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MARGINAL DENSITIES OF RADIALLY SYMMETRIC DENSITIES
IN TWO AND THREE DIMENSIONS

by

C. J. Everett and E. D, Cashwell

ABSTRACT

Necessary and sufficient conditions are given for a
function p(x) on 0 < |x] < R to be the marginal density of
a radially symmetric density f(r) in the case of two and three
dimensions. The first case relies on an integral transform
due to M. Bell, while for 3-space the theory is considerably
simpler. The two cases appear to be quite different and no
generalization to n-space is known to us.

I. THE CASE OF TWO DIMENSIONS
We give a summary of the theory for the plane, which was obtained in some-
what different form in an earlier paper_]' This case is notably more difficult

than that of 3-space, and requires a discussion of four sets of functions, Y, F,
P, and Y*.

Y is the set of all finite, continuous, nonincreasing functions y(r) on

[0,R}, with y(0) = 1, y(R) = 0, having a finite continuous derivative y“(r) on
(0,R).

F is the set of all finite, continuous, nonnegative functions f(r) on
{0,R), with

R
f 2nrf(r) dr = 1. (0
0

Every such function f(r) defines a radially symmetric probability density
f(v/x*+y?) on the circle C = {(x,y); x*+y? < R?} with

¥°
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ff(/;<2+y2) dx dy = 1.
c

P is the set of all marginal densities

VR?-x?
p{x) = 24/~ f(Vx2+y2) dy; 0 < |x| <R (2)

0

defined by functions f{r) in F,
Y* is the set of all functions y*(r) on [0,R] that arise as '"Bell trans-

forms" of the marginal densities p(x) in P, namely

f/R—ZfF

y*{(r) = 2 p(/r2+x£) dx, 0 sr <R
0
y*(R) =0 . (3)
This transform was discovered by M. Bell at CERN2 and is essential for
much that follows.
Theorem 1. The correspondence y{r) ~ f(r) defined by
£(r) = (-1/27r)y"(r); 0 < T < R (4)

is one-one on Y to all of F, its inverse f(r) -+ y(r) being given by

b

R
y(r) =f 2nrf(r) dr; 0 < r <R
T

i.e., y(r) is the (default) cumulative distribution function of the probability
density 2mrf(r).
Proof. (a) The properties of y(r) in Y insure that f(r) in Eq. (4) is

indeed in F. For example,

R R
f 2nmrf(r) dr =f 2nr(-1/27r)y" (r) dr
0 0



B
= —limf y ' (r) dr = 1im (y{a)-v{B)) =1 -0 =1, where « - U+, 5 R
o

(b) y(r) » f(r) is one-one, siace y "(r) = y, (r) on (0,R) implies that the

1
function D(r) = yl(r) - Y, (r), which is continuous on [0,R]}, and has derivative
D7(r) = 0 on (O0,R), has value D(r) = D(Q) = 0 on (O,R). (c) To see that
y(r) = £(r) is onto all of F, we take an arbitrary function f(r) in F, and

define a function

R
v(r) =f 2rrf(r) dr; 0 S r SR,
T

One can then show that (1) y(r) is finitely defined for all r on [0,R] with
y(0)=1, y(R)=0, (2) y(r) is monotone nonincreasing on [0,R], (3) y(r) is
continuous on [C,R], and (4) y " (r) = -2rmrf(r) for cvery r on (O,R), so that y(r)

as defined is indeed in Y, and finally, (5) (-1/2mr)y (1) f(r). (d) Since

1"

y(r) = f(r) is one-oi.c on Y to all of F and

R
f 2rrf(r) dr = (1) ,

T

the inverse f(r) = y(r) is clear.

