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HIERARCHICAL CONTROL OF A NUCLEAR REACTOR USING UNCERTAIN
DYNAMICS TECHNIQUES

L. A. Rovere*. Comision Nacional de Energia Atomica Argentina
P. J. Otaduy, C. R. Brittain, Oak Ridge National Laboratory

R. B. Perez, University of Tennessee

Abstract

Recent advances in the nonlinear optimal
control'.2.3 area are opening new possibilities
towards its implementation in process control.
Algorithms for multivariate control, hierarchical
decomposition, parameter tracking, model
uncertainties, actuator saturation effects and
physical limits to state variables can be
implemented on the basis of a consistent
mathematical formulation.

In this paper, good agraement is shown
between a centralized and a hierarchical
implementation of a controller for a hypothetical
nuclear power plant subject to multiple demands.

The performance of the hierarchical
distributed system in the presence of localized
subsystem failures is analyzed.

1. Introduction

The computational burden for implementation
of a nonlinear process controller for real time
applications is considerably large and grows with
the number of state variables. For a large scale
system (LSS), decomposition into separate
subsystems with their own computing resources
may be necessary. Recent advances in the nonlinear
optimal control' area are opening new possibilities
towards the development of hierarchical
decomposition algorithms based on uncertain
dynamics formulat ions^'^. Algorithms for
multivariate control with parameter tracking,
actuator saturation effects arH physical limits to
state variables capabilities can be similarly
developed on the basis of a consistent
mathematical formulation.

'Currently at Univ. of Tennessee

Once system decomposition is accomplished,
a hierarchical control structure can be established
in which a coordinator module controls the
operation of one or more subsystems*. The
coordinator module can be controlled by other
modules higher in the hierarchy.

Let a LSS be represented by the following
vector state equation

dX/dt - F(X,U) (D

where X represents the state vector and U is the
control vector. This system can be targeted for
decomposition into n subsystems governed by a set
of state equations of the form

dXi/dt - Fi(Xi.Ui) + Pi (2)

where Xiand Ui represent the state and control
vectors of the ith subsystem, and Pi is an unknown
term vector that accounts for both the effects of
those state variables not explicitly modeled in the
ith subsystem and the effects of its modeling
inaccuracies.

Let us define, for each subsystem i, two
Hamiltonian functions: one to be used to generate
optimal controls for demand following, and the
other to generate the unknown terms for optimal
matching of the controller's state predictions and
the measured signals. These Hamiltonians take the
form:

(3)

(4)

0.5(Di-Xi)T Ri(Di-Xi) +
WTj (Fi+Pi),

0.5(Pi-P0i)TMi (Pi-POj) +
0.5(Yi-Si)T Ni (Yi-Si) +
ZT, (R+Pi)+ ET|Gi,

where Xi and Ui are the state and control vector for
the ith subsystem; Wi, Zi, and Ei are adjoint state
vectors; Qi, Ri, Mi, and Ni are weight matrices; Di is



the demand vector; Yiand Si are the estimated and
actual sensor reading vectors respectively; and Gi
is the sensor transfer function.

The application of Pontryagin's Maximum
Principle (PMP) to the above Hamiltonian functions
results in a set of differential and algebraic
equations from which optimal control vectors and
unknown terms can be computed .

2. Methodology

For illustration, let us consider the following
system of equations representing energy balances
for the 3-node model of the heat exchanger
between subsystems SS2 and SS3:

dT°P

d7

dTm

d7~

Wp (HA)pm
(Tip-Top) - (Top-Tm) (5 )

Mp (MC)P

(HA)Pm (HA)m8

(Top-Tm) - (Tm-Tos) (6)

(MC)m (MC)m

Detailed mathematical models of nuclear
power plants may involve more than 500 state
variables to represent the dynamics of mass,
energy, momentum and neutron processes across
the plant. For this study a simplified model
consisting of 29 state equations and 4 controls has
been implemented on a Vax 11/780 using ACSL
simulation language.

Figure 1 is a schematic of a nuclear power
plant showing the main energy flow loops, sensors,
actuators and major components. The partitioning
of the plant into four control subsystems is shown
by shaded blocks. The decoupling points between
subsystems were selected on the basis of physical
boundaries that are present in the real system,
such as heat exchangers, in which energy but no
mass transfers are allowed, minimizing in this way
the number of variables contributing to the
coupling terms. This approach results in a set of
unknown terms that have a physical meaning such
as feedback reactivity and power transfer.
Observation of the time dependency of these terms
provides insight into the plant's behavior.
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Figure 1 Subsystem decomposition of a LMR nuclear
power plant

dTo.

dt

where

(Tis-Tos)
Ms

(HA)m

(MC)s
(Tm-T°s) (7)

T stands for temperature,
M for mass,
W for mass flow rate,
HA for heat transfer coefficient,
•, o for inlet and outlet,
p, *, m for primary, secondary and metal.

Since the temperatures of the coolant at the
outlet nodes are measurable it is possible to
decouple the subsystems by replacing the metal
equations and coupling terms with Pi and P2 as
follows:

d7

dTo,

dt~

WP

(Tip-Top)

W.
(TVTo,) + p2

(8)

(9)

Equations (8) and (9) are then made part of
the controller's model for subsystems SS2 and SS3
respectively. By virtue of the Hamiltonian and the
application of the PMP, Pi and P2 will be
synthesized by their respective controllers while
optimally matching their internal model's
computations to the measured plant data.

