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Abstract

The electrostatic potential is determined for a test electron with vy » vre in a
uniform magnetized plasma (we > wye). In the frame of the test electron, part of the
spatially oscillatory potential has spherical symmetry over the hemisphere to the rear
of the electron and is zero ahead of the electron. A second part of different character,
which makes the potential continuous at the plane containing the electron, is oscillatory

in the radial direction but decreases almost monotonically in the axial direction.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Governr :nt.  Neither the United States Government nor any agency thereof, nor any of their
cinployees, makes any warranty, express or implied, or assumes any legal liahility or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or fuvoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof,

NIRTRIBUTION OF THIS DOCUMENT IS UNLIMITED



MO D

i

ol
L1

I. Introduction

There is evidence that electrons with vy & vre in a magnetized plasma interact strongly
with each other. Thus the energetic electron tail observed flowing parallel to the electron
current at the edge of reversed field pinches! presents evidence not only of strong transport of
parallel momentum and energy from more central parts of the plasma but of strong mutual
interaction. The evidence for strong interaction is that these electrons have a distribution in
vy which is a half-Maxwellian, the effective T} being more than an order of magnitude larger
than the T, for the bulk electrons. In completely unrelated numerical particle simulations’
there is similar evidence. To a magnetized plasma of Maxwellian electrons and ions a current
of test electrons was added with constant distribution from vy, to 6vr.. In a time for the
electron-ion collisions to reduce the current by 16%, there being no applied electric field,
the background electrons flowing parallel to the electron current and the test electrons had
relaxed to a half-Maxwellian, the effective temperature being substantially higher than the
unchanged temperature of the background electrons flowing in the reverse direction. Strong
transport of parallel momentum and energy was observed but negligible particle transport.
There was no magnetic turbulence and because of the two-dimensional character of the
simulation no electrostatic particle transport. An enhanced level of electron plasma waves
was observed and Decyk et al. identified these waves as the cause of the observed transport
and the strong interactions. As a first step in understanding the interaction of such electrons
and their wave emission this paper is concerned with determining the electrostatic wake field
of such electrons.

The reaction of a uniform plasma to the electrostatic field of a moving test electron was
studied by Rostoker and Rosenbluth? for the two cases with and without a uniform magnetic

field. (This work is described in greater detail and clarity in a General Atomic Report.*)



e

For a test electron having the velocity vy 3 vy in the positive z-direction, the dielectric
function for no magnetic field gives a resonance k, = wy./vy. As a result the emission of
ele‘(l‘trovn plasma waves by the test electron with given k is concentrated on the cone forming
an angle @ with respect to vy, where cos# = k./k. As shown by Rostoker and Rosenbluth,
this leads to a Cerenkov-type shock front making the acute angle 7/2 — 6 with the negative
z-axis. Their treatment of the case with a magnetic field was very general and involved no
assumption concerning the relative magnitudes of wp, and we, the electron’s plasma and
cyclotron frequencies. The wake field was not determined for any specific case. They were
aware that for the case w.. > w,., where the field electrons in lowest order can respond
to the waves only in the direction of B, the resonance caused by the dielectric function
has the different form &k = w,. /vy, being independent of the direction of k. The electron
plasma waves involved in this case are the oblique plasma waves having the approximate
dispersion relation wy = kjwp /k. The different wake field that would result in this case was
not studied.

Here, the electrostatic potential field is determined for such a magnetized plasma in the
frame of reference moving with the test electron and it is the steady-state field (¢ — oo)
which is of interest. It must be noted that O’Neil® showed that the linear Landau damping.
which is an important part of the dielectric function, is not correct for long times. For the
case of a wave packet, which is the case for a test electron, Landau damping can still be
valid if the group velocity of the wave packet is different from the velocity of the resonant
electrons.® But for a uniform magnetic field the group velocity of the test electron’s wave
packet in the direction of B is the same as the velocity of the test electron and the resonant
electrons. However, it will be shown in an accompanying paper” that if a small amount of
magnetic shear is present and because of the symmetry of the wake field the normal Landau

damping is recaptured,
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II. The Response of the Plasma to the Test Electron

