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Abstract

The reconnection and relaxation of two-dimensional stressed (non-potential) z-type
neutral point magnetic fields are studied via solution of the nonlinear resistive 2-D MHD
equations and by analytical solution of the linear eigenvalue problem. Previous linear
studies {I. Craig and A. McClymont, Ap. J. 371, L4l (1991); A. Hassam, Preprint
UMLPR 92-046, Univ. of Maryland (1991); Craig and Watson, Ap. J. 393, 385 (1992)]
have shown that such stressed fields may relax on a time substantially shorter (i.e.
~ |log n|, where 7 is the resistivity) than the usual time scale for linear reconnection
(i.e. n°/%). We have generalized the linear dispersion relation for azimuthally non-
syminetric perturbations, and have found that for modes with azimuthal mode numbers

m > 0, the relaxation can occur at a rate faster than that for n = m = 0, where n is the
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radial “quantum” number. We find that for nearly azimuthally symmetric magnetic
perturbations that are zero at the boundary; i.e. the “frozen-in” (sometimes called
“line-tied”) buundary conditions, the fields relax incompressibly and nonlinearly to
the unstressed z-type neutral point at a rate close to that predicted by linear theory.
Also, fully compressible nonlinear MHD simulations have been performed, which show
that the interaction between the plasma flow velocity and the magnetic field is the
important physical effect, while the inclusion of thermodynamics does not affect the
evolution considerably. A Lyapunov functional for the nonlinear incompressible 2-D
resistive MHD equations is derived to show that the current-free z-point configuration

is a global equilibrium to which general initial conditions relax.
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I. Introduction

Magnetic reconnection is believed to occur in solar coronal loops, the magnetopause bound-
ary, the solar wind, extmgalactic jets and fusion experiments. Giovanelli (1947) was the
first to observe that solar flares frequently occur near magnetic neutral points. Based on
these observations Dungey (1953, 1958) proposed an z-type neutral point mechanism for
particle acceleration, the onset of sheet currents, and the energy release in solar flares, pro-
vided that the magnetic field sources are free to move. Chapman and Kendall (1962) solved’
the nonlinear ideal MHD equations for the z-type neutral point and found growth on an
Alfvén time scale, while Syrovatsky (1966) included the mechanism in a solar flare model.
Sweet (1958) and Parker (1963) used dimensional arguments for a model involving merging
of antiparallel magnetic fields, and concluded that the reconnection rate scales as n'/2, while
Petschek (1964) predicted an Alfvénic reconnection rate based on semi-quantitative Alfvén
shock wave solutions. Furth, Killeen and Rosenbluth (1963) developed an analytic boundary
layer theory, and derived the 7°/® linear tearing growth rate scaling, while Rutherford (1973)
considered the nonlinear stage and found that the reconnected flux ® ~ 5t and the recon-
nection rate diminishes from an exponential to an algebraic rate. Recently, Hassam (1991)
has considered an z-point magnetic field configuration with the frozen-in boundary condi-
tions and has analytically solved the linearized compressible low-beta MHD equations, for
azimuthally symmetric m = 0 modes. Craig and McClymont (1991), and Craig and Watson
(1992) numerically solved the linearized low-beta MHD equations for this problem. They
found that the perturbed z-point magnetic configuration relaxes to the potential (current-
free) x-point with an intermediate decay rate that is slower than the Alfvén rate, but faster
than the resistive diffusion rate. lixperimental studies by Bratenahl and Yeates (1970), Baum

and Bratenahl (1974a,b), Baum ¢t al. (1973a.b) found that the initially perturbed z-type



magnetic field configuration rapidly relaxes to the potential state. For a detailed review see
for example Priest (1981), Syrovatsky (1981) and reference therein.

Here we solve the 2-D nonlinear resistive MHD equations for both fully compressible
(without restrictions on the value of the pressure) and incompressible plasma with the frozen-
in boundary condition. Both the linear and nonlinear relaxation rates of the stressed (per-
turbed) z-point back to the potential z-point configuration are obtained. In addition we have
obtained a general dispersion relation that includes the azimuthally non-symmetric m > 0
modes, as well as the m = 0 mode, and have compared the results of the linear dispersion
relation with the nonlinear simulations. By considering both compressible and incompress-
ible dynamics we show that the physics is dominated by the coupling of the magnetic field
to the inertial terms, and that thermodynamics plays a minimal role. Finally, we obtain a
Lyapunov functional for the nonlinear incompressible 2-D resistive MHD equations, which
shows that the potential r-point with the frozen-in boundary conditions is an equilibrium
state to which all initial conditions relax.

