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Abstract

The reconnection and relaxation of two-dimensional stressed (non-potential) x-type

neutral point magnetic fields are studied via solution of the nonlinear resistive2-D MHD

equations and by analytical solution of the linear eigenvalue problem. Previous linear

studies II. Craig and A. McClymont, Ap. J. 371, L41 (1991); A. Hassam, Preprint

UMLPR 92-046, Univ. of Maryland (1991); Craig and Watson, Ap. J. 393,385 (1992)]

have shown that such stressed fields may relax on a time substantially shorter (i.e.

,'- Ilog til, where r/ is the resistivity) than the usual time scale for linear reconnection

(i.e. q3/s). We have gener_dized the linear dispersion relation for azimuthally non-

symmetric perturbatioiIs, and ll_we found that for modes with azimuthal mode numbers

m > 0, the rel_txation tall o('('_lr _Lta rate faster than that for n = m = 0, where n is the

a)Present address: NASA C',od(lar(l .%_'l)ace Flight Center, Code 682.1, Greenbelt, MD 20771
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radial "qu,'mtum" number. We find that for nearly azimuth'ally symmetric magnetic

perturbations that are zero at the boundary; i.e. the "frozen-in" (sometimes cMled

"line-tied") b,mndai'y conditions, the tields relax incompressibly a,nd nonlinearly to

tile unstressed z-type neutral point at a rate close to that predicted by linear theory.

Also, fully compressible nonlinear MttD simulations have been performed, which show

that the interaction between the plasma flow velocity and the magnetic field is the

importa, nt physicM etf'ect, while tile inclusion of thermodynamics does not affect the

evolution considerably. A Lyapunov functional for the nonlinear incompressible 2-D

resistive XIHD equations is derived to show that the current-free x-point configuration

is a global equilibrium to which general initial conditions relax.



I. Introduction

Magnetic reconnection is believed to occur in solar coronal loops, the magnetopause bound-

ary, tile solar wind, extragalactic jets and fusion experiments. Giovanelli (1947) was the

first to observe that solar flares fl'equently occur near magnetic neutral points. Based on

these observations Dungey (1._t53, 1958) proposed an x-type neutral point mechanism for

particle acceleration, the onset of sheet currents, and the energy release in solar flares, pro-

vided that the magnetic field sources are free to move. Chapman and Kendall (1962) solved

the nonlinear ideal MHD equations for the x-type neutral point and found growth on an

Alfvcln time scale, while Syrovatsky (1966) included the mechanism in a solar flare model.

Sweet (1958) and Parker (t963) used dimensional arguments for a model involving merging

of antiparallel magnetic fields, and concluded that the reconnection rate scales as 771/2,while

Petschek (1964) predicted an Alfv4nic reconnection rate based on semi-quantitative Alfv4n

shock wave solutions. Furth, Killeen and Rosenbluth (1963) developed an analytic boundary

layer theory, and derived the 773/slinear tearing growth rate scaling, while Rutherford (1973)

considered the nonlinear stage and found that the reconnected flux • ,-, r/t and the recon-

nection rate diminishes from an exponential to an algebraic rate. Recently, Hassam (1991)

has considered an z-point magnetic field configuration with the frozen-in boundary condi-

tions and has analytically solved the linearized compressible low-beta MHD equations, for

azimuthally symmetric rn = 0 modes. Craig and McClymont (1991), and Craig and Watson

(1992) numerically solved the linearized low-beta MHD equations for this problem. They

found that the perturbed z-point magnetic configuration relaxes to the potential (current-

free) x-point with an intermediate decay rate that is slower than the Alfv4n rate, but faster

than the resistive diffusion rate. Experimental studies by Bratenahl and Yeates (1970), Baum

and Bratenahl (1974a,b), Baum ct. al. (1973a,b) found that the initially perturbed x-type



magnetic field configuration rapidly relaxes to the potential state. For a detailed review s(_

for example Priest (1981), Syrovatsky (1981) and reference therein.

