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ABSTRACT

We analyze the phenomenon of baryon number violation at finite temperature in the standard

model, and denve the relaxation rate for the baryon density in the high temperawre electroweak
plasma. The relaxation rate, 7 is given in terms of real time correlation functions of the operator

E - B, and is directly proportional to the sphaleron transition rate, I': v o n,I' /T2, Hence it is

nct instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly

how this result is consistent with the methods of CDM, once it is recognized that a new
anomalous commutator is required it their approach.

'On leave of absence, Theoretical Division, Los Alamos National Laboratory, Los Alamos,

NM 87545



1 Introductior

Baryon (and lepton) number is not conserved in the standard SU(2);, x U(1) electroweak
theory. This derives from the fact that the pure SU(2) vacuum is a periodic structure labelled by
an integer Chern-Simons winding number,

2
Ncs = I—gF / »E €ijk (A;‘a,-A: - 'g'fabcA?A:AZ) : (b
In order 1o change from a vacuum configuration with one integer value of Ngg to that with another
inte zer value, it is necessary to pass through non-vacuum. i.e. finite energy ficld contigurations:
Fig. 1. The height of the potential barrier between adjacent vacua is given by the energy of a certain
static solution of the coupled Yang-Mills-Higgs classical field equations, called a sphaleron. In the
Weinberg-Salam theory this energy barrier is of order Mw /aw, or 7 10 10 Tev.! h

Necessarily associated with the twisting of the gauge field from one vacuum state to another is
the violation of chiral fermion number through the chiral anomaly. Because of (maximal) parity
violation, the chiral anomaly becomes an anomaly in the lepton and baryon number currents us
well:

n [} / 14y
a“b“-aulﬂaE.Z_Lﬂ?{__ngF:vFauu+92F“yFF } (2)

Here F};, and F,, are the field strength tensors for the SU(2),, and U( 1) hypercharge gauge fields of
the Weinberg-Salam theory, g and g’ are the corresponding coupling constants, and n, is the number
of sequential generations (families) of quarks and leptons. Since F,, F“* may be expressed as the
total divergence of a four-vector whose time component is just that appearing in the definition of
Ncs. the non-conservation cf B + L is related to the change in Npg of the SU( 2),, gauge viacuum,

Becauss the anomalies in the baryon and lepton currents are identical, the ditference B - I is
exactly conserved in the standard model.

At temperatures and energies low compared to 10 Tev, such transitions and concomitant /2 +
L violation are very severely suppressed.’t Hooft showed that instanton induced baryon number
violating processes involving 12 fenaions (.ur ny = 3) are suppressed by a factor of

exp(—4msin? By /a) ~ 10-'7°, (3)

and hence cre entirely negligible at zero lempermure.'z'

At high temperatures, the situation is quite different. Because ihe energy barrier represented
by the classical sphaleron solution is finite, the rate of classical real time thermal transitions chang-
ing Ncs and therefore, B + L has no such exponential suppressioa in electroweak theory.! M
The rate of such B and L violating processes has been computed in the Weinberg-Salam theory
by semi-classical methods for the temperature range Mw(T) << T << M (1) /ay ' 1Y
At temperatures greater than My (T) /aw, the semi-classical analysis fails because perturbation
theory around the zero temperature ground state is unreliable. The failure of the semi-classical ap-
proximation for the rate does not mean that the rate is small. Though this might scem paradonical



from the point of view of instanton methods.l81 it is borne out by calculations (both analytic and
numerical) in two dimensional models. 13} (911101 1t j5 2150 possibie to argue from general prop-
erties of scaling in the high temperature phase that the rate of such transitions per unit volume is of
order a8, T¢ 1411111

Another line of objection to this conclusion has been raised by Cohen, Dugan and Manohar,! 12
hereafter referred to as CDM. These authors have tried to argue that the rate of dissipation for
any B + L asymmetry remains exponentially small, even though the rate of fliuctuations of Ncg
is large at high temperatures. Such a result would be contrary to quite general thermodynamic
principles which relate fluctuation rates to relaxation processes,! 131 but because of the critical role

of a quantum anomaly in this case, it has nevertheless generated some degree of confusion and
controversy.

