
DISCLAIMER

This repo,rtwas prepared as an account of work sponsored by an agency of the United States

Government, Neither the United StatesGovernmentnorany agencythereof,nor anyof their _[,¢_
employee.s, makes any warranty, express o.r implied, or assumes any legal liability or responsi. ).._,,, _CP--76560
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or "

pr_ess disclosed, or represents that it,s u_ would not infringe privately owned rights. Refer. L)L'_201,9'039
en.ce herein to an)' specific commercial product, process, or service by trade name, trademark, _ _.,,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, re'com-
mendation, or favoring by the United States Government of any agency thereof. The views
and opinions of authors expre_,sed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Thermal EfFects on the Frequency
Response

of Piezoelectric Crystals*

' , . Plas,..mann,I'homa.s R. Ca.nfieM Mark T Jones, Paul E. ' 's"

Argonne Na.t,ional Laboratory
Argonne, Illinois 60439

a ll(]

Michael S. H. Ta.ng
Motorola, Inc._

Scha.uml)urg, Illinois 60196

3m:e 10, 1992

i
*Work sponsored by tl:e U.S. l)epartnmnt of Energy under Contra( t

W-3l-109-t!;ng-38.

The _tubmttted m_nur,,c.ripthas be.en authored
by a contractor of the U. ,S, Gocernrnent
under cone r_,c.t No. W-31-109- ENG-3B.
Accordir_ly, the U. S. Government rein,ins a
nonexcluirive,, rov_lty.frtae lice.nr,e Io pubb_h
or rt_proch_ce the pt_blithed form of ehi!
contribution, or _llow others to do _, for

i U.S. Government purl:_=s.

., _,,, ._.,,.,_,?.

DISTrIIBUTIONOFTN_ DOCUMENTIS LINLIMITE,D

, i _ illll _ i ,iii , ii_llllilll I ii1



Abstract

In this paper we describe a, solution strategy to determine the natural

frequencies of piezoelectric crystals subject to moderate changes ill temper-

a.ture and a, variety of boundary constraints. The finite element equatior_s

governing piezoelectricity are derived based upon a Galerkin formulation of

the problem. Suitable a,sstlmptions are made to Iinearize the steady.-state

(static) problem leading to an iteration scheme that can be used to refine

the solution and include non-linear geometric effects caused by deformation.

The eigenvahm problem is ca,st in this perturbed sta, te to allow more accurate

prediction of resonant frequencie:s.

Introduction

Finite elemen{; formulations of the three dimensional i.)iezoelectric crystal

vibration problem eml)loy the princit)h_ of virtual work to (lerive a cout)led

system of linear equations involving nodal displacements and nodal values
of the electric field potential. Allik and Ilughes' (1970) formulation is based

upon a,ssumptions of infinil, esima] strain for the deh)rmation of a nisotropic

crystals and the existence of an electric field potential, t_leca,us('. the electric

field is a,ssumed to l)e tinm i,l(lependent, they were able to remove this extra,

field variable by using static con(h_'llsation. They illustrated their imt)lemen-

tation using linear tetrallc(lral finite elenleilts.

The paper of Ostcrgaard and I)awlak (198(;) l)resent an adaptation of the

formulation Allik and Ilughes (1970) to two multi-field elenmnts in the AN-

SYS (1990) finite element c()dc. They illustrated the use of these elements in

ata,tic analysis, mode-freqt|etJcy analysis, and standing wave response to har-

monic driving forces, In this i_nl)lementation tlm symlnetric (6 x 6) anisotrop-

ic elasticity tensor was storc, d in coral)act form that allows ali 21 independent

terms to be specified, a, full (3 × 6) piezoelectric tensor was stored in full h)rnl

a.nd the (3 x 3) dielectric l,-'l_sor was limited to (liagonal t,erxlls only. [t_ the

static formulation the glol;,al st,ifr ,,,ssmatrix was a,ssenfl)led into a. h)rm that