A uniform plasma is considered in the presence of a uniform magnetic field (B) which is
assumed sufficiently large so that w.. > w, and p. € Ap, where . is the electron Larmor
radius and Ap is the electron Debyve leugth I.'«I-(/\,/':Z— wpes With v%e = 21, /m.. Because of this
assumption the perpendicular cyclotron motion of the test and field electrons is neglected.
The test electron’s velocity parallel to B is taken as vy with vy > vp.. Also, due to the high
frequencies involved, the very weak response of the ions is neglected and the equations to
be solved for the perturbation to the electron distribution function, ¢ f, and the potential @,

are

_ _ . _ q . d fo

— (& \ e V‘) = — : \"‘ — )

ot (OF) + ok Vo o b duy v
= V4 = drqd(r —rg — Vol ) + 4mq /‘SdeU ; (2)

where iy is the unit vector parallel to B fy 18 the unperturbed electron distribution function
which is taken to be uniform and Maxwellian and ¢ is used to denote the electron’s charge to
avoid unnecessary confusion with the minus sign (¢ = —¢). The procedure for solving Eqs. (1)
and (2) using Fourier and Laplace trausforms can be found in Ref. 2 or in the textbook by
Irall and Trivelpiece.® Choosing a reference frame moving with the test electron with the

test electron at the origin and the r-axis parallel to B, the potential for t — oo is given by
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and Z is the plasma dispersion function. For oy < vy,

I1I. The Fourier Inversion Integrals

In order to put Eq. (3) in dimensionless form, the substitutions & = kAp, 7 = r/\p are made.
Then with cylindrical coordinates in A-space, namely £, @, k. and cylindrical coordinates in

real space, r,0, = the potential is given by
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Making the substitutions
ap =a+ i3, L= —y3, with (a+1i3)° = Wr~ K2 4+ W; , (8)

where o and 3 are real and positive, the «.-integral in Eq. (7) can be written in the form

- 1 1
1:/ drid cos(rs|3]) | ———r 4
; K2 cos(k,|2]) . 5t 2]

Lf\:; - x_ ’\:: - CY+

:i:isin(r\'::‘f'l){ - + } . (9)
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The positive sign preceding the sine term applies for = > 0, the negative sign for z < 0. The

cosine part and the first two teris in the sine part can be converted to standard contour



integrals and the remaining two sine terms are in a standard form. The result is

[:>(J = [f(()+ EI) _ f(()__":")}
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where f is the auxiliary sine integral defined by

S(z) = C'i(z)sinz + [7;— - S'zf(:)] cos z .

)

Substituting from Eq. (10) into Eq. (7), noting that the ¢-integral gives 2m Jo(k 7) the

potential fore and aft of the test electron is given by

flasll) _ f(a—lfi)] ()
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) 1+ J, Redrs o(wor) CEYINE t+ CEYARE (12)
where 3, = b+ 1a. 3. = b—la and (a +1b)* = Wr+ 1 W, . (13)
Making the substitution in both parts of the integral in Eq. (12)
(x1 +5%)1
B By
each part reduces to the known integral?
5 ) . ) 3 €~([ii?+/37i;?)
3 / ly eV o (3,7 (y? - V] = e
,i.l aye ()[, i:’(!/ ) ] (/35::2-1*—#’:2&7"2)1/2
so that
- D bi2 ~ ~
G.oy = 7 e " eos(aR) — Oy (14)
7

where R is the distance from the test electron in units of Ap(R? = 7* + 32,

6
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IV. The Evaluation of @,

A. Limiting Cases

An analytic solution to the integral for ¢, in Eq. (11) has not been found. It has been
necessary to resort to a computational method as described below. However, two limiting

cases, namely 2 = 0 and «y|Z| large, have been solved and these help to illuminate the
nature of this part of the potential.
Since f(z) for z = 01is 7/2

-~ X . y . l A
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using Eqs. (8) and (13). This is again a standard integral (see Ref. 7, p. 682, number 6.554-1)

-3 =47 L ~br

¢ ¢ € . 3
— 4 = —— cosdar . (lo)
r r r

This result agrees with that which can now be obtained from Eq. (14) with 7 = 0, so that

giving

the sum of two parts of the polential is continuous across the plane z = 0.

The asymptotic form of f(z) for large = is z7" and hence this potential for large 7 is

- . S ({1 1
(I)l(:'—’CO)z;m/l ".L(/h‘l. /U( 7)(;{'};““&7}:)
— 1 1
D e Y / / L : 5 T T
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= 7:’-1! {No[(b = ta)F] = Ko[(b + 1a)7]}
(Ref. 7, p. 678 number 6.532-1)
1
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=L {H(a+ iby] = HP[(a = b))} - (16)

2|7
Here Ky is the Bessel function of imaginary argument, Hé”, H(()Z) are the Hankel functions
of the first and second kind and the relationships Ko(z) = (mi/2)H{(iz), and H{V (e'"2) =

-—H[(,Q)(:) have been used.
B. Numerical Solution

®, can be written in terms of ¢(z) where

(= ¥
g(z) =1 [f——(—:—)- - I—(—u—-—)} .

> o ¥
“ <

(17)

g(z) is areal function as can be seen by explicitly expressing g(z) in terms of real functions.

