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BURNING OF A SPHERICAL FUEL DROPLET

IN A UNIFORM SUBSONIC FLOWFIELD

Kevork Madooglu and Ann R. Karagozian
Mechanical, Aerospace, and Nuclear Engineering Department

University of California, Los Angeles

ABSTRACT

An analytical/numerical model is described for the evaporation and burning of a spherical fue! dro-
plet in a subsonic crossflow. The external gaseous flowfield is represented using an approximate compres-
sible potential 'solution, while the internal flowfield of the droplet is represented by the classical Hill’s
spherical vortex. This allows numerical solution for the external boundary layer and diffusion flame
characteristics to be made, from which the droplet’s effective drag coefficent, rate of mass loss, size, and
flame shape are determined. Comparison with experimental data indicate good agreement, and thus the

potential for such simplified models in performing parametric studies.

INTRODUCTION

Over the past few decades, the widespread use of liquid sprays in combustion systems has led 10
increased research interest in the study of droplet evaporation and combustion in a convective environment,
as pointed out in a number of comprehensive review articles [1-3). Especially in the 1980's, exiensive
effort has been directed toward the analytical and computational modeling of this problem, which is com-

plicated by the transient, multi-phase, multi-dimensional nature of the transfer processes involved.

Although for most of the droplet lifetime the Reynolds numbers in both gas and liquid phases are not
larger than O(100-1000) in many practical combustor situations, Prakash and Sirignano [4] are able o0
obtain reasonable results with high-Re asymptotics for an evaporating droplet. They solve the gaseous
boundary layer with an integral equation approach and couple it to the recirculating liquid flow, plac.ng

emphasis on the unstcady liquid-phase heat transfer. Renksizbulut and Yuen [5) and Dwyer and Sanders
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[6), on the other hand, treat the same problem by solving the full Navier-Stokes equations numerically.
The former authors also report experimental results for freely suspended evaporating drops in hot streams
[7). More recently, Dwyer and Sanders {8) have included chemical reaction in their computations, which
provides valuable information on the evaporation and burning processes of droplets at low and intermediate
Reynolds numbers, i.e., Re £ O(100). However, apparently due to the immense computational effort
required, these fully-numerical models frequently involve various simplifications in each calculation, such
as assuming constant gas properties, neglecting liquid-phase motion and heat transfer, and/or restricting the
range of Reynolds and liquid Peclet numbers.

The present study aims at developing an analytical/numerical model for single droplet combustion in
a uniform convective flowfield which includes the significant features of the problem without requiring
large computational times. Encouraged by the analytical work of Prakash and Sirignano {4), a moderate-
to-high Reynolds number model assuming "thin" viscous boundary layers adjacent to the gas-liquid inter-
face is employed here, in which species diffusion and the presence of a diffusion flame are represented.
The external, gascous flowfield about the droplet is solved by an approximate analytical method, and this
solution is used to drive the external boundary layer and internal flow of the droplet. A schematic descrip-
tion of the features of the present model is shown in Fig. 1. Another novel feature of the present formula-
tion is that it accounts for the effects of compressibility in the flow approaching the droplet, so that it
enables a Mach number-dependent analysis for the gaseous boundary layer which is sufficiently accurate

for free stream Mach numbers M., <0.3.
INVISCID FLOW SOLUTIONS

External gaseous flowfield
The external inviscid gas flow about the spherical droplet is represented by a compressible potential
flow solution. Defining the velocity potential ¢ (r,8) for axisymmetric fluid motion, the potential equation

for steady, irrotational, isentropic flow of a perfect gas reduces to [9):
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We note that the isentropic fiow assumption requires any chemical reaction to take place within the viscous
boundary layer adjacent to the spherical droplet.

The boundary conditions for equation (1) are given by the requirements that the flow is uniform far
from the sphere and that the normal velocity at the sphere’s surface is zero. For "slightly compressible”
flow, i.c. small free-stream Mach number (M2 « 1), the solution of equation (1) can be expanded into the
form [9):

¢(r,8;M2) = ¢o(1,0) + M2, (1,6) + OM2). ¢))
Since it readily follows from equation (1) that all the effects of compressibility are O(M2), the zeroth

order term $,(r,0) in equation (2) is given by the solution of the homogeneous Laplace equation V3¢ = 0,

with the boundary conditions

¢p - ~u.rcos® asr-—oo, (3a)

% _0o ar=R. (3b)

