
DOE/ER/03130-51 C
C00-3130TC-51

DOE/ER/03130--51

Introduction.

DE90 013324

Level -2 system,

Programmers- Users Manual. ~

J . s. Hoftun
Brown Unive rsity

15 June 1990

This manual describes the design and implementation of
particular parts of the system for running high-level filter
code in the Level-2 "farm" of MicroVAX computers. The various
chapters detail the interfaces to this system both from the
point of programming TOOLs for inclusion in the filter-code and
from the point of writing VMS programs to perform control andjor
monitoring of this system. A lot of detailed descriptions about
how this system works are omi tted.

It is separated into .severa l chapters, each of which may
been released before as separate notes. The information in
manual supercedes ALL such previous notes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

have
this

DISTRIBUTION OF THIS DOCUMENT I

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

CHAPTER 1

1.1
1.2
1. 2.1
1. 2. 2
1. 2. 3
1. 2. 4
1. 2. 5
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

CHAPTER 2

2.1

2.2

CHAPTER 3

3.1

3.2

CHAPTER 4

4.1

CHAPTER 5

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8

CONTENTS

INCLUDING CODE IN THE LEVEL-2 FILTER SYSTEM.

Rules For FORTRAN Programs. 1-1
The Loading of 'Calibration-type' Constants •... 1-2

EOPEN: • • • • • • • • • • • • • • • • • • • 1-3
EREAD: • . . 1-3
EWRITE: • • . . . • . . • • . • 1-3
ECLOSE: • • . • ••..••.• 1-4
GET NODE NAME: . . •••.•.••..• 1-4

Passing of-'Run-time' Parameters. • •.....• 1-4
Calling Sequence of a TOOL. • . . • • . . • . . • 1-5
Defining and Using TOOLs. . • . . . • • . . . • . 1-6
Recording of Permanent Results from each TOOL .•. 1-7
Definitions and Uniqueness of TOOLs. • . • . • 1-7
Performance Monitoring of TOOLS. . • . • . 1-8
Histogramming of Quantities from TOOLs. • •... 1-8
Timing of a TOOL. . . • . • • . . • • . • • . • • 1-9

TESTING TOOLS UNDER VAX/VMS.

How to Include Your Own (or Library) Routines in
the Link. . . • . • • • . • • . . • • . • . . • . 2-2
The Procedure To Make VMS FILTER DOUSER. • • • • • 2-2

LINKING MAIN PROGRAM FOR LEVEL-2.

How to Include Your Own (or Library) Routines in
the Link. 3-1
The Link Procedure Itself ...•......... 3-1

ERROR HANDLING IN LEVEL-2 PROGRAMS.

L2ERR_READER Program. • . • . • • • 4-2

INTERFACE FOR CONTROL (COOR).

The Loading of 'Calibration-type' Constants. • 5-2
Passing of 'Run-time' Parameters. . •...• 5-2
Callinq Sequence of Routines . • • • • . . 5-3

ATTACH LEVEL2: • •• 5-3
DETACH LEVEL2: • . . • . . • 5-3
READ NAMES: . . • • . . • . • . . . • . 5-4
GET RUNNUMBER: . • 5-~
BEGIN LEVEL2: ..••.•.....•...•• 5-4
END LEVEL2: •.•...•... 5-6
PAUSE LEVEL2: • . . • . . . 5-6
CONTINUE LEVEL2: . • • . . • • . • • . • 5-7

5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.4
5.4.1
5.4.2
5.4.3

CHAPTER 6

6.1
6.2
6.3
6.4

CHAPTER 7

CHECK LEVEL2:
CHECK RUN:
GET L2TYPE INFO: ... - -
GET_L2TOOL_INFO:
REPORT FAILURE: .. .

. 5-7

. 5-8

. 5-8

. 5-8
. 5-9

Routines-Supplied by COOR 5-9
. 5-9 REQUEST_LEVEL2: ••...•.

DEMAND LEVEL2 : 5-10
. 5-10 RETURN LEVEL2:

LEVEL-2 DISPLAY/MONITORING INTERFACE

L2 SNAPSHOT:
L2 INFO SUPER: - -
L2 INFO NODES: - -
GET TYPES:

EXAMPLES

. . 6-1
• • 6-2

. 6-2

. 6-3

7.1 L2STATE Program ...•.•....•...... 7-1

CHAPTER 1

INCLUDING CODE IN THE LEVEL-2 FILTER SYSTEM.

This chapter describes the design of the interface between the
framework which controls all the filters running in each Level-2
node and the individual TOOLs which make up the filters. Such a
TOOL is seen as a "subroutine" which goes through ONE particular
algorithm and makes a decision on whether the event should be
passed or not. It may of course call as many other routines as
needed internally. A TOOL should be developed and tested in the
offline environment before being used in the Level-2 filter.

1.1 Rules For FORTRAN Programs.

While a lot has been said about the ease of transporting
programs from the VAX/VMS environment to the VAXELN Level-2
environment, there are certain limits to this 'direct'
transportability. Working with a network of computers instead
of with one integrated CPU requires communication of one sort or
another. Control of the running in the Level-2 is done via
separate programs on the host VMS machine, this is the only
mechanism for passing parameters to the running program. The
following describes the rules which should be followed when
writing any part of a FORTRAN program which may be used for
running under VAXELN in a 'farm' of MicroVAXes.

In general all FORTRAN-77 code will run under VAXELN without
conversion. But when doing I/O and calling system services one
has to be careful.

