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ABSTRACT

We analyze the phenomenon of baryon number violation at finite tempcrtiturc in tk stumlw-d
model, and &nve the relaxation rate for the baryon density in the high temper:uure eltxtrow; ik
plasma, The relaxation rate, ~ i. given in terms of real time correltition functions of’the operutor
E . B, and is directly proportional to the sphitleron transition rate, r: ~ a ~jr/2?3. l-{tnw it is

net instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM), We show explicitly
how this result is consistent with the methods of CDM, once it is recognized thut ;I IICW

anomalous commutator is required it their ilpproii~h,

‘on Icwc of ttbscncc,Thcorctkxd Division, Los Alanms Nmiomd Lubormry, Los AIUIIIOS,

NM 87S45



1 Introductio~

Baryon (and lepton) number is not conserved in the standard SCl( 2)/, x U ( I ) el~c[ro~cilk
theory. This derives from the fact that the pure Su( 2) vacuum is u periodic struclurc l;lbelled by
an integer Chem-Simons winding number,

(1)

In order to change from a vacuum configuration with one integer vidue of LNcsm [h;l[ with ilno[htr
inte3cr value, it is necessary to pass through non-vacuum. i.e. jini(c energy iicld colltigl!r;l[iolls:”

Fig. 1. The height of the pxential banier between adjacent vucua is given by the energy of:1 ~~~ilill

static solution of the coupled Yang-Mills-Higgs classical field equwions, called ii sphukron. In Ilw

WeinbergSalam theo~ this energy banier is of order MLV/eUw,or 7 to 10 Tev.[ ]1

Necessarily associated with the twisting of the gauge field from one vucuum sm[e 10immher is
the violation of chid fermion number through the chiral anomaly. Because of (mtiximul) purity
violation, the chiral anomaly becomes an anomaly in the Iepton and baryon number curren[s tis
well:

(2)

He= ~w and q. ~ the field sf=ngth tenscws for the SCJ( 2)L and U( 1) hy~rcha.rge gtiuge fields of
the Weinberg-Salam theory, g and g’ are the comesponding coupling constants, and nf is the number
of sequential generations (families) of quarks and lepmns. Since FU#u” may be expressed M the
total divergence of a four-vector whose time component is just that appearing in [he definition of
NCS, the non-conservation cf /3 + L is related to the change in Ncs of the SCI( 2)/, giluge vil~~um,
Becaus: the anomalies in the baryon and lepton currents are identical, the difference B - L is
exactly consemd in the standard model.

At temperatures and energies low compared to 10 Tev, such trimsi[ions WKIconcomi[iln[”/l +
L violation arc very severely suppressed.’! !-looft showed that instunmn induced biivon nulllbcr
violaang pruesses involving 12 fennions (iw nf - 3) are suppressed by a ftic[or of

exp( -4n sinz OW/a) - 10-’70, (.1)

and hence MCentirely negligible at zerotemprature.121

At high temperatures, the situation is quite different, Because ;he energy Imrricr rcprcwtllc,l
by the classical sphaleron solution is finite, the rate of clussical rml [imc lh~nniil lr;msiticmsuh; lng-

11 171ing Ncs and therefore, D + L has no su:h exponential suppressio,l in e]cc[rowcuk [Iwory,l-
7he rateof such B and L violating processes has been computed in tt~cW~inh~rg-S:llillll [Ilc(jry
by semi-classical methods for the tem~rwure range Mw( T) <: r << ,iflv( ‘f”)/cklv, I‘1 I fl

At tem~ratures greater than Mw( 1’)/dw, the semi-cltissictil ilniily~is fuils btx;Iuw lwrlurhilll[~ll
theory around the zero tem~ramm ground sttite is utl~liilbl~, The fxilurr of ;hc \~tlli-cl;l\\icill :11)

proximation for the rate d(Ks not mean [hot Ihe rutc is snulll, “1’ht)ugll[his Itligh[ ~u~’tlil~;lrwlf}~l~;ll
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from the point of view of instanton methods,[ 8] it is borne out by calculations (bwh andyk iit]d

numerical) in two dimensional models. [51[91[ 10] It is also possibie to argue from generul prop-
erties of scaling in the high temperature phase that the rate of such transitions per unit volume is of

4[4] [111order dfiT .