Here we solve the 2-D nonlinear resistive MHD equations for both fully compressible

(without restrictions on the value of the pressure) and incompressible plasma with the frozen-

irl boundary condition. Both the linear and nonlinear relaxation rates of the stressed (per-

turbed) z-point back to the potential z-point configuration are obtained. In addition we have

obtained a general dispersion ,'elation that includes the azimuthally non-symmetric m > 0

modes, as well as the rn = 0 mode, and have compared the results of the linear dispersion

relation with the nonlinear simulations. By considering both compressible and incompress-

ible dynamics we show that the physics is dominated by the coupling of the magnetic field

to the inertial terms, and that thermodynamics plays a minimal role. Finally, we obtain a

Lyapunov functional for the nonlinear incompressible 2-D resistive MHD equations, which

shows that tile potential :r-t)oint with the frozen-in boundary conditions is an equilibrium

state to which ali initial conditions relax.

The effect of free boundary conditions; i.e. where the plasma is allowed to flow through

the boundary and where t;he magnetic field at the boundary is free to adjust, was considered

in a separate study (Ofman, 1992; Steinolfson et al., 1992.) There it was found for the free

boundary conditions that the z-point evolves into a current sheet and the perturbation grows

(rather than relaxes) on an Alfv6n time scale.

This paper is organized as follows: In § 2 the basic MHD equations for our model, and

the initial magnetic field configuration are presented. In § 3 we derive the linear dispersion

relation. The numerical results of the nonlinear MHD simulations are presented in § 4, and

the Lyapunov relaxation argu,,l_,llts are given in §-5. The summary and discussion are in

_(_.
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II. Incompressible 2-D MHD Equations

\Ve &ssttIlle that collisional NIHD theory (Drake and Lee, 1977) is applicable, that the plasma

resistivity l1is constant and isotropic, and that gravitational and viscous effects are negligible.

With these assumptions th_' basic equations in cgs units are:

[°v ]pL_+(v.V)v =-VP+_--_-(V×B) ×B (1)

?)B c2_ V × (V × B) (2)0t =V×(v×B)- 4-7

0p
0_ + v. (pv) = 0 (3)

V.B=0 (4)

_1--7, = 0, (s)

where c is the speed of light, p is the plasma density, B is the magnetic field, v is the

velocity field, P is the pressure, and % is the polytropic index. We use Eqs. (1)-(5) with

the equilibrium of Eq. (8) below. Assuming that the evolution is two-dimensional (_ - 0),

the above set of equations is solved using three separate approaches:

1. Solution of the dispersion relation arising from the linearized Eqs. (1)-(4) with the

assumption V P = 0 in Eq. (1).

2. Numerical solution of the 2-D MHD equations in slab geometry given below-in Eqs. (§)

and (10), which are obtained from Eqs. (1)-(4) with the assumption of incompressibility

(V.v =0).

3. Numerical solution of tl_(.'compressible MHD Equations (1)--(3) and gq. (5)in the

(r,O) plane without any t'urtt_er approximations [gq. (4) is not solved explicitly].



The linea¢ized equations resulting from the first approach and their solution will be presented

in _ III. In the remednder of this section we present the equations needed for the second

approach.

Iii two dimensions t.lle Inaglmt, ic and velocity fields can be written as

B = K7Rsx e_ (6)

V= 27¢ xe. (7)

where qJ and 4) are the [lux and stream functions, respectively, and _P = g's + g' with the

equilibrium stream function _l.'z.:given by

= Bo( - y2)/2 . (8)

The contour lines of g'g (which are parallel to the magnetic field lines) are shown in Fig. 1.

