
SLAC-PTJB—5187

DE90 0 0 8 0 1 0

EXPLOITING VM/XA'

Chuck Boeheim

Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309

ABSTRACT

The Stanford Linear Accelerator Center has recently completed a
conversion to IBM's VM/XA SP Release 2 operating system. The
primary physics application had been constrained by the previous 16
megabyte memoiy limit. Work is underway to enable this application to
exploit the new features of VM/XA.

This paper presents a brief tutorial on how to convert an application to
exploit VM/XA and discusses some of the SLAC experiences in doing so.

* Work supported by Department of Energy control DE-AC03-76SF00515

Presented at SHARE 74,
Anaheim. CA. March 4-9.1990

MASTER

flop®

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Search for the ZP

Physicists at the Stanford Linear Accelerator Center are attempting to measure the mass of the Z-'
particle, one of the particles that mediate the weak nuclear force. Th?s project has seen the con­
version of the existing two-mile-long linear accelerator into a unique linear collider Electrons
and positrons are accelerated to near the velocity of light, separated and steered around two op­
posing arcs to meet head-on in beams six microns in cross-section. Some of these panicles col­
lide, and some of these collisions produce the massive Z p particle, which in turn decays into a
numoer of cher particles. The Z° exists for such a short time that it can be detected onK b> de
tecting the panicles into which it decomposes.

Each of these "events" is painstakingly recorded by a detector, which will log about 256K bytes
per event. In addition, Monte-Carlo simulations of events will log JOOK bytes per event.
Researchers hope to log around one hundred thousand of each type of event per year. The total
data storage needs of this project will be around one terrabyte of data per year.

A complex data-analysis system has been developed for the processing of these events. At
around 200,000 lines of MORTRAN, a FORTRAN preprocessor language, it's a hefty 6
megabytes of object code. It provides for batch data reduction and interactive analysis, including
physics simulation, detector simulation, event reconstruction, event display (3D visualisation).
interactive data analysis (IDA), and a data manager. An additional 4 megabytes of descriptive
constants are required, plus at least one megabyte of data for a typical analysis.

Under VM/SP about 10.5 megabytes were available beneath the shared segments for CMS and
other programs required for interactive work. The complete progrsm simply couldn't fit in
memory, forcing its use in individual segments. On die VAX/VMS system where this software
also ran, workspaces of 40 megabytes were often used. A solution was needed to provide tor
equivalent address spaces on the IBM equipment where this program did most of its production
work.

Exploiting VM/XA 1 SHARE 74

WhaiisXA?

The term XA is used in at least two different ways. It is
• A new machine architecture that allows the use of more than 1 i megabytes of memory, up to

two gigabytes, and also provides a more efficient and flexible I/O system. We'll refer to this
2&XA archiiecmre.]

• A version of the VM operating system that takes advantage of the new machine architecture.
We'll refer to this as VMIXA.

A time of change

There are in general two kinds of changes needed when converting a program to VM/XA:
• Changes for XA architecture: memory addresses and virtual device addresses are larger, and

there is a completely different set of I/O instructions. Some instructions available in XA
architecture are not available in 370 architecture and vice versa.

• Changes for XA support: many CMS services required changes to deal with X A architecture.
CP commands and their responses changed. There were large changes in the services for
loading and generating modules and for memory management.

SLAC took the opportunity of this conversion to clean up a decade's accumulation of utilities on
the system. Utilities with duplicate or overlapping function were eliminated. A few more were
eliminated because they were too difficult to convert to X A. A good deal of the change apparent
to the users was because of this cleanup.

For the purposes of XA conversion, programs may fall into one of three categories: 370-only,
XA toleration, and XA exploitation. 370-only ("compatibility mode") programs may execute
only in a 370 architecture virtual machine. Generally they execute some instruction that is valid
only in 370 architecture. A panial list of these instructions is given later in this paper. You may
still need to make some program changes to achieve this level of compatibility because of
changed responses from CP and CMS commands, changes to the rules for program loading and
storage management, and parallel changes to shared segment sizes, locations, and usages.

XA toleration programs may execute in either a 370 or an XA architecture machine. They do not
take advantage of XA features, such as the expanded address space. An example of a familiar

1. IBM manuals often refer to XA mode and 370 mode. Since so many other terms in VM refer to modes, we'll
use the more precise term architecture.