Another line of objection to this conclusion has been raised by Cohen, Duganundhfunohar,[’21
hereafter referred to as CDM. These authors have tied to argue that the rate of dissipufiou fw
any El + L asymmetry remains exponentially small, even though the rate ofjlucmutiom of LNcs
is large at high temperatures. Such a result would be contrary to quite general [hwrnodynamic

principles which relate fluctuation rates to relaxation processes, [131but beca~se of the criticid role

of a quantum anomaly in this case, it has nevenheless generated some degree of confusion und
controversy.

The resolution of this controversy is important for cosmology. Since [he seminal work of
Sakharov[ 141 it has been recognized that the observed baryon number of the universe could be
produced by out of equilibrium reactions which simultaneously violate bwyon number, chqe
conjugation and CP. Moreover, the baryon number violating reactions must mm off (i.e. become
insignificant) before the system returns to thermal equilibrium; otherwise any baryon density pro-
duced will relax to its equilibrium value, namely zero. A high rate of e!ectrowetik B + L non-
conservation at T > Mw therefore canies with itthe implication that any pre-exis!’,ng B + L
asymmetry would be eliminated by the time of the electrowea.k phase transition.[ 31‘[41 I 151Thus,

in order to obtain the observed baryon number either B – L # O at temperatures much greater

than Alw, or baryogenesis must occur at the time of the clectrowcak phase transition.’ 161This is ~
strong constraint on any theory of baryogene!ii, and excludes some grand unified models (such w
the minimal H/( 5) model) for generating the obswed ba.ryon excess in the universe, qui[e upon
from the bounds provided by recent proton decay searches.

Khlebnikov and Shaposhnikov[ 111(KS) used a well-defined fomudism to evaluate the non-
equilibrium dynamics of relaxation, and found a large relaxation rate at high [temperatures. How-
ever, they did not explicitly evaluate ~ennionic quantities, which is at the hewl of !hc CDM objec-
tion. In this contribution wc redo the calculation of KS with fermions, and obtain a closed form
relation between the baryon number relaxation rate and the transition rim. This rchion is quiw
general, and independent of any sphideron approximation, in accordance with gcnerul lluctuoti(m-

dissipation considerations. The expression (23) for the r;t[e in terms of iI certnin sp~~trill dcnsily

function may provide for techniques of evaluation quite different from sphulcr(m methods.

Finally, we revisit the analysis of CDM, and show how the methods of those uuthors miIy bt
used to achieve the same result. The ncw ingredient in our rewulysis of CDN1 is ;II1 iiilotlliilolis”
commutator between baryon number and E . B, neglected in CDM, but rcquird for con:;is[clwy
with the usual anomaly. Since these severiil different vicwpoin[s uII Icud m Ihc siltll~ conclusion, ”

there ought to be no further controversy about unsuppressed electrowcitk D iInd L violiltiol]” ;II high
temperature and its implication(s) for curly universe cosmology.
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2 The Baryon and Lepton Number Relaxation Rate

Consider the standard dCCKOWCak theory at temperatures above MLV. In our discussion we
neglect the conrnbution of the weak hypercharge to the baryon number anormdy. This is done
for simplicity of notation. Inclusion of the h~rcharge contribution would not change any of
our conclusions. Let us assume that all of the dynamical variables of the system are in [hermal
quilibrium, except two: the baryon and lcpton numbers NB and NL, which have been driven out
of equilibrium by a small amount due to some unspecified prwess. The initial condition for our

problem then is (NB(t = O)) #O, (NL(t = O)) #O, and we wish to calculate the relaxation rate q
for B and L to return to their c~uilibrium value. In statistical mechanics, the time development of