This, of course, recovers the well-known solution for incompressible potential flow over a sphere [10]:

6o(r.0) =-u.R [1 + —2-;3-] fcos, @)
where a dimensionless radial coordinate is inlr9duced ast=r/R.
For the first-order term ¢, (f,8), one has from equations (1) and (2)

__1 9% 3 1 %% 3o |* (1 3% |
e R (R -

The boundary conditions for the velocity potential ¢(f,08) have already been satisfied by the zeroth order

solution ¢o(7,0), so that ¢, — 0 as T — o and % Oatt=1. Substituting ¢o(T,8) from (4) into (5), one
obtains the explicit goveming equation for ¢,:

2, _ U= 4 9.7 81.10 15.4 3.7 15.-10
Vi, = H 2 + 35T ] cos 0 + g’ ~3f + 32t ]cosBG]

which can be solved by separation of variables, yielding the expression

53 = 2 81 A" 5 .-5 203 a=8
6,(1.0)= LR[[NO *20° T *+ e’ ]cose}
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The potential-flow solution for the external gas flow is thus obtained to order M4, which can be regarded

as sufficiently accurate for the low subsonic flow regime.

Assuming the viscous layer to be "thin", i.e. the boundary-layer approximation to be valid, the velo-
city at the edge of the viscous layer, u,(8), is obtained from differentiation of the velocity potential ¢,

which gives

w®) 3 83 ... 1215 . » 4
-2sm0—mM-sm9 I—Wsme +O(M.). ®
For isentropic inviscid flow, the temperature, pressure, and Mach number at the boundary layer edge can be

computed from freestream values in a straightforward manner.

Internal liquid flow

The gas flow over a liquid drop induces a liquid-phase motion within the drop through momentum
transfer at the gas-liquid interface. Harper and Moore [11] show that the intemal recirculating flow of a
droplet in a convective environment can be represented by the well-known Hill’s spherical vortex solution
if one neglects the existence of small counterflow vortices near the downstream stagnation point driven by
the vortical flowfield beyond the separation point. In the high Reynolds number limit, the streamsurfaces

for this type of flow are described by the stream function

V=V.- ART () sin%e, )
and the surfaces of constant vorticity by

©W=SARTsin®. (10)
In the above equations, A denotes the vortex strength, which is a constant throughout the inviscid liquid-

flow region.

The velocity components of the liquid fow are then

1 _apea-f
= = AR4(1- 0
u, Zand 30 (1-t ) cos
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9—"’- =-AR?(1-27) 5in 0.
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As a first approximation, then, the velocity at the edge of an internal viscous layer, u;(8), is represented by
the magnitude of the Hill's vortex velocity vectorat r=R:

u(6)= AR’ 5in @, an
indicating that the presence of the internal viscous layer is actually neglected here. This assumption will be
discussed in detail in the Results section. The unknown vortex strength A is to be determined through the

coupling of the gaseous and liquid-phase solutions.

GASEOUS BOUNDARY LAYER ANALYSIS

For the viscous gas flow adjacent to the droplet surface, the governing equations and boundary con-
diu'ons account for the effects of chemical reaction, tangential surface motion, and mass blowing due to
evaporation (and combustion) at the gas-liquid interface within the framework of a laminar axisymmetric
boundary layer. The burning process is represented at present by infinitely fast reaction kinetics, which
shrinks the reaction zone effectively into a "flame sheet” of zero thickness within the boundary layer, divid-

ing it into two regions (sce Fig. 2). The governing equations, written in surface coordinates (x,y), are then

A 9 o=
P (r,pu) + 3y @pv)=0, (12)
du  Buf_ o du 3 Rl
and
oH oH poHl o fpp 9 fullf
"[a Y ay] 3y [Pr 8y]+3y [Prm Doy (7)™ e

where r,(x) is the radius of the cross-section of the sphere at x.

The equations for conservation of speci¢s take the form

Regionl, ysyr: p uzﬁ-waxf =2 DE&- +mg, (15a)
ox ay P
K,=1-K;, (15b)
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RegionIl, y2y;: p ug-xiq.v.aﬁ'; =
ox ay

K,=1-K,.

Here f* is the stoichiometric fuel-oxidizer mass-consumption ratio, given by

= - (aKf/ BY)y,
T (@K, /3y)y,

(16a)

(16b)

All inert gases are assumed to have the same properties as the products of reaction and are treated together

with the latter ax one species. Furthermore, in the above equations, the simplifying assumption has been

made that all the species involved in the problem have the same diffusion coefficient D.