Here are the specific rules:

1. NO system services (SYS$, LIB$, SMG$ etc.) may be used.
(With a few exeptions.)

1-1

2. Implicit file opens (just a WRITE(n,*) without an OPEN(n)
will NOT work) •

3. File opens with logical name assignments for file-names will
NOT work.

4. Keyed access files may NOT be used.

5. Do NOT assume infinite amount of memory, the program HAS to
fit in the available physical memory space.

6. Do NOT assume that any library used under VAX/VMS may be
used in VAXELN, in particular GENERAL, SRCP UTIL and
OFFLINE UTIL. Each time such a routine is used, it must
first be tested in a VAXELN environment. A list of
"approved" routines will be kept.

To facilitate the inclusion of special code for the VAXELN
case (use of the routines EOPEN, ECLOSE, EREAD and EWRITE for
I/O etc.), the programmer should plan ALL the use of files and
put the OPEN statements together in ONE place.

1.2 The Loading of 'Calibration-type' Constants;

These constants are thought to consist of a slowly changing set
of numbers gotten from calibration runs, surveys of the detector
etc. since the amount of data is probably going to be very
large, it would be unwise to reload them at every Begin-run if
they don't change. A system where COOR is able to tell the
Level-2 system when to load new constants is therefore
implemented. Each DETECTOR part provides a routine which is
only activated when new constants are needed. The call to these
routines looks like:

CALL CENTRAL CONSTANTS

CALL CALOR CONSTANTS

CALL MUON CONSTANTS

These routines read the constants from files (which actually
may be connections to a server), using the special set of I/O
routines described below. It is important that each DETECTOR
(or part of a DETECTOR) uses a unique ZEBRA-structure to save
and retrieve its own constants to avoid having the different
DETECTORs step on each other.

A set of special routines is provided to do I/O in the Level-2
programs (but NOT in the main filter code, only at BEGIN-RUN).
The main reason for needing these routines is the possible use

1-2

·,of servers andjor the fast multi-port channels for I/O in the
future. It turns out to be impossible to make a connection to a
server look like a standard file OPEN in FORTRAN. The four
routines have the following calling sequences:

1. 2.1 EOPEN:

CALL EOPEN(FILE NAME,READ WRITE,FORM,IRECL,IUNIT,ERROR) - -

where FILE_NAME is a character name for the file (logical name
under VMS, .and made into a 'real' file name in VAXELN),
READ WRITE is a flag indicating if the file is to be read or
written (CHARACTER*l), FORM is 'file format ('U' for unformatted,
'F' for formatted), IRECL is the record length (if 0, parameter
is ignored), IUNIT is a· returned unit number to be used (saved
in table and used by EREAD or EWRITE to check for opened files),
and ERROR is a logical error flag (.TRUE. if an error
occurred).

1. 2. 2 EREAD:

CALL EREAD(IUNIT,OUTSTRING,ERROR)

where IUNIT is unit number returned by a previous call to
EOPEN, OUTSTRING is the bytes (returned as CHARACTER) actually.
read (an internal read or equivalences may be used to actuall~
convert this to the appropriate form), and ERROR is a logical
error flag.

1. 2. 3 EWRITE:

CALL EWRITE(IUNIT,OUTSTRING,ERROR)

where IUNIT is unit number returned by a previous call to
EOPEN, OUTSTRING is the bytes (passed as CHARACTER) to write (an
internal write or equivalences may be used to convert this from
other types of variables before calling this routine), and ERROR
is a lo~ical error flag.

1-3

1.2.4 ECLOSE:

CALL ECLOSE(IUNIT,ERROR)

where IUNIT is unit number returned by a previous call to
EOPEN and ERROR is a logical error flag.

1.2.5 GET NODE NAME:

To get the name of the node the Level-2 program is running on,
use the following call:

CALL GET_NODE_NAME(NODE_NAME)

where NODE NAME is a CHARACTER*6 variable which receives the
name of the node the program is being run on.

1.3 Passing of 'Run-time' Parameters.

These constants are thought to consists of cuts, weights etc.
which may well change from run to run. Each TOOL has to provide
an entry-point (or separate subroutine) which is called at
BEGIN-RUN time to do the lon.ding of these paramete:u:> into a
common block or ZEBRA-structure. The calling sequence for this
entry point is:

CALL 'tool_name'_PARAMETERS(NUMB_OF_SETS)

where NUMB OF SETS is the number of parameter sets to read in,
0 means that NO reading should be done. This routine IS called
also when NUMB OF SETS is zero in case any internal run-specific
counters should be zeroed etc.

The routines EOPEN, EREAD and ECLOSE should be used to do the
actual parameter input because of the same restriction on the
use of a connection to a server as stated above. This is also
true if the TOOL uses the Static Parameter Banks for their
parameters, a special version of the lower level input routines
will have to be provided for this case. If a TOOL is using a
common block for storing these parameters, it must be unique to
the TOOL. The name of this common block should be
•tool_name'_PARAMETER with an INC file to go with it.

Each parameter in the common block should be an array such
that the TOOL may be used with different versions of the cuts.
The structure treats each of these separate sets

1-4

· semi-independently and it is up to the parameter-loading
'entry-point to keep track of how many sets have been received.

The structure has a set of ''filter-scripts" defined by name.
Each script is a list of TOOLs in the order they should be
activated together with a parameter-set-number for each TOOL.
COOR keeps track of these set numbers to make sure the number of
sets read via •tool name' PARAMETERS correspond to the set
numbers used in activating a TOOL.

