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ABSTRACT

We present results from simulations on two aspects of quark confinement in the

pure gauge sector. First is the calculation of the profile of the flux tube connecting

a static q_ pair in SU(2). By using the Michael sum rules as a constraint we give
evidence that the energy density at the center of the flux tube goes to a constant

as a function of quark separation. Slow variation of the width and encrgy density

is not ruled out. Secondly in the confined phase of lattice U(1) we calculate the

curl of the magnetic monopole current and show that the dual London equation is

satisfied and that the electric fiuxoid is quantized.

1. Introduction

I would like to report on efforts of the Cracow-LSU collaboration to study the
response of gauge fields to the presence of static sources. Confinement is the central
issue which is seen ,us a consequence of the vacuum squeezing the field lines to form
flux tubes connecting color charges. One is beginning to see considerable detail of
the field distributions in the flux tube, e.g. its size and shape, the chromoelectric
and c]:a'omomagnetic field components, and monopole currents that are responsible
for squeezing the tube to form an Abrikosov vortex.

In the first part of this talk I will describe our results for SU(2) lattice gauge
theory[I,2,3]. We examine the flux tube between a qq pair, calculating the six chro-
moelectric and chromomagnetic components to the energy density and action density.
We parametrize the profile of the flux tube and study scaling. The results are sub-
jected to the check provided by the Michael sum rules[4].

The second part of this talk concerns the mechanism that leads to flux tube
formation. This is the role of the solenoidal magnetic monopole currents that sm'round
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tl_e flux tube. In this work[5] we show in the confined phase of U(1) that the curl of the
.monopole current has a profile similar to the electric field and that the duM London °

equation is satisfied and electric fluxoid quantization occurs. We demonstrate that the
ithe flux tube is precisely the dual of the Abrikosov vortex in Type II superconducting
imaterials.

2. Flux Tubes in SU(2) 2

2.1. Background

In this calculation we measure the field energy densities by correlating the small
plaquette with the Wilson loop. Full details of the simulation are given in Ref. [2],
which also contains further references. Further details of the flux profiles will appear
in a companion paper Ref. [3]. By fixing our attention on the middle time slice of
the Wilson loop, the time-like segments form world lines that approximate a static q_
pair. The 3 space-space plaquettes measure the magnetic component of the energy
density and similarly the 3 space-time plaquettes measure the electric components.

Before defining the flux calculation in more detail, we point out that the Wilson
loops themselves are used to extract the transfer matrix eigenvalues which give the
static quark potential and are further used to extrapolate the flux measurements to
infinite time extent of the Wilson loops. Specifically we determine the eigenvalues of
the transfer matrix by fitting the Wilson loops to the exponentials as described in
Ref.[2].

< W(R,T) >= _ Aie -E'(R)T. (1)
{

Eo(R) is of special interest since it contains the static quark potential:

-£ + aR + 4z--2) (2)
E0(R) = R _(_)

The term independent of R is the self energy of the two quarks which does not scale
but diverges as a --, 0. Since Wilson loops can be calculated quite accurately, the
static potential is a useful physical quantity to check scaling and thereby determine
the lattice spacing a(fl). An our data is consistent with standard values a(2.3) - 0.171
fm, 0. 2sfm 0.0s9fm.

2.2. Flux Tube Profiles

The lattice observable needed to measure the flux is the following[6,1,2].

= (w) - (P) '

( - ) (3)
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4__
W is the Wilson loop, P_ the plaquette located at x, fl - g2 and xR is a
reference point. In the classical continuum limit

--_ ( (F_'_')2)q-__va_, (4)

the notation (.. ")qh-_ac means the difference of the average values in the q_
vacuum state. From now on we shall be using field components in Minkowski

and hence

I(-B -B--+ , , (5)
Con'espondence between various components and f'_ is standard: space-space pla-
quettes are magnetic, space-time plaquettes are electric. The energy and action den-
sities are respectively

1 E2

1

: (6)

Since the magnetic contribution turns out to be negative, there is a strong cancellation
between the two terms in the energy, whereas they are enhanced in the action.

Figure 1 gives the flux profiles. The cancellation which suppresses the energy
density in the flux tube is evident. However notice that the self energy of the quarks
is not similarly suppressed. This follows because the self energy is primarily electric.
We fitted the energy and action density in the plane at the midpoint between q and

using the function

The peak value and the width at half maximum were very well determined using a Xe
fit for each of 70 cases of different loop sizes and values of ft. For the third parameter
we chose the decay length of the tail of this function and found it less well determined
but with a value typically close to the width at half maximum. The details of the
analysis will be given in a forthcoming paper[3]. Here we just give the results of the
extrapolation to infinite Wilson loop time extent in Figs. 2 and 3.

