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me physical presence of Yac”“m stNct”res can be 
expressed In terms of a coupling Impedance experienced by the 
beam. The bean3 en*onment considered here canslsts of parasitic 
h&her order modes of the r.t cavities. These resonances may have 
high enough Q’s to allow consecutivs bunches to interact through 
mutua,,y induced fields. The cumulative effect of such fields as the 
particles pass through the cavity may be to induce a coherent 
bufldup in synchmtron motion of the bunches. i. e. a long‘tudlnal 
coupled-bunch instabUtyl. 

The collldlng mode opera”on of the present generation of 
high energy synchmtmns and the accompanying r.f. manipulations. 
make considerations of lndlvldual bunch area of paramount 
importance. Thus, a longitudinal lnstab”,ty in one of a chain of 
accelerators. wh”e not leading to any immediate reduct‘on ,I, the 
intensity of the beam in that accelerator. may cause such a 
reduct‘on of beam ,,uality that iater operations are inhibited 
,resuitlng in a degradation fn performance,. 

In thfs paper we employ a langltudlnal phase-space tracking 
code IESMEI* ss an efkctive tool to simulate spedflc coupled bunch 
modes arlslng in a circular accelerator. One of the obvious 
advantages of the sim”lation com,,ared to exlstlng analytic 
formatisms. e.g. based on the vlaso” equatlad. is that it allows 
consideration of the tnstabillty In a self-consistent manner with 
respect to the changing accelerating candltians. Furthermare this 
scheme allows to model nanlinear,ties of the longltudina, beam 
dynarmcs. which are usually not tractab.ble analyt,ca”y. 

Included in the simuIat‘on is the lnvestigatlon of possible 
cures aimed at ellmlnathq or lirmting growth of these mstab”‘“es. 
Most of the dlscusslon Is confined to three basic damping schemes: 

1,Synchrotran tune spread induced instde a,, IndMdua, bunch due 
to a highly anharmonic Iquartic, r.f. potential generated at the 
center of each bunch by a so-called Landau cavitiy-‘, 

ZlBunch-to-bunch synchmtron tune spread achiwed through 
modulation of the fundamental r.f. voltage by a secondary “oitage 
source of lower harmordc number so that ccmsec~ti”e bunches fill 
up slightly dUTerent buckets and ob”lously. their synchrotron 
tunes are no longer the same. 

3JDamping through a radial ,,os,t,on feedback loop where a 
longltudlnal broadband kicker delivered 2”. am,,,,tude-,,m,,ed 
ca~~ection “oltage to each bunch 011 a turn-by-turn basis. thereby 
actively dampln(! the coupled bunch modes. 

The machine-dependent parameters. which are considered 
here. are derived from the Fermilab Booster: this study be‘ng 
motivated by an instablllty problem h, that machme. 

Laneitudlnal Phase-Sw,ce TYack,ne with Wake Fields 

srie”y summaaed. the tracking procedure used in ESME 
consists of turn-by-turn iteration of a pair of Hamilton-like 
dWerence equations descrlbtng synchmtmn osci,Lation Ln &c phase- 
space ,O d e s 2,~ for the whole ring and L = E - E,. where E, is the 
synchronous particle energy. I‘nowtng the particle dbtribution in 
ihe azimuthal direction. p(B), and the revolution frequency. oo, a&r 
each turn. one can construct a wake field induced voltage as 
fallows~ 

“,Kal = ea, -yPn UnL@e’“~. 
“z-w 

where pn represents the discrete Four&r spectmm of the beam and 
Zkol Is a longX”dinal couPUng Impedance. The numerical procedure 
involved in waluatlng the above expression. Eq. ,I,. necessarily 
ern@q~~ a discrettiat‘on Of the B-direction. Some caution Is required 
in this process of bfnn,ng. due to the finite statistics inherent in 
such a simulation. 