The effect of free boundary conditions; i.e. where the plasma is allowed to flow through
the boundary and where the magnetic field at the boundary is free to adjust, was considered
in a separate study (Ofman, 1992; Steinolfson et al., 1992.) There it was found for the free
boundary conditions that the z-point evolves into a current sheet and the perturbation grows
(rather than relaxes) on an Alfvén time scale.

This paper 1s organized as follows: In § 2 the basic MHD equations for our model, and
the initial magnetic field configuration are presented. In § 3 we derive the linear dispersion
relation. The numerical results of the nonlinear MHD simulations are presented in § 4, and

the Lyapunov relaxation arguments are given in §-5. The summary and discussion are in

§ 6.



II. Incompressible 2-D MHD Equations

We assume that collisional MHD theory (Drake and Lee, 1977) is applicable, that the plasma
resistivity 1 is constant and isotropic, and that gravitational and viscous effects are negligible.

With these assumptions the basic equations in cgs units are:
|

av l
p[7)7+(v-V)v]_—VP+I;(VxB)><B (1)
| oB _ ¢ty '
g _en 5
| 5 V x (v x B) MVX(VXB) (2)
dp ,
; W+V~(pv)——0 (3)
‘| | V-B=0 (4)

2 d [ p -
7 (7);’) =0, ‘ (3)

where ¢ is the speed of light, p is the plasma density, B is the magnetic field, v is the

velocity field, P is the pressure, and 7, is the polytropic index. We use Egs. (1)-(5) with

the equilibrium of Eq. (8) below. Assuming that the evolution is two-dimensional (% = 0),

! the above set of equations is solved using three separate approaches:

1. Solution of the dispersion relation arising from the linearized Eqs. (1)-(4) with the

|
\ assumption VP =0 n Eq. (1).

‘ 2. Numerical solution of the 2-D MHD equations in slab geometry given below-in Egs. (9)

and (10), which are obtained from Eqs. (1)-(4) with the assumption of incompressibility
(V.-v =0).

: 3. Numerical solution of the compressible MHD Equations (1)-(3) and Eq. (5) in the

(r,0) plane without any further approximations [Eq. (4) is not solved explicitly].
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The linearized equations resulting from the first approach and their solution will be presented
in § 111 In the remainder of this section we present the equations needed for the second
approach.

In two dimensions the magnetic and velocity fields can be written as
B=VU xe, (6)
V=V¢xe, (7)

~ where ¥ and ¢ are the flux and stream functions, respectively, and ¥ = ¥g + 1 with the

equilibrium stream function vz given by
he = Bolz? 2y/2 8
Ve = Bo(z® —y%)/2a . (8)

The contour lines of yg (which are parallel to the magnetic field lines) are shown in Fig. 1.
Next, substituting Eqs. (6)-(8) into Eqs. (1) and (2) with p = py = const., and taking the
curl of Eq. (1) ‘o eliminated the pressure P, yields the following set of equations, which we

write in dimensionless form:

Ow dé dw  O¢ Ow o aJ oY aJ

woarran (B E- (G5 1o
where J = —=V?%y is the z-component of the current, w = —VZ%4¢ is the z-component of
the vorticity, and V% = a%% + 5% with £ = 0. The time is normalized to the Alfvén time

v = ap(47po)?/ By, the coordinates are scaled by the characteristic magnetic field length a,,
and By is the average magnitude of the magnetic field at the boundary. The dimensionless
parameter in these equations is the magnetic Reynolds number S = 7./7,, where 7. =
dma}/c*n is the resistive diffusion time. We have also assumed that the equilibrium magnetic

field is maintained by an external electric field (i.e., the equilibrium magnetic field is not
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dissipated resistively). In § IV we present the numerical results obtained with Eqgs. (9) and

(10).