P
Next, substituting Eqs. (6)-(8) into Eqs. (1) and (2) with p = Po = const., and taking the

curl of Eq. (1) _o eliminated the pressure P, yields the following set of equations, which we

write in dimensionless form:

0-7 = Oy _-_x+ x + -_y - Y Ox S J (9)

where J = -V[_ is the z-component of the current, _o = -V_.¢ is the z-component of

°2 °_ with _ = 0. The time is normalized to the Alfven timethe vorticity, and _7__ = 0_2 +

rh = ab(47rpo)l/2/Bo, the coordinates are scaled by the characteristic magnetic field length ab,

and B0 is the average magnitude of the magnetic field at the boundary. The dimensionless

parameter in these equations is the magnetic Reynolds number oc = r_/rh, where r_ =

4_a_/c2rl is the resistive dilTusioll time. We have _,lso assumed that the equilibrium magnetic

field is maintained by an ext(,rilal electric field (i.e., the equilibrium magnetic field is not

6



dissipated resistively). Irl _ IV we present tile numerical results obtained with Eqs. (9) and

(tO).

III. Linear Dispersion Relation

Neglecting the pressure graxlieilt and linearizing the _II-tD eqllations around the equilibrium

quantities &E, Po = 1, and Vo = 0, yields with Eqs. (1)-(3)

Op
0-7+ v. v = o (li)

Ov

o-7= - V'I'EV2'I' (12)

/)0
+ v. Vt/,E= S-_V2,0 , (13)0t

where _/,,p, and v denote perturbations of the equilibrium quantities.

Next, upon multiplying Eq. (12) by V_/_E, Eqs. (tt)-(13) can be combined into a single

equation for _,,

O_ S,_1O
at.= _ v2_ = IVd'_12v_ '1'' (14)

where IW/,EI_ = r2= ._2+;j2. The diffusion term in Eq. (14) is dominant when r << r_, where

r_ = r1112is the skin depth. Assuming the following separation of variables in cylindrical

geometry _p(r, 0, t)= e-'_tf(r)e ira°, the eigenvalue equation for f(r)becomes

" 7_r _r"7_r = 1 - 7/Sr "2+ m2 f ' (15)

and the radial part of the current j = -V2tb e= is given by

.?,2

J(") = 7/5'- r _f(r)" (16)

The frozen-in boundary coilditioll is given by

,1(,,= L)= ,/,(_= 1,0) = 0. (tr)



r 2 q'Equation (15) is mapped into the hypergeometric equation by the transformations z = ,-./7,

and f= z_'_:

z(:- 1)('+ (m+ 1)(:-l)_'- 7_/4_:0, (ts)

where we have set ct = ,1_./2. The solution of Eq. (18) that is regular at r = 0 is the

hypergeometric function F'(a,h,c,z) with a = m/2 +/5/2, b = m/2 - A/2, c = m + l, and

A = x/'m2 + 72. From the boundary condition (17) we obtain the dispersion relation,

F('_r,/2 + A/2, m/2- A/2, m + 1,S/7) - 0. (19)

For the cases of interest, z I = ,5'/71 > l; hence, the transformation formula (Oberhettinger,

1972),

F(c)I'(b- a)
F(a,b,c,z) = (-z)-"F(a, 1 -c + ,t, 1 - b+ a,1/z) +

F(b)F(c- a)

r(c)r(a-b)
-t P(a)P(c-b)(-z)-bF(b'l-c+b'l-a+b'l/z)' larg(-z)] < rr (20)

is needed to obtain the dispersion relation. Substituting the values of a, b, and c, using the

properties of the Gamma function, and using Eq. (19) yields the following linear dispersion

relation for the reconnecting z-point:

(m +/5)r(-A)r'2(m/2 + A/2)
(m-/5)r(/5)r2(m/2- A/2)

( @)A F(m/2-A/2,-m/2-A/2,1-A,7/S)= - - F(m/2 + A/2,-m/2 + A/2,1 + A,7/S ) (21)

Equation (21) can be further simplified with the assumption 7/S << 1, which results in

the following, upon asymptotically' expanding the right-hand side of (21)

