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MARGINAL DENSITIES OF RADIALLY SYMMETRIC DENSITIES
IN TWO AND THREE DIMENSIONS

by

C. J . E v e r e t t and E. D. Cashwell

ABSTRACT

Necessary and sufficient conditions are given for a
function p(x) on 0 < |x| < R to be the marginal density of
a radially symmetric density f(r) in the case of two and three
dimensions. The first case relies on an integral transform
due to M. Bell, while for 3-space the theory is considerably
simpler. The two cases appear to be quite different and no
generalization to n-space is known to us.

I. THE CASE OF TWO DIMENSIONS

We give a summary of the theory for the plane, which was obtained in some-

what different form in an earlier paper. This case is notably more difficult

than that of 3-space, and requires a discussion of four sets of functions, Y, F,

P, and Y*.

Y is the set of all finite, continuous, nonincreasing functions y(r) on

[0,R], with y(0) = 1, y(R) = 0, having a finite continuous derivative y'(r) on

(0,R).

F is the set of all finite, continuous, nonnegative functions f(r) on

(0,R), with

/ 2irrf(r) dr = 1. (1)
0

Every such function f(r) defines a radially symmetric probability density

f(A2+y2) on the circle C = {(x,y); x2+yz < R2} with
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/ f[/x2+y2) dx dy = 1.

P is the set of all marginal densities

r /Rz-x'
p(x) = 2 J f ( /x 2

+ y 2 ) dy; 0 < |x | < R (2)
0

defined by functions f(r) in F.

Y* is the set of all functions y*(r) on [0,R] that arise as "Bell trans-

forms" of the marginal densities p(x) in P, namely

/VR2-r2

= 21 -r.LLy*(r) = 2 j pC/rz+x'") dx, 0 < r < R
0

y*(R) = o . (3)

This transform was discovered by M. Bell at CERN and is essential for

much that follows.

Theorem 1. The correspondence y(r) -> f(r) defined by

f(r) = (-l/2TTr)y'(r); 0 < r < R (4)

is one-one on Y to all of F, its inverse f(r) ->• y(r) being given by

-R
y(r) = I 2-rrrf (r) dr; 0 < r < R ,

i . e . , y(r) is the (default) cumulative distribution function of the probability

density 2iTrf (r) .

Proof, (a) The properties of y(r) in Y insure that f(r) in Eq. (4) is

indeed in F. For example,

/•R rR
J 2TTrf(r) dr =J 2Trr(-l/2iTr)y'* (r) dr

0 ' 0



= -lim / y'(r) dr = lim (y(a)-y(3)) =1 - 0 =1, where a •> 0 , 3 •* R .

a

(b) y(r) -> f(r) is one-one, since \'"(r) = y9'(r) on (0,R) implies that the

function D(r) = y,(r) - y~ (r), which is continuous on [0,R], and has derivative

D'lr) = 0 on (0,R), has value D(r) E D(0) = 0 on (0,R) . (c) To see that

y(r) ->• f(r) is onto all of F, we taVe an arbitrary function f(r) in F, and

define a function

y(r) = / 2iTrf(r) dr; 0 < r < R .

One can then show that (1) y(r) is finitely defined for all r on [0,R] with

y(0)=l, y(R)=O, (2) y(r) is monotone nonincreasing on [0.R], (5) y(r) is

continuous on [0,R], and f4") y'(r) - -2iTrf(r) for every r on [0,R], so that y(r)

as defined is indeed in Y, and finally, (5) (-l/2Trr)y '(r] = f (r) . (d] Since

y(r) ->• f(r) is one-o..e on Y to all of F and

X R
2iTrf(r) dr -> f(r) ,

r

the inverse f(r) -»- y(r) is clear.

Theorem 2. Every marginal density p(x) in P is finite, continuous, non-

negative, and even on 0 < |x| < R, with

rR

/ p(x) dx = h •
JQ

Proof. From Eq. (2) it is obvious that p(x) is nonnegative and even on

0 < |x| < R, and easy to verify that

R rR
I p(x) dx = I iTrf(r) dr = xz, using polar coordinates.