The resolution of this controversy is important for cosmology. Since the seminal work of
Sakharov! 141 it has been recognized that the observed baryon number of the universe could be
produced by out of equilibrium reactions which simultaneously violate baryon number, charge
conjugation and CP. Moreover, the baryon number violating reactions must tumn off (i.¢. become
insignificant) before the system returns to thermal equilibrium; otherwise any baryon density pro-
duced will relax to its equilibrium value, namely zero. A high rate of electroweak B + L non-
conservation at " > My therefore carries with it the implication that any pre-existing B + L
asymmetry would be eliminated by the time of the electroweak phase transition.!31-141 1151 Ty,
in order to obtain the observed baryon number either B — L ¥ O at temperatures much greater
than My, or baryogenesis must occur at the time of the electroweak phase transition.! 10! This is a
strong constraint on any theory of baryogene:i:, and excludes some grand unified models (such as

the minimal SU(5) model) for generating the observed baryon excess in the universe, quite apart
from the bounds provided by recent proton decay searches.

Khlebnikov and Shaposhnikov! 11 (KS) used a well-defined formalism to evaluate the non-
equilibrium dynamics of relaxation, and found a large relaxation rate at high temperatures. How-
ever, they did not explicitly evaluate fermionic quantities, which is at the heart of the CDM objcc-
tion. In this contribution we redo the calculation of KS with fermions, and obtain a closed form:
relation between the baryon number relaxation rate and the transition rate. This relation is quite
general, and independent of any sphaleron approximation, in accordance with general fluctuation-
dissipation considerations. The expression (23) for the rate in terms of a certain spectral density
function may provide for techniques of evaluation quite different from sphaleron methods.

Finally, we revisit the analysis of CDM, and show how the methods of those authors may be
uscd to achieve the same result. The new ingredient in our reanalysis of CDM is an anomalous
commutator between baryon number and E - B, neglected in CDM, but required for consistency
with the usual anomaly. Since these several different viewpoints all lead to the same conclusion,
there ought to be no further controversy about unsuppressed electroweak B and L violation at high
temperature and its implication(s) for early universe cosmology.



2 The Baryon and Lepton Number Relaxation Rate

Consider the standard electroweak theory at temperatures above M. In our discussion we
neglect the contribution of the weak hypercharge to the baryon number anomaly. This is done
for simplicity of notation. Inclusion of the hypercharge contribution would not change any of
our conclusions. Let us assume that all of the dynamical variables of the system are in thermal
equilibrium, except two: the baryon and lepton numbers Ng and Ny, which have been driven out
of equilibrium by a small amount due to some unspecified process. The initial condition for our
problem thenis (Np(t = 0)) # 0, (NL (¢t = 0)) # 0, and we wish to calculate the relaxation rate v
for B and L to return to their cqunhbnum value. In statistical mechanics, the time development of

the dynamical variable Np = ‘z.l is given in terms of the statistical average (Ny) = T'r(Nyp) /2
where p(t) is the non-equilibrium statistical operator satisfying the quantum Liouville equation,

p+i[H,p] =0, (4)
and Z = T'rp. Zubarev has shown that the operator

p = exp (—ﬁH +¢ / e (ug(¢INp(t') + uL(t)NL(L)) dt') , E—0'
A (5

=exp (—-A(H + h(1) &

satisfies the Liouville equation in the limit £ — 0* and should be a good approximation in the case
that only a few dynamical variables are out of equilibrium.! 17!

Now, the number operators satisfy the anomalous equations of motion,
Ng=NL-—n,/d’:i'q(t,i')E-n,;—‘:/d’ff“-ﬁ', (6)

where E* and B* are the SU( 2), electroweak clectric and magnetic field strengths. In terms of
the Chem-Simons charge Ngg, we have:

Nn = NL = +n,Ncs. (7
Following KS we evaluate now p/Z to first order in h:

1 l
201+ g(b/'dx e~PHip My _ ﬁfd)e"’"‘\he""‘\);—". (8)
0

]