~ is given in terms of the statistical average (N,,) s Tr( ~IIp)/Zthe dynamical variable ~B s ‘h
where p(t) is the non-equilibnum statmical operator satisfying the quantum Liouville equation,

j+i[H, p]=O, (4)

and Z = Trp. Zubarev has shown that the operator

satisfies the Liouville equation in the limit c -0 + and should be a good approximation ]n the case
that only a few dynamical variables are out of equilibrium.1 171

Now, the number operators satisfy the anomalous equations of motion,

(6)

where I?” and ~“ are the Su( 2)L clectrowcak electric and magnetic field strengths, In terms of

the Chem-Simons charge Nc~, wc have:

~D - NL=+nfNCs. (7)

Following KS we evaluate now p/Z m first order in h:

(H)
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and the zero subscript denotes the equilibrium statistical operator with h = O.

LCLus calculate first the average baryon numb to this order. We find:

1

{h(t)) = –@/dA(NB(t)e-pH’ h(t)epHA)o,

o

( lo)

where we have used (Na )0 = O. Substituting the previous expression for h, Ive find thm the term

involving ~D vanishes by the time reversal invariance of p in the limit E - O+. Ignoring [he term
involving ~B, we obtain:

(NB(t)) = ~pB(t) ~dA(NB(0)e-BHkNu (O)e~ll’)o
o ’11)

-O BPB(~)(NB2(0)o,

where the last expression is valid in the high temperatu~ or weak coupling (ckwsicid) limit. An
exactly analogous expression holds for (NL ( t) ). We may differentiate eq. (11) with respect 10time,
to find that ~E is of orders, because of the Liouville equation (4), so that it is indeed Iegitim;ite 10
neglect the rime vaxiation of pa and ~~ in lowest order.

In a similar manner we may compute:

using (7), (Na )0 = O, and (NB(t) ~ ch e-~HAND(t)e$H1)O = O by the time reversal inviwi;mcc of
n

the equilibrium state. Since fi~,L are of order c, we may replace ~Ij,~,(t’) by PIJ,I,(t) in the abow

expression and remove them from the integral. Then ming [he previous resuhs for (Nll ( t)) ml
(NL(t)), we may eliminate the chemical potentials from (12) entirely, to arrive at:

(N,,) = (N~) = -K ( (NI) (NL) )(NU2(0))0 +(NL2(()))0 ‘
(13)

where
t

K a / ~~’ec(f’-t) ‘/( (fA N~(t)e-pl[ANl~( t’)eStlA)O, ( l-l)
-m o

This derivtition exactly parallels that of KS[ 1*1,who de[ive the equivalent result for Nc~ il~s[~id
of for the fermiomc operittor NO. We now depart from those authors by expressing K unclIIWhigh
tcmperiiture (sphuleron) transition rate r in terms of the sume spcctriil function, tlwrcby ullowing
us to finu a direct rclution between the two, independently of ilny specific upproximi~tion SUIIUIIIC,

4



To this end let us introduce the retar&d response function,

GR(t-t’, ~-?) - -ie(t–t’) ([q(t, n,q(t’, ~)]),

whose Fourier transform CR is analytic in the upper half complex w pkme:

GR(LAE)=I“m&J’
p(w’, h

-a u -~’+jc’

(15)

( 16)

The spectral density p (not to be confused with the density marnx of which we have no further use)
is determined by the matrix elements of the topological charge density:

(2m)3
p(w,i) = =x I (~ I q(o) I m), l’ ,-~ir (1 - ,-(E.-Em)/r)~m

Xb(kl -Era+ lL)63(Lpm+ pm), (17)

where the states I n) are a complete set of eigenstates of the full Hamihonian with energy eigen-
values Em.