1.4 Calling Sequence of a TOOL.

Each TOOL has a very specific calling sequence in order to
enable a simple 'dispatch' list of calls to build up filters and
the whole Level-2 structure. Each TOOL must make a single
decision on whether to pass the event or not. The structure
takes care of setting the particular filter-bit to zero and
abort the specific filter if the tool returns .FALSE .. The
input arguments needed by the TOOL are the parameter-set-number
as described above and a 32-bit word specifying which hardware
trigger-bit actually set up the call to this filter. The
hardware bit number is needed in case the TOOL wants to look at
selective information from the Level-l trigger block etc. The
declaration of such a TOOL subroutine is:

SUBROUTINE 'tool name'(PARAM SET NUMB,HARDWARE BIT,
* RETURN_FLAG,EXTRA_FLAG) -

where PARAM SET NUMB is the number of the parameter set to
use, HARDWARE BIT is a 32-bit mask with the bit set for the
Level-l trigger which caused the filter to be activated,
RETURN FLAG is the actual result for the tool (.T~UE. if event
passed-the TOOL and should be handed to the next TOOL or filter)
and EXTRA FLAG is an unimplemented flag which should always be
set to .FALSE ..

1-5

1.5 Defining and Using TOOLs.

An 'editor' which adds a new TOOL call to the dispatch
structure in the framework has been made. It is part of the
L2STATE program which is used to manipulate specific Level-2
node information, Level-2 TYPE information in addition to the
TOOLs as described here. For the TOOL definitions it uses a
definition file which contains all the defined TOOLs. This same
file is used by COOR (and the stand-alone program SUPCON) to set
up the index for each TOOL as described above. L2STATE is able
to add, delete and modify the information given for each one.
It also edits the file of Level-2 TYPE definitions which uses
the TOOL definitions to include specific TOOLs in each TYPE.
Under the Level-2 Type Menu it has a command to produce two
FORTRAN routines and possibly compile them, link the
TYPE-specific Level-2 program and download the new program to
the appropriate nodes.

The first routine made up by L2STATE is called by the
framework once (and only once) at the start of the program and
only makes up a table of addresses for each of the TOOLs
included for the specific TYPE. It has the declaration:

SUBROUTINE FILTER INIT

The second routine
framework once at
parameter routines.

made up by L2STATE is called by the
the beginning of a new run to call all the
It has the declaration:

SUBROUTINE FILTER_PARAMETERS(RUN_NUMBER,NEWPAR)

where RUN NUMBER is the number of the run being started and
NEWPAR is -the array (1 entry for each possible TOOL) of
parameter sets to read.

The actual dispatching is done via a routine with the
following declaration:

SUBROUTINE TOOL DISPATCH(TOOL ADDR,PARAM SET NUMB,
* HARDWARE_BIT,RETURN_FLAG,EXTRA_FLAG)

where TOOL ADDR is the address of the TOOL as found in the
table set up by FILTER INIT and the rest of the arguments as
described above under "Calling sequence of a TOOL". The TOOL
structure has to work with such an indexed list of TOOLs because
it is very inefficient to use a search through a · list via an
IF-ELSEIF-ENDIF structure. COOR takes care of assigning the
index of each TOOL in the definition of a filter-script.

1-6

' 1. 6 Recording of Permanent Results from each TOOL.

The filter framework lifts the main FILT bank and puts in a
copy of the 128-bit filter word, another 128-bit word describing
which filters were actually tried, and other information. Each
TOOL which wants to record any permanent information in this
structure, should call a special utility routine to get the link
to the next bank in a linear chain of result banks hanging from
FILT. This utility routine will be provided by the filter
framework (to be specified in detail later). In this bank the
TOOL should put information about how far into the code it went
before making it's decision etc. This information is important
for monitoring purposes where the data will be looked at offline
(possibly online in spy mode) to look for long term effects of
particular parts of the algorithm.

1. 7 Definitions and Uniqueness of TOOLs.

The way to make
correlated with the
then included in the
follows:

sure the TOOLs are uniquely defined,
information in the L2TYPE definitions and
possible Level-2 system files is as

1. Each possible TOOL is defined via the "TOOL Definitions"
submenu in the L2STATE program. The parameter information
for each one is also entered there. This information is
stored in the L2TOOL.DAT file. A unique numbering of the
TOOLs is set up this way, and these numbers are then used
when building filters and must also be used when setting up
the NEW_PARAMS argument to BEGIN_LEVEL2.

2. Individual Level-2 TYPEs are defined via a set of
definitions stored in a file L2TYPE.DAT which is written and
manipulated with the "Level-2 Type Definitions" submenu in
the L2STATE program. The numbers of the TOOLs as described
above are used to set up the call to 'tool name' PARAMETERS
etc. as described in the Framework--TOOL interface chapter.
The menu item "Make Filter Routines" makes two subroutines
which are used when linking the L2 MAIN program for each
TYPE.

1-7

1.8 Performance Monitoring of TOOLS.

Each TOOL has to be monitored closely as a run progresses.
For error reporting, a utility routine which reports such errors
to a central monitoring task as well as possibly the SORT ALARM
task, will be available. The calling sequence for this routine
is the same as outlined in the manual for the ERROR UTIL library
and is:

CALL ERRMSG(IDSTRNG,SUBRID,VARSTRT,SEVERITY)

where IDSTRNG is an identifier for the TOOL (name), SUBRID is
an identifier for the subroutine (name) calling ERRMSG, VARSTR
is additional text comments on the error and SEVERITY is a
CHARACTER*! code for identifying the severity of the error and
thereby where to record the error. The framework keeps track of
how many times it calls a given TOOL and how often it passes an
event. Further monitoring is possible via the recording of
results in the FILT structure by looking at the data with an
online (or offline) process.

