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PRINCIPLES OF NEUTRON REFLECTION

G. P. Felcher

Argonne National Laboratory, Argonne, IL 60439

Abstract

Neutron reflection is perhaps the most developed branch of slow neutrons optics, which
in itself is a direct consequence of the undulatory nature of the neutron. After reviewing
the basic types of interactions (nuclear and magnetic) between neutrons and matter, the
formalism is introduced to calculate the reflectivity from a sample composed of stacked
flat layers and, inversely, to calculate the stacking from reflectivity measurements.
Finally, a brief survey of the applications of neutron reflection is given, both in
technology and in fundamental research.

1. Fresnel Reflectivity

When applied to the propagation of the neutron radiation and to its modification by
material objects, the word "reflection" is by no means used figuratively. On the contrary,
the close mathematical analogy in the field equations for the neutrons and the electro-
magnetic radiation gives rise to a set of parallel optical phenomena1. More esplicitly,
the propagation of the de Broglie waves associated with the neutron in a potential field
V(z) is analogous to the propagation of light waves in a medium with variable refractive
index n(z). The coordinate z is perpendicular to the surface of the material (which might
be taken as the origin, z=0). The material has then graded optical properties along one
direction only. Purpose of the present paper is to present the principles that enable to
construct useful neutron-optical elements from graded materials; the detailed applications
are the major topic of this conference. It will be shown also hew, reversing the process,
is possible to acquire a substantial knowledge on the composition and the magnetization of
materials close to the surface just examining their neutron reflectivity.

index

j g y

Following the analogy with the electromagnetic radiation^, we can define a refractive
ex for neutrons as:

n(z) [1 -

Vo(z) is the potential due to the neutrons's interaction with the atomic nuclei of the
matter and the magnetic fields encountered in its path. E is the kinetic energy of the
neutron, which is expressed in terms of the de Brcglie's wavelength A is :

(1)

(2)

where h is Planck's constant and m the neutron mass.

Incident Reflected

Refracted

Figure 1. Scheme of the reflection and refraction of a neutron beam from a material
surface. In the picture the materials is less reflecting than vacuum: this is true foe
only a handful of elements.
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Let us cousider the optical process at the surface of an homogeneous material, i.e. with

constant n. The angle of the neutron beam and the surface is en in the vacuum and 8̂  in
the material. The two angles are correlated by Snell's law3:

cos 8Q/COS 8-̂  * n (3)

which shows that, if n<l, there is. a critical angle 6_ below which the neutrons do not
penetrate the material; they are totally reflected. Total reflection can be achieved even
keeping 8n constant and changing n: by increasing the neutron wavelength up to a critical
value Xc.

The refractive index for "thermal" neutrons differs from unity by only some 10 * which
means that total reflection takes place only at grazing incidence for the neutron
wavelengths most readily available. Neutrons produced in nuclear reactor (or a spallation
source) are cooled down (as a gas) in a moderating material until their temperature is in
equilibrium. Even when the moderator is cooled to liquid hydrogen temperatures, the
neutron spectrum covers a range between 2 and 16. A Angstroms, a range of wavelengths
similar to that of soft X-rays. The difference between the two kinds of radiations lies in
the origin of the interaction potential.

2. Interaction potential

The interaction of thermal neutrons with an individual atomic nucleus can be described
by a scattering amplitude b which has a characteristic value for each type of nucleus. The
general trend of b is to increase with the radius of the nucleus, but the presence of
nuclear resonances introduces deep differences between the scattered amplitudes of adjacent
elements or even between different isotopes of one element. In crossing a medium the
aggregate effect of the local potentials on the neutrons is to give rise to a coherent,
forward scattering wave resulting of the incident wave and the superposition of spherical
wavelets emanating from each nuclear site. For this wave is operative an averaged, Or
optical potential-*:

Vo(z) = (2nh
2/m) N(z) b(z) (4)

where b is the average scattering at the depth z, and N(z) the corresponding atom density.
The isotopic characterization of the scattering amplitude is a prerogative of the optics of
neutrons, and points to the possibility of enhancing the optical contrast between two
chemically similar species by selective isotopic substitution.

The magnetic fields present in the neutron path affect the neutron's motion by virtue of
their interaction with the magnetic dipole moment of the neutron un. The magnetic
potential is Vraag =.±ynB, if (for semplicity) is assumed that both B and î  are aligned
along a common axis. The + and - signs correspond to the cases, in which the neutron
moment is respectively parallel and antiparallel to the field B. The refractive index is
correspondingly two-valued: which means that for an unpolarized neutron beam a magnetized
material is a birefringent medium. The more general and complex case where the magnetic
fields and the neutron moments are not collinear will be dealt with in the appendix; it
will be seen that the non-collinearity gives rise to new phenomena, such as a finite
probabily that the neutron will flip its spin.

