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ABSTRACT D E 9° 0 1 2 ' 4 0

Multiple scattering theory (MST) provides an efficient technique for solving the wave
equation for the special case of muffin-tin potentials. Here MST is extended to treat space
filling non- muffin tin potentials and its validity, accuracy and efficiency are tested by
application of the two dimensional empty lattice test. For this test it is found that the
traditional formulation of MST does not converge as the number of partial waves is increased.
A simple modification of MST, however, allows this problem to be solved exactly and
efficiently.

INTRODUCTION

Multiple Scattering Theory (MST) is a powerful tool for treating problems involving
the interaction of waves with matter. When it is applied to the problem of calculating
the electronic structure of materials it yields the Korringa Kohn Rostoker band theory
technique[l,2] for treating periodic crystals and the Scattered Wave Method[3,4] for treating
clusters of atoms. It is the extremely efficient set of basis functions provided by multiple
scattering theory and the variational nature of the formalism that are responsible for the
rapid convergence and small set of secular equations that characterize these methods. The
popular and efficient linear combination of muffin-tin orbitals technique for band structure
calculations can be viewed (at its simplest level) as an approximation to MST[5].

Multiple scattering theory is sometimes called the Green function method because it
greatly facilitates the calculation of the single particle Green function for the system under
consideration. The Green function, which is extremely useful for calculating the effect on
the system of a perturbation such as an impurity or an applied field is generated by the
inverse of the MST secular matrix. Another important feature of multiple scattering theory
is its ability to separate the potential aspect of a problem from the structural aspects. It is
this feature together with its facility for generating the Green function that makes MST so
suitable for calculating the electronic structure of alloys.

The primary limitation of MST has been its restriction to potentials of muffin-tin form.
A muffin-tin potential is one which vanishes outside a set of non-overlapping spheres. Within
each muffin-tin, the potential is generally assumed to be spherically symmetrical about the
center of the sphere but this restriction is not difficult to remove. The requirement that
the potential vanish outside of non-overlapping spherical regions has, however, proven to
be very troublesome. If this restriction could be removed, it would be possible to apply
MST to problems which are currently of great interest in solid state physics and materials
science.

After many false starts and a large amount of work by a number of authors over the
past fifteen years, a consensus seems to be emerging that MST is not, in fact, restricted to
muffin-tin scatterers and is rigorously correct at least in principle, for space filling poten-
tials. The calculations presented here strengthen this consensus. There are, however, some
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subtleties associated with this increased generality which are just now becoming apparent.
Fortunately, once these subtleties are understood, they are relatively easy to overcome. We
demonstrate here that MST for space filling scatterers works very well indeed for the strin-
gent test of a square lattice of space filling potentials each of which is a step function shaped
like a square.

MULTIPLE SCATTERING THEORY

Multiple Scattering theory for space filling scatterers can be derived from scattering
theory[6]. from an identity in integral equation theory[7]. from the Kohn Yariational principle[S],
from a variational principle applied to the reaction matrix[9], and from wave matching argu-
ments. The last method is perhaps the least rigorous, but in our opinion, the most intuitive.
The short derivation sketched below is intended to be applicable to one, two, or three di-
mensions. Table I shows how the equations derived in this section should be modified for
various dimensionalities[10,ll]

Table I: Translation Table for One, Two and Three Dimensions
generic symbol one dimension two dimensions three dimensions

W) cos(* - £TT/2) W) W)
H((z) i-U" Jt{z) + iNt{z) ht{z)

YIL X)/=O,I _ lJfc=o,oo 2Zm=-i,i Z)/=o,oo 12m=-e,e
YL(r) sign(xY/V2

In order to derive the basic equations of MST, we imagine that space is divided into
cells which surround each atom. Generally we will call that volume or space which is closer
to the center of atom n than to any other atom, cell n. The potential inside this cell can be
written as V(rn) where r n = r — R n is a vector originating from Rn , the center of cell n.
We further imagine that there is a region of infinitesimally small volume surrounding each
potential where the potential is constant. We will call this volume region II to distinguish
it from the region where the potential is equal to the true crystal potential which we call
region I. This is not really an approximation since region II has zero volume. One way
to view multiple scattering theory is that it allows one to solve the Schrodinger equation
(SE) in a piecewise fashion, finding solutions for one cell (or scatterer) at a time, and then
using the superposition principle to fit the pieces together in such a manner that all of the
boundary conditions are satisfied.

