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Field 11esversed configurations (FRCs) are characterized by azimuthal
symmetry, so two exact constants of the particle motion are the total
particle erergy E and the canonical angular momentum pg. For many
purposes it iec desirable to construct a third (adiabatic) constant of the
motion 4f this is pcssible. It 4s shown that for parameters
charact.eristic of current FRCs that the magnetic moment uy 1s a poor
adiabatic invartiant, while the radial action J is conserved rather well.

The magnetic moment of & particle at position T is
mvl2(;)
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u(f) =

(1)
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where ¥8¢ is the position of the purticle’s guiding center. B(?sc) can
be estimeted from B(#) by Taylor expanding B about ’gc - ¥. Foru to be
conserved it 1. necessary that a particle see lirtle change in B during a
radiel oscillation. 1In Fig. 1 we show trajectories of thermal particles
in the flelds of the FRX-B equilibrium as calculated by Spencer and
Revett.!)2 This equilibrium has T, = 340eV, npex = 3x10%%ca™3, B, =

w
6.5kG, r, = 12.5cm, x; = .46, and Psep/Pmax = 44, For these parameters
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Figure |. Particle trajectories and flux surfaces for a) cycloidal
particle, and b) betatrcn particle, using FRX-B parameters.
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the radial gradient 1in B in the midplane of the device is sufficiently
steep that the particle sees a large variation in B during one radial
oscillation, By the time the (cycloidal) particle has reached z = 1 in
Fig. la it has experienced a variation in p of Ay ~ %652, which surely is
unacceptable for u to be considered conserved; for the betatron particle
in rig. 1b p 15 meaningless. The conclusion is that u is not a suitabte
invariant for any class of particles in the FRC. This suggests that not
only is MHD an invalid model, but the guiding center model also 1s rot
applicable.

Fortunately there remains a s8small parameter cf FRCs that can be
exploited to derive a new adiabatic invariant to replace u. That small
parameter !s the elongation of the configuration, €, which typically is
in the range .15 <€ € < .25, We now show that the radial action J 1is an
invariant for clongated FRCs.

The equilibrium single particle NHamiltonian is (pg is a parameter
throughout)

2 2
P P .
H(rppr'z.nz) "—";E—""-;'m—'.'U(rrI/’ (2)

where the twu dimensional potential is

[pgmew(r,z)/c]?
UCr,r) = i roei(n), (3)
2mr*

and ¢ is the electric potential darermined from 1on pressure balance.
The highly elongated nature of FRC8 mninifests Itself 4n that the
potentlal variation in z is much "slower" than {t 18 in r. (This !& true
except for a highly racetrank equilibdrium, where all the axial variation
occurs at the tip of the flux ~urface ¢ the same spatial scaie length as
the radial varjation.) Thus to do the perturbation theory for sluw z

variation we replace
UCr,z) » U(r,cz), (4)

treat ¢ as rmall in the analysis, and then at the end let ¢ + 1, Mynick3

used the slow-z approximation (4) and made some analytical approximations
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to obtain 4 Hamiltonian as an »1icit function of J that determines the
radial and axial motions of a pa ‘icle through order e2. Here we present
a simple derivation of the lowest order Hamiltonian, without seeking to
make approximations of the integral: involved, and we present numerical
ie8ts of the constancy of J for realistic equilibria, Define the radial

action J as

J(E,,€2) = i%-é dr p (r,E,,cz). (5)
The p, in Eq. (5) is

Pe(r,Eq,e2) = {2m[E, - U(r,e2)]}1/2, (6)

where Eo is a constant value ot the radial Hamiltonian Ho

2
P
Ho(r,pr,ez) - 1£;.+ U(r,ez) = constant = Ege (7N

For each z in Eq. (7), E, varles over a range of values, For each z and
E, in Eq. (5), J has a certain value. The relation J = J(E,,ez) can be

inverted to give E, as a function of J and ez:
Eo = Ho(r,pr,cz) = Ko(J’Cz)- (8)

That is, we have transformed from (r,p,) to action-angle variables (¢,J).
Since € 18 a parameter in the potential U, a perturbation solution

for z{(t) wiil depend on ¢,
z(t;e) = zg(t) + ez (t) + ezzz(t) T (9

(It 18 well known that a straightforward perturbation expansion as in (9)
leads to wuecular growth of z(t), so that the solution soon becomes
invalid as t becomes large.a These secularities can be removed from the
solution by allowing z(t) to depend on € through vrrious time scales T,

Tpy «oey T defined by Th = c"t. n = 0,1,2,.... However, i1in this

ne

.
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calculation we do not actually need the multiple time scale formalism.)

When the expansion (9) is substituted into U(r,ez) we have
U{r,ez) ~ U(r,e(zgtezy+...))

- U(r,ezo+ezzl+...)

U(r, e 2, 2U(r.e20) 2
- 1€20) + € zl~37E;6T—-+ ees = U(r,ezp) + 0(e). (10)

Therefore the Hamiltonian that determines to lowest order in ¢ the radial
and axial motion of a particle is obtained by substituting Eqs. (10,7,8)
into Eq. (2) (letting zy + z):

2

P
K(J,ez,p,) ™ Ky(J,e2) 4--%%-+ 0(:2). (11)

From Eq. (11) we conclude that J is an adiabatic invariant:

dJ oK 2
T 0+ 0(e*).

For the cylcoidal particle in T'ig. la, by the time the particle reaches z
= ] the variation in J has been AJ ~ 211X, For the betatron particle in
Fig. 1b the variation in J 18 AJ ~ 28X during an axial bounce time. (For
FRX=C parameters the variations in p and J are about 50Z of what they are
for FRX-B parametzrs.) By solving Eq. (1l1) for p, and using the equation
dz/dt = p,/m, the axial time of a particle’s position is (letting € » })

fz dz'

' (12)
71 {%EE - KO(J.Z')])l/Z

1(z) =

where E 18r a constant value of the total Hamiltoaian K in Eq. (1l1), and
z) 18 a turning point of the axial motion. The error in using formula
(12) compared to the exact particle trajectory data is .34% at z = 2 in
Fig. la and .97% at the z~turning point in Fig. lb,

0f course, J (or p for thai matter) is not an adiabatic constant of

the motion for particles that pass in the vicinity of the spindle point.
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In fact, particles with positive Pg have orbits that are not confined
axially (see Fig. la), so these particles are lost through the spindle
point region in an axial transit time. In a similar vein Kim and Cary5
ctudied particle orbits for an elliptical z-pinch, and found two regions
of the equilibrium where either J or u was conserved, with a stochastic
region in between. What we have shown is that, where it is possible to
define an adiabatic invariant in current FRC equilibria, the radial

action is always conserved much better than the magnetic moment.
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