Exploiting VM/XA 2 SHARE 74

program that is only XA tolerant, at least in VM/XA SP Release 2, is XED1T. Even if you have
100 megabytes of virtual storage, you cannot edit any file that will not fit in the available
memory below 16 megabytes. You would need to make the same conversions for these pro­
grams as for 370-only programs, plus changes because of 370 instructions that are not valid in
XA architecture, because the XA PSW has a different format, or because interrupts are handled
differently. These changes would most often be found in assembler language programs or
subroutines.

XA exploitation programs take advantage of new XA features, such as larger address spaces. It
is possible to write programs that run only in XA architecture and not in 370. hut you would
rarely find such a program in practice. You would need to worry about the previously-
mentioned conversions, in addition the program must handle 31 -bit addresses and must use some
new CMS services. The last section of this paper will describe how to do that.

The good news is that most of the high-level languages such as FORTRAN, PL/1, and C create
object code that is in this third category. If you write entirely in these languages, your programs
will be all ready for XA exploitation.

Conversion Strategy

There are many strategies for conversion, and they have been covered welt in other SHARE
talks, so I'll just briefly describe the method that SLAC chose. We acquired a used 3083 CPU
for the duration of the conversion effort (about 12 months). We brought up VM/XA SP Release
2 on the 30^3. while the 3090/3081 complex continued to run HPO 4.2 and CMS 5.0. The
minidisk-sharing component of ISF was installed in HPO, and the CSE SPE was installed in
VM/XA. This enabled the systems to share all minidisks with protection from multiple write
links.

Early in the conversion the 3083 ran only an abbreviated directory, allowing only staff members
to log on. After the majority of the system was in place, the full directory was loaded. Users
were able, and encouraged, to log on to their accounts on the 3083 to test software.

When converting a program for XA, you can choose either to make a new version of the program
that executes only in VM/XA, or to make a version that executes either in the old system or the
new. The strategy that you choose will depend on the individual program and the way that it is
supplied to the user. If there is only one common disk, you will need to make the program dual-
Exploiting VM/XA 3 SHARE 74

path; it will need to decide at execution time which system it is running under and which services
it can use. If you have separate disks for each system, you can simply make a new. VM/XA-
only version. You will need to evaluate this for each program that needs conversion. A few pro­
grams may need a major redesign for XA, and it may not be practical to dual-path them.

Subroutine libraries can pose a special problem. You may convert the subroutines in die librar­
ies, but unless the users relink their programs with the new library, they will not get the benefit
of the change. We found that wc not only had to convert the subroutines, but also make them
available on the HPO system as well as the XA system well in advance of the conversion date, to
give users an opportunity to relink their programs. All subroutines had to be dual-path. We did
not want users to have to relink their programs when they logged on to the X A system for testing
and then to relink again when they logged back on the the HPO system. We also did not want to
force everyone to relink on the morning of the final conversion.

We supplied different Y disks on the two systems, both to accommodate the few program prod­
ucts that had VM/XA-only versions, and to avoid massive perturbations of the production system
as we obtainc-i and installed new VM/XA-compatible versions of programs.

Working with VMIXA

When your system is running VM/XA, die real machine is using the XA architecture. However,
each vinual machine may chocse independently to use either 370 or XA architecture. The SET
MACHINE command chooses an architecture (see Figure 1). You must re-IPL CMS after a SET
MACHINE command, just as you do after DEFINE STORAGE.

Exploiting VM/XA 4 SHARE 74

query set
MSG ON . WNG ON , EMSG TEXT, ACNT OFF, RUN OFF
LINED IT ON' , TIMER ON , ISAM OFF, ECKODE ON'
ASSIST OFF , PAGEX OFF, AUTOPOLL OFF
IMSG ON , SMSG OFF , AFFINITY NONE , KOTRAN OFF
VMSAVE OFF, 370E OFF
STBYPASS OFF , STMULTI OFF 00/000
MIH OFF , VMCONIO OFF , CPCONIO OFF , SVCACCL OFF, CONCEAL OFF
MACHINE 370. SVC7b CP, NOPDATA OFF, IOASSIST OFF
CCWTRAN ON
Ready; T=0.01/0.01 11:02:24
set machine xa
System reset.
System = XA
ipl cms
SLAC XA CMS 205 10/03/89 14:45

Figure 1: Selecting an architecture

Addresses: the long and short of it

In a 370 architecture machine, a memory address was the low-order 24 bits of a fullword. In XA
architecture you have a choice: it can be either the low-order 24 bits or the low-order 31 bits
(see Figure 2). Bit zero is never used in an address.