The basic issue is whether the peak value of the energy density stabilizes to a
constant or goes to zero with quark separation. This is not easy to settle as can be
seen in Fig. 2. Roughly speaking we know from the linearly rising potential that the
string tension ,,_ (width) 2 × (peak value) should be constant. Both Figs. 2 and 3
show that we are marginally asymptotic in quark separation, R. The two curves are
,-_1//_ and ,,_ 1/R. A Coulomb field would fall like the former but since the string
tension is constant the asymptotic width would have to grow like R e which clearly
it does not. Therefore we can rule out a Coulomb field as expected. Interestingly
for small separations, the eyeball fit to ,,- 1/R 4 is quite good which may be due to a



Figure 1" Energy and action profiles: (a) energy density in the plane containing q_;
(b) energy density in the plane midway between q and _; (c) and (d) similarly for
action density.
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Figure 2: (a) Peak value of energy and action density; solid squares: fl = 2.5; triangles:

fl = 2.4; open squares: fl = 2.3. The two curves are 1/R and 1/R 4 arbitrarily

normalized; (b) blowup of (a).
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Figure3: Width at haK maximum forenergyand actiondensity.

Coulomb likebehaviorat smalldistances.(The above argument thatthe width must

grow like/_2does net apply because thereisno stringforsmallR.) The dielectric

model[16]predictsthe peak density_-,I/R. This function(arbitrarilynormalized)
does not seem to fitthe data very weil.However such a behaviorwould imply the

width N _ which iscertainlypossibleinour data.We can say thatthepeak energy

densityand width are consistentwith a constantvalueforlargequark separationbut
we can not ruleout a slow variation.The issuecan be tightenedby making use of

the Michaelsum rules[4]as we mention in the next section.

Figure4 illustratesa generalfeatureofour data.The clusterof threepointsfor
each 1_and T correspondto the threequantities:

1 1

= + +Bl),

E(T+-eR) = 1 1_(E_ + B_)- _(E__ + BL). (8)

If one turns the Wilson loop on its side, the Ii components are unchanged but the

J_ components of the electric and magnetic fields are reversed: El_ +-+ --B2L. Hence

there is a sign change in the third expression. The central points of the cluster are

the II components only. The clustering of the points implies that the _L components
of the electric and magnetic contributions to energy density are approximately equal
but of opposite sign and cancel. The width of the peak is even less sensitive to the
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Figure 4" Peak density for R x T Wilson loop sizes R = 3 - 6, T = 3 - 6. For fixed T
the points decrease monotonically with R. Triangles" energy density for R x T loop;
circles: energy density for T x R loop; squares" IIcomponents of E 2 and B 2 only.

transverse components giving essentially the same value for ali three points.

2.3. Sum Rules

A consistency check on the flux distributions can be obtained by using the Michael
sum rules[4] for energy and action.

! _(E(_)_+ B(_)_)= E0(R)2 .
x

2 _(E(x)2.. - B(x)2) = -flh[E°(R)a c(Z)]a - tit(Z)a (9)

Here Eo(R) is given by Eqn.(1), and (. _=_). In ref.[2] we have shown that our data
are essentially consistent with these sum rules. The one difficulty is the fact that
the self energy, c(fl)/a(Z), determined ft'ore the potential differs from the self energy
determined ft'ore the the action sum rule. This may be due to an ambiguity in the

definition of self energy or possibly due to our classical expressions for energy and
action which ignores quantum corrections. By taking a derivative of these expressions
with respect to the quark separation, R, this difficulty is avoided. This gives the
relation

= a ; °_ -_ }_(E(_)_--B(_)_); _- _}_(E(_)_-+ B(_)_)" (_0)(7A

x I xi

The sums are now over the plane midway between the q_ pair.
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Using the sum rules we find that the fl function (-fiba) _ 10.-4-2. compared to the
ent estimates 7.-t-1.. The asymptotic value is -51/121 +37r2fl/ll = 6.0(fl = 2.4).
,.re is ample evidence ft'ore other measurements that although scaling works well,

scaling is violated[8] and hence we do not expect to get the asymptotic

An alternative approach is to assume the sum rules are correct and use them to
information about the energy density from the action density which is far easier

to measure since relative errors are down by an order of magnitude. As is clear from
the sum rule, the action does not scale yet the variation over these values of fl is
very small. An examination of Fig. 2(a) shows that the action for each fl seems to
stabilize to a constant for increasing distance for the peak density and for the width.
This is quite striking for fl = 2.3 and 2.4. For fl = 2.5 R appears to be too small
to ch'aw a conclusion. These data do not suggest that the peak value is tending to
zero at all. We would like to use the sum rules to predict the behavior of the energy
density. A constant peak energy density follows only if the widths of the energy and
action peaks have the same behavior. Figure 3 shows that in fact they do. From this
and using the sum rules we conclude that the energy density stabilizes to a constant

value also. This conclusion is an argument against the dielectric model[16]. However
we have little to say about logarithmic behavior of the flux tube width as predicted
by Liischer[7]. For more details see Ref.[3].