3. Application

3.1.Demand Following

The performances of both a centralized
optimal controller and of the corresponding
uncertain-dynamics-based hierarchical controller



in response to a set of demands are shown in figs.
2. Tha transient presented corresponds to a
ramp-down followed by a ramp-up on the demanded
neutron power while all other demands are kept
constant. Figures 2.1.a and 2.1.b show the perfect
agreement between the demand, plant and
controller's model for both the centralized and
decomposed implementations respectively (all
variables are scaled to reference values). Figures
2.2.a and 2.2b show a similar comparison for the
steam drum pressure in which the controllers
model can track the plant exactly and the demand is
maintained with an error of about 0.1% during the
transient. It is clear from these figures that both
centralized and decomposed controllers perform
equally well.

Computationally, every time step the
centralized controller requires the simultaneous
solution of a set of 87 nonlinear differential
equations (29 states and 58 adjoint states) and a
set of 13 algebraic equations (4 controls and 9
unknown terms) which takes on the average 1.2 CPU
sec per second of realtime simulation. The
hierarchical controller requires the solution of
four uncoupled sets of equations, one for each
subsystem, with a total of 48 equations (16 states,
32 adjoint states) and a simpler set of algebraic
equations (4 controls, and 9 unknown terms), which
takes approximately 0.6 CPU sec per simulation
second on the average. Note that the solution of
each subsystem's equations can be performed at
different time intervals and/or on different CPUs.
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Figure 2.1 .a Neutron Power (centr. controller)
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Fioure 2.1b Neutron Power (decomp. controller)
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Figure 2.2.a Steam Pressure (centr. controller)
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3.2. Coordinator

The role of the coordinator module is to
provide a set of consistent demands for each of the
subsystems. Each subsystem's local controller
generates the optimal control actions to be sent to
the actuators to fulfill the supervisor's demands. In
the process, the generated unknown terms and the
computed state variables are sent up to the
coordinator for plant performance evaluation, but
this does not require any iterative computation
with the subsystems.

By observing the time dependency of the
unknown terms calculated by the different
subsystems, the coordinator monitors the status of
the plant and the local controllers. As new
conditions arise, the coordinator recognizes the
perturbation, identifies the failed subsystem, and
changes the distribution of demands according to
pre-established control strategies for the
particular subsystem and for the entire plant.

A coordinator module with a small set of
anomaly-detection rules was implemented to test
the viability of the approach. One set of rules is
based on analysis of the behavior of the coupling
terms only, the other is based on the tracking of
state variables only. Figure 3 is a schematic
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diagram of the coordinator with the two sets of
rules used in the sample cases described here.
These rules apply to the detection of specific
anomalies in the intermediate heat transport loop
(pump failure) and take corrective actions.

The set of rules #1 is shown in action in fig.
4, where the supervisor identifies the failure of
subsystem SS3 by observation of the inconsistency
of the unknown terms related to the energy
transfer between SS2 and SS3 and between SS3 and
SS4 (normalized to unity at nominal operating
conditions in figs 4.1 and 4.2), and changes the
neutron power demand until the balance is restored.
State variables are shown in fig 4.3 and the
corresponding control actions in fig. 4.4.
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Figure 4.1 SS2 Unknown Terms (pump failure),
rules # 1 triggered
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Figure 3 Coordinator Scheme Figure 4.2 SS3 & SS4 Unknown Terms (pump
failure), rules #1 triggered
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Figure 4,3 State Variables (pump failure),
rules #1 triggered
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Figure 5 .2 Plant Controls
(rules #2 triggered)

Thu set of rules #2 are triggered in the
simulation shown in figs. 5.1 and 5.2 where the
supervisor detects that the core exit temperature
has reached a high limit and imposes a runback
demand on subsystem's SS1 neutron power. The
core outlet temperature does not attain the
demanded value since the capabilities of the flow
controller are exceeded due to saturation. This kind
of rule is of the type found in today's operating
power plants.

Analysis of the dynamic behavior of the
unknown terms can help identify the cause of plant-
model mismatches due to sensor or component

failures. For instance, consider the case of a
negative offset in the reading of the temperature
sensor located at the outlet of the secondary side
of the intermediate heat exchanger (IHX) in SS3.
This erroneous signal generates a set of unknown
terms which misrepresent the power being
transferred into and out of SS3 (curves B and C
respectively in fig. 6). Comparison between the
unknown terms representing the power leaving the
SS2 (curve A), and the power entering SS4 (curve
D), rules out any component failures because no
transient is being observed in neighboring
subsystems. Since the subsystems are fed by
independent sets of sensors the failure can be
attributed to a sensor in subsystem SS3.
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4. Conclusions

The approach to hierarchical control of large
systems described here eliminates the need for the
typical iterative computations to account for the
coupling effects between subsystems. In addition,
the computational independence between the
unknown terms generated by each subsystem's
controller facilitates both its implementation in a
distributed network of CPUs, and the isolation and
diagnoses of sensor and system component failures.

The role of the coordinator is transformed
from that of an inflexible black-box-like numerical
procedure to that of an intelligent supervisor of
subsystem performance. By incorporating symbolic
and numerical recipes, the supervisor issues the
appropriate set of demands for each subsystem
required for the specific goal. It is the task of the
individual subsystem controllers to fulfil those
demands in an optimal fashion.
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