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AJIABATIC INVARIANTS FOR FIELD REVERSEDCONFIGURATIONS

J. L. Schwarzmeier, H. R. Lewis, and C. E. Seylt!ra)

9 s A1.amos National Laboratory, LOEIAlamos, NM87545
a Department of Electrical Engineering, Cornell University, Ithacap NY
14853 ./.

Field ~sversed configurations (FRC61) are characterized by azimuthal

symmetry, so two exact conetants of the particle motion are the total

particle ecergy E and the canonical a~]gular momentum pe. For many

purposes it is desirable to construct a third (adiabatic) constant of the

motion ?.f this i~ prssible. It 1s shown that for parameters

characteristic of current FRCS that the magnetic moment u is a poor

adiabatic invariant, while the radial action J is conserved rather well.

The magnetic moment of e particle at position ; is

mv12(i!)
U(;) -

2B(:8C)’
(1)

where $~c is the position of the particle’s guiding center. B(;gc) can

be estimeted from B(?) by Taylor expanding B about *8C - ~. For v to be

coneerver! it lC necesoary that a particle see little change in B during a

radial oscillation. In Fig. 1 we show trajectories of thermal particles

in the fields of the FRX-B eq~ilibrium as calculated by Spencer and

Hewett.102 This equilibrium has Ti ~ 340eV, ~ax - ~xlo15cm-3, ~
w-

6.5kG, rw= 12.5cm, Xa = .46, and PSeplpmax = ●44* For these parameters

Figure 1. Particle trajectories and flux surfacee for a) cycloidal
particle, and b) bet~trcn particl~, using FRX-B parameters.
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the radial gradient in B in the midplane of the device is sufficiently

steep that the particle Rees a large variation in B during one radial

oscillation. By the time the (cycloidal) particle has reached z = 1 in

Fig. la it has experienced a variation in p of Ap - 265%, which surely 2s

u~acceptable for u to be considered conserved; for the betatron particle

in kig. lb P is meaningless. The conclusion is that I.I is not a suitable

invariant for any class of particles in the FRC. This suggests that not

only 18 MID an invalid model, but the guiding cet~ter model also is not

applicable.

Fortunately there remains a small parameter of FRCS that can be

exploited to derive a new adiabatic invariant to replace p. That small

parameter is the elongation of the configuration, c, which typically is

in the range .15 < c < .25. We now show that the radial. action J is an

invariant for elongated FRCS.

The equilibrium single particle Mmiltonian Is (p~ is a parameter

throughout)

~ -
PrL Pz’

H(r,pr,z,nz) M =+=+ v(rt~j) (2)

where the two ciinenaional potential 1!s

[pQ-.ev(r,z)/~12+ed(,:),

U(r,ro] = -—---—-...— (3)
2mr2

and O is the electric pot(qntiai du?ermlned from ion preeaure balance.

The highly elon~ated natur? of FRCe n,~:nifests itself in that the

potentlnl varimtion in r, la much “slower” than it ~.s in r. (This ffi true

except for M highly racetrark cc~uillbriurn, where all the axial varioti~l]

occurs at the tip of th% flux ‘*lrface [,7 the @ame spatial scale length as

the radial variation.) Thus to do the perturbation theory for SILJW z

variation we replace

U(r,z) ~ [J(r,cz), (4)

treat c as cmali in the nnnlyoiti, nnd then at the end let F + 1. 14ynick3

used the Blow-z approximation (~+) and made some analytical npproximntionfi
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to obtain a Hamiltonian as an >Iicit function of J that determines the

radial and axial motions of a pa icle through order e2. Here we present

a simple derivation of the lowest order HamiltonIan, without seeking to

make approximations of the integral,: involved , and we present numerical

~~sts of the constancy of J for realistic equilibria. Define the radial

action J as

The pr in Eq. (5) IS

pr(r,Eo,~z)- {2111[E0- U(r,cz)]}l’2, (6)

where E. is a constant value of the radiol Hamiltonian HO

Pr2
Ho(r,pr,ez) ‘= + U(r,cz) = constant 5 Eo. (7)

For each z in Eq. (7), E. varies over a range of values. For each z and

E. in Eq. (5), J has a certain value. The relation J - J(EO,CZ) can be

inverted to give E. as a function of J and CZ:

(8)E. - Ho(r,pr,ez) D KO(J,6Z).

That is, we have transformed from (r,pr) to action-angle varinbles ($,J).

Since c IS a psrameter In the potential U, a perturbation solution

for z(t) wiil depend on c,

2Z(t;c) - Zo(t) -t Czl(t) + c Zz(t) + ● O,, (9)

(It. is well known that a straightforward perturbation expansion as in (9)

leads to uecular growth of z(t), so that the #olution ooon becomes

Invnlid aa t becomes large. 4 These secularities can be removed from the

a~lution by allowing z(t) to depend on c through vorious time scales T(l,

T1 , ● **, Tn, defined by Tn - cnt, n = 0,1,2,,... However, in tbi8
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calculation we do not actually need

When the expansion (9) is aubsticuted

U!r,cz) * U(r,c(zO+czl+. ..))

2= U(r,czO+c 21+...)

the multiple time scale formalism.)

into U(r,cz) we have

~U(r,czO)
= U(r,czO) + C2Z1

a(
+ = U(r,czO) + 0(c2). (10)

Czo) ““”

Therefore the HamiltonIan that determines to lowest order in c the radial

and axial motion of a particle la obtained by 6ubatituting Eqs. (10,7,8)

into Eq. (2) (letting zo + z):

PZ2
K(J, CZ,PZ) = KO(J,CZ) +S~+o(cz). (11)

From Eq. (11) we conclude that J is an adiabatic invariant:

For the cylcoidal particte in Fig, la, by Ll\e time the particle reaches z

= 1 the variation in J has been A.] * ill%. For the betatron particle in

Fig. lb the variation in J is AJ - i8% during an axial bounce time. (For

FRX-C parameter the variations in p and J ure about 50% of what they are

for FRX-B parameters.) By solving Eq. (11) for pz and uning the equation

dz/dt ~ pz/m, the axial t~,me of a particle’s pobition is (letting c + ;)

T(Z) - ,llz~ ‘z’
{=[E - KO(J,Z’)]F’

(12)

where E i~ n constant value of t~~e total Homiltoi~ian K in Eq. (11), and

Z1 la a turning point of the axial motion. The error in using formula

(12) compared to the exact particle trajectory data ie ,34% at z - 2 in

Fig. la and .97% at the z-turning point in Fig. lb.

Of course, J (or u for that matter) ie not nn adiabatic conetant of

the motion for partlclne that pas~ in the vicinity of the npindle point.
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In fact, particles with positive pe have orbits that are not confined

axially (see Fig. la), so these particles are lost through the spindle

point region in a~ axial tranait time. In a similar vein Kim and Cary5

studjed particle orbits for an elliptical z-pinchj and found two regions

of the equilibrium where tither J or p was conserved, with a stochastic

region in between. What we have shown is that, where it is possible to

define an adiabatic invariant In current FRC equilibria, the radial

action is always conserved much better than the magnetic moment.
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