3. Mechanism for confinement in U(1) 3

3.1. Dual Superconductor Model of Confinement

We now tm'n to the mechanism for flux tube formation and present direct evidence

that supercurrents of magnetic monopoles produce a dual Abrikosov vortex[9]. U(1)
lattice gauge theory in 4 dimensions has both a confined phase at large charge and a
weak coupling deconfmed phase corresponding to continuum electrodynamics with a
Coulomb interaction between static charges. Therefore confinement or its absence can
be studied using U(1) lattice gauge theory as a prototype, before tackling the more
complicated non-Abelian theories that actually describe quarks. Much evidence for
the dual superconductor hypothesis has accumulated from studies[10,11,12] of lattice
gauge theory. Polyakov[i0] and Banks, Myerson and Kogut[ll] showed that U(1)lat-
tice gauge theory in the presence of a quark-antiquark pair could be approximately
transformed into a model describing magnetic current loops (the monopoles) inter-
acting with the electric current generated by the q@pair. DeCrand and Toussaint [12]
demonstrated viaa numerical simulation that the vacuum of U(1) lattice gauge the-
ory was populated by monopole currents, copious in the confined phase and rare in
the deconfmed phase. This behavior has also been seen in non-Abelian models after

gauge fLxing[13]. Many studies of non-Abelian models using Dirac monopoles[13,14]
or other topological excitations[15] support the dual superconductor mechanism, al-

l, though other studies[17] dissent.
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" So far, studies of confinement have examined "bulk" properties such as the monopole
=lensity[12,13], and the behavior of the static quark potential[14]. In a recent paper[5]
_vepresented the first direct evidence that the flux tube is a dual Abrikosov vortex. " -
We further show that there are exact U(1) lattice gauge theory analogues of two key
relations that lead to the Meissner effect in a superconductor; the London equation
and the fluxoid quantization condition.

3.2. Electric Field Profiles

Our simulations were done on a Euclidean spacetime lattice of volume 9_ x 10.
The static charges are represented by a Wilson loop as in the previous section. We
take a 3 x 3 loop in the z - t plane and measure the fields in the x - y plane
at the midpoint between the charges. Because_ ofthefieometrical symmetry of the
measurements only the z-components of (g') and (V x JM) are nonzero. If the Wilson
loop is removed, even the z-components average to zero, so the response is clearly
induced by the presence of the static charges. Only the imaginary part of the Wilson
loop contributes to the averages of these two quantities.

The plaquette measures flux passing through a unit square on the lattice 4

= -
g,

The electric flux in lattice variables is

g,(g) = Im exp[i_,4(_')]. (12)
%

Figure 5(a) shows the electric flux distribution for fl = 1.1 where the vacuum is
in the deconfmed phase. The broad flux distribution seen is identical to the dipole
field produced by placing two classical charges at the quark positions, except that the
classical value of the flux on the qEt axis is a factor of two smaller. We measure the
total electric flux from one quark to the other, including not only the flux through the
plane between the charges (0.8504 4-0.0045) but also the flux (0.0951 4. 0.0028) that
flows through the lattice boundal-y because of the periodic boundary conditions. This
yields a total flux of (0.9453 4. 0.0053), close to the theoretical value _5_= e/v/-_c =
1/v =0.9 34

Figm'e 5(b) and 6(a) shows the electric flux in the confined phase (_ = 0.95). In
this case the flux is confined almost entirely within one lattice spacing of the axis and
essentially no flux passes the long way around through the lattice boundary. The net
flux is again equal to 1/Vrfi within statistical error. This behavior is exactly 'what one
would expect ft'ore the superconducting analogy, where the flux has been "squeezed"
into a narrow tube.

3.3. Magnetic Monopole Supercurrents

The monopole cun'ents are found by a prescription devised by DeGrand and
Toussaint[12], which employs a lattice vers'.on of Gauss' Law to locate the Dirac

4The flux here means Ex (area). We use the same term for E 2 or B 2 since it has become an
accepted usage.
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Figure 5: Surface plot of the electric flux through the xy plane midway between the
q_ pair when the system is in (a) the deconfined phase (f_ 1.1) and (b) the confined
phase (fl = 0.95). The line joining the pair is located at (0,0).

string attached to the monopole. The net flux into each plaquette face is given by
(0,_(_ rood 27r). If the sum of the fluxes into the faces of a 3-volume at fixed time
is nonzero, a monopole is located in the box. A non-zero net flux can occur only if a
multiple of 2_r arises from the rood operation. Therefore the net flux is

6faces

The net flux into the box at fixed time thus yields the monopole "charge" density,
the time component of the monopole 4-current JM. The spatial components are
found similarly. The monopole cre-rents form closed loops due to the conservation
of magnetic charge. Finally the curl is calculated by the line integral of the current
around a dual plaquette.