ITII. Linear Dispersion Relation

Neglecting the pressure gradient and linearizing the MHD equations around the equilibrium

quantities ¥ g, po = 1, and vy = 0, yields with Eqs. (1)-(3)

P
5§+V-v:0 (11)
ov g ;
7}—{— = “V?HEV w (12)
Ay , 12 ‘
—(,)T+V-Vw,3=5 Ve, (13)

where ¥, p, and v denote perturbations of the equilibrium quantities.
Next, upon multiplying Eq. (12) by Vi g, Egs. (11)-(13) can be combined into a single
equation for 1,
a4y d

o~ 575 Ve = Veef Vi (14)

where |Vig|* = r? = 224 y%. The diffusion term in Eq. (14) is dominant when r < ., where
re = n"/% is the skin depth. Assuming the following separation of variables in cylindrical

geometry ¥(r,0,t) = e " f(r)e™?, the eigenvalue equation for f(r) becomes

R 72 5
]E(,dr>_<l—7/5r2+m)f’ (13)

and the radial part of the current j = —V?%) e, is given by

2

(r) = —1— f(r ;
i) = (). (16)

The frozen-in boundary condition is given by

|



Equation (15) is mapped into the hypergeometric equation by the transformations = = r*5/7,
and f = z%¢&:

=D+ m+1)(z=-1DE —+*/4 =0, (18)
where we have set o = m/2. The solution of Eq. (18) that is regular at r = 0 is the
hypergeometric function F(a,b,c,z) with e = m/2 4+ A/2, b=m/2 -~ A/2, c=m + |, and
A = /m?¥ ¥ ~2%. From the boundary condition (17) we obtain the dispersion relation,

Fm/2+A/2,m/2 —AJ2,m+1,5/7)=0. (19)
For the cases of interest, |z| = |S/v] > L; hence, the transformation formula (Oberhettinger,
1972),
Fla,b,c,z) = ;E;};;Eﬁ: Z; (=z)"“F(a,l —c+u,l =b+a,1/z) +
+%%l;%:—g (—2)"PF(b,l —c+b,1 —a+b,1/z), |arg(—2)| < 7 (20)

is needed to obtain the dispersion relation. Substituting the values of a, b, and ¢, using the
properties of the Gamma function, and using Eq. (19) yields the following linear dispersion

relation for the reconnecting z-point:

(m 4+ A)(=A)2(m/2 + A/2)

(m — A)D(A)2(m/2 — A/2)

_( .S')AF(m/Z—A/Q,—m/Q—A/Q"l‘A"Y/S) (21)

“y) F(m/2+A/2,-m/2+ AJ2,1+ A,7/S)
Equation (21) can be further simplified with the assumption v/S <« 1, which results in

the following, upon asymptotically expanding the right-hand side of (21)

(m+ AT(=A)¥(m/2+A/2) (_g)“ L+ st (22)

— MDA (m/2 = AJ2) :
(m — A)L(A)¢(m/2 = A/2) 7)1+ st
A special case of this dispersion relation, that for n = m == 0 was derived by Hassam

(1991). When m = n = 0 and in the limit |y| < 1, the dispersion relaticn (21) can be
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(3

approximated by the following asymptotic expressions:

™ log(log S))
~— |l - 2
fm 5 logS[ log S (23)
0, 2
Reqy~ 22 g (24)

log S 2(log §)% '
We have solved the dispersion relation (21) numerically for both m = 0, and m # 0, with
S varying over several orders of magnitude. Values of v from Egs. (23) and (24) were used
as initial guesses in our numerical solution of the exact dispersion relation. The resulting
decay rates and their dependence on S, with m =n =0and n =1, m = 2,4 are shown in
Fig. 2. The near linear dependence for the various modes agrees with the log S scaling of
Eqgs. (23) and (24).

The real and imaginary parts of the eigenfunction f(r), and the radial part of the current
jrywithm=0,n=1,5=10°and m = 1, n =3, S = 10° are presented in Fig. 3. The
“quantum” number n determines the number of radial nodes of f(r) in the interval r € (0,1).
When m = 0, Re{f(r)} approaches a constant as r — 0 and when m =1, f(r - 0) — 0. It
is evident from Eq. (16) that the current j becomes proportional to f(r) as r approaches zero,
therefore for the m = 0 mode j(r — 0) — const., and for the m = 1 mode j(r — 0) — 0.
The m > 0 modes are not associated with reconnection at the z-point in agreement with
previous studies (Hassam, 1991; Craig and McClymont, 1991; Craig and Watson, 1992);
however, these modes decounle the fluid motion from the magnetic field, thus generating
very large currents in the vicinity of the z-point (near the extrema of f(r)). The plasma
motions are heavily dumped by the restoring j x B force, and relax on the ~ (log S)? time
scale.