Thesorem 2. Every marginal density p(x) in P is finite, continuous, non-

/

negative, and even on 0 < |x| < R, with

R

f p(x) dx =% .
0

Proof. From Eq. (2) it is obvious that p(x) is nonnegative and even on

0 < |x| < R, and easy to verify that

R : R
f p(x) dx =f mrf(r) dr = ', using polur coordinates.
0 0



Transforming y to r in Eq. (2) by means of x%+y? = r? one sees that p(x)

may be written in the form
R

p(x) =f 2f(r) dr/(rz—xz)]/z; 0<x<R (5)

X

and from this one can deduce ics finiteness and continuity. As an example, we

include a proof that

Lin p(x) = p(x,)

X *X
o}

Fix 0 < A < x < X < B< R and let M = max f(r) on [A,B]. Writing

R L B R
p(x) =f 2f(r) rdr/ (r?-x?) *? =f +f
X B

X
R 3 B R
p(x) =f 2f(r) r dr/(r*-x *)"° =f +f ,
xo X, B

we see that p(x) - p(x )

B
1 B L
={f 2f(r) r dr/(r%-x*)" —f 2f(r) r dr/(rz—xoz) 2}
X X

o

+j'R 2f(r) T dr (1/(1‘2'7(2)1/2 - 1/(r2-x02)1/2)
B

The last integral approaches 0 as x - X, since, for every € > 0, there exists a

§ > 0, independent of r, such that

1 , 1
1/(r%-x%)"? - 1/(r‘-x02)2 < em provided Ix—xo| < §. Hence



_!R

R
<f 2f(r) r dr (em) S ¢
B

As for the quantity in brackets, we have for x < X,

X 1
{}= f 2f(r) T dr/(r?-x?)?

X

—fB 20y x dr (1/(r2_x0?)‘/3 - 1/(r2—x2)?5) .

X
(o]

each term of which approaches 0 as x - x;.

X 1
For, 0 <f © 2f(r) r dr/(r?-x?)?
X
- 1
< 2M (xo‘-xz) ‘>0

B 1. 1
2 24 2 245
and 0 <‘<) 2f(r) r dr (1/(r X ) - 1/(r%-x%) )

1, . L 1
< 2M ((Bz-xoz)2 - (B*-x?)7 + (xoz—x2)2)+ 0.

Theorem 3. If p(x) is any function which is finite, continuous, and non-

negative on (0,R), with

R
f p(x) dx = 1,

0

then there exists a constant C > 0 such that f(r) = Cp(v) is a function of F.

B
Procf. Sincef xp(x) dx < R/2, the integral

o

R

f x p(x) dx
0

1

K > 0 exists and hence



fR 2nr (1/27K) p(r) dr =1
0

and Cp(r) = f(r) is in F, where C = 1/27K > 0.
Theorem 4. If p(x) is any function which is finite, continuous, and non-

negative on (0,R),

R
withf p(x) dx = ', then its transform
0

]
~

/Rz_rz .
f p(Vr*+x?) dx; 0 < ¢ <R

v (1) 2

1
o

y*(R) =

is finite, continuous, and nonnegative on (0,R), with

R
0, and f y*(r) dr = 1/2 C, where C is the constant of
0

y©(0) =1, y*(R)

Theorem 3.

Proof. Let f(r) Cp(r) be in F, as in Theorem 3. By Theorem 2, its

marginal density

~ VR? -x?
p(x) = 2‘/~

Cp(/x*+y?) dy, 0 < |x| <R
0

is finite, continuous, nonnegative on (0,R), with

R .

f p(x) dx = .
0

Changing notation, this implies

R /-/W

p(r) =2 0

Cp(Yr%+x%) dx; 0 < r < R.



Thus ;(r) = C y*(r), where y*(r) is the above transform of p(x), so y*(r) has
the properties listed for ;(r) on (0,R}. The rest of the theorem is trivial.

The transform y*(r) of a function p(x) with the properties of Theorem 4
need not be continuous on the closed interval [0,R]. Thus p(x)} = 1/W/?Ij;73 on
(0,1) has v*(r) = 1 on 0 €1 <1 and y*(1) = 0.