is partitioned into follr sectiolls. Two symmetric parts along the diagonal

form the mechanical stiffness and dielectric stiffness that are block diagortal

in form. The otr diagonal blocks are tilled with a coupling matrix and its

transpose. Several examI.des were given in which the vibrational characteris-

tics of crystals were determilmd using the full system and a, reduced matrix

ana,lysis using the Guyan reduction procedure.
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Yong (1987) extended the formulation given ill A:lik and llughes (1970)

a.nd Ostergaard and Pa,wlak (1986) to include teraperature effects in ttle

analysis of free vibrations of piezoelectric crystals using the finite.-element,

method. He incorporated three importa,nt, effects of temperature in these

problems: a.pproximat, ion of the ela,sticity tensor _s cubic function of the

change in temperatut'e, approximation of the t.hernl d expansion of the crystal

as cubic function of the change in temperature, a.l'd a, nonlinear geometric

effect produced by thermal expa.nsion. The present analysis incorporates

these three important effects in a more rigorous formulation that permits

the _na.lysis to include the effect of nlounting fixtures a,s fixed bounda,ry
constraints or atta.ched st,,.'uctures.

Deformation and Electric Field Potential

Rectangular cartesian coordinates are employed for the present analysis.

Bold symbols are used to represent vector and t,ensor quant, ities in coordinat.e

free notation, e.g., v is a. w.'ctor and T is a, l,ensor. The components of vectors

and tensors employ Ira.tin subscripts ranging over the values 1 to 3 tc) indicate

the corresponding coordina.te direct, ion, Vectors (tensors of ra,nk 1) have a.

single subscript,, e.g,, vi, and tensor of rank 2 or more have the numl)er of

subscripts equal to t,]le ra.ilk, e.g., 7"0 are the components of a. second order
tensor.

The cartesian coordina.l, es, xk, are the components of a position vector,

r, directed from (,lie origin to the coordinate point. The:efore,

r = zki,. (1)

where ik are the unit, base vectors directed in the three coordinate directions.

Summation is assumed on rcl_eated indices.

A material point, iii the body iii the unst, rained, unstressed, initial con-

figuration is given by tlm, coordinates Xk • The posit, ion vector of this point

can be denoted by

R = Xkik. (2)

After deformation this material point is displa,ced to a. new position, r ,

whose coordinates are giw.'.ll by zrj, . The displacement of/,he material point,

is a vect,or that can be colnputed by the difference in the coordiIlate, positions,



u -- r- R (3)

or expressed in component forrn

uk = xk- .Vk. (,1)

The deforma,tion gradient,/v_.i , is defined a.s

{_xi

F_j - OXj - ,_.,i,j (,,_)

where the ',j' denotes pa.ri,ial differentiation with respect to the va.riable Xj
and the [,agra.ngian st,ra.in tensor is given by

"r_j = _(I:'k_I;'kj -- 6_j) (_)

where b'i.i is the identity tensor.

It, is assumed that the electric field vector has components, El.¢ , that are

derivable from a sca.lar field, qS(Xk) . This scala.r field, ¢, is ('.,dl(.d"• the electric

111(.conq)onerlts of the e.lectric field are given t)y Erst t)artialfield potential. " '

derivatives of the electric, field potential,

Efr = -,¢,k . (7)

The electric field is a vect,or with the dimensions of force per unit charge.

Field Equations

The two partiaJ differelltia.l equations that govern the beh_vior of i)i(_'zo-

electric crystals are the 1)alance of linear mome_ltum,

?)_,j
Ox j + bi = p iii , (8)

a.nd Gauss' Law in the at)s(.ll(._"' ", "e of magn(.tic, fields,

[)Di
= (,, (',))
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where the '.' denotes partial differentiation with respect to time, and '..' de-

notes second partial differentiation with respect to time. In the first equation

Tij is the Cauchy Stress tensor, p is the mass density, bi is ttle body force vec-
tor and ui is the displacement. In tile second Di is tile electric displa, cement

and or is the charge density.