The solution of the exact dispersion relation for the n = m = 0 modes is compared with
the asymptotic expression (24) for 10 < § < 10'%, and with the decay rates obtained from
the incompressible MHD simulation. For S = 10* (characteristic of laboratory plasmas) the

n = m = 0 perturbation decav time is about 20 Alfvén times with a similar oscillation period.

9
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For § = 10" (a typical value for the solar coronal plasma) the n = m = 0 perturbation
decay time is about 120 Alfvén times and is longer than two oscillation periods. Very good
agreement is seen in Fig. | between the nonlinear simulation with 10% < 5 < 4. 10% the
exact dispersion relation, and the asymptotic expression. The nonlinear terms in the MHD
simulations become smaller as the perturbation decays, and the decay rates approach the
linear rate (see Appendix). The asymptotic nature of Eq. (24) is evident from the figure,

since agreement with the dispersion relation is improved at very large values of S.

IV. Nonlinear Simulations

A. Incompressible MHD

Now we describe results obtained by using the Alternative Direction Implicit (ADI) method
to solve the incompressible MHD equations of (9) and (10) in slab geometry. The method of
solution was discussed in detail in Ofman et al. (1991). Here we have imposed the frozen-in

and ideal fluid boundary conditions in z and y-directions, respectively; namely,
IZJ(.T = immaxvy) = ¢(‘73 = :txmax’y) = V/)(may = iymax) = ¢(Ia7 = iymax) =0.

The calculations are initiated with a small perturbation % that is nearly azimuthally sym-
metric in the vicinity of the z-point in order to approximate the m = 0 mode. In particular
we choose
Pleyt=0) = be (], — o) (Yha — v7) | (25)
with b € | and Thax = Ymax = 1.
Figures 5-7 show the relaxation of an z-point with the above boundary and initial condi-
tions. Here S = 10*. In Fig. 5 plots of the energies stored in the & and y-components of the
magnetic field, and the total energy are displayed as functions of time. The relaxation of the

z-point proceeds at the rate predicted by the linear theory and the perturbed energies are

transferred alternately between the r-component (curve A) and y-component (curve B) of
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the magnetic field. The total energy (curve C) is conserved within the anticipated resistive

dissipation rate. The perturbed energy stored in the magnetic field is given by

Epm(t)= Eae + Euy =

Tmax [ ¥max oy : oy 2 ) )
—_— — —_ —_ 2
/rmax ./_ymax [(ay ) + (B:L' + 1‘) y°—z°| dzdy , (26)
The perturbed kinetic energy is given by
ymax [Tmax /8¢ 2
Ex't) / / 92) | dedy ,
R ¥max v —TImax [( ) * k@x) } T (27)
and the total energy is given by
-;Lr)t(t) = Ez\’f(t) + El\(t) + EMO [ (28)

where Eyso,the energy stored in the initial magnetic field configuration is given by

Exo= [ e i y;"” [ +2?] dzdy . (29)

Imax

Because of resistive dissipation Fi,, satisfies

dEtoL _ Tmax .o '
T /ymax / Jédz dy ; (30)

Imax

we have neglected viscous dissipation since the simulation algorithm is nearly ideal [Ofman
et al. (1991)]. The energies in Eqgs. (26)-(30) are scaled by BZ/8r.