3. Calculating the reflectivities

With the interaction potential varying only as a function of the depth from the surface
z, the neutron beams refracted and reflected have momanta mv which are affected only in
their component perpendicular to the surface. This means that the calculation of the
reflectivity reduces to the well-known problem of a particle in a one-dimensional potential
box. Separating the coordinates, the Schroedinger equation along the z axis is6-:

f"± + [k£ - 4»(bN ±cB)J f± - 0 (5)

where k«»2 *-(sine/A) is the component of the momentum of the incident neutron normal to the
surface, and c«=2mnp/h2. f+, f~ are the time-indepent wavefunctions for neutrons polarized
parallel and antiparallel to the magnetic field. In a region of z in which both b.N and B
are constant (and for semplicity B=0) the solution of the Eq. (5) is:

f » Aĵ expjikĵ z) + A2 expj-ikj^z) (6)

The wavefunction, which now is spin independent, is composed of two waves propogating at
the left and the right of the z axis with momentum:
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The amplitudes KL are determined by asking that the wavefunction and its derivative be
continuous at the boundaries of the region in which the potential is constant. The most
simple case to consider is that of a single interface between vacuum and an homogeneous
material at z=0. For a unitary "incoming- neutron wave from the vacuum space at z<0
(fig.2a), the continuity conditions at 3 = 0 become:

exp(ikoz) + r exp(-ikQz) - t

koexp(ikoz) - kor exp -{ikoz)
(8)

where r is the reflectance and .t the transmittance of the wave coming from th» left,
reflectivity is then: The

|r|2 -
„- k-

(9)

This relation can be verified experimentally, as it is shown at fig. 3.

a)
_». i

1
R 1

Figure 2. The reflection/transmission process, presented as the motion of a particle in a
one-dimensional potential box. z is the coordinate perpendicular to the surface, a: case
of a homogeneous material, b: reflection from a graded material. The reflectivity is
calculated after substituting the continous profile with a histogram.

10
0.000 0.008 0.016 0.024 0.032

Neutron Momentum (A*1)
Figure 3. Measured and calculated reflectivity from the flat surface of a round of fused
silica. The abscissa is the component of the neutron momentum perpendicular to the
surface. The continuous line has been calculated without adjustable parameters.
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The reflectivity from a material with a graded density (such as that shown in fig. 2b)

is significantly more complex. The conventional way to calculate the reflectivity for such
potential is to approximate it with a sufficiently fine histogram of layers of constant
refractive indices'. Imposing the conditions of continuity for the wavefunction and its
derivative at the boundaries of each layer with boundaries z^, z;+i, the wavefunction at
the left of z^ (f^ ̂) is related to the wavefunction at the right of Zj+i (fr j+i) by:

cos<ki+l
4zi+l>

fr,i+l ~ £ i + 1

cos<ki+l
Azi+l

)fr,i+l

where Az^+j is the thickness of the layer between z^ and Zi+±r and k̂ +-l is the relative
neutron momentum (perpendicular component). Synthetically, eq. (10) can be written in
matrix notation:

The wavefunction vector in the vacuum is related to that in the bulk by a matrix, which is
simply the product of the matrices M;. While this numerical procedure (or variations of
it') always allows the calculation of the reflectivity, its analytical form may be quite
complicated. The general integral expression of the reflectance from a potential V(z) is8:

r ( 0 ) = " ^ " ^ n l f [l-r2(z)]exp{-i /zk(z1)dz1}dz (12)

4. The inverse problem

In the preceding paragraph it was shown how to calculate the reflectivity from the
potential. The question is if the inverse process is possible: i.e. if one can calculate
the potential V(z) from R(kg) which constitutes the body of experimental information. In
absence of a suitable backtransform, the procedure to follow is unpleasantly indirect. To
start with, a reasonable model has to be proposed for the density profile (perhaps sugges-
ted from the sample preparation), and then its reflectivity should be calculated and
compared with the experimental data. A good fit with the data is sought, by varying some
of the parameters implanted in the model. Unfortunately such procedure does not assure,
even in the case in which good fitting is achieved, that the mode we started with is cor-
rect, nor if the set of refined parameters is unique.

The "inverse problem" has been actively investigated even recently by numerous mathe-
matical physicists9"1 • Their findings have not yet been applied to solve the optical
problem of determining V(z) * 4nb(z)N(z) ffom reflectivity data. A brief outline will be
given of the treatment proposed by Hruslov11 to obtain V(z) once known the reflectance (in
modulus and phase) over the entire range of kg.