A 1 + 4S(X-a)
(rn + A)['(-A)I'_(m/2 + A/2) _ _ _ -ra (22)
(m- A)['(A)I"(,,,,/2- ,'Al7) 1 + 4s(i+_x)

A special case of this dispersion relation, that for n = m = 0 was derived by Hassam

(1991). When rn = n = 0 a_d in the limit 71 << l, the dispersion relation (21) can be



_i_i

approximated by the following asymptotic expressions:

rr[ log(log S))] (23)ImT_ log.5' 1- logs

21-2

g,/2 lm 7 "" (24)
Re 7 "_ log S 2(log S) 2 "

We have solved the dispersio_l relation (21) numerically for both m = 0, and m ¢ 0, with

S varying over several orders of magnitade. Values of 7 grom Eqs. (2a) and (24) were used

as initial guesses in our nun_erical solution of the exact dispersion relation. The resulting

decay rates and their dependence on S, with m = n = 0 and n = 1, m = 2,4 are shown in

Fig. '2. The neat" linear dependence for the various modes agrees with t_ho log S scaling of

Eqs. (23) and (2,1).

The teal and im;_ginary parts of the eigenfunction f(r), and the radial part of the current

j(r) with m = 0, n = 1, S'= 10:3 _md m = 1, n = 3, S = l0 s are presented in Fig. 3. The

"quantum" number n determines the number of radiM nodes of f(v) in the interval r E (0, 1).

When m = 0, Re{f(r)} approaches a constant, as r _ 0 and when m = 1, f(r _ O) --+ O. It,

is evident from Eq. (16) that the current j becomes proportional to f(r) as r approaches zero,

therefore for the m = 0 mode j(r --+ 0) --+ const., and for the m = 1 mode j(r --+ 0) -+ 0.

The m > 0 modes are not associated with reconnection at the x-point in agreement with

previous studies (Hassam, 1991; Craig and McClymont, 1991; Craig and Watson, 1992);

however, these modes decouple the fluid motion from the magnetic field, thus generating

very large currents in the vicinity of the z-point (near the extrema of f(r)). The plasma

motions are heavily dumped by the restoring j x B force, and relax on the ,-, (log S) 2 time

scale.

The solution of the ex-tcl, clist_ersion relation for the n = m = 0 modes is compared with

the asymptotic expression ('2q) for 10 < S' < 10 l°°, and with the decay rates obtained from

the incompressible MHD sim_tlalion. For 5'= 104 (characteristic of laboratory plasmas) the

rt = m = O perturbation decay l illu' is about 20 Alfv6n times with a similar oscillation period.

9
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[:'or ,5' = l0 l° (a, typical v_due for the solar coronal plasma) tile tz = m, = 0 perturbation

¢lecay t,ilne is about 120 Alfven times and is longer than two oscillation periods. Very good

agreement is seen in Fig..1 between the nonlinear simulation with l0 'a < 5' _< .1. 104, the

exact dispersion relation, ai_d the asymptotic expression. The nonlinear terms in the MHD

simulations become sm_tller _ts the perturbation decays, and the decay rates approach the

linear rate (see Appendix). _Fhe asymptotic n_ture of Eq. (24) is evident from the figure,

since agreement with the dispersion relation is improved at very large values of S.

IV. Nonlinear Simulations

A. Incompressible MHD

Now we describe results obtained by using the Alternative Direction Implicit (ADI) method

to solve the incompressible MHD equations of (9) and (I0) in slab geometry. The method of

solution was discussed in detail in Ofman et al. (1991). Here we have imposed the frozen-in

and ideal fluid boundary conditions in z and ?/-directions, respectively; namely,

,i'(* = +x,,.,x,,a) = 0(x = ±zm_,V) = 'h(x,V = ±Vm_x) = ¢(X,y = +Vm_,) = 0.

The calculations are initiated with a small perturbation (., that is nearly azimuthally sym-

metric in the vicinity of the ,>point in order to approximate the m = 0 mode. In particular

we choose

(,(x,y t = O) = be-S(*'+Ya)( 2 2 2, z.,_, -z )(Tj,,,_,- U2), (25)

with b << 1 and az,_x = Ym,_= 1.

