
t

Q

- DOE/ER/14303--I

DE93 011374

STABILITY AND DYNAMICS OF SPAI'IO-TEMPORAL STRUCTURES

Progress Report
for Period September 15, 1992- September 14, 1993

Hermann Riecke

Department of Engineering Sciences ,. _.
and Applied Mathematics '_ _

Northwestern Universiy i; ,

Evanston, Illinois 60208 :_ ;' _/: _j

March 1993

Prepared for
THE U.S. DEPARTMENT OF ENERGY
AGREEMENT NO. DE-FG02-92ER.14303



NOTICE

This report was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the Department of Energy, nor any of their

employees, nor any of their contractors, subcontractors, or their employees, makes

any responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product or process disclosed or represents that its use would not infringe

privately-owned rights.



1 Abstract

The main goal of the project supported in this grant is to contribute to the under-

standing of localized spatial and spatio-temporal structures far from thermodynamic

equilibrium. Here we report on our progress in the study of tw() classes of systems.

1) We have started to investigate localized wave-pulses in binary-mixture convec-

tion. This work is based on our recently derived extension of the conventionally used

complex Ginzburg-Landau equations. We are considering three regimes: dispersion-

less supercritical waves; strongly dispersive subcritical waves; and localized waves a.s

bound states of fronts between dispersionless sub,:ritical waves and the motionless

conductive state.

2) We have completed our investigation of steady (tomain structures in which domains
of structures with different wave numbers ttlternate, separated by domain walls. In

particular, we have studied their regimes of existen(:t:, and stability within the frame-

work of a Ginzburg-Landau equation and have compared it to previous results. Those

were based on a long-wavelength approximation, whiclt ll_isses certain aspects which

turn out to be important for the stability of the domain structures in re_tlistic situa-
tions.

In addition, we give a description of our work on resonantly tbrced waves in two-

dimensional anisotropic systen_s.



2 Description of Progress

2.1 Domain Structures

In collaboration with my Ph.D. student David Raitl we have completed the analysis

of steady domain structures within the framework of a (Jinzburg-LaIldau equation.

Through the inclusion of a fourth-order derivative term it describes the bifurcation of

a system to a steady structure with tv, o competing wavel,,rlgths. Such a situation has

been found very recently in the theoretical analysis of parametrically forced surface

waves (Faraday experiment) [1]. It "alsodescribes convection in nematic liquid crystals.

There, convection rolls are found which are oriented obliquely to the direction singled

out by the dominant orientation of the rod-like liquid-crysl al molecules. By reflection

symmetry two orientations with opposite wave numbers in the y-direction are found,

which can lead to 'zig-zag'-structures. A typical solution of these Ginzburg-Landau

equations is shown in fig.la. ]'he solid line donoles lhc deviation of the local wave

number from the critical wave number, or in the case of oblique rolls the wave number

in the y-direction. In the center it clearly shows a stable domain of reduced wave

number (or a 'zig'-domain between two 'zag'-domains of a 'zig-zag'). The thin line

denotes the real part of the complex conv,,,(:tive amplitude A. The work leads to two
main results.
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Figure 1:
a) Typicaldomain structure. Solid: local waw: number, thin: Rc(A).

b) Phase diagram for domain structure. To the le.ft of the solid line domain structures exist and are

stable. Dashed: stability limit of periodic structures, thin: existe.nce limit of periodic structure.

First, the existence region of these structures turnes out to be much more intricate

than originally expected. The (numerical) result is shown in fig.lb. The domains

exist and are stable to the left of the line marked by solid circles. When the Rayleigh



number R with E oc R-Rc is reduced below this line the domain structure undergoes a

saddle-node bifurcation and ceases to exist. The conlplicated shape of tile bifurcation

line is due to the interaction of the domain structure with additional modes emerging

from the Eckhaus instability occuring along the dashed line.