Suppose that the potential V(z) is real, locally summable and has different limits at ±»

lim V2+_.(z) = 0 lim Vz++.(z) « c
2 (c>0) (13)

We impose on V(z) the following limitations: V(z) tends toward its asymptotic limits faster
than |l/z| and represents a purely repulsive potential, without discrete eigenvalues. The
wavefunction takesr close to the asymptotic limits, the simple form:

) + 0_exp(-ikQz)

) + I+exp(-ik1z)

where
2 - C 2 .

According to eq. (14), the free wave at -» is composed of a wave of amplitude I_ coming
into the field z, and one (of amplitude O_) outgoing. Of similar terms is composed the
free wave at z = +-. For the Schroedinger eq. (5), with asymptotic solutions (14), there
is a matrix - the S or scattering matrix - which transforms the set of incoming elements
into the set of outgoing elements:

O+ - +

(15)
O_ » I_r(k) + I+T(k)

r and t are respectively the reflectance and the transmittance for the wave moving from the
.left; p and T are the corresponding coefficients for the wave moving from the right. In
matrix notation, Sni represents the reflectance as derived from the experiment. The know-
ledge of S2i is sufficient to determine the entire matrix, whose coeficients are releated
by conditions of symmetry and unitarity11.
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The calculation of the potential proceeds along the following steps. First, the Fourier

transform of S2^ is introduced:

" * 71 I S21 ( ko ) e x p (" 2 i ko z ) d ko { 1 6 )

In second place, the kernel K has to be calculated. The kernel is related to fl by a
integral equation which has to be solved numerically^-*:

«•

K(z,y) + S2(z+y) + / n(x+y)K(z,x)dx * 0 (17)

with y<z

Finally, the potential is obtained simply as a derivative of the kernel:

V(z) * 2 |^ K(z,z) ' (18)

The utility of these expressions might be assessed only after a significant amount of work,
to determine how well the phase of the reflectance can be established or at least guessed;
and how much error propagation results from utilizing sets of data numerically imprecise
or incomplete. Finally, it might be worthwhile to inquire to what extent the solutions
could be given in an analytical form10 rather than as the solution of an integral equation.

5. Applications

Historically, total reflection of neutrons was first observed by Fermi and Zinn in 1946
from polished mirrors of different metals . Their measurements of the critical angles for
monochromatic neutrons established an important method for the determination of the
scattering lengths. Note that in this way an absolute determination of the scattering
length is obtained, provided that the neutron wavelength is known with sufficient
accuracy. Later Koester1^ furthered measurements of this kind after characterizing the
wavelength by the effect of gravity on the neutron (cfr. eq. (2)).

Neutron optics has found a number of practical applications. For instance, in a
research reactor the source is small {/.deally, pointform) and the number of experimental
instruments which can be set up at a given distance is physically limited. The transport
of neutron beams over relatively lono distances, but with only a small loss of intensity,
might be accomplished by making use of multiple internal reflections inside hollow tubes in
a manner analogous to the use of light pipes. Put forward by Christ and Springer16-and
Maier-Leibnitz and Springer , guide tubes have been first developed and extensively
applied at the high flux reactor of the Institute Laue-Langevin, and later at other
reactors. Highly polished, nickel plated glass tubes of rectangular cross section allow a
number of experiments to be accomodated at distances approaching 100 meters from the
reactor core, in an environment of considerably reduced background. Further reduction of
the background was obtained by giving the guide tube a gentle curvature (up to 2700 m
radius) thereby eliminating from the beam fast neutrons and Tf-rays.

In a neutron guide many reflections take place, hence the efficiency for the single
reflection must be very close to one. If the guide wall is made of a homogeneous material
the only reflection occurs at the vacuum/material interface, and the critical angle is en-
tirely defined by the material. The best obtainable material, using conventional chemis-
try, is metallic nickel; but even in this case the critical angle is 0.1 degrees for a neu-
tron wavelength of one Angstrom (and grows linearly with the wavelength). The only im-
provement that still can be obtained along this road is quite expensive, and consists in
subsituting natural nickel with one of its isotopes, Ni58> by which means a 20%.increase is
obtained for the critical angle.

It is still possible to go beyond this limit, but esploiting the optical properties of
material composed of a suitable superposition of different layers. When these reflect a
broad band of neutron wavelengths, they are called "supermirrors", and actually at this
conference are presented the newest developments on their preparation, performance and uti-
lization. These optical elements, which stretch the angular range of almost total reflec-
tion by a factor of three18, are not used yet in extended guides but in short sections
which are made integral part of various neutron scattering instruments. The most devel-
oped of these devices are the "polarizing supermirrors" which strongly reflect neutrons of
one spin state only. They have been developped by Mezei18 and Schaerpf1^ to polarize ef-
ficiently broad bands of cold neutrons. In a companion development, Majkrzak*" developed
superlattices to polarize (but over a narrower range of wavelengths) neutrons of the
"warmer" variety.