Figures 5-7 show the relaxation of an z-point with the above boundary and initial condi-

tions. Here S = 104. In Fig. :5l,lots of the energies stored in the z and _/-components of the

magnetic field, and the total eltergy are displayed as functions of time. The relaxation of the

z-point proceeds a.t the rate i_rcctict,ed by' the linear theory and the perturbed energies are

transferred alternately between the x-component (curve A) and y-component (curve B) of

10



-. the magnetic field. The total energy (curve C) is conserved within the anticipated resistive

dissipation rate. The perturbed energy stored in the magnetic field is given by

P --EM(t) = Em, + EM_

)' ]-- _-xm,,x.,-_,,_x _ -- y + -&Z+ x _ y2 _ X_ dzdy , (26)

The perturbed kinetic energy is given by

Cm-Cm.,(o°)']EK(t) = + _ dxdy, (27)d -- _lnaX d -- _IIIt31,X

and the total energy is given by

Et.t(t) = EM(t)+ EK(t)+ Evo, (28)

where Eio,the energy stored irl the initial magnetic field configuration is given by

:12m:I;Z "e,,,o [y2+ x2]dxdy (29)

Because of resistive dissipation Etot satisfies

d Eto____!
--- --9I yma_ i =max S-IJ 2dxdy " (30)dt " J-Ymax a-xmax

we have neglected viscous dissipation since the simulation algorithm is nearly ideal [Ofman

et al. (1991)]. The energies in Eqs. (26)-(30)are scaled by B_/8_r.

Figure 6 shows _b(0,0, t) (curve A), and the reconnected flux (curve B) defined by

i._Zo io=oAO(t) = }_TxU..,(x',O,t) dx'+ ,-m,= --_Ty,dz(O,y',t) dy'. (31)

When the initial perturbation decays, the decay rate and the oscillation frequency approach

the values predicted by the lirl,'ar theory. These can be determined from _(0,0, t), or the

per!Lurbed energies. In Fig. 7 th_' coiitour lines of the total flux function _ = _+_E are shown

at several representative times (l_lring the relaxation with S -" 104. The region shown is 0.25

11



by 0.25 (in units of ab) centered at the origin. Figure 73 displays _Pat a time corresponding

to a minimum of an oscillation; i.e. with negative _b(0,0, t), Fig. 7b is at a time when _,(0, 0, t)

is nearly zero, and in Fig. 7c ,/)(0, 0, t) is at its maximum (see Fig. 6). The angle between the

separatrices (the solid lines adjacent to the region of ,b(O,O,t) < 0) in Fig. 73 is larger than

rr/'2, and in Fig. 7c is less than rr/2, indicating the stressing of the magnetic configuration.

In Fig. 7b the separatrices are nearly perpendicular and the magnetic configuration is close

to the potential state. The oscillation is damped by the resistive relaxation, and the final

state is the potential z-point configuration given by _bE.

B. Compressible MHD

Equations (1)--(3) and Eq. (5) were solved using the Lax-Wendroff differm "i,Lgscheme, in

a manner similar to that giwm by Richtmyer and Morton (1967), along with a smoothing

term suggested by Lapidus (1967). The computation is done in polar coordinates (r, 0), in

the domain 0 <_0 _<rr, 0 _<," _<.1. Equation (4) is not solved explicitly, however, the quality

of the solutions can be monitored by checking that this equation is satisfied. The code was

previously tested and successfully applied to other MHD problems (Steinolfson and Winglee,

1992). Here the code is used with the frozen-in boundary conditions at the outer boundary

r = 1, 0 _<0 _< rr, and symmetry boundary conditions at the diameter 0 _<r _< 1,0 = 0, rr.

