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EXECUTIVE SUMMARY

The following report contains results obtained for the third quarter period, 1 July -
30 September, 1990, of contract DE-AC22-89PC89759 entitled “Investiga‘ion of the Rank
Dependence of Tar Evolution.” These results are from the investigation of the nitrogen
evolution behavicr of a thermally stable, polyimide polymer. Elemental composition and
infrared absorbance characterization of the polyimide are given relative to the parent coals
investigated. The H, C and O contents of the polyimide are noted to position it well off
the coalification band plot of the parent coals but in a location that can be occupied by
devolatilized and partially oxidized chars. As a result, its nitrogen evolution behavior is
expected to reflect the nitrogen evolution behavior of coal char samples in the latter stages
of devolatilization or the nitrogen evolution behavior of bituminous coal char samplies
formed from alkaline-leaching beneficiation processes.

Despite its high nitrogen concentration levels relative to the parent coal samples,
7.2% vs. 1.4 - 2.0%, little volatile nitrogen evolution is observed until decomposition
temperatures of 600°C or greater are obtained. Due to the lack of decomposition via tar
evolution and as contrasted to parent coals, no significant bound nitrogen is evolved with
heavy hydrocarbons at particle temperatures less than 600°C. Similar to “virgin” chars and
tars formed during rapid devolatilization, the polyimide samples begin to evolve significant
fractions of bound nitrogen as IR-active light gases at particle temperatures between 650
and 750°C. Unlike coal samples, however, relatively large fractions of the light gases are
observed to be ammonia. The IR-active, nitrogen-containing light gas evolution rapidly
declines at polyimide char temperatures greater than 750°C, again in contrast to observed
behavior in virgin coal char samples. It is not certain if the nitrogen evolution kinetics
changes from selectively forming ammonia and hydrogen cyanide to benzonitriles or free
nitrogen at these temperatures.

The light gas evolution pattern with decomposition temperature of polymide could
contribute to our understanding of the low conversion efficiencies observed for bound ni-
trogen to NOy conversion in the char combustion phase of pfc combustion. Such a change
in reaction selectivity could also account for the low levels of bound nitrogen to NOy
evolution observed in high temperature, high intensity combustion of micronized coal or
alkaline-leached, beneficiated samples. The initial phase of polyimide nitrogen evolution
behavior as NHa and HCN appears to have kinetic parameters similar to that of the high
temperature secondary cracking reactions of primary tars and chars. It is characterized
by an activation energy around 65 kcal.



=
k|
=
i

e

PROJECT DESCRIPTION

Objectives:

The objectives of this study are to develop an improved understanding of the process
of coal tar evolution, its relationship to the structural characteristics of the parent coal,
and the dependence of the chemical and physical properties of the tar products on the
conditions of devolatilization. Data from this study are expected to allow hypothesis
testing and refinements of coal devolatilization models relevant to the pulverized coal
combustion process.

Program Structure:

The program is divided into seven major technical areas in which the following rank
dependence issues are addressed:

1. tar evolution rates in rapid heating conditions;

molecular weight and vapor pressure characteristics of tars;
chemical structure and calorific values of tars;

influence of interphase mass transport phenomena;

gas phase secondary reactions of “primary” tars;

AR T o

parent coal nitrogen evolution during devolatilization;
7. model hypothesis testing.

The PSOC 1451D coal is the reference coal, that is, its structural characteristics and
tar evolution phenomenology become the defined references for the other coals. Parent
coal structural parameters, tar yields, chemical and physical properties of tars, nitrogen
evolution behavior, and global kinetic parameters are defined relative to it.

Coal Characterization:

A range of coal ranks, from a Texas lignite to a Pennsylvania anthracite, are employed
in the investigation. In addition, a high temperature polymer, a polyimide, is utilized as an
additional reference case. The polyimide serves as a truly polymeric reference material for
examining the nitrogen evolution behavior of coal. The samples are subjected to elemental
composition determination (Table I), infrared absorbance characterization, calorific value
measurement, high temperature ash analysis, 2nd maceral composition. Consideration is
being given to NMR analysis as well as tetrahydrofuran (THF) solubility.