Transforming y to r in Eq. (2) by means of x2+y2 = rz one sees that p(:0

may be written in the form

R

p(x) = f 2f(r) r dr/(r2-x2)S 0 < x < R
x

= f
x

(5)

and from this one can deduce ics finiteness and continuity. As an example, we

include a proof that

lim p(x) = p(xQ)

x •* x

Fix 0 < A < x < x < B < R and let M = max f(r) on [A,B]. Writing

/

R
2f(r) rdr/(r2-x2)

x x B

* . / . /

p(xo) =J 2f(r)
B - R

x B
o

we see that p(?0 -

/-B

2f(r) r dr/(r2-x2)'1 - / 2f(r)

+ y 2f (r) r dr (l/(r2-x2)% -

The last integral approaches 0 as x -> x since, for every e > 0, there exists a

6 > 0, independent of r, such that

3* - l / (r2-x < ETT provided | x - x ] < 6. Hence



\< J 2f(r) r dr (ETT) < e

As for the quantity in brackets, we have for x < x

- /*B 2f(r) r dr

x

each term of which approaches 0 as x ->• x .

For, 0 <J ° 2f(r) r dr/(r2-x2)'2

< 2M (x 2 - x z ) ? 1 •+ 0

/

B , , , \

2f(r) r dr fl/(r2-XQ
Z)'2 - l/(r2-x2]'5J

x ^
o

< 2M |(B2-x 2 ) 2 - (B'-x2]2 + (x 2-x2)2)+ 0 .
X1- o o /

Theorem 3. If p(x) is any function which is finite, continuous, and non-

negative on (0,R), with

p(x) dx = h,

0

then there exists a constant C > 0 such that f(r) = Cp(r) is a function of F.

Proof. Since / xp(x) dx < R/2, the integral

/ x p(x) dx = K > 0 exists and hence



0

p(r) dr =

and Cp(r"j = f ( r ) i s in F, where C = 1/2TTK > 0.

Theorem 4. If p(x) is any function which i s f i n i t e , continuous, and non-

negative on (0,R) ,

with / p(x) dx = \ , then i t s transform

y*(r) = 2 / p(/r2+x2] dx; 0 < r < R

y*(R) = 0

is finite, continuous, and nonnegative on (0,R), with

y*(0) = 1, y*(R] = 0 , and / y*(r) dr = 1/2 C, where C is the constant of

0

Theorem 3.

Proof. Let f(r) = Cp(r) be in F, as in Theorem 3. By Theorem 2, its

marginal density

/R2-x2

p(x) = 2 / Cp(/x2+y2) dy, 0 < |x | < R
0

i s f i n i t e , c o n t i n u o u s , nonnega t ive on (0 ,R) , with

n

f p(x) dx = h.

Changing notation,this implies

p(r) = 2 JQ Cp(/r
2+x2) dx; 0 < r < R.



Thus p(r) = C y*(r), where y*(r) is the above transform of p(x), so y*(r) has

the properties listed for p(r) on (0,R). The rest of the theorem is trivial.

The transform y*(r) of a function p(x) with the properties of Theorem 4

need not be continuous on the closed interval [0,R]. Thus p(x) = 1/TT/(1-X2) on

(0,1) has y*(r) = 1 on 0 < r < 1 and y*(l) = 0.

New consider the iterated mappings

y(r) -> f(r) - p(x) - y*(r) (C)

defined respectively by P.q. (4), (2), {3) for the sets Y, F, P, Y*. We then

have the remarkable

Theorem 5. For every function y(r) in Y, the final function y*(r) in (C)

is y(r) itself, and hence all three of these mappings arc "one-one and onto all."

Proof. By Theorem 2, the marginal density p(x) in P of a function f(r) in

F has the properties of Theorem 4. Consequently its transform is finite,

continuous, and nonnegative on (0,R), with

y*(0) = 1 = y(0), y*(R) = 0 = y(R) .

Hence it suffices to prove that y*(r) = y(r) for 0 < r < R. For such an r, we

see that

WR2-r2
 fVR2-r2-x2

= 2 J dx 2 / f(Vr2+x2+y2) dy

rTT/2 v/R

-V d 9 /
-r"

f(V r2+p2) o dp
0

2TT S f(s) ds = y(r)

by Theorem 1. Here we have introduced polar coordinates (p,9) in place of (x,y]

and transformed p to s by means of r2+p2 = s2.



Theorem 6. If a function p(x) is indeed the marginal density of a function

f(r) in F, that is to say, p(x) is in the set P, then its complete chain

y(r) -* f(r) - p(x) -> y* (r) = y(r)

shows that its ur.ique radial source density is given by

f(r) = (-l/2Trr) ̂  2 /*^R '^ pC\/r2+x2) dx; 0 < r < R

explicitly in terms of p(x).~

Proof. For, f(r) = (-l/27Tr) y' (r) by Theorem 1, and y(r) = y* (r) by

Theorem 5.

