	-0.0559	$+0.0984$ -0.0425		
	Cu(2) SCF	-0.0454	-0.0370 $+0.0824$		

Table III - Effective ionic charges and lattice sums in La_2CuO_4 and $\text{YBa}_2\text{Cu}_3\text{O}_7$. (x,y,z) correspond to crystalline (a,b,c) axes.

 $\hat{\bullet}$