Figure 6 shows (0,0,t) (curve A), and the reconnected flux (curve B) defined by

A®(t) = / e

—Imax

0

™ (2',0,1)

8
dz' Jr/ym|a Z 50,y )ldy' (31)

When the initial perturbation decays, the decay rate and the oscillation frequency approach
the values predicted by the lincar theory. These can be determined from (0,0,t), or the
perturbed energies. In Fig. 7 the contour lines of the total flux function ¥ = 1 +1g are shown

at several representative times during the relaxation with S = 10*. The region shown is 0.25
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by 0.25 (in units of a) centered at the origin. Figure 7a displays ¥ at a time corresponding
to a minimum of an oscillation; i.e. with negative 1(0,0,t), Fig. 7b is at a time when /(0,0, )
is nearly zero, and in Fig. Tc 1(0,0,t) is at its maximum (see Fig. 6). The angle between the
separatrices (the solid lines adjacent to the region of 1(0,0,¢) < 0) in Fig. 7a is larger than
m/2, and in Fig. Tc is less than 7/2, indicating the stressing of the magnetic configuration.
In Fig. 7b the separatrices are nearly perpendicular and the magnetic configuration is close
to the potential state. The oscillation is damped by the resistive relaxation, and the final

state is the potential z-point configuration given by ¥g.

B. Compressible MHD

Equations (1)-(3) and Eq. (5) were solved using the Lax-Wendroft differe:r ~ing scheme, in
a manner similar to that given by Richtmyer and Morton (1967), along with a smoothing
term suggested by Lapidus (1967). The computation is done in polar coordinates (r,6), in
the domain 0 €0 < 7,0 <r < 1. Equation (4) is not solved explicitly, however, the quality
of the solutions can be monitored by checking that this equation is satisfied. The code was
previously tested and successfully applied to other MHD problems (Steinolfson and Winglee,
1992). Here the code is used with the frozen-in boundary conditions at the outer boundary
r=1, 0<6 <, and symmetry boundary conditions at the diameter 0 < r < 1,0 =0, .
The equilibrium magnetic field in cylindrical geometry is given by

Bg = r(sin 20e, + cos 20ey) , (32)

1

and the corresponding flux function is ¢g = —;r?cos(20). We have initiated the computa-

tions with the following perturbations: for the m = 0 case

W= ——; (1 + cos(mr)) (33)

is used, while the rn > 0 computations are initiated with
vi=br3(1 = 1) cos(mb) . (34)

12



where b is a parameter that controls the magnitude of the initial perturbation (and hence
the “nonlinearity” of the initial state). The particular choices of ¢ are zero at r = 1, and
they yield a zero current at the boundary. For m > 0 modes 1 and j vanish also at the
origin. The simulations are evolved until the magnetic field configuration reaches a steady
state (i.e., relaxes to the current-free z-point).

The temporal evolution of the magnetic field at r; = 0.02,0.04,0.06,0.08,0.1, and 8§ =
m/2 is shown in Figs. 8a-8c¢ (curves A-E, respectively). The values shown are ABy =
[Be(ri,0,t) — Bo(ri,0,1)], where By = —%—‘f, with § = 10%. The fields oscillate almost in
phase at r;, and the frequency agrees well with that predicted by linear theory. The minorA
phase difference, and the higher harmonics are due to nonlinear effects, and can be made
arbitrary small by reducing the magnitude of the initiating perturbation. In Fig. 8b the initial
m = 0 perturbation is an order of magnitude smaller than that of Fig. 8a, and the evolution
at r; approaches that expected from linear theory. In Fig. 8c we show the temporal evolution
of A By, where the initial perturbation was m = 2. The frequency and the decay rate of the
evolution agree with the linear theory predictions. In Fig. 9 we present the magnetic field
lines of the highly nonlinear m = 0 perturbation. The calculation is initiated with large
currents in the vicinity of the stressed z-point. After one minute the magnetic field relaxes
to a nearly current-free state, with the separatrices nearly perpendicular (Fig. 9b). The
rapid relaxation (compared to 7,) to the current-free state agrees with experimental results

[Bratenahl and Yeates (1970); Baum and Bratenahl (1974a,b); Baum et al. (1973a,b))].

V. Lyapunov Relaxation for Incompressible MHD

In this section we present a formal Lyapunov functional stability argument, which indicates
that perturbations about the r-point equilibrium of (8) decay; i.e. the system relaxes back to
the original equilibrium state. The arguments used are akin to those employed for the well-

known Boltzmann H-theorem of kinetic theory, which demonstrates relaxation to thermal
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equilibrium.

Intuition for the method can be obtained by considering a finite dimensional system of
ordinary differential equations. If one can find a function, say H, defined on the state space
of such a system, where contours of H are nested closed surfaces about the equilibrium
point, which is a minimum, and where the time derivative dH/dt < 0 and vanishes only
on the equilibrium point, then Lyapunov’s theorem guarantees asymptotic stability; i.e. the
trajectory of the system in proceeding to ever smaller values of H, approaches the equilibrium
point as time approaches infinity.