Within region In the total wave function can be written in terms of functions which
satisfy the Schrodinger equation and behave like regular bessel functions at the origin,

9m{E,r) = Y,cl(E)R<(E,rn)YL(rn). (1)
L

In the part of region II surrounding atom n the wave function can be expanded in terms
of wave functions which satisfy the free electron SE. These are J*(KX) which is a solution
of the radial part of the SE for energy E = K2 that is regular at the origin (va-yiug as rl),
and Hi(Kr) which is a solution that satisfies outgoing wave boundary conditions at large
distances.

¥//„(£, r) = J^[al(E)Jt(Krn) + bl(E)He(Krn)]YL(fn). (2)
L



It is clear that Eq,(2) cannot be a solution for very large values of rn because Jt(z) does
npt'behave properly at infinity. However, a multi-center expansion based on outgoing waves
whcih behave properly at large distances can be valid throughout region II,

*;/(£, P) = T,T.bUE)Ht[Krn)YL[rn). (3)
n L

The two representations for the wave function in region II, * / / „ and $ / / will agree if (in

the vicinity of cell n ) ,

= ]T Y.bL'^)HL.(Krn,)YLI(fn.). (4)

This equation provides a means of eliminating the coefficients a£ in favor of the coefficients

rn)YL{rn) (5)

b\. This is facilitated by an addition theorem of the form

L

which can be used in Eq.(4) to obtain

«l(E) = E E bt.(E)gL.L(EyRn - Rn-)- (6)

In addition we need to ensure that the wave function "inside" potential n, $/„ matches
on smoothly to the potential "outside", ^/;n. A necessary condition for this matching is
that the following surface integral over the surface of cell n vanish

f dSh • [*nnV^ /n - Vr /7ntf /n] = 0. (7)
Jiln

This relation is a straight-forward generalization of the step in the derivation of muffin-tin
MST in which the logarithmic derivatives of the radial wave functions inside the muffin-
tin are matched to the logarithmic derivatives of those outside in order to determine the
scattering phase shifts or t-matrix. It can also be derived from a variational principle.

The MST equations are obtained by using Eq.(l) for \P/n and Eq.(2) for $//„ in Eq.(7)
which yields

E E l - a 2 ^ L ' + ̂ £ L , ] ^ = 0 (8)
L L>

where

Civ = - / dSh • [Ht(Krn)YL(fn)V(Rt(rn)YL,(rn)) - V(Ht(Krn)YL(rn))R('(rn)YL,(rn)} (9)
•/fin

= SLL, - f dvHt(Krn)YL(rn)V(rn)Rl,(rn)YL.(rn)(10)

and

Sh' = I dSn • [J((Krn)YL(KMRt{rn)YL,{rn)) - V(Jt(Krn)YL(?n))Rt>(rn)YL,(rn)} (11)
Jlln

= ( dvJt(Krn)YL{rn)V(ra)Rt.(rn)YL.(rn). (12)
•/fin

Use of Eq.(6) in Eq.(8) gives the extended MST equations

&u - ClL,6nM' = 0. (13)
V n' L"



We shall see below that although Eq.(5) converges if the ratio z = r n / |R n — Rn»| is less
than unity, it may converge very slowly if z is not small enough. For muffin-tin scatterers z
can be no larger than 1/2, the maximum value being obtained for a point at the muffin tin
radius of atom n and 7?' being a touching muffin-tin. For square scatterers z may be as large
as l / \ /2. In this case it may be better to avoid the use of the addition theorem (Eq. 5).
Its use is not necessary since Eq.(4) is almost as convenient for eliminating the coefficients
a£ in favor of the coefficients b\. Thus the extended MST equations, Eq.(13) can also be
written (in a notation which omits the angular momentum indices) as