The equilibrium magnetic field in cylindrical geometry is given by

BE = r(sin 20e_ + cos 20co) , (32)

' r 2cos(20). We have initiated the computa-and the corresponding flux function is 'hE = -_

tions with the following perturbations: for the rn = 0 case

= --(l + cos(rr )) (:33)
rr

is used, while the m > 0 CO_ll,til_ttions are initiated with

,,,= hra(1 - r) acos(m0) , (3.1)
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where b is a parameter that controls the magnitude of the initial perturbation (and hence

the "nonlinearity" of the initial state). The particular choices of _, are zero at r = l, and

they yield a zero current at tile boundary. For m > 0 modes _b and j vanish also at the

origin. The simulations are evolved ,mtil the magnetic field configuration reaches a steady

state (i.e., relaxes to the current-free z-point).

The temporal evolution of the magnetic field at ri = 0.02,0.04,0.06,0.08,0.1, and 0 =

rr/2 is shown in Figs. 8a-8c (curves A-E, respectively), r[he values shown are ABo =

0, with S = 104 The fields oscillate almost in[Bo(ri, O,t)- Bo(ri, O, 1)], where Bo = --gT_,

phase at ri, and the frequency agrees well with that predicted by linear theory. The minor

phase difference, and the higher harmonics are due to nonlinear effects, and can be made

arbitrary small by reducing the magnitude of the initiating perturbation. In Fig. 8b the initial

m = 0 perturbation is an order of magnitude smaller than that of Fig. 8a, and the evolution

at r i approaches that expected from linear theory. In Fig. 8c we show the temporal evolution

of ABo, where the initial perturbation was m = 2. Tile frequency and the decay rate of the

evolution agree with the linear theory predictions. In Fig. 9 we present the magnetic field

lines of the highly nonlinear rn = 0 perturbation. The calculation is initiated with large

currents in the vicinity of the stressed z-point. After one minute the magnetic field relaxes

to a nearly current-free state, with the separatrices nearly perpendicular (Fig. 9b). The

rapid relaxation (compared to rr) to the current-free state agrees with experimental results

[Bratenahl and Yeates (1970); Baum and Bratenahl (1974a,b); Baum et al. (1973a,b)].

V. Lyapunov Relaxation for Incompressible MHD

In this section we present a formal Lyapunov functional stability argument, which indicates

that perturbations about the :c-point equilibrium of (8) decay; i.e. the system relaxes back to

the original equilibrium state. The arguments used are akin to those employed for the well-

known Boltzmann H-theorem of kinetic theory, which demonstrates relaxation to thermal

13



equilibrium.

Intuition for the method can be obtained by considering a finite dimensional system of

ordinary differential equations. If one can find a function, say H, defined on the state space

of such a system, where contours of H are nested closed surfaces about the equilibrium

point, which is a minimum, and where the time derivative dH/dt <_0 and vanishes only

on the equilibrium point, then Lyapunov's theorem guarantees asymptotic stability; i.e. the

trajectory of the system in proceeding to ever smaller values of H, approaches the equilibrium

point as time approaches infinity.

The dynamics considered here is determined by the infinite dimensional partial differential

equations of incompressible MHD, Eqs. (9) and (10), where viscous dissipation is included;

i.e. V2co/Sv, where Sv is a dimensionless parameter that measures the effect of viscosity, is

added to the right-hand side of(10). A general two-dimensional fixed spatial domain D is

considered here (for the simulations D corresponds to the box of size 2xm_ x 2V,_,,). Recall

the ideal fluid boundary condition is:

V" iliaD -- 0 :=_ ClaD = constant = 0 , (35)

where OD denotes the boundary of the region D and fi is the unit outward normal of D.