1.9 Histogramming of Quantities from TOOLs.

The filter framework will use a set of utility routines to
book histograms and fill them with information about the running
of the filters and individual TOOLs. These histograms will be
available as special· event records at END RUN. The routines
used in the running system may be a modified version of the
HBOOK set to gain speed.

A special version of the Level-2 program will be set up where
the routines are actually the HBOOK ones such that the
histograms may easily be looked at online etc. This program may
or may not be running in a subset of the available Level-2 nodes
at any given time.

1-8

. ,1.10 Timing of a TOOL .

Most of the detailed
off-line,' but some
real-time clock and
timing information.

timing of a TOOL should take place
nodes will be set up with an accurate

an interface routine which returns the
The call to read the clock is simply:

NEWTICKS=READ_CLOCK()

This function will also have versions for VMS and VAXELN which
use the standard time functions in the two cases. Under VMS
this is actual CPU time used while in VAXELN as well as with the
real-time clock it returns actual elapsed time. The number of
ticks are always in units of microseconds. To get time
differences one has to call the function before and after the
section of code to be timed and do the difference explicitly.
One will have to worry about the extra overhead of calling the
READ CLOCK function, especially if there are many of these
timing calls in the code. ' The technique described in the
FORTRAN manual for turning off/on code via "D-type lines" is
recommended for including these calls to READ CLOCK.

1-9

CHAPTER 2

TESTING TOOLS UNDER VAX/VMS.

This chapter describes the method for testing the TOOLs
written according to the above specifications. The VAX/VMS
test-bed is using the standard DOUSER framework, and the user
should be familiar with its operation. Documentation may be
found in the file: DO$DOUSER:DOUSER GUIDE.MEM. The
PROGRAM BUILDER is used to put the VMS FILTER into the DOUSER
framework as described in the above manual and as described in
DO$PROGRAM BUILDER:USER GUIDE.MEM. To make a standard
VMS FILTER-version of DOUSER, the user does NOT have to know how
to run the PROGRAM BUILDER.

The TOOL definitions described above is stored in a file as
described above. For the test version this may be a different
file than the standard Level-2 definitions (which are in
DODAQ$:L2TOOL.DAT). The logical name L2TOOL is used for this
file, and there is a submenu in the USER DIALOG part of the
VMS FILTER DOUSER program which may manipulate the information
in this file. If you do NOT make a logical definition and do
NOT have a file L2TOOL.DAT in the directory you are working
from, the item WRITE TOOL INFORMATION in the above submenu will
make a new one for you. After the TOOL information has been
changed, the command MAKE INIT ROUTINES must be issued to make
up the two routines FILTER_INIT and FILTER_PARAMETERS using the
current set of TOOL definitions. These routines are compiled by
the procedure described below to make a new version of the
VMS_FILTER_DOUSER program.

Similarly, a file is looked for with the logical name
RUN FILTER. It is used to store all the filter-script
definitions as well as the mapping between hardware trigger bits
which may be present in the data to a set of filter-bits. The
easiest way to find out which trigger bits are present is to run
the program on a few events and look at the histogram TRIGGER.
BITS SET. The USER DIALOG submenu in DOUSER manipulates all the
information which is stored in RUN FILTER. Notice that it is
ONLY written out when the MAKE RUN FILTER FILE command is
issued. But if you make changes before starting to process

2-1

data, those changes WILL be used in the subsequent processing of
data. This is a way to test out changes before permanently
recording them in the RUN FILTER file.

2.1 How to Include Your Own (or Library) Routines in the Link.

The link procedure (described below) looks for a standard
option file, DO FILTER.OPT (or DEB DO FILTER.OPT for a DEBUG­
version), in the directory being used for- the link. In that
file you should put the names of special .OBJ files andjor
library specifications needed to complete the link.

2.2 The Procedure To Make VMS FILTER DOUSER.

A command file (DO$VMS FILTER:FILTER MAKER) is used to make a
new version of the program. It will first ask you if it should
run the PROGRAM BUILDER to make all the interface files needed.
This should ONLY be neccessary ONCE. It will then check if the'
routines FILTER INIT and FILTER PARAMETERS are present, and if
not, make new-ones according to the file pointed to by L2TOOL ... ·
If no file is found for L2TOOL, an empty one will be created.'
No TOOLs will be included in the version of VMS FILTER DOUSER
linked after this. The procedure will also check for the OPT
files described above and make empty ones if needed. It then
finally links the program and runs the setup file such that the
command DOUSER (or DEB_DOUSER) will start the program. ;.

2-2

CHAPTER 3

LINKING MAIN PROGRAM FOR LEVEL-2.

This chapter describes the method for linking a new version of
the main program for the Level-2 nodes. The EXE is tied to the
TYPE of nodes as defined in the L2STATE program. (See separate
chapter about the use of this program.) This program has to used
to make two FORTRAN files for the selected TYPE. The link
procedure compiles these files (to make sure they are available
in the directory being used for the link).

3.1 How to Include Your Own (or Library) Routines in the Link.

As for the VMS case, the
for a standard option
being used for the link.
of special .OBJ files
complete the link.

link procedure (described below) looks
file, DO FILTER.OPT, in the directory
In that file you should put the names

andjor library specifications needed to

3.2 The Link Procedure Itself.

The command file used to do the link is:
DO$DODAQ:L2 MAIN.LNK. The TYPE may be specified as either the
first or the second parameter and a debug version may be made by
specifying DEBUG as either the first or the second parameter.
I.e. to make the standard EXE with debug one would type:

@DO$DODAQ:L2_MAIN.LNK REGULAR DEBUG

If the TYPE is left off, it will be prompted for.