By using the anomaly operaor quation (7) and substitming the same complete set of interme-
diate eigenstates, it may be verified in a direct computation that the quantity K of eq. ( 14) is given
by:

&

w - i&[
P(w16)

w 1

where we have made use of the fact that

o(w) -p+(w) -p-(w) = p+(w) -p+(-u) ( ]())

is explicitly an odd function of w when ~ = O,

The quantity, 21 ~.g.o occurs in a quite different context, as the rate for the (Browniiln) tiiffu-

sion of the topological charge,

Q(t) +ft’/kq(t’,Fj ( 20)
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in the pericdic potential of Fig. 1. For we may calculate

[
(Q*(O), = 2V a~~+(W,@sin:2Ut)o

+27rvtp+(olo)l t-b (xi

Since (in the absence of fermions) we define the diffusion coefficient of the random walk in Chem-
Simons number by:

lim (Q2(t)) = )imJ(Ncs(t) – Ncs(0))2)
t- ( 22)

=2vtr,

we have proven that

( 23)

and therefore,
K = v~~r. ( 24)

which relates the baryon relaxation rate to the finite temperature diffusion rate in the absence of
fermions. The last two expressions remain valid in the presence of fermions as well, provided only
that the baryon number density is small compared to T3, which {s the same assumption necessary
to derive the linear relations of qs. (13).

In the previous literature14111111r is evaluated in the semiclassical method of Lange+ 181,which
relates it to the sphaleron energy in a semi-classical approximation. Expression (23) furnishes an a
priori definition of r, which may (in principle) be evaluated from knowledge of the spectral density
function near u = O. In practice, this is quite difficult since it involves the long time behavior of
the response function, which cannot & calculated in ~rturbation theory. Euclidean methods are
also of little usc since the long time limit is sensitive to any approximation(s) made in Euclidean
time, and hence the continuation is generally unreliable. Nevertheless, we believe it is worthwhile
to have a definition of the rate that is independent of any approximate method of evaluating it.

To complete the evaluation of the relaxation rate we must calculate the demominmors of eq.
(13). If we were dealing with a single species of left-handed fermion this would be straightforwm.1
in the regime where the temperature is much higher than fennion masses and chemical poten[i:ll
p. In that case we would simply compute the partition function of a free fennicm gus with u single
helicity state:
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where ~ is the chemical potentiai for this particle number, whose averiige is given by:

a pVT2
(N)= Tzln Z(p)=~

to linear order in p. The mean square fluctuation of this number is:

( 27)

which is consistent with eqs. (11) and (26).

In the standard model the accounting is a bit diffemiu. We must conside: both baryon and lepton
number together, since both am violated by the transition. Since

when~lal.wls the family or sequential generation, we have:

(29)

TIMfluctuations in these quantities are likewise modified to become:

(NB2(0))0 = ~nfVT3,
( 30)

(NL2(0)0 = ~nfVT3,

in the high temperature or weak coupling limit. Substituting these last relations into the denomin~-
tors of (13), and using the earlier result for K, eq. (24) yields the desired expression for the fe,mic.n
numhr relaxation rate:

(~B)= (~~) = -w
773 (;(Nd + 2(NL)) , (31)

If we consider initial conditions with (ND) = (NL ), or simply consider the relaxation of the linear
combination, ~(NE) + 2 (NL ), the fermion number relaxation rate becomes:

( 32)
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There is a simpler, heuristic way to derive this same result, based on detailed baltmce.141Sup-
pose for t <0 constant chemical potentials PB and p~ are added to the Hamiltonian:

H- H–pBNB-pLNL, ( 33)

so that it becomes energetically favorable to create a net baryon and lepton number in the plasma.
From the anomaly equation, this means that the periodic potential of Fig. 1 is replaced by a skewed
potential near NIj = O: Fig. 2. Notice that the minima of Fig. 1 are forced to be degenerate, since
all integer Nc~ are equivalent to each other by a (topologica!ly non-trivial) gauge transformmion.
Unlike the Chem-Simons number, NB is gauge-invariant, so that states of different baryon number
may have (and do have) different energies.