For the ~urpase of our slmulatlon. only the r&Wciy high-Q 
~rtlon of the longitudinal impedance is relevant. A single parasitic 
mode can be modelled by the harmonic resonator of the impedance 
@en by 

Z(W) = 
R 

I + iQI o/me - oc/o 1 I21 

Here R Is tie shunt Impedance, Q denotes the quality factor of the 
rmcmstor and 0, 1s Its resonant frequency. For M equa”y s,,aced 
coupled bunches there are M possible dipole modes labeled by m = 
1. I,.... M. To illustrate the m-th dipole mode one can look at the 8. 
positIon of the centmld of each bunch, el. (= 1. 2 ,.... M. The 
SUnature of the simplest coupled bunch mode has the form of a 
discrete propsgatmg plane WB”C 

e,,t1 = o,sl”{ F- “,$ I31 

where 0, is the synchrotmn frequency. Based on the analytic model 

of coupled bunch modes proposed by Sacherer’ one can formulate a 
simple resonance condltlon for the m-th dipole mode dr,“en by the 
longitudinal Impedance Z&l sharply peaked at oe This candttkm IS 
g*ven by: 

o,=lnM+mlo,~o,. I41 

where n 1s an integer. Since a,, is time dependent laccelemtlon, and 
oc is fIxed lgeometryl. and knowing that the width of the impedance 
peak is governed by o,,Q one can cleariy see that the resonance 
condltlan. EC,. (41. Is maintamed over a finite time interval. ‘fhls 
leads to the useful concept of a made crossing the impedance 
resonmce. Using the erpllclt time dependence of a0 lkinemat‘csl 
and EC,. (4, one can easily calculate cmsslng intervals for “tious 
modes. This selves as a guide Ln the stmulation s,nce Lt atlows us to 
select an appropriate time domain where the mode of Illterest 
crosses the resonance and will more likely became “natable. 

Undmd Couded Bunch M&n 

In the early stages of this study we tentatl”eiy ident,f,ed the 
parasitic rcsons~~ce at f, = 85.5 MHZ with Q = 3V8 and R = 914xW3 
as the offending part of the impedance glvtng rise to a coupled 
bunch instability with harmonic number m = 53. Thfs mode crosses 
the resonance earlier In the boaster cycle. therefore the appropriate 
time lntervd to study the m = 53 mode is chosen as 19 -26x10-3 sec. 
The r.f. system of the Fermilab Booster provides 84 accelerating 
buckets. As a starting potit for our simulatkm each bucket in 8-c 
phase-space Is populated with 1cO macro-particles according to a bi- 
Gaussian distribution matched to the bucket so that 95% of the 
beam is confined withln the contour of the longitudinal emtttance of 
0.02 e”sec. Each macro-p&We is assigned an cffecthv chaqe to 
slmulste a beam intensity of 1.5~10’~ protons 

In a real-Ufe accelerator any coherent lnstab”lty starts out of 
noise and gradually budds up to large amplitudes. In our model 
situation it proved necessary to create sxne lntrlnsic small 
amplitude “seeC of a given mode in order to “start-up” the 
mstabi,ity. The “seeding” procedure 1s basically prescribed by Eq. 
13). tmtls.Uy identical bunches are rigidly displaced from the center 
of each bucket (both ,I, e and 8, so that the position of the,= 
centmids. 8,. satIs@ Eq. 131 for aI1 the bunches around the ring. In 
,,ractice. a submutie of ESME. Which generates a closed contour 
tn Se space under the action of a sinusaida”y ~Tylng voltage. was 
used to establish the positin of the bunch centm‘ds. The Intr‘ns‘c 
seed amplitude. 0,. was assigned a value of 1F3 rad corresponding 
to a” amplitude Ln energy of appra~mately 2 Me”. 

To vlsu- the ~ositlon and shape of indlvldual bunches as 
they evolve in time one can compose a “mountain range” d&gram by 
plotting 8-prqections of the bunch density in equal increments of 
re”ol”ttin number and then stacking the proJections to imitate the 



tmle “ow. The resulttng mOunta‘” range plot for an ““damped 
“lade 53 LS gwen t” Fig. ,a. 