• 1
01 31

XA Architecture, AMODE 31

Figure 2: Addressing Modes

The choice is called the Addressing Mode or AMODE. AMODE 24 is for compatibility: an ad­
dress is only 24 bits, and the program can address only memory less than 16 megabytes (2 2 4

bytes). The first 8 bits of an address word are ignored. AMODE 31 uses 31 bits for an address,

0 7 8 31

370 Architecture or
XA Architecture, AMODE 24

Exploiting VM/XA 5 SHARE 74

which allows you to address up to 2 gigabytes of memory (2 bytes).

Which type of address the program is using is determined by the AMODE bit in the PSW. When
your program is started by CMS, it will be started in the AMODE that it requested. There are as­
sembler instructions to change AMODE as needed. These are mainly needed when transferring
control between programs that need different AMODEs, or when working with data areas or pa­
rameter lists passed between unlike programs.

The AMODE attribute of a program designates which AMODE it can execute in. AMODE 24
means that the program is not capable of handling 31 bit addresses and must receive control in
AMODE 24. AMODE 31 means that the program is capable of handling 31 bit addresses and
must receive control in AMODE 31. AMODE ANY means that the program is capable of han­
dling either 31 or 24 bit addresses, and receives control in the AMODE of the calling program.

If you're having trouble making sense of the preceding paragraph, notice that we're using
AMODE in two different ways. The AMODE attribute of a program tells CMS the addressing
mode to use when starting a program. The AMODE of an executing program is determined by a
bit in the PSW, and the program can change it as needed. The AMODE attribute of a program is
simply a way to get your program started off in the correct AMODE.

The AMODE attribute is assigned to a TEXT file by the compiler. Most current compilers such
as VS FORTRAN and PL/1 assign AMODE ANY to their TEXT fifes. Some older compilers as­
sign AMODE 24. I:i assembler, the AMODE siatement can select any AMODE for the object
file. The AMODE of a MODULE defaults to the AMODE of the first TEXT file included in it.

In VM/XA your virtual machine is divided into two areas: the memory less than or equal to six­
teen megabytes, and any memory greater than that. The memory below 16 megabytes is that ad­
dressable in AMODE 24; all memory is addressable in AMODE 31. This division is so impor­
tant that it's called the sixteen megabyte line.

If a program is AMODE 24, it must execute below the 16 megabyte line; if it is AMODE 31 or
ANY, it may execute either above or below the line. CMS itself runs jurt below the tine, but has
some of its data areas just above the tine (see Figure 3).

Exploiting VM/XA 6 SHARE 74

Where the program executes is called its
Residency Mode or RMODE. There are only two
choices: RMODE 24 means the program must
execute below 16 megabytes. The program may
have any AMODE. RMODE ANY means the
program may execute either above or below the
line. If sufficient memory is available above the
line, it will load there. If not, it will load below.
A program with RMODE ANY cannot have
AMODE 24.

The RMODE of a MODULE defaults to ANY if
all. of its components' AMODEs are 31 or ANY.
RMODE is forced to 24 if any. included TEXT
has AMODE 24.

r

Extended
Memory

•acOGOOO <S3M1 1

i ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ l 1CC00QC

^HcMSi^H
E00C0O (14H)

User Area
14.00

W$fa-- •"
E0OO E0OO

^BNucleus ^ H
0

Figure 3: Map of CMS Storage

It can be puzzling at times to determine the AMODEs and RMODEs of TEXT and MODULE
files. IBM provides no easy way to determine these attributes, so I wrote two commands, TEX-
TINFO and MODINFO, to help out (see Figure 4, page 7). These two commands are available
on VMSHARE or from SLAC.

t e x t i n f o
Name
TEST
Ready; T

t e s t
Leng th
OOOO0OB8

= 0 . 0 1 / 0 . 0 3

Amode
Any
14 :50

Rinode
Any

:46

t e x t i n f o
Name
A2INT
BLKEST
CHK218
CONVER7

for ta lac
Leng th
0000009E
00000000
00000000
00000110

txtlib
Amode

24
Any
Any

24

Rmode
24

Any
Any

24

Ready; T = 0 . 0 2 / 0 . 0 6 1 0 : 3 5 :30

modlnfo mount
Name O r i g i n
MOUNT 00020000
Ready; T = 0 . 0 1 / 0 . 0 1

Length E n t r y P t
00010BBO 00024ACB

1 0 : 4 1 : 0 5

Amode
24

Rmode
24

Arch
Any

A t t r i b u t e s
N o c l e a n . . .