The field equations in tile preceeding section are subjected to the bound-
ary conditions

_}jl_j -- t i OI1 ST , (10)

ui = Ui on Su , (11)

and

Diui = os on ,5' , (12)

where ui is the unit wmtor norxna,1 to the surface, _.q, of a body, S¥ is the por-

tion of the surface S subjected to traction forces, li are the surface tractions

on ST . Su is the portion of the surfa, ce S with prescribed displacements, Ui

are the prescribed displacements on Su • Fina.lly, rts is the surface charge

density on S . Note that S = ,97' U Su , and 5'T V1Su = qJ .

Tlm Cauchy stress, 7}j , are the true physical compoImnts of stress, with

dimensions of force per unit area. with respect Lo the deformed configuration.
, _I_

lt is related to the Piola, stress, _/i.i , with dimensions of force per unit, area
with respect to the reference configuration, by the following relationship

= (la)Tij j-1 l;}k _kl t_l ,

where J is the ,Jacobian of t.}le traxlsformation from the undeformed to the

deformed configuration. 'I'lie physica, l meaning of J in this context is given

by

e_'.'J --. _

P (14)

i ] ; , ;,

= -_ eijk etm,, I it l'jm ! k,, ,

| where eij_ is tlm alternal, ing tensor.
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Similarly, the electric displacement, Di , gives true physical components
with dimensions of charge per unit area with respect to the deforrned con-
figuration, lt is related to a "Piola" electric displacement, I)__ , with the
same physical dimensions with respect to the reference configuration, by the
analogous relationship,

Di = J-" Fo D.7 . (15)

The general form of the constitutive laws th a,tgovern piezoelectric crystals
are given by

and

.Off = eijkTjk + qd.E__ (17)

where Cijkl is the elasticity tensor, eijk is the piezoelectric tensor and % is
the dielectric tensor.

Displacement Decomposition

The deformation of a body subjected to a combination of thermal and
piezoelectric time varying loads has the following form,

•_= x,(Xj,O,¢,t) , (is)

where x,: are the current coordinates of a material point, X; , are the coov¢li-
nates of the same ma.terial point lr).the undeformed reference configuration,
0 is the scalar change in temperature, ¢ is the scalar electric field potential,
and t is time. Wittlout loss of generality the right hand side of the above
expression can be written as

xi = ui(Xj,O,¢,t) + Xi , (1.9)

where ui is the total time va,tying displacement of the material point.

For the purpose of the present analysis, it is convenient to partition this
displacement into three co|nponents. Let

_(xj, o,¢,t) =:,,;(xi,¢', t)+ ,-_(xj,¢)+%(o)xs. (20)

' '_IV/' liP" ........ ,I,, :_1 "



The first term, u_ , is tile time varying component of the displacement, lt
is driven by external excita.tions and coupling to time varying components of
the electric field, qS*. II1 the case of free vibration, the -_*' ¢*7 i s and the are the
eigenvectors corresponding to the eigenvalues determined in the deformed
state, _i(Xj, ¢) + c_ij(O)X.i .

The second term, ui, are the mechanical displacernents due to static loads,
body forces, static electric, field, and external boundary conditions. The
overline is used to indicate the static qua,ntities. In the case of a crystal, these
displacements a,re produced 1)ythe direct interaction of mounting fixtures and
adjacent structures. "

Fir, ally, the last term is the unconstrained response of the crystal to
r _ :l =-thermM load, 0 = T- 2/b , 1hc thermal expansion of anisotropic crystals is

governed by Oqj'S which ca,n be approximated to a high degree of accuracy
as cubic functions of 0 for qua, rtz a,s in Yong (1.987)

(1)n (2)02 (a)n3cqj(O) = ceij t, + c_ij + c_ij t, . (21)

Similarly, the tempera.ture variation in the components of the elasticity ten-
so_ Cijkt , are also a.pl)roxinlated by cubic functions as weil,

Cijkl( O ) "- "" ijkl "}- "" ijkl (j .qt.. v., ijkl,., .47, v., ijklV .

