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CONSTRUCTION OF SurRROGATE CHEMIicaL MEcHANISMS

(SCHEMEsS) FOR ATMOSPHERIC PHOTOCHEMICAL SYSTEMS

Stuart Z. Levine and Stephen E. Schwartz

Atmospheric Sciences Division
‘Brookhaven National Laboratory
Upton, N. Y. 11973 U. S. A.

During the past several years it has become apparent that homogeneous
gas-phase reactions of.pollutants in the troposphere, i.e., the formation
of photochemical smog and the oxidation of SO, occur to a great extent by
elementary reactions involving chain carrying free-radicals (HO, HO,, RO,
R0,, RLUU,) whose concentrations are governed by the concentrations of
trace molecular constituents including NO, NO,, CO, O3, and organics, as
well as sunlight!™3. Some of the important reaction paths and products of
these chemical transformations are shown pictorially in Figure 1. The re-
action kinetics of such a multi-species, multi-reaction system is commonly
modeled by a set of coupled ordinary nonlinear differential equations in
the concentrations of the species, and such treatment has been rather
successful in modeling these concentrations as measured in "smog chamber”
experiments. However, for the purpose of modeling chemical transformations
in the ambient atmosphere, which requires incorporating a reaction mecha-
nism within an atmospheric transport model, it is necessary to develop a
mechanism that includes a minimum number of chemical species, since the
computational time and cost.involved in solving the set of partial differ-
ential equations describing the diffusion-advection-reaction problem in-
creases dramatically with the number of species modeled. Although photo~
chemical mechanisms employing fewer than.15 species have been developed
previously for use within urban airshed models“™®, those reduced, or surro-
gate, mechanisms do not include sulfur chemistry and do not appear appli-
cable to the more widely varying conditions possible as gases become chemi-
cally depleted while being transported away from emission sources. There-
fore, in order to meet the time and cost constraints of an atmospheric
transport model, we have constructed a.12-species Surrogate CHEmical
MEchanism (SCHEME) incorporating reactions for the homogeneous gas-phase
oxidation of SO;. A preliminary but much more detailed and comprehensive
ATmospheric Model for Sulfur (ATMOS) has been used to generate SCHEME and
test its applicability to a broad range of chemical conditions.

ATMOS is a 30-constituent reaction mechanism including generalized
hydrocarbon chemistry based largely upon the Hecht-Seinfeld-Dodge? model
for NOx-hydrocarbon mixtures; however, -ATMOS incorporates revised rate con-
stant values and additional reactions. This model test quite well against
reported smog chamber data® for the NOy-propylene system. ATMOS has been
used to simulate the six-hour irradiation of a typical urban pollution mix-
ture containing NO, NO,, SO,, olefin, and CO at initial concentrations of
75, 25, 10, 100, and 10* ppb, respectively.  For bright sun conditions
(z = 40°) and an ambient H,0 concentration of 2 x 10* ppm, the model pre-
dicts NO, NO,, and O3 profiles characteristic of photochemical smog as
shown by the curves in Figure 2. The SO, oxidation rate, after the first
10 minutes of irradiation, is typically 1-4% hr~! and is controlled princi-
pally by reactions with HO, HO,, and RO, radicals; as the reactive system




ages the relative importance of these reactions to the total oxidation rate
shifts markedly from the HO reaction to those of the HO, and RO, radicals.

Using the simulation results of ATMOS, we have analyzed the time de-
pendence of species concentrations and reaction rates to develop the 12-
species surrogate mechanism SCHEME which models the concentration profiles
of 4 initial reactant species (NO, NO,, SO,, olefin), 4 intermediate species
(03, HONO, H,0,, aldehyde), and 4 free-radicals (HO, HO,, RO,, RCO0,). The
reduction in the number of modeled species has been accomplished without
loss in the chemical integrity of the system by: 1) removing from the me-
.chanism those reactions and spec1es which do not appreciably influence the
chemistry of the remaining species, 2) incorporating the essentially con-
stant concentrations of stable species (e.g., 0;) into the appropriate rate
constants, and 3) using rate.limiting reaction steps and steady-state re-
lationships to formulate surrogate reactions and rate constants. SCHEME
accurately reproduces the results of ATMOS, as indicated by the comparisons
in Figure 2, and does so with a 5-fold decrease in execution time. For all
12 species modeled by SCHEME, the close agreement -with the concentration
profiles predicted by ATMOS continues even when the initial concentrations
of NOy, SO,, or olefin are changed by an order of magnitude. Additionally,
the kinetic relationships used in the construction of SCHEME may be used-at
little additional computational cost to algebraically determine concentra-
tion profiles for many of the deleted species. Specific methods utilized
in the construction of SCHEME will be presented.
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Figure 1.

Reactions represented by the present models.
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Figure 2. Comparison of simulat%on results obtained

with ATMOS (curves) and SCHEME (points).