The dynamics considered here is determined by the infinite dimensional partial differential
equations of incompressible MHD, Eqgs. (9) and (10), where viscous dissipation is included;
i.e. V2w/Sy, where Sy is a dimensionless parameter that measures the effect of viscosity, is
added to the right-hand side of (10). A general two-dimensional fixed spatial domain D is
considered here (for the simulations D corresponds to the box of size 2z ax X 2Ymax). Recall

the ideal fluid boundary condition is:
v ilap =0 = ¢|lap = constant =0 , (35)

where 0D denotes the boundary of the region D and 7 is the unit outward normal of D.

When viscosity is included the appropriate additional boundary condition is
v llop =€ x Ve tap=7a-Velosp =0, (36)

where ? is the unit tangent vector to the curve defining D. For the magnetic field we made

use of the frozen-in boundary condition:
Vlop = ¥E (37)

which is equivalent to

vlap = constant =0 . (38)

14



Now we will show that the following energy type functional satisfies the above require-

ments for Lyapunov stability:

Hlo,wl =5 [ (IV6F + IV9F) @ (39)
The functional H is positive definite with an extremal point satisfying
Ho, w6000 = — [ (V2666 + V2% 69) da
+y§D (Vobd + V) ads =0, (10)

where the divergence theorem in two dimensions has been used. Note, s denotes the arc
length that parametrizes the curve describing the boundary of D. Since it is assumed that

¢ and @ are constant on 9D, 6¢ and 61 vanish on the boundary and (40) implies
Vig=0 V% =0. .(41)

In light of the boundary conditions, the solution of (41) is ¢ = 0 and ¥ =: 0; i.e. the extremal
point, is the unique equilibrium point ¢ = 0 and ¥ = 3. Evidently, the equilibrium point is
a minimum, since H is positive definite. (H in fact defines a norm on the space of functions
that satisfy the boundary conditions. Thus, H > 0 assures strong positivity, i.e. convexity.)

Now consider the time derivative of H,

dH JEowr\ o,
"{17‘"/D<’5—'+§J) e

+f Kasv—— + /v%’ii + VW - de)> OV —wdVe) - F| ds . (42)

Here use has been made of Eqs. (9) and (10) and again the divergénce theorem in two
dimensions. Because of the boundary conditions the surface terms of (42) vanish. The first
term vanishes either because of the ideal conditions ¢ = 0 or because of n - V¢ = 0, while

the second term vanishes because of the frozen condition ¥ = 0. Similarly, the third, fifth

15



and sixth terms vanish because of the ideal boundary condition ¢ = 0. However, the fourth

term requires the nonideal condition - V¢ = 0. When these conditions are met Eq. (42)

lH J? 2

hecomes

dt

Thus we see that dH/dt < 0 and vanishes when J = w = 0, which are precisely the conditions
for the equilibrium point as given by (41).

In the simulations viscosity is quite small, so small that it does not influence the dynamics
~ during relaxation. Since the simulations were initialized with no perturbed velocity, the role

of viscosity is minimal as the current decays resistively.

V1. Summary and Discussion

We have derived the linear dispersion relation for the relaxation rate of an z-type neutral
point with frozen-in boundary conditions for modes with any value of m. The reconnection
rate for m = 0 modes scales as (log S)~%. When the m > 0 modes are present large currents
are generated at r = r., and the perturbations relax through the coupling of the fluid motions
to the magnetic field via the j x B force. Although the m > 0 modes do not reconnect at
r = 0, they can generate additional z-points away from the origin at the separatrices.

Numerical solution of the dispersion relation agrees with the asymptotic expressions for
the decay rate. We have solved the nonlinear incompressible resistive 2-D MHD Equations (9)
and (10) in slab geometry, using the ADI method. The computations were initiated with
small nearly azimuthally symmetric perturbation of ¥, with ¢ = 0, and large At ~ 0.87,
for several values of the magnetic Reynolds number in the range 102 < S < 4-10%. We
have found that the perturbations decay in agreement with the linear dispersion relation for
n:=m = 0 modes.