When viscosity is included the appropriate additional boundary condition is

v. _o0 = e,_ x V¢. t']OD= ft" V¢[OD = 0, (36)

where t,"is the unit tangent vector to the curve defining D. For the magnetic field we made

use of the frozen-in boundary condition'

_IoD = _'E (37)

which is equivalent to

_,',::,D= constant = 0 . (38)

1'1



Now we will show that the following energy type functional satisfies tile above require-

ments for Lyapunov stability:

1£ ,u[o,,/,]= (Iv + v,/: (agt

The functional H is positive definite with an extremal point satisfying

(40)
D

where the divergence theoreln in two dimensions has been used. Note, s denotes the arc

length that parametrizes the curve describing the boundary of D. Since it is assumed t_hat

¢ and _pare constant on OD, 5¢ and &/, vanish on the boundary and (40) implies

V2¢=0 V2_b = 0 . _(41)

In light of the boundary conditions, the solution of (41) is ¢ -- 0 and _/:=- 0; i.e. the extrernal

point, is the unique equilibrium point ¢ = 0 and _ = (:E. Evidently, the equilibrium point is

a minimum, since H is positive definite. (H in fact defines a norm on the space of functions

that satisfy the boundary conditions. Thus, H > 0 assures strong positivity, i.e. convexity.)

Now consider the time derivative of H,

dt = - + -_v d2x

+ O CV-_-+ Ot + - ' +(dCv¢-wCV¢)'t ds. (42)

Here use has been made of Eqs. (9) and (10) and again the divergence theorem in two

dimensions. Because of tile bollildary conditions the surface terms of (42) vanish. The first

term vanishes either because oi' l tie ideal conditions ¢ = 0 or because of _. 27¢ = 0, while

tile second term vanishes because of the frozen condition _ = 0. Similarly, the third, fifth

15



and sixth terms vanish because of the ideal boundary condition ¢ = 0. ttowever, the fourth

term requires the nonideal condition _. V¢ = 0. When these conditions are met Eq. (42)

becomes

Thus we see that dHdr <_0 and vanishes when a = w = 0, which are precisely the conditions

for the equilibrium point as given by (41).

In the simulations viscosity is quite smM1, so small that it does not influence the dynamics

during relaxation. Since the silnulations were initialized with no perturbed velocity, the role

of viscosity is mininlal as tile curreIlt decays resistively.

VI. Summary and Discussion

We have derived the linear dispersion relation for the relaxation rate of an x-type neutral

point with frozen-in boundary conditions for modes with any value of m. The reconnection

rate for rn = 0 modes scales as (log S) -_. When the rn > 0 modes are present large currents

are generated at r _ rc, and the perturbations relax through the coupling of the fluid motions

to the magnetic field via the j x B force. Although the m > 0 modes do not reconnect at

r = 0, they can generate additional x-points away from the origin at the separatrices.

Numerical solution of the dispersion relation agrees with the asymptotic expressions for

the decay rate. We have solved the nonlinear incompressible resistive 2-D MHD Equations (9)

and (10) in slab geometry, using the ADI method. The computations were initiated wi_h

small nearly azimuthally symmetric perturbation of _, with ¢ = 0, and large At ,-, 0.Sth,

for several values of the magnetic Reynolds number in the range I02 _< S _<4.104. We

have found that the perturbations decay in agreement with the linear dispersion relation for

n :: 7n = 0 modes.

We have solved the conlpressible resistive 2-D MHD equations in the (r, 0) plane using

16
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the Lax-Wendroff differencing scheme with ,5' = 10'", m, = 0, 1,2 and found that with frozen-

in boundary conditions the perturbed z-point relaxes to the potential at-point in agreement

with the linearly predicted rate.

By obtaining the Lyapunov functional of the current-free ,v-poi1',t wit.h frozen-in bound-

aries we showed that this is _tn equilibrium configuration to which ali pertllrbed states must

re,lax.

The reconnection rate obt_dned from the linear theory and the nonlinear simulations is

faster than tile Sweet (1958) and Parker (t963) ,rl1/2 rate, but slower than the Petcschek

(1{164) Alfv_nic driven reconIlection rate. The m > 0 modes relax faster than the m = 0

modes for S < [0 4. l2or typical solar parameters (S = 1014) the m = 0 modes reconnect

and dissipate most of their etlergy within a hundred Alfven times, while the rrz= 1,2 modes

have an order of magnitude longer relaxation time.
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Appendix

In this Appendix, arguments _re given for why linearized compressible MHD (with _Tp = 0)

has the same x-point relaxation _ts that of the incompressible IVIHD.

