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ABSTRACT~~We calculate the fluctuation conductivity in presence of an

external magnetic field H as function of the angle between H and the
current for an anisotropic dirty superconductor.

RESUME--On calcule la conductbilité due aux fluctuations en presence
d'un champ magnétique applique H, en fonction de l'angle entre H et le

courant, dans le cas d'un superconducteur anisotrope 'dirty"

As it well known [1] the upper critical field H.o of a dirty type II

superconductor depends on the lowest eignevalue of the differential

operator - Sﬁ D&B T, T3 where af denote cartesian coordinate axis x y 2z,

D g is the diffusion tensor for the electrons and 7 is a-component of
&

the canonical momenta for a cooper pair in 2 magnetic field H (if H is

represented by a vector potential A then T o= AV + “ie A). Also, it has

been noted that superconducting fluctuations in presence of the field
H above TC(H) could Provide information about the whole spectrum of
- g; DaB ﬁa nB. Consequently, when the interpretation of measurements
on ch are difficult, as in case of anisotropic superconductors lika

layered compounds [2] and (SN)x {3}, it should be useful to study these
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=§§%5§§E§% valid for anisotropic dirty superconductors, for the fluctuation magneto-
e foogiesis
b4 gE = 0
igi: 5552% conductivity tensor a (T H,9) where 3 is the angle between the measur-
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Egaz ;ii:; ing current and H. Our discussion follows closely that of Mikeska and
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Schmide [4] and,

for cf = cf (T,H,0) and of = of
H 2z 1

in the isotropic limit treated by them, our results

,(T,H,3) agree with cheirs. 4as a by-

product of our calculation we obtain an expression for HCZ(T,G) which
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agrees with that of Tilley [17].

Studying Jf aleng the chains in (Stl)x without a magnetic field
Citvak, et al. [3] fouad one-dimensional fluctuations. By contrast the
measurement of other properties of (SN)x {3} suggests that it is a three-
dimensional anisotropic semi-metal, If sis(T,H,e) were measured and the
results differed markedly from the theory presented hare, the conclusicn
of Citvak, et al. [5] that superconducting fluctuations are dominated by
reduced dimensionality due to the fibrous morphology of this metallic
polymer would be considerably strengthened.

To second order in the order parameter 7 the generalized Ginsburg-

Landau free energy for an anisotropic dirty superconductor in a magnetic

field can be written as

2
AF =fd3§! %) £ (T,@) 7 (x) +‘l8{; @

where f, from macroscopic theory [6] is given by

4k, T 3

y e __2¢c ). T il g;b (L

f(T’ ') ,i,JI (11) (a1} Tco + \‘)<2 + 4Wk5T) 'v)( )1 . (2)
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Here 049 = %% Das ﬁa Tg ¥ denotes the digamma function, TcO is the

critical temperature in absence of the magnetic field. For a dirty
superconductor Das is proportional to the normal state conductivity

tensor (7].

In this theory, the a-component of the current is

- i oty ; .
3, 0 = gy % v #'<= ¥ 4nks1'>f Gofrg ¥ () + C.Cof (3)

where ¢' is the trigamma functionm.
For T»> Tc the order parameter Y fluctuatas about its mean value ¥=0.
To discuss these fluctuations it is useful to expand Y in terms of the

eigenfunctions ¢u corresponding to the eignevalues Eu of the operatorgzzx




Yx,e) = 2% (8) & () ()
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The dynamics of the fluctuations can be obtained from microscopic
theory (8], and for small frequencies the relax tion approximation gives

iw+T )Y (w) =0

(iw u) u(“) (6)

where the relaxation rate Fu near TC is given by.

47rkBT )
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wilitn 5 T_TC(H)
Eu = eu/4nkBT and € = —-————TC(H) .

Consider the case where the diffusion tensor is diagonal Dxx =

D =D,D_=D andH makes an angle 6 with the axis of anisotropy.
vy 1 zz {i -

The eigenvalue problem of Eq. (5) may be solved for the gauge choice

A = (Hzsin® - Hycos8,0,0) if we make the following coordinate trans-
formation

y' cos® sin® y
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In the primed coordinate system Eq. (5) separates and the eigen-

values are

- 2 2
Eqn hmc(nﬂi) + & B- g(0)q (9)
2eH 1 2 Dn 2
where w, = 2 o D g(6)* and g(3) = cos @ + 5 sin“e ,
L
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Furthermore the eigenfunctions are
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with Mo being the normalized harmonic oscillator solutions.
We shall calculate 7 using Eq. (11) entirely in the primed frame
of reference. Since we imposed the boundary conditions in this coordinate
system we have changed both the shape and the volume of the sample. The
former is irrelevant and we correct for the latter.
The fluctuation conductivity along the anisotropy direction is

given by the "Kubo formula" [4].

f 1 2 gz <3 % <fv ]
o] H,8) = = I 1 U
22 (T,H,9) Rk, T me' Tupu'Tutu = b (11)
B i + T,
Cu u')
where u = (k,q,n), Iiu. are the matrix elements of the current operator
20 (KT
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in Eq. (3) and from the equipartition theorem <lwu >=77?::7—%:— a
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full discussion of Eq. (11) will be published elsewhere. Here it is

evaluated ¢! three limits. Defining the pair breaking parameter
D
L 2¢H 1
hd = Flemem—m | — i { .
p(s) = o g(9)™ where 0 u( A ) Z kBTc we find:

(a) p << g << 1 (vanishing magnetic fields)
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as one should expect for zero magnetic field there is no angulesr

dependernce.

(b) € << p << 1 (small magnetic fields)

2 2k T ’/2 D li sz 2.
of (1,4,0) = = _:_g) 2t T cos’s
324 L ot g(9)%
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(c) p > 1 (large magnetic fields)
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where a = yh in 3.

Evidently for an arbitrary orientation of the magnetic field the
conductivity has a component whose temperature dependence is characteristic
of one-dimensional fluctuations (a_yé) and another whose temperature
dependence is three dimensional (E-%). Their relative coantribution varies
rapidly with &.

Measurements of HC2 (T,5=0) and ch (T,9=7/2) can be used to deter-
mine D; and D“.. Thus the above theory is free of adjustable parameters.
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