Theorem 7. A finite, continuous, nonnegative, even function p(x) on

0 < |x| < R, with

R

(6)

/ p(x) dx = h

is in fact the marginal density of some function f(r) in F iff its transform

/•VR-r'

y*(r) = 2 J p(\/r2+x2) dx, 0 < r < R
0

y*(R) = 0

is continuous nonincreas'ng on [0,R] and has a continuous derivative on (0,R),

in which case its unique source density f(r) is given by Eq. (6).

Proof. The necessity of these conditions is obvious since Y* = Y.

Conversely, if a function p (x) has these properties, then by Theorem 4, its

transform y *(r) is certainly some function y[r) in Y, so we have

p (x) -»• y *(r) = y(r) e Y .

If y(r) + f(r) •* p(x) -> y*[r) = y(r)



is the complete chain (C) for y(r), then p (x) and p(x) have the same transform,

so that

W
PoWr

2
+x

2) dx = 2 J
0

x ^ dx; 0 < r < R .

Changing notation, it follows that

R2-x2

po(v/x2
+y2) dy = if

0

p(\/x +v ) dy; 0 < x < R

By Theorem 3, there are constants C ,C such that f (r) = C p (r) and f(r)
o o o o

Cp(r] are in F, so that

= (Co/C) • 2 "] dy .

But then m (x) = (C /C) m(x), where m (x) , m(x) are the marginal dens i t i es of

f ( r ) , f ( r ) . Since

f mo(x) dx = 1/2 = I m(x) dx,

it follows that (C /C) = 1, and hence the functions f (r), f(r) of F have the

same marginal density. Since the mapping f(r) -> p(x) is one-one by Theorem 5,

we have f (r) = f(r) and hence p (x) = p(x). Thus p (x) is the marginal density

of f(r) as given in Eq. (6), with p(x) = p (x).

As a nontrivial example we consider the function p(x) = - h log jx| on

0 < |x| < 1. This is a marginal density according to Theorem 7. In fact, its

transform is

y*(r) = (1-r ) - r arctan

with -j— y*(r) = - arctan (d-ra)Vr)

; 0 < r

on (0,1].



Hence it must be the marginal density of the unique function f(r) = j— arctan

(fl-r2)2/r). It is a nice exercise to verify that the original p(x) is in fact

the marginal density of the stated f(r).

We include some examples (for R=l) which illustrate various features of

the chain (C) .

Ex. 1. y(r) = 1-r2, f(r) = 1/TT, p(x) = (2/TT) (l-x2)'1, y* (r) = y(r), p(x)

decreasing.
2 ) hEx. 2. y(r) = (1-T2)h, f(r) = l^TT.x/T-r2, p(x) = k, y* (r) = y(r), p(x)

constant.

Ex. 3. y(r] = l-r\ f(r) = (2/Tr)r2, p(x) = (4/TT) x

x 2(l-x 2) 2 + (l/3)(l-xz) 2J, y*(r) = y(r), p(x) nonmonotone.

Two simple examples of functions p(x) which are finite, continuous, non-

negative, even on 0 < |x| < 1, with

f dx = h, but not marginal are

Ex. 4. p(x) = 1/TT / 1-x2, with y* (r) = 1 on [0,1), y*(l) = 0.

Ex. 5. p(x) = (3/2) x2, with y*(r) = 3r2(l-r2)?1 + (1-r 2)^ nonmonotone.

With suitable changes the theory applies to the case R = «•. We give two

examples.
-3- -x2/

Ex. 6. The normal density p(x) = (2TT) 2 e 2 on (-00,00) is the marginal

density of f(r) = (1/2TT) e" 2 on (0,°°), in accord with Eq. (6).

Ex. 7. The Cauchy density p(x) = 1/TT(1+X2) on f-00,00) is the marginal

density of f(r) = l/27T(l+r2r2 on (0,m) by Eq. (6).

II. THE CASE OF THREE DIMENSIONS

For this case we need only introduce two sets of functions F and P.

F is the set of all finite continuous nonnegative functions f(r) on (0,R)

for which

/
0

R 4-rrr2 f (r) dr = 1 . (7)

Such a function f(r) defines a radially symmetric density f(v/x +yz+z2)

on the sphere

10



S = {(x,y,-O; x2 - y2 + z2 < R2}

with Js f(\/x*+y2+z2) dx dy dz = 1.

P is the set of all marginal densities

pW =y*f(v/x2+y2+z2) dy dz; 0
C

< |x| < R, [8)

where (y,z) ranges over the circle

C = R2-x2}

and f(r) is in F.