Figure 4: TEXTINFO and MODINFO commands

Exploiting VM/XA 7 SHARE 74

Loading Programs

Where s. TEXT file is loaded by CMS is determined by the architecture of the virtual machine,
the RMODE of the First TEXT file, the SET LOADAREA command, and the ORIGIN option of
the LOAD command. All of these interact in a complex fashion; see the table on page 46 of
CMS Application Program Conversion Guide (SC23-0403).

RMODE ANY programs are loaded at the beginning of the largest free area above the 16 mega­
byte line, or below the line if no such storage is available. RMODE 24 programs are loaded at
the beginning of the largest free area under the line (usually X* 14000'). You can use the ORI­
GIN option to specify a particular address, but it may conflict with other options, and you must
make sure that the memory is not already in use.

The new SET LOADAREA command specifies the default area to use. Somewhat confusingly,
the default for this command is different for 370 and XA architecture virtual machines. SET
LOADAREA RESPECT loads TEXT files according to their AMODE and is the default in an
XA virtual machine. SET LOADAREA 20000 loads text files at address X'20000' and is the
default in a 370 virtual machine.

The new PROGMAP command is very handy for finding out where your program loaded
(see Figure 5). It's useful for determining the interaction of the various LOAD defaults and op­
tions, and required for finding addresses to use wim the TRACE (PER) command.

load test31
Ready; T=0.01/0.10 11:57:44
progmap
Name Entry
TEST31 01021000
Ready; T=0.01/0.01

Origin
01021000
11:57:47

Bytes
00000008

Attributes
Amode 31 Non-reloc

load test24
Ready; T=0.01/0.08 11:57:58
progmap
Name Entry
TEST24 00014000
Ready; T=0.03/0.01

Origin
00014000
11:58:01

Bytes
00000008

Attributes
Amode 24 Non-reloc

Figure 5: The PROGMAP Command

Exploiting VM/XA 8 SHARE 74

If you are loading more than one TEXT file, and a subsequent TEXT file has a more restrictive
AMODE than the first, the load will restart below the line. This is almost never what you want.
If you change the disk search order between the LOAD command and a subsequent INCLUDE
the LOAD would be unable to restart. If you have this situation you should try either to fix the
more restrictive AMODE or to specify AMODE 24 explicitly on the LOAD command so that it
starts correctly (see Figure 6).

load tost31
Ready; T=0.02/0.18 11:58:23
progmap
Name Entry Origin
TEST31 01021000 01021000
Ready; T=0.01/0.01 12:08:00

3ytes
OOOOCOCB

Attr
Atr.ode

.butes
31 Non-reloc

include tast24
Restrictive RMODE encountered
LOAD continues below 16Mb.
Ready; T=0.01/0.09 12:08:10

in CSECT TEST24.

progmap
Name Entry Origin
TEST24 00014008 00014008
TEST31 00014000 00014000
Ready; T=0.01/0.01 11:58:27

Bytes
OOOGOOCS
OOOOOOCo

Attr-
Ax ode
Ax ode

-butes
24 Non-reioc
31 Nsn-reioc

Figure 6: Restarting a LOAD

A corollary is that a linked program must go either entirely above or entirely below the 16
megabyte line. If you must do this, e.g., for a program that won't fit below the line but must use
some subroutines that are AMODE 24, you will have to split the program. You can dynamically
load subroutines from TXTLIBs or LOADLIBs and LINK to them, though transferring control in
the correct AMODE can be tricky. Dynamically acquired data areas can also be split from the
program; these include FORTRAN dynamic commons.

Generating Modules

There are two kinds of modules in VM/XA: relocatable and non-relocatable. Relocatable mod­
ules load in memory at the highest address appropriate to their RMODE. Non-relocatable mod­
ules load at the fixed address at which they were generated. Non-relocatable modules are the
more traditional type of CMS modue, and they may be the simplest to use when initially con­
verting urograms. However, relocatable modules are very important for RMODE ANY mod­
ules. If you make an RMODE ANY non-relocatable module in a small or 370 virtual machine, it

Exploiting VM/XA 9 SHARE 74

will never run above the line, because it always runs at the fixed address below the line. If you
make it in a large XA machine, it will never run in a smaller virtual machine.

You may override the AMODE and RMODE attributes on both the LOAD and CENMOD com­
mands. Just because you can doesn't mean you should, however. You can safely downgrade
AMODE and RMODE of ANY or 31 to 24, because that is more restrictive, h's generally not
safe to upgrade AMODE or RMODE 24 to ANY or 31. It is possible to have TEXT files marked
AMODE and RMODE 24 that you know to be 31-bit capable. However, it's always worth tak­
ing the time to recompile or reassemble the routine to get it marked correctly.