In the present analysis, only uniform tempera, ture distributions will be
, _Sconsidered. Under these conditions the c_ij as well a,s the Cijkl'S are inde-

pendent of position and the tllerma.1 expansion if unobstructed will also be
uniform. This only occurs wllen tlm bounda, ries are free of externa,1 tractions,
the body forces are zero and the displacements are not constra, ined. In this
state the body is stress ft'ce and its deformation is characterized by

xi = Xi + oqj(O)X.i , (23)

when the origins of the d(':,f()z'r_l(.(l"and undeformed coord' •'lnate. systelns coin- :
cide. If we let

/30 = $1j+ c_ij (2,1)

the differential element of arc length is given by dxi = flijdXj .

When the body is subject to a cond_ination of time independent external
loads, surface tractions, body forces, and boundary constraints, stresses do
develop. In these circumsta,nces the deformation is given by
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_, =_,(x_,¢)+ &(o)x.,, (25)

wi_h the additional u i term. From the preceeding equ,_tion, the deforma, tion
gradient is computed to be

Fij = _i,j + fllj . (26)

A measure of tlm stra,in computed relative to the unconstrained state of
thermal expa.nsion ca,n bc deduced by ta,king tile difference between the La-
grangian strains irl these two sta,tes. tIence,

_ 1 ,t 1

"/ij "- 2( _ ki.tPkj -- flkiflkj) (27)
= ½(_k,_&j+ flk_k,j+ "_k,_,Lk,j)

will be used in place of ")'idin equation 1.6.

Variational Formulation

The Galerkin formula, tion is employed to approxima, te the solution to
equations 8 and 9. For the _nomentum equation

v ^ 0.7}j

and for Gauss' La,w

Iv _r)dV (29)
ODi

= '
where II1 and II2 arc functiona, ls to be minimized, a,nd 6ui and tiq_arc virtua.1
displacements and electric field potentials, respectively.

We note that both the displa.cemcnts, ui , _tnd the electric field potenti.al,
¢, will be approximated by interpola,tion over the element subdoma,ins. Let
N_ be the set of piecewise continuous shape functions such tha.t N_ = 1 at
the node a and zero at all other nodes in the domain. Over an element
subdomain

u,__,_,_No(_j)(s.m on_) (30)

and
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A, ,,_ i,I_,l,

¢ __¢_No(_j)(_umona) , (31)
where _j are the Yocal element coordinates, ui_ and ¢_ are the nodM displace-

mcnts and the nodal electric field potentials, respectively.

After differentiation and application of Gauss' theorem the following e-

quations are obtained:

/v N_P ttl dV + /v _J_j dV =
' '-' (32)

f. N_t,dS + fvNob, dV,T

and

/v _D, dV = /sNaDiuldS - /vN_,adV (33)

If we introduce equations 13 through 17 and noting that dV = JdV n

the above equations can be rewritten as

n Na,jrikl_' rrlkj aVRlT rR _

(34)

and

f, N_,iD_dV n =
(35)

Solution Strategy

The equations in the preceding section can be re-written in ma, trix fol_,,

when the appropriate substitutions are made for accelerations, stress, defor-

mation gradient, electric field, and electric displacement. For the steady state

solution of equations 34 and 35 one obtains the coupled set of non-linear

equilibrium equations

giajb(U)_jb + Nbia(U)Ob = ria(U)- (36)
Na.ib(U)Ujb "-"P_bCb = _r_(_)



where •Kiajb , Ncia , and Pah are the global stiffness, global piezoelectric
coupling, and the global dielectric matrices respectively. The quantities _i_

and Cd are the mechanical degrees of freedom and the electrical degrees of

freedom. Finally, ria and _r_ are the mechanical and electrical forcing terms.