Y. [9nn'Sn> - Cnn> - Cn6nn,}cn' = 0 (14)

where n + 8 labels the nearest neighbors to cell n and where

C-li, = - / dvHt(Kr'n)YL(rnl)V(rn)Rt>(rn)YL,(fn). (15)

TWO DIMENSIONAL EMPTY LATTICE TEST

Faulkner[ll] has pointed out that the two dimensional empty lattice test provides a
stringent and effective test of a multiple scattering theory which has been generalized to
treat non-muffin tin potentials. In this test the total crystal potential is represented as
the sum of "atomic" potentials each of which is shaped like a square (or other space filling
polygon) and has depth Vo. Since the total crystal potential is uniform, the exact band
structure and wave functions are known trivially. On the other hand MST will be strongly
challenged to construct these free electron wave functions from "atomic" states of square
atoms.

The formalism of the last section did not describe how the radial wave functions, Re(Kr),
used to expand <&/„ are obtained. There is, in fact, a small controversy over how they should
be calculated. The basic procedure for solving for the wave function in a partial wave basis
for a non-spherical scatterer was laid out by Williams and Morgan[l2,13] who derived a
coupled set of differential equations for the wave function (here generalized for use in d
dimensions where d = I,2or3),

vLi?) d-l j 1 \V^Tr M i t \

a r L"

d-l

L"

<f>VL = M*r)CvL{r) + Ht,(nr)SL.L{r)

VUL{T) = j drYv{r)V{r)YL{r)l J dr

Rt{r)YL{r) = YdYL.{r)<t>L>L{r)
u

(16)

with initial conditions

CX<L(0) = 6VL

SL-L{0) = 0 (17)

In the original formulation[12] V(r) is a truncated potential that vanishes when r lies
outside the cell at the origin which we denote by fi0

V(r) = / VW if r G n ° 1K) \ 0 otherwise



Brown and Ciftan[7], however, have suggested that the potential should not be truncated
and that the coupled difFerential equations (Eqs.16) be integrated out to the radius of the
bounding sphere using the full untruncated potential \ ' ( r) , with integrals being performed
over the truncated potentials to determine CfL and SVL only after the radial wave function
has been determined.

ClFL = 8vL- f Ht.(Kr)YL.{r)V{r)Rt{r)YL(r)dr (19)

and
SfFL= Mnr)YL.(r)V(r)Rt[r)YL{f)dr. (20)

Jno
Recently. Nesbet has shown formally that both procedures should lead to the same wave
function within a particular cell provided both procedures converge[l4].

RESULTS

We have solved the coupled channel equations both ways. Of course, the Brown-Ciftan
procedure is trivial in this instance since the total potential is a constant. In general, for
physical potentials we expect that the Brown-Ciftan version of the equations(16- 20) will be
easier to solve and will converge faster because of the absence of the singular step function.
In fact we have found that for the present test case, the Williams-Morgan procedure does
not converge. Although the divergence is rather mild and does not become apparent until
extremely large numbers of partial waves are included in the calculation, we are confident
that the observed divergence is real and not merely a numerical artifact. A detailed study
of this problem will be reported elsewhere[15].

The eigenvalues found in the empty lattice test using Eq.(13) and the Brown-Ciftan
prescription for the wave function for the second lowest energy level with full square sym-
metry are given in Table II. The columns correspond to different values of lmax which is the
number of different radial wave functions used in the calculation. It is traditional in MST
to work with square matrices so that the upper limit in the sum on L" used to multiply
the structure constant matrix gn,» by the sine matrix SL»V would be equal to the upper
limits on L and L'. Surprisgly, this procedure does not converge for the two dimensional
empty lattice test as can be seen by comparing the first entries in each column of Table II.
Non-muffin tin MST only converges for this test if the internal sum on L" is taken quite
high. In fact, the cut-off of this internal sum (if) must be taken higher for higher values
of (-max-, the cut-off used for the outer sums. To obtain an energy within 1% of the exact
energy for imax = 12, for example, it was necessary to use an internal cut-off, if, of 56.