In gq. (11) we have _tssumed V P = 0, and from linearized gq. (5) we h_ve to the first

order

P_p, (44)

where P and tvare the perturbed pressure and density respectively. Hence, both P and p are

to first order functions of time alone, which implies (with the equilibrium density po - 1)

0p(t)+ v. v(,, ,i,z, t) = 0. (45)Ot

Therefore g7. v is to the first order a function of time alone. Since the evolution is two

dimensional for both the compressible and incompressible cases (B, = v, = 0), we can

separate the velocity into compressible and incompressible parts as follows:

v = V × (Ce:)+ r f(t) , (46)

where the first term is the incompressible part, f(t) - _7.v, and r = xe_ + y%. Next,

upon substituting v from Eq. (46) into Eq. (12) _nd taking the curl of the result yields an

equation identical to the linearized form of the incompressible momentum equation (10):

Ow OJ OJ

ot = -'g_ - x_ (47)

Now, we substitute the velocity of gq. (46) into the linearized Ampere's equation (13) and

get

&!'=5_tV2_/, 0_ 0_ x2
Ot - _ x + -:_xy + ( - y2)f(t) , (48)

where the last term on the rigllt.-l_md side _ccounts for the departure from incompressible

evolution. It is clear th_tt this term v_mishes on the separatrices of the x-point magnetic field

18



configuration (given by x = +y) and also at the x-point. It is also evident that _ts r --, 0 the

incompressible term approaches zero at least as r2.

Sil, _. the reconnection of the x-point ia tile linear stages occurs in the vicinity of r =

0, and as the initial peI'turbation dec_tys exponentially, its relative importance becomes

even more localized near tll_ x-point, the evolution and the dec_ty rates obtained from the

linearized compressible _lllD equations are expected to be in good agreement with the

evolution and the decay r_tt,es obt_tined from the incompressible 2-D MHD equations. The

agreement is found to hold numerically and is shown in Fig. 4.
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Figure Captions

i. The initial z-point equilibrium magnetic field configuration.

2. Decay rates of tile,nodes with rn = n = 0, and n = 1, m -- 2,4 obtained from the

solution of the linear (iispersion relation.

3. The real and imaginary parts of the eigenfunctions f(r) and the current j(r). (a) m =

0, n= 1, S= 10a,'? ={).292+1.248i. (b) m= 1 n=3, S= l0 s,7=0275+2.343i• .

4. Scaling of the decay rate with ,5' for the rn = n = 0 mode.

5. The perturbed energies of an ,r-point. E,v_ (solid line), EMy (long dashed line), and

Etot (short dashed line).

6. The value of"_b(0,0, t) (solid line), and the reconnected flux (dashed line).

7. Contour lines of _. (a) At a time of a minimum of an oscillation (_b(0,0, t) < 0). (b) At

a time of _b(0,0, t) ,,o0. (c) At a time of a maximum of an oscillation (_b(0,0, t) > 0).

8. Compressible MHD simulation results for the relaxation of the z-point with m = 0

initial perturbation. (a)The change of the magnetic field at ri, 0 = rr/2. (b) Same

as (a) with a smaller magnitude of the m = 0 initial perturbation. (c) Compressible

MHD simulation of the relaxation of the :c-point with an m = 2 initial perturbation.

9. Magnetic field lines of the compressible MHD simulation. (a) The highly stressed initial
,,

stage at t = 0.01 min. (b) :kt t = l min the configuration is nearly current-free.
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time = 1.020E-02 min. magnetic field lines

Fig. 9a



time = 1.000E+00 min. magnetic field lines

Fig. 9b