For large enough positive NB the potential of Fig. 2 turns upward once more. This is because
of Fermi-iXmc statistics: even if the fermions are treated as massless, it costs energy to create
a fermion/anti-fermion pair with net chirality, since the pair must be created in an unoccupied
momentum state. Since the spacing between states (and hence this energy cost) goes to zero in the
infinite volume limit, the value of NB at which the potential of Fig. 2 begins to turn upward is of
order V. In- to linear order in PB explicit evaluation of the themal average in the Fermi-Dirac
distribution just yields the results, (29) to linear order in UB anti pr,. The mean Nn is shifted to
this positive value, so that the larger population of states with (NII) >0 diffusing to lower NII can
compensate for the energy bias to the right. Hence, there is detailed balance and

(~B) = (~~) = -TL,V(q(t,6)) = O, t<o. ( 34)

Suppose that the external chemical potentials are removed suddenly at t = O. Now the Itirge
rate of diffusion to the left from the initial overpopulation with positive ND is ne longer balunced
by an energy bias to the right. Hence there will be a net decrease of (ND) with time, i.e. the net

baryon number will relax to zero. We may calculate the rate of relaxation if we assume that eqs.
(29) con?inue to hold fort >0 as well, effectively defining a sfowfy varying PD( t) and ~L( t)
in terms of the decreasing baryon and lepton numbers. That is, we assume that the relaxation is
slow enough so that the system may lx treated as approximately in equilibrium m all times during
the relaxation, with an effective time dependent chemical potential. This adiabmicity assumption

permits us to use detailed balance and equate (~) fort >0 to the negufive of the transition rate
to the right with the original skewed Hamiltor,ian that set up the distribution fort <0 in the first
place. Therefore,

(q(t)) = -(*)= -u. - r.)= +vb. + d ~, t>o

since

( 35)

( 36)

to linear order in Pa and PL in the skewed potential. Then we may eliminate pD + PL from eq, (35)
by using eqs. (6) and (29) to secure:

((~~)= (~L)= -.,; ~ N )~ z{ O)+2(NL) , ( 37)



which is the same result for the fermion relaxation rate obtained by the more formal Zubwev ap-
proach.
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3 CDM Analysis Revisited

CDM also calculate (NR(~j ). However,theyuse a trick to obtain the thermal average in terms
of the derivative of a generating function F( t?), defined in terms of the generalized electroweak
Hamiltonian

H(O) = ~~d3E{(fi + ~W~~)2 + (~)z} + Hf@~*im ( 38)

where
fi-ti +?+ ( 39)

is the momemtum conjugate to the gauge fielcL Define:

_ ~r( #W))e-mo = ( 40)

such that
~F
~ 04 = -(pm), = o. (41)

In fact, ulf derivatives of F( 6) vanish because F is independent of 0, as wc now demonstrate.
In order to do so it is sufficient to show that

e () a H(0) =H(t7+ ~@),-iNB#H ( o) eiNII4 = exp nf+x (42)

i.e. that a baryon i~umberphase rotation can be used to rotate the angle Oto zero in the clectroweuk
theory. Expanding (42) in a ~wer series in # gives:

H(nf#) = H(0) -i#[NB, H(0)] -
42

#NB, [~B, H(())]]+w. (43)

‘I?tvsecond term on the RHS is given by the anomaly eq. (6):

aH
- i#[NB, H(0)] s @IB = -nf~/d33q = +nj~w ( 44)

‘Ibis verifies the M derivative term of the expansion. Integrating M anomaly relation ~11 =
n#Ics and fixing the gauge by the condition that NCS = O when ND = O permits us to write the
commutator in the third term on the RHS Of(43) as:

-[ NB, [NB, Ii(0)]] = -nj[NcS, [Bin, H(o)ll

(45)
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This vcri!ies that terms quadratic in ~ in eq. (43) are correct. Since ~2 no longer involves [he
electric field o~rator, its commutator with NCS and NB vanishes, as do all [he higher order com-

mutators in the ellipsis, consistent with the fact

anH
~ 0=0=o, n>2.

Thus, consistency mqui.ms a new anomalous commutator, viz,

( 46)

(47)

in addition to the original anomaly, q (6). If desired, one may verify this new anomtilous commu-

tator di.rcct.ly in terms of the canonical commutation relations of the theory, by defi ning the opermor
NB composed of fermion bilinears in terms of a gauge-invariant point splitting iechnique. inser-
tion of the path ordered exponential of J dziAi between the fermion opsrmors yields Ihe imomulous
commutator (47), which remains after the point splitting has been removed.