Secondly, we have found that the domain structures can be stable under more gen--

eral and more realistic conditions than expected previously. Within a phase-diffusion

approach, which corresponds to a nonlinear WKB-analysis, the domains are stable

only due to the conservaton of phase (total number of convection rolls). The cor-

responding phase equation is identical to the Cahn-Hilliard equation describing the

phase-separation process (spinodal decomposition) of a binary mixture in the two-

phase regime. Consequently, within this frame-work multiple domains always merge

to form a single domain of one phase (with small wave number, say) embedded in the

other. In the absence of phase conservation this state is also unstable and the system

evolves eventually to a state with a single wave nl_mber. (;oing to the more complete

description by the Ginzburg-Landau equation introduces an oscillatory character to

the interaction between fronts (of. oscillatory behavior of the local wave number in

fig.la) and fronts can lock into each other. Thus, dou_ains can be stable even if the

total phase is not conserved, as demonstrated in tig. la where the amplitude o[ the

structure vanishes smoothly at the boundary of th__system and therefore allows con-

vection rolls - and therefore phase - to enter and leave ttw ._ystem freely. A detailed

account of our study is given in a preprint [2].

2.2 Extended Ginzburg-Landau Equations for Binary-Mixture Con-
vection

We have continued the investigation of convection in binary mixtures emphasizing

the effects which are due to the slow mass diffusion in liquids (small Lewis number

'£). We have rederived the equations for the convective amplitude A and the new

concentration mode C, which were presented earlier [3], in a way which allows to

recover the conventional Ginzburg-Landau equ_,t.ions h)r the conw'_ctive amplitude

alone in the limit of large Lewis number. In this derivation certain terms in the

expansion are effectively summed up to ali orders in /2. This approach clarities the

relation between the new and the old equations.

We have started to investigate the new equations analytically. To do so we have

subdivided the complex problem of studying dispersive waves arising from a subcritical

bifurcation into various steps: a) dispersionless supercritical waves; b) soliton-related

waves; c) localized waves as bound states of fronts.

a) We have started with the simplest ca,se and studied the effect of the concentra-

tion mode on dispersionless waves arising from a supercri_ic_d bifurcation. We have

performed a linear stability analysis of plane waves and found that at onset (a = 0)

the stability of the waves is not affected by the new mode C'. It becomes important,
however, further above onset at a distance which scales with the Lewis number. This
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is shown in fig.2. In particuar, the waves can becolne unstable at ali wave numbers

(cf. fig.2a for a > 0.03). This resembles somewhat the B_,njamin-Feir instability which

is known to occur in strongly dispersive waves. It, often leads _o spatio-temporal chaos.

For the dispersionless waves studied here this seems not to be the case. To investigate

the nonlinear behavior arising from tile instability we followed two paths.
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Figure 2:
_) Regime of sta.bility of patially periodic, supercritical waves.

b) Compalison of stability limits of direct linear st_tbility analysis (so}ld) with the long-wavelength

theory (dashed).

First, we investigated the behavior of long-wave modulations of the plane waves.

For finite Lewis number it is not affected by the concentration mode. Taking the

gradients in the wave number q to be of the order of/21/2, however, one can derive

coupled equations for q and C. rI'hese equations represent an extension of the usual

phase equations to include a slow mean riehl. In fig.2b the stability limit obtained

with these reduced equations is cornpared with the full linear stability analysis of

the extended Ginzburg-Landau equations. Within the reduced equations we have

studied the weakly nonlinear behavior of the instability, and find that, depending on

parameters, the bifurcation can be subcritical a.s well as supercritical. In the latter

case quasi-periodic waves are expected to arise.