The above system of equations is ill conditioned because the values of

Ki_jb are man3, orders of magnitude larger than the values of P_b . tt()wever,
this ill conditioning can be removed with diagonal scaling. In addition, t,he

combined system of equations can also be quite large in order to resolve the

frequencies of interest. For this reason iterative techniques such as the pre-

conditioned conjugate gradient method (Manteuffel, 1980) may be employed

to obtain good approximate solutions for the system.

The individual terms in equation 36 are computed by making the follow-

ing iterative approximations

(n)Fij --- /_j +(n--l) __ILi,j (37)

and

(.)_ 1 (.)_ +(.-1) (.-1)_=  (fl k uk, uk,j), (38)

where the superscript (_) before the variable denotes the nth approximation

to that variable. When these expressions are incorporated into equations 32

and 35 and terms are rea,rra,nged, the individuM matrices in equation 36

are given by

('_)Uia jb "-

,IV" N_,t[flik +(")_i,k]Ckt,,_[f3jm .+(,0 iZj,m]N_,,_dV n (39)

1 f, m.,(o)- (2 ui,k Ckl.,_,_ ") _j,_ Nb,,,dV n

(n) _T JVx'_ajb = , N_,k[fljt +(") uj,t]ekt,,,Nb,mdV n (40)

and

f Na,jejkNb,kdV I_ (41)Pah = _J_
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and the vectors in equation 36 are given by

(")fia -"

(")- (")_j,,,dVR

and

(-)
(7-a --

fv (')- (")_ dVR+ ½ R Nad eljk lZm,j m,k •

The following steps are executed to obtain the nonlinear solution and
determine the frequencies of the crystal:

1. Calculate the unconstrained thermal expansion of tlm crystal due to a
uniform temperature load of 0 = T - To .

(o)_ = Xui_ -aij(O) j_ (44)

(°)Ca = 0
P
?

2. Solve the static problem (equation 36) to determine (1)_ and (1)_?2iu •

3. Iterate the solution to refine the estimate of (")¢_ and (")gi..

4. Solve the eigenvalue problem in this perturbed state:

lt_i_jb[,U)()-- "'bia -- A2 - 0 (45)
Najb(U) -- Pa b 0 0

with expression for the consistent mass matrix Miajb given by

Mi_jb = Jv[RpnSijN_NbdVn (46)
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We note that Kiajb is a weak quadratic function of ¢_ and 'gi_ , and the
suggested iteration could fail to converge at; large values.

Computational Results

A specialized finite element program has been developed to solve the non-
linear static thermal stress problem and the associated eigenvalue problem.
The program employs scalable algorithms to evaluate the element matrices
and solve the sparse linear algebraic systems (Jones and Plassmann, 1991).

An efficient 27-node brick element was developed using second order la-
grangian polynomials to interpolate tile displacements and the electric field
potential. It has 8 corner nodes, 12 mid-edge nodes, 6 mid-side nodes and
a center node. The element ma.trices were computed with 3 x 3 x 3 Guass
quadrature. It was necessa,ry to use second order interpolation to more ac-
curately model the thickness-shoa.r modes of vibration.

The solution of the non-linear static thermal stress problem requires a
series of linear systems of the form of equation 36. Because of these systems
are very large and sparse, iterative solutions were preferred. The iterative
solver uses an incomplete matrix factorization as a preconditioner for the con-
jugate gradient algorithm (Manteuffel, 1980). The linear vibration problem
requires the solution of a generalized eigenvalue problem given in equation
45. A shifted, inverted variant, of the Lanczos algorithm was used to solve
for the eigenvalue problem (Nour-Omid, ct. al., 1.987).