Hence q. (42) is proven, and indeed we may rotate away the angle 6 in eq. (40), proving ~h:l~
F(0) = F(O) is independent of 6. Notice that this conclusion, verifiable also in a Ltigrangian pmh

integral approach requires the anomalous commutator (47). By taking the second derivative of F
with respect to 0 and using the fact that F is independent of 6, we find:

(48)

Let us now consider non-equilibrium dynamics. As a trial non-equilibrium stittistical operwor,
CDM consider the local opetator,

PO = N CXP (( ))-~H(O) + ~cLok(#) ,

k

( 49)

where the Ok are arbitrary operators and the Chare arbitrory coefficients. Define F( 0) as before with
XD(040~ ~1~11(~)~Ond# = O/nf.this new statistical operator e-~p(o) s Tr(pt) with C)~(0) = e-”

Then F(d) = F(O) as before. Differentiating F with respect to 0 we obtain:

/
n~( d’zq) = ‘i~c& ([ Nu, Ok])O,

k

( 50)

to first order in the small parameters c~.

CDM consider operators satisfying [ ND, Ok] - Wok, but they do not consider opcrumrs such

as O=Nn= —nff d3E q. Using the anomalous commutator, cq. (47), for this single opcr;l[or,
we obtain:

‘N”)*-C (%92 WZD2)0
(51)

11



Notice that this estimate for (~B ) is not smtdl or insfanton suppressed. If we replace the non-

equilibrium statistical operator of KS and the perturbing !%miltonian of Zubarev with the Iocul
term,

h(~) x ‘pB+P~)~B
T

5C0, ( 52)

which is valid in the limit that the autcxonelation fucction for NB has support only when the time
interval is of order 2“-’, then q. (51), obtained by the CDM 10CCI1operator me[hod, is identical to

q (12) of the previous section, since:

t

K.
/

d’#’’-’)(~B(~)) d e-BHA~B(~’)#H’)o

++?(pz:.Bpe-~H@ .lh@H~)o (53)

“ (w2@3’B2)”
by q (48).

Thus, the main results of this paper, qs. (23)-(24), and (31)=(32) relating the dissipation of
fermion number at high tcmpcraturc to the fluctuation or diffusion rate over the potential barrier arc
consistmt with the methods of CDM, provided account is taken of the anomalous commutator (47).
The rdation (32) is a reflection of general fluctuationdiisipation theorems, and is a kind ot’analog
to the relation found by Einstein for Brownian motion in a medium.i 131The lociIl approximmion
of CDM leads to the estimate,

()
( 54)~ ~ * 2(W),

by combining qs (24) and (53). Actually, wc might expect the time scale for the ccmclmion func-
tion (14) to decay to be of order (CUWT)-l rather than T-l, since the former is the inverse dimen-
sional coupling of the the dimensional gauge theory appropriate at high temperature, Then the
above estimate for r would bc enhanced by a factor of ~j’ relative to (54). The sume dimensiontil

coupling enters the magnetic scrccning lengthlg~ so that we should expect:

and

(55)

at high temperature, If the scaling rclmhwt r a a~Z’4 h correct, then [he dissipuiiotl riitc of bwyon
number in the hot clectroweak plasma is of order nler~T, which is much larger than the cxp;msi(m

rate of the univertm at these tcmptturcs. In the next contribution, Clint tind Kilby.’19’ (Icrivc

relations bctwccn the supposed high energy behavior of 13violating inclusive cross sccliotls Ih;II

imply results for t’ different from this naive scaling behuvior,
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Figure Captions

\

Fig. 1
The periodic vacuum strueturc of non-abclian gauge theory in the absence of fmnions.

Fig. 2

\
The potential energy of gauge field plus massless fermion system as a function of fctrnion number.
The potential is concave for large NB in a finite volume, due to Fermi-Dime statistics, as explained
in the text.
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