The presence of a flame sheet in the boundary layer introduces discontinuities in the enthalpy and

concentration gradients at this location. Defining new composite variabies for enthalpy and mass fraction,

H+ f*gK,

O M K,

1
KEKO-FKI-

(17a)

(17b)

these discontinuities as well as the source terms in equations (14), (15a) and (16a) are eliminated [12,13).

For laminar, axisymmetric boundary layer flows with variable gas properties, Lees (1956) suggests the fol-

lowing coordinate transformation that incorporates elements of the Mangler, Howarth-Dorodnitsyn and

Levy transformations [14):

E(x) = [ pepteucridx

and
ur, }
nx.y)= y
%" !"d
Then defining a non-dimensional compressible stream function
fa ‘l‘!x.'xhz
%)

where

(18)

(19

(20)

'
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oY _ o __
ay _rlpuu ax =-I:pV,

the original governing equations can be transformed into a set of ordinary differential equations, provided

that there exist locally self-similar solutions, i.e. if f; G and K are functions of 1| only. Thus finally intro-

ducing the non-dimensional velocity
df u
F —_—— 1

M) = Mo w @1

one then obtains the governing equations for py = const. and unity Lewis number,
F’(m) + fmF M) - BE) [‘;i - Fz('q)] =0, (22a)

us

6" + PG/ = (-P-2* [Feor+ )] 22b)
K“() + Sc f{(m)K'(n)=0, (22)

where primes denote differentiation with respect to the similarity parameter 1. The problem is thus
transformed effectively into the well-known wedge-boundary-layer problem, with varying pressure gra-

dients for varying angular positions. The "pressure gradient parameter” B(E) in equation (22a) is defined as

_ 2% du
B&) " & 23)

Since, at any location x, the pressure is constant across the boundary layer, the density ratio that

appears in equation (22a), p./p, is equal to T/T,, and can be written as

Pe =% [{1 + .]‘_'_I_M'2 + Q,K“]G(ﬂ) - _th‘ZR(n)] (24a)
P 5 2 2
for n<ny, and
B2 [[1+ lglww,x.,,]cm)— I;im’F’(n)—mx(n)] @)

for n2n, where Q, = *q/(c, . T,).

The solution of the set of ordinary differential equations (22) is complicated by the fact that the
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tangential and normal (blowing) velocities, temperature and species mass fractions at the surface are all
unknown as yet. The tangential velocity at the surface, y,(x), as well as the surface iemperature T,(x) are
obtained by coupling the gas-phase flow to the liquid-phase motion through shear-stress continuity and heat
transfer relations across the interface, respectively. Two additional relations are required to determine the
fuel mass fraction and the mass blowing rate at the surface, and these are provided by the Clausius-
Clapeyron equation for equilibrium evaporation and by the condition that the net flux of products through

the interface must be zero. The latter implies that

Puva(1 = Ky,) + D, [35‘-] -0,
9y ),

which, recalling the definitions of K(n) and f(n1), reduces to

=-L_1K@O
KO=--5 0 25)

The Clausius-Clapéyron equation provides an equation for the fuel partial pressure at the surface, Py, , in

relation to the surface temperature T,, and some reference state, indicated by the subscript ref:

Pul M1 1
" "P:]'R, Tt 'r.] @9

The fuel mass fraction at the surface, Ky, , is then related to Py, through the molecular weights of the fuel

and the reaction products.

Both pressure and shear stress at the surface contribute to the drag force D exerted on the droplet by
the convective stream. The drag coefficient Cp = 2D/(nR?p.u2) is thus computed from the pressure dis-
tributica determined from the external flow solution and from the shear stress distribution determined from
the boundary layer solution. Since the boundary layer model described in this section does not allow for
calculations beyond the separation point 6,, average quantities are employed to account for the pressure
contributions in the region 6, £ 6 < x. Both measurements and numerical calculations of the pressure dis-
tribution on the surface of a sphere in the Reynolds number range of interest, as outlined by Clift, et al.
[15], indicate that a constant pressure at half that of the separation point value is a reasonable approxima-
tion for the pressure distribution in the region between the separation point and the rearward stagnation

point. The surface shear stress in this region is neglected with respect to its contribution to the total drag.
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Finally, the total mass transfer, i.c., the rate of evaporation from the droplet, mh, is given by
x
M= {(p,v,)(21l:stin 0do). @n
For the present set of calculations, the contribution of the region beyond the separation point o the overall
evaporation rate is neglected. As noted by Prakash and Sirignano [4], and as will be shown below, the rate
of mass transfer in the region of the flow beyond the separation point is relatively small. The results

presented here can thus be regarded as a lower estimate in terms of convective droplet evaporation,