Second, we solved the extended Ginzburg-.Landau equations numerically guided

by the previous analysis. This confirmed the existence and stability of quasi-periodic

waves which arise from the instability of the plane waves to spatial modulations when

it is supercritical. In the regime in which all plane waves become unstable and the bi-

furcation is subcritical (cf. fig.2a) perturbations were found to lead to stable localized

waves. This establishes the existence of such pulses even if the primary bifurcation

to convection is supercritical. This is similar to the results found in parity-breaking
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bifurcations [4].

b) In numerical simulations of tile extended equalio/ls we have previously observed

a slowing down of the pulses due to the concentration mode. We have now begun to

investigate this analytically. We start from the soliton solutions of the nonlinear

SchrSdinger equation, which can be considered as a lii,liling case of tile complex

Ginzburg-Landau equation, and consider the dissipative tern ls as well as the additional

equation for C,'as perturbations. Since the C-equation is linear in C' to lowest order it

can, in principle, be solved using Green's functions. So far, we could solve the resulting

integral, which involves suitable, derivatives of the pulse, only in an expansion in tile

inverse pulse velocity. But aIready in this restricted case the analysis suggests a jump-

transition between slow and fast pulses when the group ,,elocity parameter is changed.

We could confirm this unexpected result in subsequent numeric'al simulations. We have

made progress in applying soliton perturbatioi1 th,._ory [5] to this relatively involved
case. It is clear that. we will be able to use it to determine tile quantity of interest, the

pulse velocity. Preliminary work shows that due to the contillous Galilean symmetry

of the soliton we will have to go to second order in that p(!r!urbation theory. This will

be possible, albeit very involved, by using Maple.

c) We have started to investigate analytically the interaction between fronts con-

necting the conductive state with the convective, state. This is done in collaboration

with H. tterrero-Sanz from the University of Pamplona, Spain, who visited us for three

months. Our goal is to understand how the C-mode can load to bound states of froills

and 'backs', even in the absence of dispersion. Such bound states would constitute a

stable localized wave. The method is based on an expansion in the distance L between

fronts. For tlm real Ginzburg-Landau equation it is well known that the interaction

is purely attractive and exponentially small in L. The coupling to the C-mode leads

to additional contributions to the evolution equation h3r L. Within a tirst, simplified

approach, in which the fronts are taken to be much steeper than any other length

scale in the problem, the resulting equation suggests that such localized waves can

be stable if they travel backwards, i.e. opposite to the advection of the concentration
mode.

2.3 Temporal Forcing of Small-Amplitude Waves in Anisotropic Sys-
tems

In collaboration with M. Silber (California Institc_ of Technology) and L. Kramer (U.

Bayreuth, Germany) we have investigated the influence of resonant temporal forcing

on Hopf bifurcation in two-dimensional anisotropic systems. This work is motivated by

experiments on convection in nematic liquid crystals [6]. As mentioned above, in the

nematic phase the rod-like liquid crystal molecules are predominantly oriented along

one axis and thus define an axis of anisotropy, the director. In the experiments it was

found that convection can set in via a Hopf bifurcation to traveling waves which can

be oblique to the director. Due to the remaining reflection symmetries of the system
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this leads to the interaction of waves in four different directions. Without forcing

the resulting structures are very disordered. Irl the presence of forcing, however,

ordered standing oblique rolls and standing rectangle patterns were observed as well

as structures which alternate between the two different oblique orientations [6].

We have studied this problem within the frame-work of' bifurcation theory with

symmetry, which applies to small-amplitud0, waves and allows an efticient treatment

of the resulting evolution equations for the 4 complex anlplitudes. Building on our

previous work on the case without forcing [7] we were able to cl_.tssify"alipossible ways

in which the full symmetry of the motionless basic state can be broken in this system.

The main results concern waves which are phase-locked to the temporal forcing. In

addition to convection patterns in the form of standing rolls _.nd rectangles we foun(t

states in which roils of different orientation alternate periodically in phase with the

forcing. These states can be identified with those observed in experiments and the

transitions between them are in qualitatiw' agreement. To elucidate these transitions

we considered the limiting (:ases of strong damping of lhc waves all(t of strong detuning

of the temporal forcing, respectively. The latter loads to the consideration of a double-

zero singularity of the Takens-Bogdanov kind. Finally, we considered the linlit of

vanishing angle of obliqueness. Further details are given in a.pr(,print [8].

During this budget period the P.I. will have taken two n_onths in salary during the
summer 1993.
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Note: We will submit the preprints [2] and [8] in April. Therefore we decided not to
enclose preliminary drafts at the present time.






