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Abstract

In this paper we describe a solution strategy to determine the natural
frequencies of piezoelectric crystals subject to moderate changes in temper-
ature and a variety of boundary constraints. The finite clement equations
governing piezoelectricity are derived based upon a Galerkin formulation of
the problem. Suitable assumptions are made to linearize the steady-state
(static) problem leading to an iteration scheme that can be used to refine
the solution and include non-linear geometric effects caused by deformation.
The eigenvalue problem is cast in this perturbed state to allow more accurate
prediction of resonant frequencies.

Introduction

Finite element formulations of the three dimensional piezoclectric crystal
vibration problem employ the principle of virtual work to derive a coupled
system of linear equations involving nodal displacements and nodal values
of the electric field potential. Allik and Hughes’ (1970) formulation is based
upon assumptions of infinitesimal strain for the deformation of anisotropic
crystals and the existence of an electric field potential. Because the electric
field is assumed to be time independent, they were able to remove this extra
field variable by using static condensation. They illustrated their implemen-
tation using linear tetrahedral finite elements.

The paper of Ostergaard and Pawlak (1986) present an adaptation of the
formulation Allik and Hughes (1970) to two multi-field elements in the AN-
SYS (1990) finite clement code. They illustrated the use of these elements in
static analysis, mode-frequency analysis, and standing wave response to har-
monic driving forces. In this implementation the symmetric (6 x 6) anisotrop-
ic elasticity tensor was stored in compact form that allows all 21 independent
terms to be specified, a full (3 x 6) piezoclectric tensor was stored in full form
and the (3 x 3) dielectric tensor was limited to diagonal terms only. In the
static formulation the glohal stiffness matrix was assembled into a form that
is partitioned into four sections. T'wo symmetric parts along the diagonal
form the mechanical stiflness and dielectric stiffness that are block diagonal
in form. The off diagonal blocks are filled with a coupling matrix and its
transpose. Several examples were given in which the vibrational characteris-
tics of crystals were determined using the full system and a reduced matrix
analysis using the Guyan reduction procedure.
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Yong (1987) extended the formulation given in Allik and Hughes (1970)
and Ostergaard and Pawlak (1986) to include teraperature effects in the
analysis of free vibrations of piezoelectric crystals using the finite-element
method. He incorporated three important effects of temperature in these
problems: approximation of the elasticity tensor as cubic function of the
change in temperature, approximation of the therm I expansion of the crystal
as cubic function of the change in temperature, a1'd a nonlinear geometric
effect produced by thermal expansion. The present analysis incorporates
these three important effects in a more rigorous formulation that permits
the analysis to include the effect of mounting fixtures as fixed boundary
constraints or attached structures.

Deformation and Electric Field Potential

Rectangular cartesian coordinates are employed for the present analysis.
Bold symbols are used to represent vector and tensor quantities in coordinate
free notation, e.g., v is a vector and T is a tensor. The components of vectors
and tensors employ Latin subscripts ranging over the values 1 to 3 to indicate
the corresponding coordinate direction. Vectors (tensors of rank 1) have a
single subscript, e.g., v;, and tensor of rank 2 or more have the number of
subscripts equal to the rank, e.g., 7}; are the components of a second order
tensor.

The cartesian coordinates, xy, are the components of a position vector,
r, directed from the origin to the coordinate point. The:clore,
r = i (1)
where 1 are the unit base vectors directed in the three coordinate directions.
Summation is assumed on repeated indices.

A material point in the body in the unstrained, unstressed, initial con-
figuration is given by the coordinates Xi . The position vector of this point
can be denoted by

R = Xy . (2)

After deformation this material point is displaced to a new position, r |
whose coordinates are given by xy . The displacement of the material point
is a vector that can be computed by the difference in the coordinate positions,
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u=r-R (3)
or expressed in component form

U = T — Xi . (4)

The deformation gradient, F;; , is defined as

(').TI,' (
— = T4
(]A.j ¢

(&1
N

Fi; =

where the ¢, ;' denotes partial differentiation with respect to the variable X;
and the Lagrangian strain tensor is given by

Yij = ’Z“(I'ki['kj - 6i;) (6)

where 6;; is the identity tensor.

It is assumed that the electric field vector has components, 7, that are
derivable from a scalar field, ¢(X}) . This scalar field, ¢ , is called the electric
field potential. The components of the electric field are given by first partial

derivatives of the electric ficld potential,
[ (™)
The electric field is a vector with the dimensions of force per unit charge.