We show in Fig. 6(a) <_} and in Fig. 6(b) -<_ x JM) in the confined phase as a
function of the distance from the q_ axis. The data show that the spatial variation of
the flux and the curl of the current are very similar, except for the point on the axis
which will be discussed below.

3._. London Equations, Fluzoid Quantization and the Abrikosov Vortex

In order to interpret this result we would like to review the ordinary London
theory. In the next section we interchange electric and magnetic quantities to get the
dual results.

,..



A concise statement of the London theory is contained in the relation s

._ ,_2 -, -, " .

A+--f=0; (V.A= 0). (14)c

the charge density is zero, then iii this gauge the electric field is given by -A/c and

therefore/_ - A2f/c. This describes a perfect conductor and is just Newton's law for
•,-4. *

free carriers, eE = rag. By taking the curl of Eqn.(14) we obtain the condition for a
perfect diamagnet.

--- (15)VxJ= A2B.

This relation together with Ampere's law V x B = c gives X72B = _2 which
implies that the magnetic field falls off in the interior of the superconductor with a
skin depth A.

Finally the fluxoid is given by the integral

fs - lc,( A2 - hc(B + "_2V x J) .fida= .A +--f). dl----n = n@m (16)c c _e

If the curve C is in a simply connected region of a superconductor, then n -- 0.
However if the curve encircles a hole in the material then n need not be zero but must

be an integer. In an extreme type II Abrikosov vortex, a very small core is comprised
of normal material. A single unit of magnetic flux of radius ,,_ A passes through the

_2_ x d is zero everywhere except iii the region ofvortex. The ftuxoid density B + 7-
the normal material. In the limit in which the core is a delta function we obtain:

B +--v x y =C

Further if we use Ampere's law we can get an analytic expression for B_.

_rn

Bz(r±)- A2V2B_-- _m62(x±); B= = 27rA2Ko(r.L/A). (18)

3.5. Dual Superconductor

We interpret our results using the following relations which are the dual of the
corrsponding relations in the previous section:

---vx = (19)
C

where the unit of electric flux Ge - I/v/ft. Figure 5(c) shows the result of fitting our
data to this relation. The London penetration depth, A, is the only free parameter.
We are able to determine a value of A which gives zero away from the axis and a delta

SWeuse Heaviside-Lorentzunits to be consistent with lattice gauge theory.
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with the correct, coefficient on axis. Further we can check that the electric

profile is given by

¢_ Ko (,'/,_) (20) "e==
function has no free parameters. This curve is also shown in Fig. 6(a) showing

agreement. We find a value of A/a = 0.482 =k0.008, which is consistent
the range of penetration of the electric flux in Fig. 6(a) and the thickness of the

sheet in Fig. 6(b). We expect that, as in a superconductor, the transition
;o the deconfmed phase will be signalled by a divergence of the London penetration

We have therefore measured _ further from the deconfinement transition at

= 0.90, and find a smaller penetration depth of _/a = 0.324-0.02. In the deconfined

fl = 1.1 we fred an almost insignificant value of {V x JM} and fitted values of
were larger than our lattice size.

In summary, one can find a value of the London penetration depth, _, that satisfies
9) off axis. One then finds that for the point on axis, the same value of )_gives

quantum of electric flux as predicted by Eqn.(19). Finally the same value of
ives a good fit to the profile using Eqn.(20). Hence conside-:,_ble detail of the dual

is verified. It is perhaps surprising that a nonhnea-, strongly interacting,
such as U(1) lattice gauge theory could be described by such a simple model

as the linear London equations but our results indicate that the operators /£} and
(_ X fM} when measured in the presence of source of external flux like a Wilson loop,
give an unambiguous indication of the confinement of electric flux by a monopole
current distribution. The simulation yields a large signal even with modesnt amounts
of computer time on a Sun workstation. Although the Meissner effect itself requires
only that Eq. (20) hold off axis, our data also support the more restrictive fluxoid
quantization relation on axis. This additional relation reflects the single-valued nature
of the order parameter in a Ginzburg-Landau description of the monopole condensate.
Because the monopoles appear pointlike in our simulations, lattice gauge theory looks
like an extreme type-II superconductor.
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