N

where

t
h = —up(t) Ng(t) + f"“""lnu(c')Nn(t') +up(t)Ng(E)]dt' + (B e L), (9)
—-on



and the zero subscript denotes the equilibrium statistical operator withh = 0.
Lei us calculate first the average baryon number to this order. We find:

1
(Np()) = —ﬂ/dx(NB(t)e-ﬂ"*h(t)eﬁ"*)o, (10)
0

where we have used (Np), = 0. Substituting the previous expression for h, we find that the term
involving Ng vanishes by the time reversal invariance of p in the limit & — 0*. Ignoring the term
involving fip, we obtain:

1
(Na(1)) = Bua(t) [ d\(Na(O)e**Ny(0)e'), .
0

- ﬁ#B(t) (an(o))o'

where the last expression is valid in the high temperature or weak coupling (classical) limit. An
exactly analogous expression holds for (N (t) ). We may differentiate eq. (11) with respecttotime,
to find that ;i 5 is of order €, because of the Liouville equation (4), so that it is indeed legitimate 1o
neglect the time variation of up and u;, in lowest order.

In a similar manner we may compute:

1 t
(Na(D) = —B [dx [ dt'e =0 (up(e) + wa(t)) (Np (e Rp()efM),, (1)
0 -0

i X 1
using (7), (Np), = 0, and (Np(?) ({dk e~#HANp (t)ePH*), = 0 by the time reversal invariance of

the equilibrium state. Since fip 1, are of order €, we may replace up 1 (t') by uy .(t) in the above
expression and remove them from the integral. Then nsing the previous results for (Ny(t)) and
(NL(t)), we may eliminate the chemical potentials from (12) entirely, to arrive at:

Wn) = (Ng ) = — (No) , _(Nu)
)= ) = =1 (5038857 * vy, ) )

where

t 1
K = /dt'e‘“'")/dA(Nn(t)e“’"‘\Nn(t')e""")o. (1)
-on 0

This derivation exactly parallels that of KS! 111, who detive the equivalent result for Nes instead
of for the fermionic operator Np. We now depart from those authors by expressing /C and the high
temperature (sphaleron) transition rate I in terms of the same spectral function, thereby allowing
us to fina a direct relation between the two, independently of any specific approximation scheme,



To this end let us introduce the retarded response function,
Gﬂ(t - t I - I) = -10(t - t’)([q(tlﬂyq(t'n j‘)])o

+o0 L - (135)
='/_°° ;‘“_;_ (‘21.")3e—w(t-l)enk-(z—i')GR(w';c).

whose Fourier transform G, is analytic in the upper half complex w plane:

~ C oo [ p(w'r E)

Gatw, By = [ (16)
The spectral density p (not to be confused with the density matrix of which we have no further use)
is determined by the matrix elements of the topological charge density:

pw, k) (h)

E I (n| q(0) | m), I e~ BIT (1 - e—(E..-l-:_)/r)

where the states | n) are a complete set of eigenstates of the full Hamiltonian with energy eigen-
values E,.

By using the anomaly operator equation (7) and substitnting the same complete set of interme-
diate eigenstates, it may be verified in a direct computation that the quantity K of eq. (14) is given
by:

d -
U2
K= iVﬂfTEGR(W.k) lu-E-O

. ©  dy 0
- —ivaT [7 S (B

- (18)
2 p(u,O)
= V'n,T'n[——w |
dp
- Vn}T-nE wake0’
where we have made use of the fact that
pw) = po(w) — p_(w) = py(w) — ps(—w) (19)

is explicitly an odd function of w when k = 0.

The quanmy.f | <Eap OCCUrS in a quite different context, as the rate for the (Brownian) diffu-
sion of the toplologlcal charge.

§
Q(t) s/) cu'/d’fq(z',f, (20)
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in the periodic potential of Fig. 1. For we may calculate

20y =2V [ 7y SinCwt)
QA0 =2V [ dupe(w,0)
—27Vtp.(0,0), t — 00 (21)
- dp
=27 L— k=0

Since (in the absence of feririons) we define the diffusion coefficient of the random walk in Chemn-
Simons number by:

lim (Q?(2)) = Jim ((Nes(t) — Nes(0))%)

(22)
=2Vitr,
we have proven that
dp
r= ﬂTE waka0
g3 2 (23)
= z—of,_‘, | (n1q(0) | m) |" e B/TE(Ey — E) 8 (fn — Bm),
nm
and therefore,

K=Vur. (24)

which relates the baryon relaxation rate to the finite temperature diffusion rate in the absence of
fermions. The last two expressions remain valid in the presence of fermions as well, provided only
that the baryon number density is small compared to T2, which is the same assumption necessary
to derive the linear relations of eqs. (13).