Field Equations

The two partial differential equations that govern the behavior of piezo-
electric crystals are the balance of linear momentum,

oT;; . .

-(;)—:C‘—J + b =py, (8)
Tj

and Gauss’ Law in the absence of magnetic fields,

aD;

—_—=0, 9
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where the ‘.’ denotes partial differentiation with respect to time, and ‘.’ de-
notes second partial differentiation with respect to time. In the first equation
T;; is the Cauchy Stress tensor, p is the mass density, b; is the body force vec-
tor and wu; is the displacement. In the second D; is the electric displacement
and o is the charge density.

The field equations in the preceeding section are subjected to the bound-
ary conditions

Tijvi =t;on St , (10)

u; = U; on Sy , (11)
and

Dijv; =050n S (12)

where v; is the unit vector normal to the surface, S , of a body, St is the por-
tion of the surface S subjected to traction forces, (; are the surface tractions
on St . Sy is the portion of the surface S with prescribed displacements, U;
are the prescribed displacements on Sy . Finally, og is the surface charge
density on S . Note that S = Sp U Sy ,and Sp NSy =0 .

The Cauchy stress, 1;; , are the true physical components of stress, with
dimensions of force per unit area with respect to the deformed configuration.
It is related to the Piola stress, Ti'f , with dimensions of force per unit area
with respect to the reference configuration, by the following relationship

Ty = J ™ Fy T Far (13)

where J is the Jacobian of the transformation from the undeformed to the
deformed configuration. The physical meaning of J in this context is given

Z (14)
- ‘1. V‘ "1
6 Eiik Elmn [ il [4]711 [ kn

where ¢, is the alternating tensor.



Similarly, the electric displacement, D; , gives true physical components
with dimensions of charge per unit area with respect to the deformed con-
figuration. It is related to a "Piola” electric displacement, Df* | with the
same physical dimensions with respect to the reference configuration, by the
analogous relationship,

D;= J7'F;DR} . (15)

The general form of the constitutive laws that govern piezoelectric crystals
are given by

TH = Cijuvm — enij o (16)
and
D = eivin + € 15f° (17)

where Cijy is the elasticity tensor, e, is the piezoelectric tensor and ¢;; is
the dielectric tensor.
Displacement Decomposition

The deformation of a body subjected to a combination of thermal and
piezoelectric time varying loads has the following form,

T == X!(X])oa(/))t) ) (18)

where z; are the current coordinates of a material point, X; , are the coordi-
nates of the same material point in the undeformed reference configuration,
6 is the scalar change in temperature, ¢ is the scalar electric field potential,
and t is time. Without loss of generality the right hand side of the above
expression can be written as

Ty = u;(.«\’j,a,d), t) + X, (]_9)

where u; is the total time varying displacement of the material point.

For the purpose of the present analysis, it is convenient to partition this
displacement into three components. Let

u,-(Xj, 0,¢, !,) = '(L:(,v\’j, (f)*, t) + TL,'(XJ',—QZ) + (l’;j(O)“\fj . (20)
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The first term, u? , is the time varying component of the displacement. It
is driven by external excitations and coupling to time varying components of
the electric field, ¢* . In the case of free vibration, the ©}’s and the ¢* are the
eigenvectors corresponding to the eigenvalues determined in the deformed
state, U,‘(Xj,g) + a;; (N X; .

The second term, %; , arc the mechanical displacements due to static loads,
body forces, static electric field, and external boundary conditions. The
overline is used to indicate the static quantities. In the case of a crystal, these
displacements are produced by the direct interaction of mounting fixtures and
adjacent structures.

Finally, the last term is the unconstrained response of the crystal to
thermal load, § = 7" — Ty . The thermal expansion of anisotropic crystals is
governed by «;;’s which can be approximated to a high degree of accuracy
as cubic functions of 0 for quartz as in Yong (1987)

@;;(0) = i 0+ i) 0% + ol 6% . (21)
Similarly, the temperature variation in the components of the elasticity ten-

soi Cyjpi , are also approximated by cubic functions as well,

Cijua(0) = Cijpy + Cigra + Cijaa0® + Cigps0® (22)

In the present analysis, only uniform temperature distributions will be
considered. Under these conditions, the «;;’s as well as the Cjji’s are inde-
pendent of position and the thermal expansion if unobstructed will also be
uniform. This only occurs when the boundaries are free of external tractions,
the body forces are zero and the displacements are not constrained. In this
state the body is stress free and its deformation is characterized by

;= X; + O’l‘j(o)/\/j , (23)

when the origins of the deformed and undeformed coordinate systems coin-
cide. If we let

Bij = 6ij + (24)
the differential element of arc length is given by du; = (5;;d.X; .