A backwards compatibility note: You can generate modules in VM/XA that execute property <n
previous releases of CMS if you watch out for a few "goichas". The extra information about
AMODE and RMODE etc. is generally ignored by earlier CMSs. However, the meaning and de­
fault of the STR/NOSTR option of GENMOD has changed. The result is that a program that
uses OS storage macros (including FORTRAN. PL/1. et.al.) that is linked and CENMODcd in
VM/XA will not work under eariier CMSs if you use the default option. If you explicitly specify
the STR option on the GENMOD in VM/XA, the resulting module will execute properly in all
CMS releases.

You also have to be careful of the default of SET LOADAREA RESPECT in an XA architecture
virtual machine. This will cause modules to be generated at X' 14000". Such a module cannot
load properh- in earlier releases of CMS. Use SET LOADAREA 20000 or an explicit ORIGIN
option to maintain backwards compatibility.

Overlays - Don 7 do it!

VM/XA now manages programs m memory. Older versions of CMS did not attempt to do this
and allowed programs to be overlaid. CMS 5.5 now deletes previously loaded programs that oc­
cupy the memory needed by subsequent programs. Programs that depend on the old behavior to
produce defacto overlay structures will no longer work.

LOADing a TEXT file also deletes previously loaded programs, unless the PRES option is used.
However, even if two programs are simultaneously loaded, they remain two independent entities.
In Figure 7, two programs are loaded at non-overlapping addresses. A subsequent PROGMAP
command shows that the first program has disappeared. They are loaded again, this lime with
the PRES option on the second one. This time both programs remain in memory. However, die

Exploiting VM/XA 10 SHARE 74

load tmst24
Ready; T=0.01/0.08 16:32:16
load test31 (origin 15000
Ready; T=0.01/0.02 16:32:29
progmap
Name Entry Origin Bytes
TEST31 00015000 00015000 00000008
Ready; T=0.01/0.01 16:32:32

Attributes
ifcnode 31 Non-• reloc

load teat24
Ready; T=0.01/0.08 16:32:39
load tast31 (origin 15000 pras
Ready; T=0.01/0.02 16:32:47
progmap
Name Entry Origin Bytes
TEST31 00015000 00015000 00000008
TEST24 00014000 00014000 00000008
Ready; T=0.01/O.01 16:32:50

Attributes
Amode 31 Non-
Amode 24 Non-

reloc
reloc

Figure 7: LOAD and the PRES option

first program cannot be STARTed, and will not be included in a GENMOD, because it was
cleared from the loader tables by the second program. If you are doing this, you probably should
be using INCLUDE instead.

Exploiting VM/XA II SHARE 74

Shared segments

Shared seg-nent support is quite differt.it in VM/XA. With large virtual machines, shared
segments ma^ have to load within the virtual machine.

Assume that, for example, the VS FORTRAN
compiler's shared segment must load at 11M every
time you compile a program. If your virtual
machine is smaller than 11M, the segment loads
above the end of your machine, as it does in
VM/SP. If your virtual machine is larger than
11M, CMS makes room for the segment within
your virtual machine.

If the memory needed for that segment is already
in use when you r,-j to compile, you will receive ^ B J ^ u c i e u s ^ S
an error message. To prevent this error, you may
reserve space for the segment with the SEGMENT RESERVE command. This should be done
in the PROFILE EXEC if possible, or the storage may al/eady be in use.

SEGMENT RESERVE has several disadvantages, however. Users must know the name of the
segment, which may or may not have a meaningful relationship with the product. The
SEGMENT RESERVE command also ties up that storage until explicitly released, preventing
any overlapping segment from using that space. That can be a disadvantage if several unrelated
products share the same address range, or if test and production versions of a program are de­
fined to overlap (as they usually are).

Some instructions behave differently depending on the AMODE of the executing program. In
general, these differences;' volve addresses as 24-bit or 31-bit quantities.

In AMODE 24, the Load Address (LA) instruction clears the high-order byte to zero. In
AMODE 31, it cleoi; only the high-order bit to zero. If you want to clear a known 24-bit
address, use N Rn,=X 'OOFFFFFF . This works regardless of the current AMODE.

In AMODE 24, the Branch and Link instructions (BAL and BALR) put the program mask in the
high-order byte of the 24-bit return address. In AMODE 31 they put the addressing mode in the

Exploiting VM/XA 12 SHARE 74

Extended
Memory

i.'JUvUU U£KJ

IC33030 II6HI

EOOOCO <14M>

B300C0 <1IM>

14003

http://differt.it

high-order bit of the 31-bit return address. If you were using these instructions to obtain the pro­
gram mask, use the IPM instruction instead. Unfortunately, IPM is an XA-only instruction, so
programs that need to do this in any architecture will have to use dual-paih code.