3-1

To download a newly linked program to the appropriate Level-2
nodes, you may either change the load program for a TYPE in the
L2STATE program or, if it is already set to the correct one, use
the "Force Load Flag" command in the same program. The actual
load takes place either when the "Write Changes" command is
executed or before exiting the program.

3-2

CHAPTER 4

ERROR HANDLING IN LEVEL-2 PROGRAMS.

There are two distinct ways of handling run-time errors in the
filter code under VAXELN. The 'normal' way is to trap the error
with the VAXELN debugger. The debugger (EDEBUG) does NOT have
to be connected to the node at the time of the error for this
trap to work. When connected with EDEBUG, you will see where
the error occurred and what the error was. You may also examine
variables etc. at that point. (This assumes that the source
code was linked in DEBUG mode and that the program was linked
with DEBUG.) For more information on EDEBUG see the VAXELN
documentation.

The other way to trap the run-time errors is with the
ERR HANDLER module, which, when included in an ELN program,
allows the programmer to have some control over the system's
response to a run-time error. This is especially useful well
debugged code when running in real life, where events may do
unexpected things or probe little used areas of the code. Using
this module, an event which produces an error can be ignored,
and processing can skip to the next event. The ERR HANDLER is a
module which enables user defined action on the occurrance of a
run-time error in a VAXELN program. If an error occurs, the
ERR_HANDLER makes the program jump back to the next statement
after the top level routine in the chain where the error
occurred. The main program tests for this condition and reports
the error if one is found.

This report is currently ONLY written to a 'data-base' file on
the host VAX. The information in the report is translated as to
which routine caused the error, and the time-stamp, run number,
event number, node type, node name and program running in the
node are also included. This translation uses a file
('12type' L2 MAIN.CODE which is produced from the MAP file when
a Level-2-program is linked using the L2_MAIN.LNK command file.
It is VERY important that that file is kept with the EXE as
pointed to by the entry in L2TYPE.DAT. If the EXE is linked in
one directory and subsequently moved, the CODE file MUST be
moved as well. Otherwise the translated information will be

4-1

· .. WRONG. A special interface program has been written to do
searches in this data-base as described below.

4.1 L2ERR_READER Program.

The program accessed via the command L2ERR READER interfaces
to the data-base of recorded errors in the Level-2 system as
described above.

The program first presents a menu of possible ways of
searching the data-base. Each time you have performed a search,
it will ask you if you want to perform a further search on the
already selected entries.

The search items are:

1. TIME of error

The actual time when the error occurred is recorded and
the search will let you choose the START and END time of the
search.

2. Find error in ROUTINE

You may also see if a particular routine caused any
errors. The program will ask for the name of the routine to
look for

3. Find error in NODE TYPE

The nodes are separated into TYPES as described before.
This search will let you enter the TYPE to look for in the
data-base.

4. Specific NODE NAME

. If you suspect errors in a specific node (for some unknown
reason), this will let you search the data-base for a
specific node-name.

5. RUN_NUMBER sequence

If you only want to look at errors in a particular set of
runs, this will allow such a search.

See the EXAMPLES at the end of this manual for the actual
screen displays from this program.

4-2

CHAPTER 5

INTERFACE FOR CONTROL (COOR).

This chapter describes the design of the part of the Level-2
system used to interface between the framework which controls
all the filters running in each Level-2 node and the host
program COOR which coordinates all the data taking. The
information COOR uses to set up the Level-2 system resides in
several parameter files on the host disk. These "database"
files are written to by a special interface "editor" program,
L2STATE. This program may only write new information to these
files when it is able to gain run-control. Normally the program
COOR will have this control and will have to be asked to give it
up before information can be written. The OPEN of the
run-control file is recorded in a special file such-that the
program which needs control can be told who last opened it. See
the routines RECORD FILE, GET FILE and REPORT FAILURE described
below. The method for asking COOR to give up control of these
files is implemented as described below under REQUEST LEVEL2,
DEMAND LEVEL2 and RETURN LEVEL2. -

COOR must in particular control the following aspects of the
running in the Level-2 system:

5-l

. 5.1 The Loading of 'Calibration-type' Constants .

COOR has to decide when a new set of calibration constants are
needed in the Level-2 nodes. This is of course only possible at
Begin-Run time. In the call to BEGIN LEVEL2 as described below,
the argument CONSTANT LOAD indicates which, if any, of the
detector parts needs to-load constants. Detector parts are in
this context thought to be Central Detector, Calorimeter and
Muon Detector. If a "finer" division of the major detector
parts is needed to do the constant loading for only parts of one
of these detectors, it should be done internally via the files
COOR assigns for each major part.

5.2 Passing of 'Run-time' Parameters.

This is COOR's main task as far as the Level-2 is concerned.
COOR must read the filter definition files, assign filter-bits
to each individual filter, check that the. assigned Level-2 TYPE
has the TOOLs needed for the filter, set up the mapping of
hardware bits into filter-bits and set up the filter-scripts
which tells the Level-2 framework which TOOLs to call and which
parameter set to use for each TOOL. The filter-bit mapping is
passed via the FILTER BIT SET argument to BEGIN LEVEL2 and the
filter-scripts is passed via the TOOL SCRIPT argument. For each
of the filter-bits COOR also has to indicate whether it is to be
run in 'force' mode or not. Force mode means that if the
particular filter-bit is set, that filter always has to be run,
even though another filter may already have passed the eyent.~
The indication of force mode is .done via the FILTER FORCE
argument to BEGIN LEVEL2. There is always a desire to be- able
to pass a certain fraction of the events unfiltered to have a
sample to check out the efficiencies of the filters with. This
is like a prescaling of the unfiltered events. The particular
filter is run as normal on these events, but ·then a given
fraction will be passed to the host anyway. This fraction is
specified via the UN FILTER RATE argument to BEGIN LEVEL2. The
loading of parameters is- likely to cause some amount of
overhead, it is therefore useful to be .able to only read in
parameters where they actually have changed. This is done via
the NEW PARAMS argument to BEGIN LEVEL2. It is an array where
the number tells how many sets the TOOL should expect to read.