Ncw consider the iterated mappings
yv(r) - £(r) > px) =~ y* (1) ©)

defined respectively by Eq. (4), (2), f3) for the sets Y, F, P, Y*. Wec then
have the remarkable
Theorem 5. For every function v(r) in Y, the final function v*/r) in (C)
is y(r) itself, and hence all three of these mappings arc ''one-one and onto all."
Proof. By Theorem 2, the marginal density p(x) in P of a function f(r) in
F has the properties of Theorem 4. Consequently its transform is finite,

continuous, and nonnegative on (0,R), with
y*(0) =1 =y(0), y*(R) = 0 = y(R).

Hence it suffices to prove that v*(r) = y(r) for 0 < r < R. For such an r, we

see that

y*(r) = 2

/ dx 2f f(Vrisx?+y?) dy

0 0

/2 \/Rz—r2
4[ d@f £/ r2+0?) o dp

0 0

R
=./r 2m s f(s) ds = y(r)

T

by Theorem 1. Here we have introduced polar coordinates (p,8) in place of (x,V)

and transformed p to s by means of r+p? = s?.



Theorem 6. If a function p(x) is indeed the marginal density of a function

f(r) in F, that is to say, p(xj is in the set P, then its complete chain
y(r) = £(r) » p(x) » y*(r) = y(r)

shows that its unique radial source density is given by
/n2 2
f(r) = (-1/277) % 2 f R%-r p(V r*+x?) dx; 0 < r <R (6)
0

explicitly in terms of p(x).z
Proof. For, f(r) = (-1/2mr) y~(r) by Theorem 1, and v(r) = y*(r) by
Theorem 5.

Theorem 7. A finite, continuous, nonnegative, even function p(x) on
0 < |x| <R, with

R
~/’ p(x) dx = %
0

is in fact the marginal density of some function f(r) in F iff its transform

VRE-r?
2_/ p(Vr2+x?) dx, 0<r <R

y*(r)

]

0
0

Nl

y*(R)

is continuous nonincreas'ng on [0,R] and has a continuous derivative on (0,R),
in which case its unique source density f(r) is given by Eq. (6).

Proof. The necessity of these conditions is obvious since Y* = Y.
Convercely, if a function po(x) has these properties, then by Theorem 4, its

transform y *(r) is certainly some function y(r) in Y, so we have
)

pO(X) >y,Fr) =yl ey .

If y(r) = f(r) = p(x) > y*(r) = y(r)



is the complete chain (C) for y(r), then po(x) and p(x) have the same transform,

so that

7 .2 2_ 2

W Re-r Re-r .
- Tt -
2 f po(\/ r?+x%) dx = f p(Vr2+x?) dx; 0 ST <R .

0 0

~o

Changing notation, it follows that

R2-x2
2f p,(Vx*+y?) dy =

0

[R]

R2_x2
f p(V x%+y?) dy; 0 S x <R .
0

By Theorem 3, there are constants CO,C such that fo(r) = C0 po(r) and f(r) =

Cp(r) are in F, so that

Vv RZ-x2 e
F(Vx%+y%) dy .

2

“

\/Rz-x2
f £/ dy = (€ /C) - 2f

0 0

But then mo(x) = (CO/C) m(x), where mo(x), m(x) are the marginal densities of

fo(r), f(r). Since

R
d/f mo(x) dx = 1/2 = /rR m(x) dx,

0 -

it follows that (CO/C) = 1, and hence the functions fo(r), f(r) of F have the
same marginal density. Since the mapping f(r) -+ p{(x) is onc-one by Theorem 5,
we have fo(r) = f(r) and hence po(x) = p(x). Thus po(x) is the marginal density
of f(r) as given in Eq. (6), with p(x) = po(x).

As a nontrivial example we consider the function p(x) = -

S

log x| on
0 < |x} < 1. This is a marginal density according to Theorem 7. In fact, its
transform is

1 1
y*(r) = (1-tv?)* - t arctan ((1-r2)f/r>; 0<r<1

L
with é%-y*(r) = - arctan ((l—rz)f/r) on (0,1).