RESULTS
The set of coupled ordinary differential equations (22) is solved numerically by central differencing
at discrete angular positions along the droplet surface until separation is reached. Time-dependent calcula-
tions are performed by updating the Reynolds number through the calculated values of evaporation rate and
drag at each time step. The dimensionless time scale T used in these calculations is based on the free stream
gas properties and the initial droplet radius, i.e., T= 0. /R2. Here o denotes the thermal diffusivity of

the freestream gas.

In the present calculations, a uniform liquid-phase temperature is assumed. Since earlier work such
as that of Prakash and Sirignano [4] has shown that the liquid-phase heating is essentially unsteady in the
very early periods of droplet lifetime, calculations presented in this paper would apply to larger droplets in
the later stages of evaporation and bumning, when a uniform liquid temperature is reached. In the analysis
of Harper and Moore [11], the velocity at the surface is taken to be only a small perturbation of its value at
the edge of the viscous liquid layer. Prakash and Sirignano [16) show that this is a valid assumption while
the same may not be true for vorticity, since the difference in vorticity between the surface and the edge of
the viscous layer may not be negligible. However, as seen in Figs. 3 and 4, the overall effect of liquid
motion on the transfer processes in the gaseous boundary layer is relatively insignificant. Thus, the
emphasis being placed on overall evaporation and drag calculations within the scope of the present study,
the surface motion is approximated by the inviscid inner flow solution at the limit r=R. This reduces the
required computational time for the solution of the coupled gas-liquid boundary layers considerably, since

the (presently neglected) liquid boundary layer solution is effectively obtained from calculation of one
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unknown parameter, namely the vortex strength A that appears in the boundary conditions for the gas flow.
For the case of the burning droplet, where the existence of an envelope flame is assumed a priori, the posi-
tion of the flame before separation can be calculated. The experimental results of Gollahalli and Brzus-

towski {17] indicate that the assumption of an envelope flame is realistic for Re.. < 200.

The present model has been utilized to obtain results for both low and high pressure environments.
Calculated temperature, velocity, and species concentration profiles in the boundary layer for specific
freestream conditions are shown in Fig. 3. The profiles in this figure indicate that the influence of the
intemal flowfield of the droplet, which is of the order of 5% of the flow magnitude at the boundary layer
edge, is small. While the profiles shown in Fig. 3 correspond to a point 60° from the stagnation point of the
droplet, similar behavior is noted at other locations along the droplet surface. This observation is in fact
corroborated in Fig. 4, in which the local dimensionless "blowing” velocity component and friction
coefficient are plotted as a function of angular distance along the droplet surface. Again, the influence of
the internal vortical flowfield is relatively small, although the increase in mass blowing and decrease in
shear stress with surface flow is appropriate. This figure also indicates, as noted above, that as the point of
separation is approached, the local mass transfer rate becomes very small. Hence neglect of the mass

transfer beyond the separation point appears to be reasonable.,

Tt is also noted that the effect of Mach number on droplet evaporative and burning processes is not
strong; this is indicated in Fig. 5. As is physically reasonable, the local shear stress near the top of the dro-
plet surface is slightly increased with higher freestream Mach number, but this effect is negligible closer w
the stagnation point. The effect of Mach nuniber on mass loss appears to be negligible at all locations
along the droplet, although in the absence of the flame (evaporation only), the increased temperature and
pressure at the stagnation point with higher M_, does slightly increase the mass transfer in that region. Itis

likely, however, that for higher subsonic crossflows, compressibility effects will be more significant.