5-2

• .I'.

5.3 Calling Sequence of Routines

There are several routines written to interface with the
Level-2 system from a host control program. They are used by
COOR as well as by SUPCON, a standalone program for testing the
Level-2 control. The routines described in this chapter all are
found in the DO$L2CONTROL library area. The calling sequence
for these routines are:

5.3.1 ATTACH LEVEL2:

This routine is the initialization routine for the Level-2
interface which gets control over the run in the Level-2 system. -
It reads in the node information from the file L2STATE.DAT,
Level-2 TYPE information from L2TYPE.DAT, hardware information
from L2SUPER.DAT, as well as run information from RUNOLD.DAT and
RUNNUM.DAT.

CALL ATTACH_LEVEL2(TOT_NUM,NAM_ARR,TYP_ARR,ATTOK)

where TOT NUM is the total number of Level-2 nodes currently
available (using 50 as max.), NAM_ARR is a CHARACTER*S array of
names for each one of the Level-2 nodes. TYP ARR is a
CHARACTER*16 array of TYPEs for each one of the nodes and ATTOK
is a LOGICAL flag set to TRUE when successful. See
GET L2TYPE INFO below for description on how to interpret the
TYPEs. This information must be used when setting up the
L2 MASK argument to BEGIN LEVEL2.

5.3.2 DETACH LEVEL2:

This routine is used to release the
control is no longer needed and
another program (COOR provides the
DEMAND LEVEL2 and RETURN LEVEL2 to
take over run control.)

CALL DETACH LEVEL2

5-3

Level-2 system when run
may have been requested by
routines REQUEST LEVEL2,
communicate the desire to

5.3.3 READ NAMES:

This routine is used to get the name of the Supervisor in case
run control is not needed. It reads in the node information
from the file L2STATE.DAT.

CALL READ_NAMES(SUPER_NAME)

where SUPER NAME is a CHARACTER*6 variable which receives the
name of the- current Supervisor as defined in L2STATE.DAT (via
the L2STATE interface program).

5.3.4 GET RUNNUMBER:

This routine is used to get the next run-number in a unique
series. It should be called before any run setup is done. The
run-number is recorded in a file, RUNNUM.DAT (with exclusive
write-access by one program; this is the way run-control is
assigned). In this file is also recorded all the information
about the last run, like trigger bit assignment, filter-scripts
etc. This makes it possible to start up a run with the same
conditions as the previous one without using COOR. Even if the
run is never actually started (if BEGIN LEVEL2 is not called or.
a failure occurs in trying to start the run), this run-number:·
will never occur again. GET RUNNUM also records the old
runnmuber together with its comment in the file RUNOLD.DAT.

CALL GET_RUNNUMBER(RUNNUM)

where RUNNUM is an integer return argument which receives the
new run-number.

5.3.5 BEGIN LEVEL2:

This routine is the actual setup and communication with the
Level-2 system at begin-run. It has several arguments which are
mentioned above for setting up the actual filte!ing in each
Level-2 node.

CALL BEGIN_LEVEL2(RUNNUM,COMNEW,L2_MASK,DP_MASK,
* CONSTANT LOAD,FILTER BIT SET,TOOL SCRIPT,FILTER FORCE,
* UN_FILTER_RATE,NEW_PARAMS,FILTER_ORDER,FILTER_MAX,
* OK_FLAGS,ERROR)

5-4

where RUNNUM is the run-number returned from GET RUNNUMBER
(used to check that GET_RUNNUMBER was actually called before the
call to BEGIN LEVEL2), COMNEW is a comment (CHARACTER*64) for
the run to be-included in the run-number file, L2 MASK are masks
of trigger bits by node (one 32-bit word per available Level-2
node, for a maximum of 50 currently; also used to mask out which
nodes should actually take part in the run), DP MASK are masks
of dual-port channels by triggers (one 8-bit BYTE per trigger,
32 in all, TRGR always included if more than one channel in
use), CONSTANT_LOAD is a LOGICAL*l array with one entry for each
detector part (3 currently) where a .TRUE. means that the
particular detector part needs to load new constants for this
run, FILTER BIT SET is a 4X32 integer array which forms the
128-bit filter-bit mask for each hardware trigger bit,
TOOL SCRIPT is a 2 X MAXTOOL X 128 integer array (MAXTOOL as set
in L2 TYPE.DEF, currently 20) which gives the order of TOOLs and
parameter-sets for each of the TOOLs for each filter-bit,
FILTER FORCE is a 128 LOGICAL*l array where the entry is •
TRUE. for each filter-bit which is to be run in force mode,
UN FILTER RATE is a 128 integer array which gives the fraction
(!:fraction) of events which is to be passed on to the host
regardless of the result of the filter (0 means pass all events
unfiltered), NEW PARAMS is an MAXTOOL array of BYTEs which tells
each TOOL how -many parameter sets to read (0 means no new
parameters to read, the order of the TOOLs in this array MUST be
as set up in the file L2TOOL.DAT), FILTER ORDER is a 128 BYTE
array giving the actual order the filter-scripts should be
tried, FILTER MAX is an INTEGER*4 number giving the maximum
number of entries used in the FILTER ORDER array, OK FLAGS is a
LOGICAL*l array with one entry for-each available {using 50 as
max.) Level-2 node where a .TRUE. is returned when the node
successfully received the new run information (use NAM ARR
returned from ATTACH LEVEL2 to turn these flags into actual node
names) and ERROR Is an integer error code (0 means everything
OK, anything else is an error).