In the previous literature! 4.4 111 r is evaluated in the semiclassical method of Langer! 18!, which
relates it to the sphaleron energy in a semi-classical approximation. Expression (23) furnishes an a
priori definition of I, which may (in principle) be evaluated from knowledge of the spectral density
function near w = 0. In practice, this is quite difficult since it involves the long time behavior of
the response function, which cannot be calculated in perturbation theory. Euclidean methods are
also of little use since the long time limit is sensitive to any approximation(s) made in Euclidean
time, and hence the continuation is generally unreliable. Nevertheless, we believe it is worthwhile
to have a definition of the rate that is independent of any approximate method of evaluating it.

To complete the evaluation of the relaxation rate we must calculate the demominators of eq.
(13). If we were dealing with a single species of left-handed fermion this would be straightforward
in the regime where the temperature is much higher than fermion masses and chemical potential

p- In that case we would simply compute the partition function of a free fermion gas with a single
helicity state:

2 3 ooyl 2
InZ(u) = VzT E( 734 (l + (uﬁzﬂ) + O(u‘)), (25)
n=l



where 4 is the chemical potentiai for this particle number, whose average is given by:

0 pVT?
= —— = 2
(N) Ta“ In Z(u) 5 (26)
to linear order in 4. The mean square fluctuation of this number is:
T? & 8? vr?
2y o = 2— = —
(N?) = = 3572 Lumo T e Inz| =—2. (27)

which is consistent with egs. (11) and (26).

In the standard model the accounting is a bit differeir. We must consider both baryon and lepton
number together, since both are violated by the transition. Since

1 3
Np = 3 T (NG +N;),
S e=l

NL = E( Nl, + Nv,)r
/

(28)

where f labels the family or sequential generation, we have:

1 2
(NB) = ny x3 x2 xix";—gxﬁg—z;=%nfu3VT2,
(29)

2 1 1
(NL) = NelL (3‘ + -6-) VT2 = EﬂﬂJLVTz,

The fluctuations in these quantities are likewise modified to become:

(Na2(0)), = %n,VT’,
; (30)
(NL2(0)), = En,VT’,

in the high temperature or weak coupling limit. Substituting these last relations into the denomina-

tors of (13), and using the earlier result for K, eq. (24) yields the desired expression for the fevmica
number relaxation rate:

(No) = (o) =~ 25 (3(Nn) + 2(N0)). (31)

If we consider initial conditions with (Ng) = (N ), or simply consider the relaxation of the linear
combination, §(Ng) + 2(NL), the fermion number relaxation rate becomes:

B ;
q—znfTJ‘ (2)

7



There is a simpler, heuristic way to derive this same result, based on detailed balance.!! Sup-
pose for t < 0 constant chemical potentials ug and u/, are added to the Hamiltonian:

H - H — ugNp — N, (33)

so that it becomes ene1getically favorable to create a net baryon and lepton number in the plasma.
From the anomaly equation, this means that the periodic potential of Fig. 1 is replaced by a skewed
potential near Ng = O: Fig. 2. Notice that the minima of Fig. 1 are forced to be degenerate, since
all integer Ngg are equivalent to each other by a (topologically non-trivial) gauge transformation.
Unlike the Chemn-Simons number, Np is gauge-invariant, so that states of different baryon number
may have (and do have) different energies.