We have solved the compressible resistive 2-D MHD equations in the (r,8) plane using

16



the Lax-Wendroff differencing scheme with S = 10*, m = 0,1,2 and found that with frozen-
in boundary conditions the perturbed z-point relaxes to the potential z-point in agreement
with the linearly predicted rate.

By obtaining the Lyapunov functional of the current-free «-point with frozen-in bound-
aries we showed that this is an equilibrium configuration to which all perturbed states must
relax.

The reconnection rate obtained from the linear theory and the nonlinear simulations is
faster than the Sweet (1958) and Parker (1963) n'/? rate, but slower than the Petcschek
(1964) Alfvénic driven reconnection rate. The m > 0 modes relax faster than the m = 0
modes for S < 10*. For typical solar parameters (S = 10!*) the m = 0 modes reconnect
and dissipate most of their energy within a hundred Alfvén times, while the m = 1,2 modes

have an order of magnitude longer relaxation time.
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Appendix

In this Appendix, arguments are given for why linearized compressible MHD (with VP = 0)
has the same z-point relaxation as that of the incompressible MHD.

In Eq. (11) we have assumed VP = 0, and from linearized Eq. (5) we have to the first
order

P~p, (44)

where P and p are the perturbed pressure and density respectively. Hence, both P and p are

to first order functions of time alone, which implies (with the equilibrium density po = 1)

Ip(t
Q%ﬁ-v-v(w,y,z,t):(). (45)

Therefore V - v is to the first order a function of time alone. Since the evolution is two
dimensional for both the compressible and incompressible cases (B, = v, = 0), we can

separate the velocity into compressible and incompressible parts as follows:
v=Vx(ge.)+rf(t), (46)

where the first term is the incompressible part, f(t) = V - v, and r = ze, + ye,. Next,

upon substituting v from Eq. (46) into Eq. (12) and taking the curl of the result yields an

equation identical to the linearized form of the incompressible momentum equation (10):
Ow aJ aJ

Now, we substitute the velocity of Eq. (46) into the linearized Ampere’s equation (13) and

get
W o= 920 9wy (48)
at dy T

where the last term on the right-hand side accounts for the departure from incompressible

evolution. It is clear that this term vanishes on the separatrices of the z-point magnetic field

18



configuration (given by r = £y) and also at the r-point. It is also evident that as r — 0 the
incompressible term approaches zero at least as r?.

Sin "= the reconnection of the z-point in the linear stages occurs in the vicinity of r =
0, and as the initial perturbation decays exponentially, its relative importance becomes
even more localized near the x-point, the evolution and the decay rates obtained from the
linearized compressible MHD equations are expected to be in good agreement with the
evolution and the decay rates obtained from the incompressible 2-D MHD equations. The

agreement is found to hold numerically and is shown in Fig. 4.
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Figure Captions

1

o

. The initial z-point equilibrium magnetic field configuration.

Decay rates of the modes with m =n = 0, and n = 1, m = 2,4 obtained from the

solution of the linear dispersion relation.

. The real and imaginary parts of the eigenfunctions f(r) and the current j(r). (a) m =

0,n=1,5=10%4=0292+41248:. (b)ym=1,n=3,5 = 10% v = 0.275 + 2.343:.

4. Scaling of the decay rate with S for the m = n = 0 mode.

The perturbed energies of an r-point. Ejy,, (solid line), Eyr, (long dashed line), and

Fior (short dashed line).
The value of (0,0, ¢) (solid line), and the reconnected flux (dashed line).

Contour lines of . (a) At a time of a minimum of an oscillation (¥(0,0,t) < 0). (b) At

a time of ¥(0,0,¢) ~ 0. (c) At a time of a maximum of an oscillation ((0,0,t) > 0).

Compressible MHD simulation results for the relaxation of the z-point with m = 0
initial perturbation. (a) The change of the magnetic field at r;, § = 7/2. (b) Same
as (a) with a smaller magnitude of the m = 0 initial perturbation. (c¢) Compressible

MHD simulation of the relaxation of the z-point with an m = 2 initial perturbation.

Magnetic field lines of the compressible MHD simulation. (a) The highly stressed initial

stage at t = 0.01 min. (b) At t = I min the configuration is nearly current-free.
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