The current set of defined errors are: 2: Error in
connecting or sendingjreceiving messages tojfrom Supervisor, 3:
Run already in progress; 4: Run control not ON, 6: Bad match
in Runnumber between this routine and GET_RUNNUMBER, 8: Asked
for bank without matching datacable.

5-5

' 5.3.8 CONTINUE LEVEL2:

This routine is called when the data-taking which was paused
via a call to PAUSE LEVEL2 is to be resumed again.

CALL CONTINUE_LEVEL2(0K_FLAGS,ERROR)

where OK FLAGS is a LOGICAL*l array with one entry for each
available -(using 50 as max.) Level-2 node where a .TRUE. is
returned when the node successfully received the continue
command (use NAM ARR returned from ATTACH LEVEL2 to turn these
flags into actual node names; only nodes which had a non-zero
L2 MASK in the last call to BEGIN LEVEL2 will possibly have a
return of .FALSE.) and ERROR is an integer error code (0 means
everything OK, anything else is an error.· The currently defined
errors are: 2: Error in connecting or sending/receiving
messages to/from Supervisor, 4: Run control not ON).

5.3.9 CHECK LEVEL2:

This routine is called when the flush status of each node is
needed outside of a call to END LEVEL2 (or PAUSE .. LEVEL2). This
may happen when some of the nodes are to be switched to a
different mode etc.

CALL CHECK_LEVEL2(FLUSH_FLAGS,ERROR)

where FLUSH FLAGS is a LOGICAL*l array with one entry for each
available (using 50 as max.) Level-2 node indicating their flush
status (use NAM ARR returned from ATTACH LEVEL2 to turn these
flags into actual node names; only nodes which had a non-zero
L2 MASK in the last call to BEGIN LEVEL2 will possibly have a
return of .FALSE.) and ERROR is-an integer error code (0 means
everything OK, anything else is an error. The currently defined
errors are: 2: Error in connecting or sending/receiving
messages tojfrom Supervisor, 4: Run control not ON).

5-7

5.3.6 END LEVEL2:

This routine is called when a run is to be ended. It sends a
message to the Supervisor which in turn tell all the nodes to
end and report back whether they are "flushed" (done with the
current event) or not. This routine may be called more than
once to make sure the run really ended and that all the nodes
are flushed (see CHECK_LEVEL2).

CALL END_LEVEL2(FLUSH_FLAGS,ERROR)

where FLUSH FLAGS is a LOGICAL*l array with one entry for each
available (using 50 as max.) Level-2 node indicating their flush
status (use NAM ARR returned from ATTACH LEVEL2 to turn these
flags into actual node names; only nodes which had a non-zero
L2 MASK in the last call to BEGIN LEVEL2 will possibly have a
return of .FALSE.) and ERROR is-an integer error code (0 means
everything OK, anything else is an error. The currently defined
errors are: 2: Error in connecting or sending/receiving
messages to/from Supervisor, 4: Run control not ON).

5.3.7 PAUSE LEVEL2:

This routine is called when a pause in the data-taking is
needed for some reason, but may be resumed later with the same
parameters.

CALL PAUSE_LEVEL2(FLUSH_FLAGS,ERROR)

where FLUSH FLAGS is a LOGICAL*l array with one entry for each
available (using 50 as max.) Level-2 node indicating their flush
status (use NAM ARR returned from ATTACH LEVEL2 to turn these
flags into actual node names; only nodes which had a non-zero
L2 MASK in the last call to BEGIN LEVEL2 will possibly have a
return of .FALSE.) and ERROR is-an integer error code (0 means
everything OK, anything else is an error. The currently defined
errors are: 2: Error in connecting or sending/receiving
mes~ages tojfrom Supervisor, 4: Run control not ON).

5-6

5.3.10 CHECK RUN:

This function is used to check if-a run is in progress or not.
The first time it is called it actually asks the Supervisor for
the run status, on any subsequent calls it uses a flag kept in a
common block (and set/reset by BEGIN_LEVEL2, END_LEVEL2) to
determine the status.

LOG_VAR=CHECK_RUN()

5.3.11 GET L2TYPE INFO:

This routine is used to get the information about a certain
TYPE of Level-2 node. The TYPE definitions are stored in the
file L2TYPE.DAT.

CALL GET_L2TYPE_INFO(TYPE_STR,NUMBER_TOOLS,TOOL_NUMBERS)

where TYPE STR is an up to CHARACTER*16 string with the name
of the TYPE to return information for, NUMBER TOOLS is the
number of tools loaded for this TYPE, TOOL NUMBERS Is an integer
array of the number of the TOOLs· as stored-in L2TOOL.DAT.

,,

5.3.12 GET L2TOOL INFO:

This routine is used to get the information about a certain
TOOL in the Level-2 system. The TOOL definitions are stored in
the file L2TOOL.DAT.