The piezoelectric crysta,ls analyzed in this study are used in strip res-
onators. These are thin strips of quartz that vibrate at a fixed frequency
when an electric current is applied to surface electrodes. The finite element
model of the strip resonator is shown in Figure 1. The dimensions of the
crystal are 8 mm x 1.6 mm x 0.4 mm, where the long axis of the strip is
cut at 35.15° with respect to tlm x-axis of the quartz. The figure depicts a
mesh of 15 x 9 x 3 of 405 elements used to debug the model. A 47 x 27 x 9
mesh of 5,589 elements was used to model the resonator. This results in a
system of 45,684 equations which must be solved many times to order to
obtain the static solution and determine eigenvalues. The crystal is mounted
on an aluminum substrate by epoxy joints at each end. For simplicity, nodes
were fixed to simulate the epoxy joints.

A set of five calculations were performed simultaneously on the 520 pro-
cessor Intel DELTA to determine frequency shifts as a function of temper-
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ature for four modes clustered near 668 KHz. Each calculation required 56
processors. About 5,t% of the machine was used in the process ,.andtook less
than 2 hours of wallclock time to complete. Results are shown in Table 1
and in Figure 2 a.', where they have plotted to show the relative variation in
frequ_mcy uormalized to the frequency at 25°C.

Temperature Mode 1 Mode 2 ] Mode 3 Mode 4

• _ "_ ._,, 15 (;,17.70 662.80 684.19 708.6o
. _(20 6.1768 682.77 68,1.13 708.o9

i

25 6,17.65 662.74 68,1.06 _08.o4

]30 (;,17,62 662.71 {}83,98 708.18

35 6.t7 57 (i62,(_i t)83.,)2 708.,!1

Table 1. Cluster of frequenci(,s hoar 66g Kllz a,sa function of temperature in °C.

Conclusions

The current method exte_l,ls tlw current cal)ability to model iAezoelec-
tric devices sut)jected tl'terlnal slrains and including mechanical restraints.
I_ has been irnph:mer_ted to rt_n ('fficielltly oa a massively l)arallel supercom-

, puter and can solve colnl)l(,x ('igeIlvalue probhmls involving coupling between
mechanical and electrical _no(t,.:,sof vibration in a reasonable time frame.

References

II] ANSYS, Rev..1.3. 199f). Swans(m Analysis Systom, 1I_c.,I louston, PA.

[2] Allik It. and llughes. T..1, II., 1970 'Finite element method for piezo-
electric vibration,' Int, .], fi)r Num. Metll. in Engrg., Vol. 2, pp. 151-157.

[3] Jones, NI. T. ' 'Scalable iterative solution, and l)las:_l:_ann. P. I:,., 1991,
of sparse linear s)'st,,l_s, i_rel)rint M .S-1)2,16-0691, Mathe:natics and
Computer Science I)ivision. Argonne National I.aboralory; Argonne, Illi-
llois.

[4] Manteuffel, T. A., 1980, 'An incomph!te factorization tecllnique for pos-
- itive definite linear systoms,' Mattwmatics of Coml)utation, Vol. 34, pl)

473-,t97.

@

Ii
iM

|
ii

|



[5] Nour-Omid, B., Parlett, Ericsson, B. N., and Jensen, P_S., 1987, 'How to
implement the spectral transformation.' Mathematics of Computation,
Vol. 48, pp. 663-673.

[6] Ostergaard, D. F., and P_wlak, T. P., 1986, 'Three-dimensiona,l finite
elements for analyzing piezoelectric structures.' IEEE Ultrasonics Sym-
posium, 639-644.

[7] Yong, Y. K., 1987, 'Three-dimensional finite-clement solution of tile
lagrangia., equations for the frequency-temperature of Y-cut and NT-
cut bars.' IEEE Trans. on Ultrasonics, Fcrroelcctrics, and Frequency
Control, Vol. IJFFC-34, No. 5, pp. 491-499.

13

_m

-!

g
i

|
_b



_, e. p.

Figure 1. Finite element model of a stril_ resonator.
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Figure 2. Change in frequency (PPM) of modes near 668 KHz gs a function
of temperature in °C.
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