I” the next few SeCttons we win proceed with the discusslo” 
of suggested danlpng mechantsm. 

d) 

Fig. 1 Cokctlo” ofmo”“tain range plotS illustrating the behavior 
of coupled bunch mode I” = 53 web 

a, no damptng. 
b, pasdve dmplng vfa Landau cavltyy. 
c) passive damptng thmu,~h the b2 = 77 harmonic. 
d) acthe damping “la radial ~os‘tion feedback. 

Fourth HamIOnic Landau ca”l@ 

Now let us constder a situatton where. in addition to the 
fundamentai r.f. voltage source. we have a seconda-, source of 
volta@ whose frequency ts equal to that of the fourth harmonic of 
the fundamental: the so-called Landau cavity. The phase and 
amplttude of the secondary voltage source are prescribed by the 
cand‘tions that both the first and second dertvat‘ves of the net 
voltage vanish at the center of each bunch. The above conditto,, can 
be formulated by tntmductng both voltages expUcltly as follows 

V,M = V&An($. + $I 
and 17) 

V&l = kV~sInl$~ + 4ml. 

Here .& is the synchronous phase relative to the fundamental r.f. 
wavefmn. q4 is the synchronous phase relattve to the fourth 
harnxm‘c wav&nn and f denotes the de-A&on of a part,& fro,,, 

the synchronous phase. + = he - &. Parameter k ts the ra”o of the 
secondary and prbnary voltage amplitudes. The combtned net 
voltage is constratned by the condition that its ftrst and second 
deri”attves “antsh at the center of each bunch. ‘III‘S ftxea matching 
parameters k and $A as follows 

k;Gj&- 

and 18) 

$4=~arcas~~~J}. 

The resulting r.f. voltage ts illustrated in Ftg. 2. T,,e purpose of 
tmposfng the abave constraint. Eq. 18,. is to pro”tdc a highly 
nonUnear bucket resulttng In large synchmtran tune spread arlthm 
each bunch. Thts in turn may eventually pmvldc stab”,@. a@nst 
coherent motto” af coupled bunches ,“,a a Landau damptng 
mechantsml. A family of closed orbits in Sr space comsponding to 
different amplttudes, was generated using a contour drawing 
subroutine of ESME. The result is depicted in Ftg. 3. Each arbtt ts 
labeled with the respective synchratron tune In frequency units 

lsec-Il. The boundtng cur”e. “4th tune 0. represents the separatm 
[note the “squareness” of the bucket in thts double r.f. voltage 
syste”4. 

The tracking was carrted out for exactly the same tnltlal 
conditton as dexribed tn the ~re”‘o”s sect‘on. In addttton to the 
fundamen!al r.f. voltage the Landau ca”tty “oka& “,(L$,). Is turned 

on linearly o”er the first ZXIO-~ sec. matched to the fundamental 
voltage program according to Eq. ,8, for a pertad of 3x1~7~ SE and 
finally turned off bnearly o”er the last 3,110-~ sec. The tracking 
results are illustrated by the mountan range plot collected tn Ft& 
lb. One can see by cm,,~nrlSon with the correspndlng plot for the 
undamped mode. Fig. la. that the Landau cavity provides 
substantid damping of an tnttiaily unstable coupled bunch mode. 
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Fig. 2 Cambtned voltage of a double r.f. system wltb Landau cwtty. 