CALL GET L2TOOL INFO(NUMBER,TOOL NAME,PARAM COUNTS,
* PARAM_NAMES,PARAM_TYPES) -

where NUMBER is the number of the TOOL to get information for
(as returned by GET_L2TYPE_INFO), TOOL_NAME is CHARACTER*32
string receiving the name of the TOOL, PARAM_COUNTS is the
number of parameters needed for this TOOL, PARAM_NAMES is a
CHARACTER*16 array of parameter names and PARAM TYPES is a
CHARACTER*1 array of parameter types.

5-8

'

5.3.13 REPORT FAILURE:

This routine is used to report the failure in the OPEN on a
file. If the file is actually locked by the run-control system,
the message will tell who locked it, otherwise the FORTRAN error
will be spelled out.

CALL REPORT FAILURE(FILE NAME) where ·FILE NAME is a CHARACTER
string indicating which file to report the failure of (same as
used in OPEN statement).

5.4 Routines Supplied by COOR.

To be able to gain control over the running of the Level-2
system even when COOR is actively running, a set of routines is
supplied in the D0$0NLINE __ UTIL library to request andjor demand
the release of the Level-2 system (i.e. the files as described
above) and to return control back to COOR.

5.4.1 REQUEST_LEVEL2:

This routine is used to request the release of the Level-2
system, the request is approved or denied according to the
current state of the run.

CALL REQUEST_LEVEL2(BROADC_STR,RESPONSE)

where BROADC STR is a string to broadcast to all TAKERS and
RESPONSE is a LOGICAL*1 flag which is TRUE when permission was
given, FALSE when request was denied (or COOR not found).

5-9

5.4.2 DEMAND LEVEL2:

This routine is used to demand the release of the Level-2
system. This is always granted, but the routine does NOT return
until COOR has shut things down properly and given up control.

CALL DEMAND LEVEL2(BROADC STR,RESPONSE) - -

where BROADC STR is a string to broadcast to all TAKERS and
RESPONSE is a LOGICAL*l flag which is TRUE when the demand was
successful, FALSE when demand failed (could NOT find COOR etc.).

5.4.3 RETURN LEVEL2:

This routine is used to return control to COOR when done with
the Level-2 system.

CALL RETURN_LEVEL2(RESPONSE)

where RESPONSE is a
successful in returning
COOR is not available.

LOGICAL*l flag which is TRUE when
the Level-2, FALSE usually means that

5-10

CHAPTER 6

LEVEL-2 DISPLAY/MONITORING INTERFACE

This chapter describes a set of routines which a "user" may
call in a program which needs to display event-flow andjor wants
to monitor actual throughput in the system. Other sub-systems,
like Level-1 and COOR will provide similar routines. The
routines described in this chapter all are found in the
DO$L2CONTROL library area.

6.1 L2 SNAPSHOT:

For monitoring purposes, the actual exact count of various
entities might be important (to look for "conservation of
events"). Therefore a routine which gathers ALL the information
as close to simultaneously as possible is provided. Its calling
sequence is:

CALL L2 SNAPSHOT

After one call to L2 SNAPSHOT, the routines described below
may be called as many-times as needed, the information does NOT
change between calls (unless L2_SNAPSHOT is called in the
meantime). All counts are reset at begin-run time (when the
GLOBAL run-number changes). If the user does NOT call
L2 SNAPSHOT, it is called from the first routine in the set
below, and then again everytime one of the routines is called.

6-1

6.2 L2 INFO SUPER:

To get a report of the counters kept in the Supervisor, use
the follwing call:

CALL L2_INFO_SUPER(TOT_EVENTS,TRIG_COUNT)

where TOT EVENTS is the
Level-2 Supervisor and
entries) which gives the
trigger bits.

6.3 L2 INFO NODES:

total number of events seen
TRIG COUNT is an integer

count for the individual

by the
array (32

hardware

To get a report of the counters kept in in each node (by
TYPE), use the follwing call:

CALL L2_INFO_NODES(TYPE,FILTER_COUNT,TOTAL_COUNT)

where TYPE is an input integer with the index of the Level-2
TYPE the information should be_returned for (the TYPE is defined
in the L2STATE program and the routine GET TYPES should be used
to access this information, a zero means return infor for ALL
TYPEs), FILTER COUNT is an integer array (3Xl28) entries which
returns the total number of times a bit was set in an event, the
total number of times its filter-script was actually activated
and the number of times the event passed that filter-script, and
TOTAL COUNT is an integer array (3 entries) giving overall
number of evnts IN to the Level-2 nodes of that TYPE, number of
events OUT and total number of ERRORS detected (IN+ERRORS should
for all TYPEs should equal the total number.of events seen by
the Supervisor, except when an event is sent to two different
nodes at the same time).

6-2

6.4 GET TYPES:

To get the current set of defined TYPEs, use the follwing
call:

CALL GET_TYPES(NUM_TYPES,TYPE_NAMES)

where NUM TYPES is the number of TYPEs currently defined and
TYPE NAMES is an array of CHARACTER*16 (at least NUM TYPES
entries) which returns the names of each individual TYPE. -

6-3

CHAPTER 7

7.1 L2STATE Program

Main menu ._

1: Change State of Nodes
3: Show Hardware Setup
5: Delete a Node
7: Display Node List
9: TOOL Definitions

11: Run Command File
13: Menu Control

EXAMPLES

2: Hardware Setup
4: Add a Node
6: Force Load Flag
8: Level 2 Type ·Definitio

10: Write-Changes to Files
12: Set up Command File

Menu: Level 2 state Setup Program
Select: {command, #,HELP(#), MENU, EXIT}>

7-1