For large enough positive Np the potential of Fig. 2 turns upward once more. This is because
of Fermi-Dirac statistics: even if the fermions are treated as massless, it costs energy to create
a fermion/anti-fermion pair with net chirality, since the pair must be created in an unoccupied
momentum state. Since the spacing between states (and hence this energy cost) goes to zero in the
infinite volume limit, the value of Np at which the potential of Fig. 2 begins to turn upward is of
order V. Indeed, to linear order in 4 g explicit evaluation of the thermal average in the Fermi-Dirac
distribution just yields the results, (29) to linear order in ug and p,. The mean Np is shifted to
this positive value, so that the larger population of states with (Ng) > 0 diffusing to lower Ny can
compensate for the energy bias to the right. Hence, there is detailed balance and

(Np) = (NL) = ~n,V(q(t,0)) =0, t<O. (34)

Suppose that the external chemical potentials are removed suddenly at ¢t = 0. Now the large
rate of diffusion to the left from the initial overpopulation with positive Np is nc longer balanced
by an energy bias to the right. Hence there will be a net decrease of (Np) with time, i.e. the net
baryon number will relax to zero. We may calculate the rate of relaxation if we assume that egs.
(29) con’inue to hold for t > 0 as well, effectively defining a slowly varying pp(t) and u(t)
in terms of the decreasing baryon and lepton numbers. That is, we assume that the relaxation is
slow enough so that the system may be weated as approximately in equilibrium at all times during
the relaxation, with an effective time dependent chemical potential. This adiabaticity assumption
permiits us to use detailed balance and equate (‘%F-) fort > O to the negative of the transition rate

to the right with the original skewed Hamiltorian that set up the distribution for t < 0 in the first
place. Therefore,

dN
@) = ~(SEy = (N = 1) = wmglug + ) 7 £>0 (35)
since
M= FeFvWasdl? = r (] 3 "’—(%‘%—“—Q +0(uh) (36)

to linear order in u g and u, in the skewed potential. Then we may eliminate i 5 + i, from eq, (35)
by using eqs. (6) and (29) to secure;

(No) = () = —ny 5 (3 (No) + 2(N0)), 37)

8



which is the same result for the fermion relaxation rate obtained by the more formal Zubarev ap-
proach.



3 CDM Analysis Revisited

CDM also calculate (Nn(t‘)). However, they use a trick to obtain the thermal average in terms
of the derivative of a generating function F(8), defined in terms of the generalized electroweak
Hamiltonian

3= 2 =2
H(0) = - [ #2{(1 + ay5=B)" + (B)*} + Hyurmic (38)
where
n= —ﬁ aw-z-—B (39)
is the momemtum conjugate to the gauge field. Define:
e PP = Tr(ePH®) (40)
such that
oF
50 o= ~(f 2 a) = 0. “n

In fact, all derivatives of F'(9) vanish because F is independent of 6, as we now demonstrate.
In order to do so it is sufficient to show that

e—NBOH (9)e'NBY = exp (n,¢%) H(6) = H(8 + nsd), (42)

i.e. that a baryon aumber phase rotation can be used to rotate the angle @ 10 zero in the electroweuk
theory. Expanding (42) in a power series in ¢ gives:

2
H(n9) = H(0) ~ i¢[Na, H(0)] - £-(Ng, [Ng, H(O)IT + - (43)
The second term on the RHS is given by the anomaly eq. (6):

~ i6[Na, H(O)] = ¢Np = ~ny$ [ 2 q = +m9 2 (44)

om0 °

This verifies the first derivative term of the expansion. Integrating the anomaly relation Ny =
n/Ncs and ﬁxmg the gauge by the condition that Nog = 0 when Np = O permits us to write the
commutator in the third term on the RHS Of (43) as:

—[Np,[Np,H(0)]] = —n/[NcS,[Np,H(0)]]
- —n,[Ncs, —I'n,/djf(“
] (45)
- 2 gg IR . Ro '
+n’(21r) /dzll B
,0'H
= "156% lowo -

10



This verifies that terms quadratic in ¢ in eq. (43) are correct. Since B2 no longer involves the
electric field operator, its commutator with Ngg and Np vanishes, as do all the higher order com-
mutators in the ellipsis, consistent with the fact

o"H
ag»

‘_°=O,n> 2. (46)

Thus, consistency requires a new anomalous commutator, viz.
[No, [ &2 q] = —iny (%)/d’i’ﬁz, (47)

in addition to the original anomaly, eq. (6). If desired, one may verify this new anomalous commu-
tator directly in terms of the canonical commutation relations of the theory, by defining the operator
Np composed of fermion bilinears in terms of a gauge-invariant point splitting technique. Inser-
tion of the path ordered exponential of [ dz*A; between the fermion opz=rators yields the anomalous
commutator (47), which remains after the point splitting has been removed.