Experimental Measurements:

Potential tar yields are determined by long hold time heated grid investigations of
each coal at a final temperature and heating rate observed to maximize tar yields for the
reference coal. Relative tar evolution kinetic behavior is determined by zero hold time
heated grid (1) investigations of each coal.

“Primary” tar samples are obtained by collecting tar samples from rapid heating of
parent coal samples in the UTRC entrained flow reactor and aerosol separation systems
(2). Volatility and molecular weight characteristics of these samples are determined by
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heated grid revaporization experiments (3) and compound-type calibrated GPC exami-
nation of the tars. The compound-type calibration curve employed for each tar type is
determined by elemental composition and IR absorbance measurements of each tar type to
determine which calibration compound. homologous series most resembles the structural
characteristics of the collective tar sample.

Gas phase secondary reactions of “primary” tar samples is investigated by comparing
light gas evolution behavior in the heated grid, entrained flow reactor and flash lamp
reactor systems.

Nitrogen evolution behavior is a result of the tar evolution properties of a coal and
the secondary reaction chemistry of the residual char and evolved tars. Nitrogen balance
determinations are made on two of the reactors — heated grid and entrained flow - directly
(4) and the flash lamp indirectly. In addition to the reference behavior of PSOC 1451D,
the nitrogen evolution behavior of a high temperature polyimide in rapid heating thermal
decomposition conditions is investigated to serve as a truly polymeric reference.

EXPERIMENTAL RESULTS

Rationale for High Temperature Polymer Investigation:

An aromatic, nitrogen-containing high temperature polymer was selected for co-inves-
tigation with the parent coal samples for several reasons:

a.) An appreciable number of models of coal devolatilization use polymer structural
concepts as the bases for describing the thermal decomposition process of coal
devolatilization;

b.} The kinetics of fuel bound nitrogen evolution during the late stages of HVA
coal devolatilization is simulated by the nitrogen evolution behavior of nitrogen-
containing, aromatic polymers;

c.) The nitrogen evolution behavior of low rank coals, which are highly cross-linked,
may be approximated by the nitrogen evolution behavior of polymeric analcgs;

d.) The nitrogen evolution behavior of alkaline-leached, beneficiated coals may be
closely approximated by the nitrogen evolution behavior of nitrogen-containing,
aromatic polymers.

Low rank coals are known to be more highly cross-linked via oxygen functionalities
than middle rank coals. Middle rank coals become highly cross-linked during the tar
evolution process. Relative to their original coalification band positions, middle rank
coals that have been alkaline-leached at moderate temperatures are known to become
highly cross-linked and aromatic and displaced off the coalification band to positions near
that of high temperature, thermally resistant polymers. By investigating the pyrolysis
behavior of an aromatic high-temperature polymer, the rank characteristic and extent of
devolatilization dependencies of the fuel bound nitrogen evolution behavior of coal should
become more clearly delineated. Such a delineation is necessary for practical, global kinetic
parameters for fuel bound nitrogen evolution to be established.
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Polyimide Sample Characteristics Relative to Parent Coals:

Elemental Composition

The elemental composition results obtained for the particular polyimide samples se-
lected for the investigation are given in Table I. The composition values of the parent coals
investigated in the study are also given for compieteness. Relative to the HVA reference
coal, the polyimide sample is noted to be displaced toward higher O/C ratios and lower
H/C ratios (Figures 1, 2). As HVA and lower rank coals devolatilize, the compositional
path of the residual chars follows the path indicated in Figure 1. Consequently, at the
compositional point where the main phase of particle mass loss is complete, the residual
char might be expected to have fuel bound nitrogen evolution patterns similar to the poly-
imide model compound. In addition, many HVA parent coals are chemically modified by
alkaline-leaching demineralization processes to points on the coalification band near that
of the polyimide samples. Experimentally, investigating the nitrogen evolution behavior
of a polymer such as polyimide is facilitated by the high nitrogen content relative to coals,
~7% versus ~1.5 - 2%.