Introducing polar coordinates (p,6) into C , we see that
A

r , / .^-x r

pCx] = / f(\/x2+p : i) p d p d 9 = / 27Tpf(\/x7+p2) dp; 0 < |x | < R. (9)

For fixed x on (0,R), we make the p t o r substitution X 2 + D 2 = r to obtain

fJfp(x) = J 2iTrf(r) dr; 0 < x < R . (10)

The lat ter exists, because

is a nondecreasing function of B and bounded above by

;f(r) dr < l/2x.

Theorem S. Every marginal dens i ty p(x) in P i s f i n i t e , continuous, non-

negat ive , and even on 0 < |x | < R with

11



p(x) dx = 1/2.

Proof. Eq. (10) implies p(x) i s f i n i t e and continuous on (0,R), while Eq. (9)

shows tha t i t i s nonnegative and even on 0 < |x | < R. Moreover, from Eq. (9) we

see tha t

/

R /-R r / R 2 - x 2 /-R

p(x) dx =J dx / 2TTpf(\/x2+p2) dk- = / 2TTr2f(r) dr = 1/2.
0 0 0 0

Here we have employed polar coordinates (r,9) in the transformation x = r cos 8,

p = r sin 0.

Theorem 9. Every marginal density p(x) in P has a continuous derivative

on 0 < |x| < R, nonnegative on (-R,0) and nonpositive on (0,R). In fact,

p'(x) = -2Trxf(x); 0 < x < R.

Proof. F ix ing x on (0/R) we have from Eq. ( 1 0 ) ,

lim (x-x ) 1

x -»- x
o

= lim

x -> : B + R \ X \ I

/•x7= -lim (x-x )" 1 / 2Trrf(r) dr

x ->• x x
o o

• • - l i m 2iTEf(E) = -2TTX _,__ J

x -*• x
o

since f(r) is continuous on (0,R) and E, is between x and x .
o

Theorem 10. Every marginal densi ty p(x) in P has

lim p(x) = 0.

x -> R"

12



Proof. From Eq. (10] we obtain

I 2TTrf(r) dr = lim lim (-/ + /

x x -> R 3 -> R \ R/2 R/2

lim

x -> R x

= -p(R/2) + p(R/2) - 0.

A marginal density p(x) may well be unbounded as x -*• 0 . Thus the

function f(r) = (l/4TrR)r~2 is in F, and from Eq. (10) we find p(x) = (1/2R)

Clog R-log x) with

lim p(x) = co.

x ->• 0

However, p (x) does have the property of

Theorem 11. Every marginal density p(xj in P has

lim x p(x) = 0.

x -»• 0

Proof. From Theorems 8, 9, 10, it follows that

1 = J 4TTr2f(r) dr = -j 4TTT2 (l/2irr) p"(r) dr

0 0 .

= - 2 /
R r p ^ ( r) dr = -2 r p(r)

0

R R

0

+ 2 / p(r) dr

0

= - 0 + 2 lim r p(r) + 1,

r -> 0

and the result follows formally. (See however the note after Theorem 13.)

Clearly, Theorem 9 implies that the correspondence f(r) -*• p(x) on F to P

defined by Eq. (8) is one-one, so we may state

Theorem 12. The unique function f(r) of F with a given marginal density

p(x) is

13



f(r) = (-l/2Ttr) p'(r); 0 < r < R. (11)

The properties of these theorems are characteristic of a marginal density,

as specified in

Theorem 13. A function p(x) on 0 < |x| < R is the marginal density of a

function f(r) in F iff

(A) p(x) is finite, continuous, nonnegative, and even on

R
0 < Ixl <

r
R, with / p(x) dx = 1/2,

0

fB) p(x) has a continuous derivative p^(x) < 0 on (0,R),

(C) lim p(x) = 0, and

x -> R~

(D) lim x p(x) = 0.

x -> 0+

In fact, a function p(x) with these properties is the marginal density of the

unique function f(r) = (-l/2irr) p'(r) in F.

Proof. We have already seen the necessity of these conditions. Con-

versely, given a function p(x) on 0 < |x| < R satisfying (A) - (D) we define a

function

f(r) = (-1/2-irr) p"(r); 0 < r < R (12)

in terms of p(x). (a) We first verify that this f(r) is indeed in the set F.

For, f(r) is continuous and nonnegative by (B), and from (A-D) we see that

r R /-R
/ 4Tfr2(-l/2iTr) p'(r) dr = -2 / r p'(r) dr

= -2 r p(r) + 2 / p(r) dr
0 0

14



= -0 +0 +2(V) = 1.