A program can switch AMODEs as it executes. It migiii do this to prepare or process control
blocks or parameter lists used by programs in different AMODEs. There are a number of ma­
chine instructions that can be used to change AMODE. but the easiest way is to use the
AMODESW macro. This macro can also be used to call subroutines or externally-loaded pro­
grams, saving, changing, and restoring the AMODE in the process.

AMODESW SET,AMODE=24
AMODESW SET,AMODE=31

The most frequent change needed to an Assembler program is for SSM (Set System Mask)
instructions. This instruction is valid in both 370 and XA architectures, but the mask values are
different. If an untested program ends with a specification exception, and the location four bytes
before the error address contains X'80\ then the offending instruction is an SSM (see Figure 8).

bomber
DMSITP141T Specification exception occurred at 80014C.i in

routine BOMBER
CMS
§cp display sl401a
R0001401E 80 E6

Figure 8: Detecting an SSM instruction in XA

The ENABLE macro can be used to enable or disable interrupts in any architecture or release of
CMS. You do need the new macro libraries to assemble the macro, but once assembled, the re­
sulting program will run in any release of CMS.

If you had... Use...
SSM = X W ENABLE INTTYPE=NONE
SSM =XTF* ENABLE INTTYPE=ALL

Exploiting VM/XA 13 SHARE 74

The following 370 instructions will not work in XA architecture and will also cause specification
exceptions:

SIO, SIOF, TIO. TCH, HIO, STIDC. HDV, CLRIO, CLRCH
ISK, SSK

DIAG 18, DIAG20

Anyprogram containing these instructions will need more extensive work. Use of the I/O
instructions, in particular, will make a program very architecture dependent. It is worth consid­
ering changing the program to avoid these I/O instructions entirely. Use CMS services if possi­
ble, or, if you must do channel programming, investigate the new A4 and A8 DIAGNOSE in­
structions that perform architecture independent channel program I/O.

To use memory above the 16M line, you must make sure that your program does not depend on
addresses being 24 bits long . The most common problem is using the previously unused high-
order byte of addresses to store or pass informarion (see Figu.-e 9). Someiimes getting rid of this
problem is a simple matter of giving the address its own fullword, someiimes it requires a com­
plete redesign of the program.

L
LA

Rl, ADCON
R1,0(,R1)

Get the address
and remove the flag.

ADCON
FLAG

DS
DS
DS

OA
X
AL3

Address of something.
Flag in the high byte.
24 bit address.

Figure 9: A problem in AMODE 31

Exploiting VM/XA 14 SHARE 74

To use memory above the 16 megabyte line, you must also use CMS services that work with 31
bit addresses. Many old services do not, and there are new replacements.

If your program used... Now it should use...

DMSFREE macro CMSSTOR OBTAIN macro
DMSFRET macro CMSSTOR RELEASE macro
LINEDIT macro APPLMSG macro
RDTERM macro LINERD macro
WRTERM macro LINEWRT macro
DMSKEY, DMSEXS macros IPK, SPK instructions
SVC 202 CMSCALL macro (SVC 204)
ASCANN function SCAN macro
ATTN function CMSSTACK macro
NUCEXT function NUCEXT macro
SUBCOM function SUBCOM macro
WAITRD function LINERD macro
DIAG 58 (fullscreen) CONSOLE macro
DIAG 64 (shared segments) SEGMENT macro
DIAG 20 (I/O) DIAG A8

Figure 10: New CMS Services

The new services are all ai least functional replacements on the old services; many are substan­
tia] improvements on the old. However, use of them will prevent your program from running in
earlier releases of CMS2. As with the architecture dependent machine instructions, you must
sometimes make execution-time choices between instructions or macros \̂ ee Figure 11).

2, You can obtain an SPE from IBM to add some of these services to CMS 5.0. However, if you distribute pro­
grams, you probably can't depend on that SPE being installed at any given installation.

Exploiting VM/XA 15 SHARE 74

USING NUCON,R0
CLI CMSPROG.VMSP5 If this is CMS 5.0 (or before)
BH CMS55 do

CMS 5.0 dependent code.
B SKIP1 end

CMS 5 5 DS OH else do
CMS 5.5 dependent code.

SKIP1 DS OH end
TM NUCMFLAG,NUCMXA If this is 370 architecture
BO XAARCH do

370 arch dependent code.
B SKIP2 end

XAARCH DS OH else do
XA arch dependent code.