Hence i} must be the marginal density of the unique function f{r) = E%;—arctan
((l—rz)%/r . It is a nice cxercise to verify that the original p(x) is in fact
the marginal density of the stated f(r).

We include some examples (for R=1) which illustrate various features of

the chain (C).

Ex. 1. y(r) = 1-t%, f(r) = 1/m, p(x) = (Z/H)(l-xz)%, y*(r) = v(r), p(x)
decreasing.

Ex. 2. y(r) = (1-12)%, £(r) = 1/2meVl-12, p(x) = %, y*(r) = y(r), p(x)
constant.

Ex. 2. y(r) = l—r:, £(r) = (2/mr?, p(x) = (4/7) x

(xz(l—xz)é + (1/3)(1—x2)l§), y*{r) = y(r), p(x) nonmonotone.
Two simple examples of functions p(x) which are finite, continuous, non-

negative, even on 0 < Ix| < 1, with

1

Jg p(x) dx

Ex. 4. p(x) = 1/7 ¥ 1-x*, with y*(r) = 1 on [0,1), y*(1) = 0.
1
Ex. 5. p(x) = (3/2) x?, with y*(r) = 3r®(1-r?)* + (1-v%)¥ ncnmonotone.

With suitable changes the theory applies to the case R = =, We give two

%, but not marginal are

examples.

Ex. 6. The normal density p(x) = (2Tr)_1/2 e-x%ﬁ on (-»,»} is the marginal
density of f(r) = (1/2m) e ™% o (0,%), in accord with Eq. (6).
Ex. 7. The Cauchy dengity p(x) = 1/m(1+x%) on (-=,») is the marginal

density of f(r) = 1/27r(1+r2)/2 on (0,«) by Eq. (6).

II. THE CASE OF THREE DIMENSIONS
For this case we need only introduce two sets of functions F and P.

F is the set of all finite continuous nonnegative functions f(r) on (O,R)
for which

fR anr? £(r) dr = 1. 7
0

Such a function f(r) defines a radially symmetric density f(V x%+yZ+z?)
on the sphere
10



2 2

s = {(X,y,z); &% v+ y® +12° < R*}

with /; £(Wx2+y?+z?) dx dy dz = 1.

P is the set of all marginal densities

p(x) =ff(\/ X2+y?4z?) dy dz; 0 < |x| <R, (8)

C
X

where (y,z) ranges over the circle

¢, = {lr,2); y2+. 2 < R*-x%}
and f(r) is in F.

Introducing polar coovrdinates (p,8) into Cx’ we see that

) VR -x? o
p(x) =ff(\/x2+o") pdpd?8 =f 2mef(Vx?+p?) dp; 0 < Ix] < R.(9)
C

0

o)
2

X

. . . 2 -
For fixed x on (O,R), we make the p to r substitution x*+p? = r° to obtain

R
p(x) =f 2nrf(r) dr; 0 < Xx < R . {10)
X

The latter exists, because

B
_4. is a nondecreasing function of B and bounded above by

B
/): (1/2x) 4wr?f(r) dr < 1/2x.

Theorem 8. Every marginal density p(x) in P is finite, continuous, non-
negative, and even on 0 < |x| < R with

11



J/”R
A p(x) dx = 1/2.

Proof. Eq. (10) implies p(x) is finite and continuous on (0,R), while Eq. (9)
shows that it is nonnegative and even on 0 < |x| < R. Moreover, from Eq. (9) we

see that

R R VRZ-x? R
f p(x) dx =f dxf 2mpf (V x2+p?) dp =f 2nr’f(r) dr = 1/2.

0 0 0 0

Here we have cmployed polar coordinates (r,8) in the transformation x = r cos §,
p =1 sin 9.