Let = = @ -+ iy, then

™

g(z) = 1_24—_512 [y cos z coshy + « sinz sinhy]
2 i . .
+ P (3/(/':(3)'“3«'0:(2)) sin z cosh y

- (.1' Ci"(z)+y ('ii(z)) cos z sinhy
- (3/ Si(z)—x .S'ii(z)) cos x coshy
- (;z: Si(z)+y .S'i"(z)) sinz sinhy

where Ci"(z) = Re Ci(z), Ci*(z) = Im Ci(z) etc. For large z, g is given by

Ty (223y — 2xy?)
(22 4 y2)? - (22 + y2)*

glz +y) ~4

(32%y — 10233 4 32y%) 3| (4z7y — 2828y + 2823y® — 4xy")

-4! - !
L (2% + y2)° (22 + y2)®

4| (18)



®, can then be expressed in terms of ¢ as

~ L oo . g (121 Wr — k2 +1W,
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For large values of x, the argument of gy becomes approximately 7|Z|x ;. In this case g can

be simplified by noting that

Since

1

(o )
Jolax)e ™ pdy = ——e
A U( ) ((L2 _+.. b2)1/2 Y

®, can be rewritten as

. 1

hEmramt

Y ~ o~ . L |

;/0 ks diy Jo(F k) {I:]g (|:|\/WR ) +2W'1)> - g L} . (0

The factor in braces goes to zero rapidly for % > Wg allowing the numerical integration
to be carried out over a modest range of K.

The numerical quadrature was done using Mathematica.'® Figure 1 shows ®; as a function
of 7 for vo/vre = 2.5 (see Eq. (6)) and values of Z,{0.1,1,10,100}. Note the scale change

with increasing .
V. Summary and Discussion

Changing back from dimensionless units, the result obtained for the wake field of a superther-

mal test electron in the frame of reference moving with the test electron is

9



for = >0,

ey =y = 21
for z <0,

O(r, ) = ._“;; exp (-—/—{%) cos kR — &, (22)
where

R= (47

/\\..““ = /\1)/11 = 3)\53 A?/L‘V{ y

1

, . 1/2 -
k=a/\p = Wi+ (Wh+ W VD

where for a Maxwellian f.y the values of Wg, W) are given in terms of the plasma dispersion
function by Eqs. (4) and (5). Equations (21) and (22) will still apply for non—Maxwellian feo
when the appropriate values of Wg and W are used.
Examples of ®, are shown in Fig. | and an example of the total é for a given r is shown
in Fig. 2. The limiting value of ®, for = — 0 gives
O(1,0) = — < exp (_-—"—> cos kr (23)
r Aeit
and from Eqs. (21) and (22) ¢ is seen to be continuous across the plane z = 0. As z increases
from zero the zeros and interlaced maxima and minima in &)1(?) move to somewhat larger
values of 7 and are seen to take up the places for a damped Jy Bessel function (see compar-
ison in Fig. 3). Apart from this moderate movement of the oscillations in 7, ®, is oscillatory
only in the r-direction and decreases monotonically in z.
Using the asymptotic approximation for the auxiliary sine integral for large argument,

the approximate analytic solution for ®, in Eq. (16) gives

(= — o0) = — o= { HS" [(k+ iazg )] + HE [(k = iG]} (24)

~
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where the H-symbols are the Hankel function. From the value of these functions at r = 0,

e 2 -1 1
- —_——— R . ) 2
$,(0,z — o) - [1 tan (k/\eﬂ“>] (25)

Z m

This is in good agreement with the numerical values for (0, z) and illustrates the monotonic
decrease of ¢, without either oscillation in : or an exponential decay. Using the large

argument approximations for the Hankel functions one can show

Q) (r — 00,2 — 00) = —Sexp (—\—,—> [Jo(kr) +
- eff

o No(r)| (26)

~

where Ny is the Bessel function of the second kind. This helps to explain the good fit of @,

-1

with the product of Jy with the exponential decay for large z, since (kdeg)™' is small.

As pointed out in the Introduction, a small amount of magnetic shear has been assumed

to justify the Landau damping leading to Wj.
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Figure Captions

1. The numerical solution for ®, when vo/vre = 2.5 is shown as a function of 7 for four
values of z, (Z = 0.1, solid line; z = 1.0, dot-dashed; z = 10, dashed and z = 100

dotted). The values for Z = 10 and 100 have been multiplied by 3 and 30 respectively.

2. The complete normalized potential ® for the case vo/vre = 2.5 is shown as a function

of  for 7 = 1.0.

3. Comparison of the numerical solution ®,(7,% = 10) (solid line) and the approximate

expression exp(bf)Jo(aF)/Z (dotted line) for vo/vre = 2.5.
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Fig. 3
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