Hence eq. (42) is proven, and indeed we may rotate away the angle 8 in eq. (40), proving that
F(6) = F(0) is independent of . Notice that this conclusion, verifiable also in a Lagrangian path
integral approach requires the anomalous commutator (47). By taking the second derivative of F
with respect to 8 and using the fact that F is independent of 8, we find:

(fd’a':‘Bz), = ﬂ(/d’:‘:‘E ‘B /dx e"’""/d’i’ E' B'efH)) (48)

Let us now consider non-equilibrium dynamics. As a trial non-equilibrium statistical operator,
CDM consider the local operator,

pe = N exp (—ﬂ (H(o)*'ECLOA(O))). (49)
N

where the O, are arbitrary operators and the c, are arbitrary coefficients. Define F(8) as before with
this new statistical operator e#M?) = T'r( py) with 0,(6) = e~ B0, NV ynd ¢ = §/n,.
Then F'(8) = F(0) as before. Differentiating F° with respect to § we obtain:

ny([ @2q) = ~i T ex ((Nu, Oul), (50)
k

to first order in the small parameters c;.

CDM consider operators satisfying [Ng, 0,] = n,Q,, but they do not consider operators such
as O = Np = —n, [ d&*7 q. Using the anomalous commutator, eq. (47), for this single operator,

we obtain: )
. nsa,,
ey e (3 f am,



Notice that this estimate for (Ng) is not small or instanton suppressed. If we replace the non-
equilibrium statistical operator of KS and the perturbing Hamiltonian of Zubarev with the local
term,

h(:)m‘—“f—;,“—")nn =cO, (52)

which is valid in the limit that the autocorrelation furction for Ng has support only when the time
interval is of order T-!, then eq. (51), obtained by the CDM local operator method, is identical to
eq. (12) of the previous section, since:

K= f dt'e =" (Np(t) f d) e=PMANp (1) P,
-0 0

R (n,zc:, )3 ﬁ(/d’zE -B/dk e"’"‘/d’yE ‘Befty, (53)

- (%) ([ @am
by eq. (48).

Thus, the main results of this paper, eqs. (23)-(24), and (31)-(32) relating the dissipation of
fermion number at high temperature to the fluctuation or diffusion rate over the potential barrier are
consistent with the methods of CDM, provided account is taken of the anomalous commutator (47).
The relation (32) is a reflection of general fluctuation-diisipation theorems, and is a kind of analog
to the relation found by Einstein for Brownian motion in a medium.! 131 The local approximation

of CDM leads to the estimate, R
Oy 2
I (ﬁ) (B?), (54)
by combining eqs (24) and (53). Actually, we might expect the time scale for the correlation func-
tion (14) to decay to be of order («,, T") ~! rather than T}, since the former is the inverse dimen-
sional coupling of the three dimensional gauge theory appropriate at high temperature. Then the
above estimate for I would be enhanced by a factor of a;' relative to (54). The sume dimensional

coupling enters the magnetic screening length.‘g‘ s0 that we should expect:

(B?), ma’T* (55)
and -
| =Y o—;’;?—;-— (56)

at high temperature. If the scaling reletinn I' oc a.‘,T‘ is correct, then the dissipation rate of baryon
number in the hot electroweak plasma is of order nya}, T', which is much larger than the expansion
rate of the universs at these temperatures. In the next contribution, Cline and Raby.! 19! derive

relations between the supposed high energy behavior of B violating inclusive cross sections that
imply results for I different from this naive scaling behavior.

12
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Figure Captions

Fig. 1
The periodic vacuum structure of non-abelian gauge theory in the absence of fermions.

Fig. 2
\The potential energy of gauge field plus massless fermion system as a function of fermion number.

The potential is concave for large Np in a finite volume, due to Fermi-Dirac statistics, as explained
in the text.
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