The necessity for the large internal sum cut-off arises from the slow convergence of the
expansion of an "outgoing" wave in terms of "incoming" waves centered on an adjacent site
(Eq. 5) in situations where the distance from the center of the cell to a corner is a large
fraction of the separation between centers. If that expansion is avoided for near neighbors,
(Eq.14) the convergence is greatly improved as is shown in Table III.

CONCLUSIONS

Our results are consistent with the following propositions: (1) MST is exact for space
filling scatterers. (2) In solving for the wave functions for a single scatterer, abrupt trun-
cation of the potential can lead to convergence problems in the partial wave expansions. A
technique which avoids this truncation such as that of Brown and Ciftan is preferable to the
original prescription of Williams and Morgan. (3) If the potential is strong in the corner of a
space filling cell in two or three dimensions the internal anguiar momentum sum associated



Table II: Energy calculated using Eq.(13) of the second lowest state with full square sym-
metry for an "empty lattice" filled with potentials of side a = - and depth V = —5 as a
function of £max and the internal L" sum cut-off, Cf. The exact energy is E = — 1.

0 12
0
4
S

12
16
20

-.30614
-.27744
-.27889
-.27878
-.27879
-.27879

-1.55582
-.S7705
-1.05816
-.99265
-1.01194

-2.405S
-.7S965
-1.55215
-.89194

-.49045
-.75225
-.64S37

24 -.27879 -1.00615 -1.08408 -.78061

Table III: Energy calculated using Eq.(14) of second lowest state with full square symmetry
for an "empty lattice" filled with potentials of side a = ir and depth V = —5 as a function
of C i i and the internal i sum cut-off, if. The exact energy is E = —1. Note the vast
improvement in convergence with respect to if compared to Table II.

If 0 8 12
0
4
8

12
16
20
24

-.27302
-.27871
-.27879
-.27879
-.27879
-.27879
-.27879

-.99309
-1.00671
-1.00738
-1.00744
-1.00744
-1.00744

-.998254
-.999752
-.999959
-.999987
-.999990

-.999528
-.999910
-.999984
-.999997

with the expansion of an irregular (J£TL) function in terms of regular (J^) functions centered
on an adjacent site will converge slowly and more partial waves must be included in this
sum than appear in the secular equation. (4) This difficulty can be avoided by reformulating
the MST equations so that the HL functions are used directly without being re- expanded
about neighboring sites.

ACKNOWLEDGMENTS

Research sponsored by the Division of Materials Sciences, Office of Basic Energy Sci-
ences, U.S. Department of Energy, under Contract No. DE-AC05-84OR21400 with Martin
Marietta Energy Systems, Inc. Helpful discussions with A. B. Chen, A. Gonis, D. M.
Nicholson, and C. Y. Yeh are gratefully acknowledged.

References

[1] J. Korringa, Physica 13, 392 (1947).

[2] W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).



[3} ,L. Eyges, Phys. Rev. l l l 6S3, (195S).

[4] K. H. Johnson, J. Chem. Phys. 45 3085, (1966).

[5] H. L. Skriver, The LMTO Method (Springer- Verlag, New York, 1984).

[6] A. Gonis, Phys. Rev. B 33,5914 (19S6).

[7] R. G. Brown and M. Ciftan, Phys. Rev. B 27, 4564, (1983), Phys. Rev. B 32, 1343
(1985), Phys. Rev. B 33,7937 (1986).

[8] C. Yeh, A. B. Chen, D. M. Nicholson, and W. H. Butler, (to be published)

[9] R. K. Nesbet, Phys. Rev. B 30 4230, (1984).

[10] W. H. Butler, Phys. Rev. B 14,468 (1976).

[11] J. S. Faulkner, Phys. Rev. B 38, 1686 (1988).

[12] A. R. Williams and J. van W. Morgan, J. Phys. C 5, L293, (1972)

[13] A. R. Williams and J. van W. Morgan, J. Phys. C 7, 37, (1974).

[14] R. K. Nesbet Phys. Rev. B (accepted for publication)(1989).

[15] R. G. Brown and W. H. Butler (to be published)