When the body is subject to a combination of time independent external
loads, surface tractions, body forces, and boundary constraints, stresses do
develop. In these circumstances the deformation is given by
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T; = Hi(Xi)a) + BlJ(O)XJ 3 (25)

witl the additional @; term. From the preceeding equation, the deformation
gradient is computed to be

ng = Uy ; -+ ,3,']‘ . (26)

A measure of the strain computed relative to the unconstrained state of
thermal expansion can be deduced by taking the difference between the La-

grangian strains in these two states. Hence,
T = 5(FuTr ~ Bubrs) )
= %(ﬁk,iﬂkj + Biilnj + T ik, ;)

will be used in place of ;; in equation 16,

Variational Formulation

The Galerkin formulation is employed to approximate the solution to
equations 8 and 9. For the momentum equation

aT; .
Il :/ (= + b — p iig)dV
1=, ot ( 72, + b; — p u;)dh (28)

and for Gauss’ Law
~ 0D;
= - / ¢
I /;/6¢( dz; o)V, (29)

where II; and IlI; are functionals to be minimized, and é4; and 6(}) are virtual
displacements and electric field potentials, respectively.

We note that both the displacements, u; , and the electric field potential,
¢, will be approximated by interpolation over the element subdomains. Let
N, be the set of piecewise continuous shape functions such that N, =1 at
the node a and zero at all other nodes in the domain. Over an element
subdomain

Ui = uigNo (&) (sum on a) (30)

and



¢~ GV, (&) (sumon a) , ' (31)

where ¢; are the local element coordinates, u;, and ¢, are the nodal displace-
ments and the nodal electric field potentials, respectively.

After differentiation and application of Gauss’ theorem the following e-
quations are obtained:

/Nap i dV + /%Z"ﬁdv -
14 14 0.'1:_1' (32)
/ N,tdS + / N,bidV |
Sp v
and
N,
= AV = 14D - .
[ Sz D /S N, DividS /V N.odV (33)

If we introduce equations 13 through 17 and noting that dV = JdVR
the above equations can be rewritten as

/V Nap®i av® 4 /VR Ny P TRAVE =

(34)
R R 1R R
[ NeFitds” + /VR N, Fi;bRdvR
and

[, NogDRav" =

v (35)
/ NooBdSR — [ NoRdvR .

SR V&

Solution Strategy

The equations in the preceding section can be re-written in matrix forn:
when the appropriate substitutions are made for accelerations, stress, dcfor-
mation gradient, electric field, and electric displacement. For the steady state
solution of equations 34 and 35 one obtains the coupled set of non-linear
equilibrium equations

Kijp(@ujp + Npw(@éy, = fiaf

) )
Nop(@bjs  ~ Pasfy = 0,(T) (36)
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where Kiq b , Neia , and P, are the global stiffness, global piezoelectric
coupling, and the global dielectric matrices respectively. The quantities u;,
and ¢, are the mechanical degrees of freedom and the electrical degrees of
freedom. Finally, f;, and o, are the mechanical and electrical forcing terms.

The above system of equations is ill conditioned because the values of
K, j» are many orders of magnitude larger than the values of P,; . However,
this ill conditioning can be removed with diagonal scaling. In addition, the
combined system of equations can also be quite large in order to resolve the
frequencies of interest. For this reason iterative techniques such as the pre-
conditioned conjugate gradient method (Manteuffel, 1980) may be employea
to obtain good approximate solutions for the system.

The individual terms in cquation 36 are computed by making the follow-
ing iterative approximations

OF =B+ T,y (37)

and

(n)

n)__ (n) _ (n—-1) __ (n—1)__

~ 1«

Vij = 5B g+ Weibip + Uk k) (38)
where the superscript () before the variable denotes the nth approximation
to that variable. When these expressions are incorporated into equations 32

and 35 and terms are rearranged, the individual matrices in equation 36
are given by

(")Kiajb =
/VR Na,[Bik +(") Ui ) Crtmn [ Bim '+(") ﬂj.m]Nb.ndvR (39)

1 (n)_ (n)_ R
o) VRNa,l Wi kChimn  Ujm NpndV

(")Najb = /VR N k(B 4+ ; () ertm NomdV 2 (10)

and

P,, = /VR Ny j€5x Ny idV R (41)



and the vectors in equation 36 are given by
(")fia -
| NFgtfds® + [ NFgbRav®
Sr VR

1 (m_ () R
+ 5 vRNa.IIBikalmn Ujm  UjndV

and

f NooBds® — / NooRdvR
SR VR

1 (n)__ (n)_. R
+ ] VR Na,l €Lk Um,j urn,kdv .