One can apply a secondary voltage source wttb lower than 
the fundamental harmonic number. We w”l consider a sttuatio” 
where 2 out of 18 r.f. cwtties. modelled as a secondxy source, 
provide voltage at harmonic number h2 = 77 Ithe rema,atng 16 
cavities. modelled as the fundamental r.f. source. wt” r”” at b, = 
84. Now any seven (h, - h2 = 7, consecutt”e buckets ditTer due to 
the voltage modulatin protided by the secondary source. Therefore. 
the value of synchmtmn frequency will vary from bunch to bunch 
kven for small arnplttude osc‘llations in the Hnear regtanl. For 
exactly the same initial condttions as In the simulatton of the 
prevtous sectton the h2 = 77 voltage source re@aces the Landau 
cavfty with the same linear turn on/off feature. As before. the 
phase-space evolu”on of a single bunch. given by the mountatn 
range plot. Fig. 1~. illustrates e~Tec”ve dam@ng of m = 53 coupled 
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Fig. 3 Synchratron tune spread Inside a bucket corrected by 
Landau cavtty as a function of relattve ampUtude.(e - EJ/E,. 
where E, is the height of the bucket. 

bunch mades. In fact. m this case the damping 1s somewhat more 
evident. 

ActWe DamomeTnmueh Radial Posttton yeti- 

It was noted that the coupled bunch oscdlations fn the 
Fermilab Booster gave rise to a radial positlo” signal in a circuit 
anglnally designed to damp hor!za”taJ betatron oscillations. It was 
suggested that this ctrcutt be used to drtve a longttudtnal 
broadband kicker. thereby actively damping the coupled bunch 
modes. This scheme was also slmulated. The “ktcker” in our 
slmulattan delivered a maximum LW correction voltage to each 
bunch: the “seefl amplitude for the mode corresponded to a slgnal 
level safely above the noise level of the monitor in the damping 
cvcutt. as Ulferred from observations of the s,gnaI and knowledge of 
the dispersion in the region of the mo”ltar.Here again the 
sllllulatio” resuits form = 53 coupled bunch mode 1s Ulustrated by 
the mountain range profile given in Fig. Id. Comparison with the 
other schemes lndtcates that such an acttve damper Is very effective 
in both cases studied here. 

At this point. some qualttative comments concemtng the 
passive damping mechanisms and their relative efficacy are in 
order. We note that for mode 53. the cavues ~“eratlne at harmonic 
77 appear to be much more &cient than th; Land&xwtty (See 
F@. Ib and 1~1. This Is not totally surprtsing. stnce the growth of 
the InstabUtty is depmdent upon bunch-to-bunch “c-u”,catio”” 
“la wake fields. The h2 = 77 cavities disrupt tbls cmnmu”tca”o” 
diredly. via bunch-to-bunch tune spread In addition. the dtstance 
between the bunches is modulated by the secondary r.f. voltage and 
therefore the components of the current at harmona of the 
fundamental r.f. frequency are reduced. The Landau cavtty. on the 
other hand. operates at an harmontc of the fundamental r.f, 
frequency. and therefore tnduces tune spread only wtthb, each 
bunch. The landau cavity attempts to “dtscourage” the growth of 
the tnstabibty via suppress,o” of the coherent mouon tnslde each 
single bunch. The tune spread induced Wthin a bunch. however, Is 
a function of the range of amplitudes of the particles undergomg 
synchrotro” mot,.,“. Thus. if a group of paticles osct,,ate at 
ampUtude “close” enough to each other. we might expect them to 
respond to a suitable driving force in a coherent fashion. 
Presumably. particles may be regarded as “close” U the tune spread 
among them is smaller than the frequency charactertzzlng the 
growth of the tnstabtbty This “clustew phenomenon did, In fact. 
occur in the stmulatlon for mode 53. as Illustrated by the mountat” 
range plot tn Fig. lb. It Is &dent that a cluster of ‘almost coherent” 
particles WI the prevtously described sense, stU paticlpates ir. 
coupled bunch osclllatlon. while the remamtmg parttcles with 
synchrotro” tune spread larger, than some crtfical value do not 
respond coherently to the coupling wake field. Thts would suggest 
that there extsts a threshold tune spread definmg the extent of a 
‘“coherent blob” lnslde the bucket: that extent betng a chamctertstic 
coherence length for a given driving frequency 
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