Theorem 9. Every marginal density p(x) in P has a continuous derivative
on 0 < [x[ < R, nonnegative on (-R,0) and nonpositive on (0,R). In fact,

p (x) = -2mxf(x); 0 < x < R.

Proof. Fixing x0 on (0,R) we have from Eq. (10),

lim (x-xo)_1 (p(x) - p(xon -

X+ X
)
=11m(xx)111m ff
X - x B -+ R x

X
-lim (x-xo)-lf 2rrf(r) dr

X *X X
0 o]

- -lim 2nEf(E) = ~2ﬂxof(xo),

X > X
o)

since f(r) is continuous on (0,R) and & is between x and xo.

Theorem 10. Every marginal density p(x) in P has

lim p(x) =

x + R

12



Proof. From Eq. (10) we obtain

~R

X B
lim j 2rrf(r) dr = lim lim -f +f

X+ R x xR B~+R R/2 R/2
= -p(R/2) + p(R/Z) = 0.

A marginal density p{x) may well be unbounded as x - 0+. Thus the
function f(r) = (1/4m7R)r 2 is in F, and from Eq. (10) we find p(x) = (1/2R)
{log R-log x) with

lim  p{x) = o,

+
X >0

However, p(xXx) does have the property of

Theorem 11. Every marginal density p(x) in P has

lim x p{x) = 0.

+
x~+0

Proof. From Theorems 8, 9, 10, it follows that

R R
1 =f Anr?f(r) dr = -f arr?(1/2nr) p°(r) dr
0 0
R

R R
-Zf r p (r) dr = -2 r p(r) + Zf p(r) dr

0 0 0

-0+ 2 lim T p(r) + 1,

r—+0

and the result follows formally. (See however the note after Theorem 13.)
Clearly, Theorem 9 implies that the correspondence f(r} - p{(x) on F to P
defined by Eq. (8) is one-one, so we may state
Theorem 12. The unique function f(r) of F with a given marginal density
p(x) is

13



f(r) = (-1/2nr) p"(r); 0 < r < R. (11)

The properties of these theorems are characteristic of a marginal deusity,
as specified in

Theorem 13. A function p(x) on 0 < |x| < R is the marginal density of a
function f(r) in F iff

(A) p(x) is finite, continuous, nonnegative, and even on

R
0 < |x| <R, with_}r p(x) dx = 1/2,
0

(B) p(x) has a continuous derivative p”“(x) < 0 on (O,R),

(C) 1lim p(x) = 0, and

x >R

(D) 1lim x p(x) = 0.
X -+ 0+

In fact, a function p(x) with these properties is the marginal density of the
unique function f{r) = (-1/2mr) p“(r) in F.
Proof. We have already seen the necessity of these conditions. Con-

versely, given a function p(x) on 0 < |x| < R satisfying (A) - (D) we define a
function

f(r) = (-1/2mr) p"(r); 0 < r < R (12)

in terms of p(x). (a) We first verify that this f(r) is indeed in the set F.

For, f(r) is continuous and nonnegative by (B), and from (A-D) we see that

R R
f anr? (-1/27T) p (r) dr = -2 f r p'(r) dr

0 0
R

R
=-2rp@) | +2 [ p@adr
2

14



-

= -0 +0 +2(%) =1

Hence the f(r) of Eq. (12) is in F. (b) It only remains to show that this f(r)
of F has the given function p(x) as its marginal density. To see this we eval-

uate the integral in Eq. (10) for 0 < x < R:

R
f 2rr(-:/2nr) p~(r) dr

X

i

B
-1im _/ p (r) dr = lim (p(x) - p(B))
R+>R™ & - R

I

EfX)

by property (C), and the Theorem follows from (A).
Note. The property (D) is in fact redundant since any function p(x) with

the properties in (A), having a derivative p”(x) < 0 on (0,R) necessarily has

lim xp(x) = 0,

+
X =+ 0

but we have let the statement of Theorem 13, and the proof of Theorem 11 stand.
It is possible (but not easy) to show that (A) alone does not imply (D). (See
Part II1I.)