(43)

The following steps are executed to obtain the nonlinear solution and

determine the frequencies of the crystal:
1. Calculate the unconstrained thermal expansion of the crystal due to a

uniform temperature load of 0 =T — Tp .

By = bt ay(0)
O = —i(0)Xja (44)
(0)$ — 0
2. Solve the static problem (equation 36) to determine (1);5“ and Py,
- (m—

3. Iterate the solution to refine the estimate of ™ ¢, and U, .

4. Solve the eigenvalue problem in this perturbed state:

Ko (@)  Nyp,(1) o M 0 |
} (N;“jb(ﬁ) . - A o o) |T O (45)

with expression for the consistent mass matrix My, ;5 given by

Mg jp = /VR p6i; NoNpd V.
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We note that K, j, is a weak quadratic function of aa and %, , and the
suggested iteration could fail to converge at large values.

Computational Results

A specialized finite element program has been developed to solve the non-
linear static thermal stress problem and the associated eigenvalue problem.
The program employs scalable algorithms to evaluate the element matrices
and solve the sparse linear algebraic systems (Jones and Plassmann, 1991).

An efficient 27-node brick element was developed using second order la-
grangian polynomials to interpolate the displacements and the electric field
potential. It has 8 corner nodes, 12 mid-edge nodes, 6 mid-side nodes and
a center node. The element matrices were computed with 3 x 3 x 3 Guass
quadrature. It was necessary to use second order interpolation to more ac-
curately model the thickness-shear modes of vibration.

The solution of the non-linear static thermal stress problem requires a
series of linear systems of the form of equation 36. Because of these systems
are very large and sparse, iterative solutions were preferred. The iterative
solver uses an incomplete matrix factorization as a preconditioner for the con-
jugate gradient algorithm (Manteuffel, 1980). The linear vibration problem
requires the solution of a generalized eigenvalue problem given in equation
45. A shifted, inverted variant of the Lanczos algorithm was used to solve
for the eigenvalue problem (Nour-Omid, et. al., 1987).

The piezoelectric crystals analyzed in this study are used in strip res-
onators. These are thin strips of quartz that vibrate at a fixed frequency
when an electric current is applied to surface electrodes. The finite element
model of the strip resonator is shown in Figure 1. The dimensions of the
crystal are 8 mm x 1.6 mm X 0.4 mm, where the long axis of the strip is
cut at 35.15° with respect to the x-axis of the quartz. The figure depicts a
mesh of 15 X 9 x 3 of 405 elements used to debug the model. A 47 x 27 x 9
mesh of 5,589 elements was used to model the resonator. This results in a
system of 45,684 equations which must be solved many times to order to
obtain the static solution and determine eigenvalues. The crystal is mounted
on an aluminum substrate by epoxy joints at each end. For simplicity, nodes
were fixed to simulate the epoxy joints.

A set of five calculations were performed simultaneously on the 520 pro-
cessor Intel DELTA to determine frequency shifts as a function of temper-

11
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ature for four modes clustered near 668 KHz. Each calculation required 56
processors. About 54% of the machine was used in the process and took less
than 2 hours of wallclock time to complete. Results are shown in Table 1
and in Figure 2 as where they have plotted to show the relative variation in
frequency normalized to the frequency at 25°C.

Temperature | Mode 1 | Mode 2 | Mode 3 | Mode 4
(°C) (Kli2) | (KHz) | (KHz) | (KHz)

15 647.70 | 662.80 | 684.19 | 708.65

20 G17.68 | 662.77 ! 684.13 | 708.59

25 G47.65 | 662.74 | 684.06 | T0£.54

30 6AT.62 | 66271 | 683.98 | 708.48

35 GA7.57 | 662,67 | 683.92 | 708.41

Table 1. Cluster of frequencies near 668 KHz as a function of temperature in °C.
Conclusions

The current method extends the current capability to model yiezoelec-
tric devices subjected thermal strains and including mechanical restraints.
It has been implemented to ran efficiently oo a massively parallel supercom-
puter and can solve complex eigenvalue problems involving coupling between
mechanical and electrical modes of vibration in a reasonable time frame.
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Figure 1. Finite element model of a striy resonator.
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Figure 2. Change in frequency (PPM) of modes near 668 KHz as a function

of temperature in °C.
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