SKIP2 DS OK end
CMSLEVE1
NL'CON
END

Figure 11: Dual peaks for programs

The conventions for receiving control in a MODULE from CMS have changed somewhat. They
are detailed in Figure 12. The major change is that the calltype flag that was previously passed
in the high-order byte of R1 is now in the save area pointed to by R13 instead. This, of course, is
to allow the address in R1 to be a 31 bit address.

Exploiting VM/XA 16 SHARE 74

. I
RO contains the address of the extended parameter list. It is 24 or 31 -bit depending I

on your A MODE.
R1 contains the 2ddress of the tokenized parameter list. It is 24 or 31 -bit depending

on your AMODE. If it is 31-bit, it does not contain the calltype flag in the
high-order byte.

P12 contains the address of the entry point of your program. The high-order bit is 1
if you are in AMODE 31.

R13 contains the address of a save area. This save area now contains the calltype
j flag. The USERSAVE macro maps this area.

R14 contains the return address. The high-order bit by convention indicates the
AMODE of your caller. If called from CMS, this will always be zero, because
CMS is basically AMODE 24.

R15 contains the same information as R12.

j
Figure 12: MODULE entry conventions

The convendons for non-module linkage remain basically the same, as detailed in Figure 13,
with the addition that AMODE information may be present in the addresses in R14 and R15.

R13 contains the address of a save area.
R14 contains the return address. The high-order bit by convention indicates the

AMODE of your caller.
R15 contain? the address of the entry point of your program. By convention, the

high-order bit is 1 if you are in AMODE 31.

Figure 13: Non-MODULE entry conventions

There is a new CMSRET macro to return from a program to CMS. It allows you to return a
return code and other register values, and it takes care of AMODE switching if necessary.
However, CMSRET makes your program unable to run in VM/SP. Most of the time, a good,
old-fashioned

BR R14

does the trick.

Exploiting VM/XA 17 SHARE 74

Summary

The conversion effort was moderately disruptive to the user community. Four Systems
Programmers were involved over the course of a year. A significant number of people from
User Services spent time on the conversion, installing new vendor packages, converting local
software, writing documentation and assisting users. An unknown amount of effort was also re­
quired by individual users. The experimental groups with complex software had a fair bit of
trouble in conversion, and the group that required XA exploitation found thai a great deal of ef­
fort was required (and spent quite a bit of time in my office).

As mentioned previously, a number of local programs were left behind, but often because they
were functionally replaced by other programs, or because they were little used. We used die
CMAP monitoring program from VM*CMS Unlimited to aid in determining which programs to
leave behind. No major vendor packages were left behind, and most would even run in XA ar­
chitecture virtual machines as well.

In some respects, the conversion was surprisingly easy. Many programs ran with little or no
change, even in XA architecture. Most of those that did not convert did not use the standard sys­
tem interfaces, or depended on system internals. In a number of cases it was simpler to rewrite
an ill-behaved program than it was to change it; 1 took the opportunity to rewrite several assem­
bler programs in C.

SLAC will continue working towards full XA exploitation. The cutover date from HPO to
VM/XA is February 21, 1990. After that, more effort will be directed towards changing pro­
grams for XA toleration and exploitation.

More work is needed by IBM to move the system towards maturity. VM/SP and VM/XA should
be converged towards a common system. VM/XA needs many of the features that VM/SP
Release 6 and even Release 5 have. SHARE must continue to work with IBM in defining our
requirements for future releases.

Exploiting VM/XA 18 SHARE 74

BiBMOrZRAPHY

GG24-3174 Bimodal CMS for VM/XA Systems
A very high-level summary of the changes in CMS 5.5. It won't tell you anything
substantive.

SC23-0357 Conversion Notebook
The title sounds promising, but I wouldn't recommend it for most people. Most of
the book is concerned with hardware and network planning and with system
generation. However, there is one very useful 10 page section that lists all the
differences in CP commands and responses between HPO and XA.

GG24-3278 VM/XA SP Bimodal CMS Application Programmine Considerations
This is a well-written and informative manual {ii was written by one of the XA
system developers). It is mostly for those who write in Assembler, but has some
item of interest to Fortran programmers, especially those with complex linking
requirements. The topics included are: program handling, program invocation,
segment management, storage management, REXX (just a little bit), dual-path
codi; with good examples, migration planning, and loader operation.