Hence the f(r) of Eq, (12) is in F. (b) It only remains to show that this ffr)

of F has the given function p(x) as its marginal density. To see this we eval-

uate the integral in Eq. (10) fcr 0 < x < R:

J 2Trr(-i/2/2TTT) p'(r) dr

J P M= - l i m J p ' ( r ) d r = l i m ( p ( x ) - p ( S ) )

S •> R X 6 - R

by proper ty (C), and the Theorem follows from (A).

Note. The proper ty (D) i s in fact redundant since any function p(x) with

the p rope r t i e s in (A), having a d e r i v a t i v e p'(x') < 0 on (0,R) necessar i ly has

lim xp(x) = 0,

x •> 0 +

but we have let the statement of Theorem 15, and the proof of Theorem 11 stand.

It is possible (but not easy) to show that (A) alone does not imply (D). (See

Part III.)

We conclude with some examples of the three dimensional case.

Ex. 8. p(x) = (5/8) (1-x1*), -1 < x < 1 is the marginal density of i(r) =

(5/4iT)r2 on 0 < r < 1.

Less trivially, we have

Ex. 9. p(x) = |x|m 1 (l-|x|)n"2/2B(m,n), m > 0, n > 0, 0 < x| < 1

is a marginal density iff m < 1, n > 1, m+n = 2, or n > 1 , m + n < 2. Such

a function is the marginal density of

f ( r ) = rm"3 ( l - r ) n " ? ((m+n-2) r+(l-m) )/4TTB(m,n) , 0 < r < 1.

15



A natural candidate for f(r) is given in

Ex. 10. f(r) = rm~l (l-r)n"1/^TTB(m+2,n), 0 < r < 1, m > -2, n > 0

is in F, and has as marginal density on (0,1)

/

I
r(1-r) dr/2B(m+2,n).

x

With some obvious modifications, everything applies to the interval (0,°°)

in place of (0,R). A few examples of this kind are:

Ex. 11. p(x) = \x\m~l e~'X72r(m), m > 0, 0 < |x| < °°, is a marginal

density iff m < 1. Such a function is the marginal density of

m— 3 —r
f(r) = r (r+(l-m)) e /4TTrf.Tn), 0 < r < <».

Ex. 12. f(r) = r e~r/4Trr(m+2) , 0 < r < <*>, m > -2 is in F, with marginal

density on (0,«0

p(x) = f rm e'r dr/2r(m+2).

x

Ex. 13. The normal den Ity

_3/ .

= (2TTO2) /2 exp(-rz/2oz); 0 < r < °°, r = /x2+y2+zz,

has marginal density

p(x) = (2TO2)"'1 exp(-x2/2o2); - °° < x < »
in agreement with Eq. (9), and one easily verifies that f(r) = (-l/2Trr) p"*(r);

0 < r < °° in agreement with Eq. (11).

16



III. TWO MOTES ON "REAL VARIABLES"

In connection with Theorems 11 and 13, we include here an example and a

theorem which are perhaps not as well known as they might be.

Example. We give an example of a function p(x) which is finite, contin-

uous and nonnegative on (0,1], with

p(x) dx
'0

finite, for which

lim x p(x)

x -+ 0

does not exist.

Let pfx) = q(x)/x, where q(x) is a "saw tooth" function which, on the

interval [1/2-̂  , 1/2 ], j = 0 , 1, 2, ... has a "tooth" defined by an isosceles

triangle of unit height, and base of length 1/2 -1 , the base terminating at the

right hand end point x = 1/2 , q(x) being 0 elsewhere on the interval.

Then p(x) = q(x)/x has the properties stated.

In fact, / p(x) dx = > / q(x) dx/x

0 l/2j+1

whereas x p(x) = q(x) has no l imit as x -»• 0.

The redundance of condition (D) in Theorem 13 i s seen from the following

Theorem 14. If p(x) i s a function which i s f i n i t e , continuous, non-

negat ive, and nonincreasing on (0,R), with a f i n i t e i n t eg ra l

I p(x] dx, then

lim xp(x) = 0 necessarily.

x -+ 0
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Proof. Writing p(x) = .((x)/x, we observe that thr> faisity of the conclu-

sion would imply the existence of a null sequence x with q(x ) > c > 0, and

hence p(x ) = q(x )/x^ > c/x . Since p(x) is nonincreasing, we then have

/

A . . A

11 p(x) dx > p(xn) / n dx Ik (e/xn) xn = e > 0, whereas

/
x

P(x)
dx -+ 0 as n ->•

All the above assertions involving improper integrals are easily justified from

their definitions as limits.
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