We conclude with some examples of the three dimensional case.

Ex. 8. p(x) = (5/8) (1-x*), -1 < x < 1 is the marginal density of {{) =
(5/4m)r®> on 0 < r < 1,

Less trivially, we have

m-1

Ex. 9. px) = | x|™} a-|xH™ Y 2Bm,n), m >0, n >0, 0< [x| <1

is a marginal density iff m< 1, n> 1, m#n= 2, or n > 1, m+n < 2. Such

a function is the marginal density of

f(r) = rm-3 (l-r)n_’Z ((m*n-2) t+(1-m))/47B(m,n), 0 < r < 1.

15



A natural candidate for f(r) is given in

Ex. 10. £(r) = "} -m)" 1 /4nBme2,n), 0 < T <1, m> -2, n >0

is in F, and has as marginal density on (0,1)

1
p(x) =_[ rm(l—r)"'1 dr/2B(m+2,n).

X

With some obvious modifications, everything applies to the interval (0,»)
in place of (0,R). A few example? of this kind are:
Ex. 11. p(x) = ]xlm-l e-‘x'/2F(m), m>0, 0< |x| <, is a marginal

density iff m < 1. Such a function is the marginal density of
f(r) = rm_z(r+(1—m)) e /4T (m), 0 < 1 < w,

Ex. 12. f(r) = rm-1 e—r/4ﬂF(m+2), 0<r<ew m>-21is in F, with marginal

density on (0,x)

p(x) =f ™ T dr/2T (me2).

X
Ex. 13. The normal den .ty
2\-7 2 2 [ 2. 2z 2
f(r) = (2mc°) exp(-r°/26°); 0 < T < ®, T = ¥x“+y“+z°,
has marginal density

i

_1
p(x) = (2m0?) ¢ exp(-x2/20%); - @ < x < ®

in agreement with Eq. (9), and one easily verifies that f(r) = (-1/27r) p”(1);

0 < r < » in agreement with Eq. (11).

16



ITI. TWO NOTES ON "REAL VARIABLES"

In connection with Theorems 11 and 13, we include here an example and a
theorem which are perhaps not as well known as they might be.

Example. We give an examplc of a function p(x) which is finite, contin-

uous and nonnegative on (0,1}, with

1
J(. p(x) dx
0

finite, for which

lim x p(x)

x + 0

does not exist.

Let p(x) = q(x)/x, where q(x) is a '"saw tooth" function which, on the
interval [1/2j+1, l/2j], j =0,1, 2, ... has a "tooth" defined by an isosceles
triangle of unit height, and base of length 1/22j+1, the base terminating at the
right hand end point x = 1/2j, q(x) being 0 elsewhere on the interval.

Then p(x) = q(x)/x has the properties stated.

In fac‘c,./‘1 p(x) dx =Em _/.1/2] q(x) dx/x
0 0 T1/723+1
)N
0 0

whereas x p(x) = q(x) has no limit as x - 0.
The redundance of conditien (D) in Theorem 13 is seen from the following

Theorem 14. If p(x) is a function which is finite, continuous, nomn-

negative, and nonincreasing on (0,R), with a finite integral

R
f p(x) dx, then

0

lim xp(x) = 0 necessarily.

X+ 0
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Proor. Writing p(x) = 4(x)/x, we observe that thr faisity of the conclu-

sion would imply the existence of a null sequence X with q(xn) 2 ¢ > 0, and

hence p(.\'n) = Q(Xn)/xr > E/.\'n. Since p(x) is nonincreasing, we then have

X X
f n p(x) dx = p(x )/ "dx 2 (e/x) x_ = € > 0, whereas
0 n" Jy n’ “n

X
f n p(xj dx > 0 as n » =,
0

All the above assertions involving improper integrzals are easily justified from
their definitions as limits.
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