Aside from such applications, Fresnel reflection of neutrons has been used as a method
to obtain in a systematic way the magnetic and composition depth profiles of thin laminar
films. To enhance the contrast of different materials, extensive use has been made of
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isotope substitution, in particular of hydrogen with deuterium in organic materials. After
the first initial experiments21'22 the interest of the scientific community (and in
particular, of the polymer physicists and of the organic chemists) has grown almost
explosively. This growth will be reflected in the literature in the near future".
Examples of the subjects being studied are the concentration profile of a polymer in
solution, close to the free surface24 and the process of interdiffusion of two polymers":
in both cases, a depth resolution approaching one nanometer has been achieved. Less
abundant but equally interesting results have been obtained in the field of magnetism. The
depth profile of a magnetic field into superconducting films has been probed'-6 as well as
in ferromagnetic films. For these it has been predicted27 and demonstrated28 that the
technique has a sensitivity sufficient to detect a magnetic layer, of the thickness of a
single atomic plane.

The first instrument dedicated to neutron reflection ("POSY") has been built at the
Intense Pulsed Neutron Source at Argonne National Laboratory29. This was followed by a
reflectometer ("CRISP") at the powerful pulsed neutron source ISIS at Rutherford Appleton
Laboratory-*". Every major neutron source (pulsed or continuous) has now an instrument of
this type either commissioned or planned.

6. Appendix; Non-uniaxial magnetization

We have seen in section 3 that, if the magnetization is parallel to the quantization
axis of the neutron, the potential is proportional to:

V±(z) .= 4n[b(z)N(z)±cB(z)] ' (AD

where the + and - sign correspond to a neutron polarization respectively parallel and
antiparallel to the magnetic field. The equations for the two spin states being totally
separated, their individual solution is obtained as for the non-magnetic case. In a few
simple cases it is possible to find convenient relations between the two solutions. For
instance if the reflecting materials are chemically and magnetically homogeneous, the two
reflectivities have the identical form, and can be superimposed by rescaling the
wavelengths:

(A2)

this relations has been actually used to check the uniformity of magnetization in thin
films of ferrite31.

i

Figure 4 Precession of the neutron spin in a magnetic field perpendicular to its
quantization axis. The neutron at the left is polarized parallel to the field and then
encounters a magnetic 90° boundary (dotted line). This might lie in the sample, and be
parallel to its surface.
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When the magnetization is not parallel to the quantization axis of the neutrons the

spinor equations cannot be solved separately29'32. However, this separation is possible if
the field is suddenly tilt away by 90° respect to the quantization axis, or, speaking in
classical terras, the field is perpendicular to the neutron's magnetic moment. This is
because the spinor equations are reduced to ':

fl + tk^~ 4*bN]f - 4*cB.f » 0
, (A3)

f" + [k - 4xbN]f - 4*cB.f - 0
— O — X +

The presence of both f+/ f_ in each of the two equations (A3) shows that the spin state
gradually changes as a function of z, or that "spin flips" are possible. It is easy to see
that the variables can be separated by taking the linear combinations fj = f++f~ and t^.=
f+-f~. Their general solutions are:

f r = AT exp(ikj-z) .+ A2 exp(-ikj-z)
(A4)

f A = A3 exp(ikAz) + A4 exp(-ikAz)

where

and the coefficients A^ are determined by imposing the conditions of continuity for f, f
at the boundaries of the region of constant potential. We are interested in particular on
the surface where the magnetic field tilts 90° away from the quantization axis. As seen in
fig. 4, such boundaries might have a complex geometry (especially if the field is
perpendicular to the sample's surface). If the magnetic boundary surface is not parallel
to the surface of the material the Schroedinger equations have to be written in two
dimensions, and as a result the neutron state is modified not only as a function of the
depth from the surface but also of the length of the 90° region. If the magnetic boundary
is parallel to the surface, the reflection of an initially polarized beam (parallel to th£
magnetic field) is described by:

r
± += \ (rj± r e) (A6)

where r++ indicates the reflectance for those neutrons, for which the final state of
polarization is equal to the initial state, while r+_ is pertinent to the "flipped"
neutrons. The reflectances r£, rA are those relative to the momenta kj, KA defined by
(A5). As it can be seen, the unflipped neutrons give just an average reflectance-, while
for the flipped neutrons the reflectance, difference of those for the two wavefunctions,
.provides direct evidence of the presence of transversal fields. The separation the
reflectivities with different final spin states (by polarization analysis) is entirely
feasible but has not been yet systematically used. By this method it might be possible to
obtain full maps of the magnetic fields in the sample, in direction and as well as in size,
as a function of the depth from the surface.
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