SC23-0403 CM$ Application Program Conversion Guide
This manual summarizes the changes between VM/SP and VM/XA-SP in both
CMS and CP There is some overlap with the 'Programming Considerations'
manual above, but enough different information for it to be worth a read. Again,
it is mostly for Assembler programmers. Topic include System/370
compatibility, 370-XA toleration, 370-XA exploitation, VM/XA SP CMS
functional changes, and the VM/XA SP CMS programming interface.

GUIDES;

SC23-0355 CMS Application Program Development Guide
This is a detailed guide to developing programs under CMS 5.5. It roughly
corresponds to *he old (SC24-5286) VM/SP CMS for System Programming
manual. It has been totally rewritten and reorganized and has a great deal of
useful information about the new architecture. The major topics are using CMS
native services, managing CMS programs, and OS/MVS, DOS/VSE, and VSAM
simulation.

SC23-0356 CMS User's Guide
This is the command-level guide to using CMS. It has not changed a great deal
from VM/SP release 5.

SC23-0375 System Product Interpreter fREXX) User's Guide
No change from SC24-5238 for VM/SP Release 5.

SC23-0373 System Product Editor fXEDIT) User's Guide
No change from SC24-5220 for VM/SP Release 5.

SC23-0377 Virtual Machine Operation
A guide to running guest operating systems such as MVS or DOS/VSE under
VM/XA. Not of interest to most people. It does contain the tutorial on how to
use the new TRACE command for debugging, however.

Exploiting VM/XA 19 SHARE 74

FORTRAN:

SC26-4222 VS Fortran Version 2 Release 3 Programming Guide
Several short sections describe some considerations of running FORTRAN
programs in XA, especially in the area of making use of more than 16 megabytes
of memory.

REFERENCE!

SC23-0354 CMS Command Reference
The familiar CMS reference manual, now grown to 942 pages! There are a
number of new commands, and some changed ones, mostly in the area of program
linking, loading, and management.

SC23-0358 CP Command Reference
The CP reference weighs in at 800 pages, and includes all CP commands, both
privileged and non-privileged. A number of commands are added and changed,
notably: ADSTOP and PER become TRACE, SET and QUERY have changes,
and AUTOLOG is incompatible.

SC23-0376 System Messages and Codes Reference
Many new and different messages in the CP section. Many messages now have
four-digit message numbers.

SC23-0374 System Product Interpreter (REXX) Reference
No change from SC24-5239 for VM/SP Release 5.

SC23-0372 System Product Editor fXEDm Reference
No change from SC24-5221 for VM/SP Release 5.

SC23-0402 CMS Application Program Development Reference
This is the replacement for the old (SC24-5284) CMS Macros and Functions
Reference, but double the size. There are many new CMS macros to more
formally define the programming interface to CMS, and to provide XA capability.

SC23-0370 CP Programming Services
This manual is the reference to all Diagnose instructions and for IUCV. It is the
replacement for (SC24-5288) System Facilities for Programming.

SA22-7085 IBM System/370 XA Principles of Operation
This describes the operation of an XA-mode virtual {or real) machine. Some
instructions are new and some are removed. All instructions handle 31-bit
addresses and many change accordingly. In a 370-mode virtual machine, the
previous manual (GA22-7000) IBM System/370 Principles of Operation is still
relevant.

SC23-0353 Administration
This replaces (SCI9-6224) CP for System Programming. It is only of interest to
systems programmers.

Exploiting VM/XA 20 SHARE 74

MISC:

GC28-1! 54 MVS/XA Supervisor Services
This manual documsnts the OS macros used in CMS, such as GETMAIN, SPIE,
STAE, etc. CMS 5.5 uses the MVS/XA versions of these macros, while previous
versions used the OS/MVT versions. This is now the relevant manual for thv.se
macros.

G C 2 6 - 4 0 I 4 MVS/XA, Data Management Matrns
This manual documents the OS data management macros used in CMS, such as
DCB, GET. PUT, READ, and WRITE.

GC26-4011 MVS/XA Linkage Editor and leader User's Guide
This manual documents the usage of the MVS loader, available in CMS as the
LKED command.

DISCLAIMER

This report «as prepared as an account or work sponsored by an agency of die United States
Government. Neither the United Stales Government nor any agency thereof nor any of their
employees, makes any warranly, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents (hat its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark
rnanufcciurer. or otherwise does not necessarily constitute or imply its endorsement, recom-'
meadatwn, or favoring by vte United States Government „i any agency thereof. The view,
andI opinion, of authors expressed herein do not necessarily slate or reflect ihose of the
United States Government or any agency thereof.

Exploiting VM/XA 21 SHARE 74

http://thv.se