The computed variation in drag co:fficient for evaporating and burning droplets is shown in Fig. 6,

which also provides comparison with the exnerimental results of Yuen and Chen [18] for an evaporating

droplet, and with the "standard curve” for the drag coefficient of a solid sphere. Our calculations appear 1o '

correspond well to experimental observations, and indicate the significant influence of mass blowing on the
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behavior of the drag coefficient. The calculated raie of mass loss as a function of Reynolds number is
shown in Figs. 7ab, for both evaporating and burning droplets at different freestream conditions. The
choice of fuel, free-stream, and initial conditions for the case in 7a allows for a direct comparison with the
experimental data of Renksizbulut and Yuen [7] for the evaporation rate from a suspended droplet in a hot
stream. At a much higher freestream pressure (Fig. 7b), the rate of mass loss for both evaporating and
burning droplets is significantly increased. We note here that most other experimental observations on eva-
porating and burning droplets in a convective environment always involve highly scattered data. In this
context, the measurements of Eisenklam, et al. {19] and Natarajan and Brzustowski [20] can also be refer-
enced, although these are at higher pressures. The empirical correlations given in both of these papers
result in evaporation rates that are somewhat higher that those reported in [7] as well as those calculated
presently. As noted by Dwyer and Sanders [6], this discrepancy could be duc to differences in specific

mechanisms present (perhaps initial transient droplet heating) which affect the mass transfer.

Figure 8 displays results for the variation in droplet radius and Reynolds number with dimensionless
time, T, with comparison to the experimental observations of Renksizbulut and Yuen [7). The initial Rey-
nolds number is chosen to be 200, and the initial droplet radius 1 mm. The drag coefficient used to extra-
polate the experimental values is taken from the data of Yuen and Chen [18). Finally, predicted flame
shapes, based on local maxima in boundary layer temperature (and the local vanishing in the reactant mass
fractions) are shown in Fig. 9 for two different Reynolds numbers. It should be noted that the flame shapes
shown are each relative to the instantaneous droplet radius R(1). Separation of the flame from the region

near the droplet surface appears to coincide with separation of the external boundary layer.

CONCLUSIONS

The present modeling effort demonstrates that, by including only the crucial physical phenomena
associated with fuel droplet vaporization and burning in a convective environment, a very reasonable
representation for droplet behavior can be obtained. By using analytical representations of the inviscid gas
and liquid internal flowfields, and by employing the boundary layer type of assumptions first used by
Prakash and Sirignano [4), it is possible to solve for the characteristics of the reacting flow adjacent to the

droplet surface. These characteristics allow calculation of parameters which describe droplet evaporation,
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and burning (drag coefficient, mass transfer rates, size histories) that compare very well with experimental
data [7,18]). As noted above, the relatively large amount of scatter present in the experimental data avail-
able for burning droplets [19,20] renders comparison with the present model less precise. It should be
noted, however, that our predictions lie well within the error bars of the experimental data, but our calcula-
tions tend to slightly underpredict (compared with the average of the data) the degree of mass loss by the
droplet. Our predictions for mass loss are also somewhat lower than the full- scale numerical predictions
made by Dwyer and Sanders [8], but this may be due to the fact that these researchers choose to linearize
the exponential term in the Clausius-Clapeyron relation. Despite these minor discrepancies, our model
appears (10 be relatively robust and accurate, with a minimum in required computational times, and thus

Allows detailed parametri~ studies to be performed with ease.

NOMENCLATURE
A Hill’s vortex strength
S Specific heat at constant pressure for gas
D Mass diffusivity
r Stoichiometric fuel-oxidizer ratio
H Total enthalpy
h, Latent heat of vaporization
M Mach number
m Rate of evaporation of droplet
m; Mass rate of fuel consumption at the flame
Pr Prandd number ( = u/(par))
q Heat release per unit mass of fuel
14 Radial coordinate
R Droplet radius
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R Gas constant for fuel vapor

Ro Initial droplet radius

T, Local radius of droplet cross-section

Sc Schmidt number ( = u/(pD))

T Temperature

(u,, ug) r- and 8-components of velocity vector u

(u, v) Velocity components tangential and normal to droplet surface
*,y) Coordinates tangential and normal to droplet surface
} 74 Local flame position relative to droplet surface

. Thermal diffusivity of freestream gas

B Pressure gradient parameter

Y Ratio of specific heats

M. %)  Similarity variables

0 Coordinate indicating angular distance along droplet
0, Separation point

T3 Dynamic viscosity

P Density

T Dimensionless diffusion time scale

¢ Velocity potential

v Stream function

Subscripts

¢ Conditions at edge of external boundary layer

f Fuel
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i Conditions associated with internal liquid flowfield
o Oxidizer
P Products
ref. Reference state
H Liquid surface
o Freestream gas conditions
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