Figures 3, 4, 5, and 6 display the IR absorbance spectra of the polyimide sample and
lignite, HVA and low volatile bituminous coals respectively. The sharp absorbance band
structure of the polyimide is in distinct contrast to the broadband absorbance character-
istics of the coal spectra. The difference in absorbance spectra characteristics result from
the fact that the polyimide is a relatively pure substance compared to the coal matrices,
which consist of a wide range of molecular types and sizes. In addition, the coal IR spec-
tra indicate significant degrees of hydrogen bonding interaction among the highly polar
molecular components of the coal matrices, as evidenced by the severe broadening of the
hydroxyl and amine absorbance bands throughout the 2000 to 3600 cm™~* regime. From an
elemental composition point of view, the polyimide has characteristics of a hydrocarbon-
devolatilized (thermally or chemically) coal char but, from an IR absorbance point of view,
it has the characteristics of a single component substance.

Heated Grid Devolatilization Behavior of Polysmide

Previous reports (5, 6) and publications (1) provide details of the operation of the
UTRC heated grid (UTRC-HG) reactor. Table II contains the details of the runs performed
with the polyimide samples utilized in this investigation. Product distributions and the
elemental composition of the major product, polyimide char, are provided in the table.
Only relatively long hold time runs were performed with the polyimide samples. Due to
its thermal stability at temperatures less than 600°C, relative to coal samples, zero hold
time transient heating experiments were not performed.

Major Product Distributions and Temperature Dependencies:

Relative to Reference Coal, PSOC 1451D

Figure 7 displays the major product distributions of the polyimide samples heated
as indicated in Table II. Figure & displays the analogous data for the reference HVA
bituminous coal. PSOC 1451D. The differences in mass loss product distributions with
respect to peak temperatures are appreciable. The polyimide produces no significant
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condensible tars until peak temperatures of greater than 650°C are achieved and then
only when rapid heating to such temperatures is utilized (7). Relative to a bituminous
coal, the polyimide polymer is thermally quite stable and displays no tar evolution in the
300 to 600°C temperature range.

Low levels of light gas evolution are observed from polyimide at temperatures between
500 and 550°C. These gases are primarily CO; and CO (Figure 9). Methane evolution from
the polyimide (Figure 10), the only detectable noncondensible hydrocarbon, is associated
with the main phase of mass release, which occurs between 650 and 800°C. In these
moderate heating rate conditions, bituminous coals display low levels of CO, CO2, CH,,
C2Hg and higher hydrocarbon release during the main, low temperature, tar evolution
phase. The most significant light gas evolution occurs at the latter stages of tar evolution
and during the residual char degassing phase, in the 650°C+ temperature range. In this
respect the light gas evolution behavior is similar to middle to high rank coals. Despite its
high fraction of functionality versus aromaticity, the light gas evolution of the polyimide
is not similar to iow rank, subbituminous or lignite, coals, which display significant light
gas evolution during the main phase of tar evolution.

Temperature Dependency of Char Composition

The initiation of the carbon oxide evolution at temperatures lower than the main
phase of methane evolution is reflected in the elemental composition of the polyimide char
residue as indicated in Figures 11 - 14. From either an absolute (Figure 11) or relative
basis (Figure 12) the oxygen composition of the char residue systematically decreases as
a function of the decomposition temperature. On the other hand, the char hydrogen
composition shows a slight enrichment (Figures 13, 14), relative to the parent structure,
as the decomposition temperature is increased to 600°C. At greater peak temperatures,
there is a rapid decrease in char hydrogen levels, corresponding to the steep temperature
sensitivity of the methane evolution process.

The carbon composition of the polyimide chars displays a very slight increase with
temperature to temperatures around 600°C. At greater peak temperatures, the carbon
composition rapidly increases on either an absolute {Figure 15) or relative basis (Figure 16).
The increase in carbon concentration between 300 and 600°C is due to the stoichiometric
and mass ratios of oxygen to carbon in the evolved carbon oxides.

These behaviors are in sharp contrast to all coal samples wherein the char shows a
systematic decrease in hydrogen composition during the initial mass loss, tar evolution
phase. In this phase, the aliphatic rich heavy hydrocarbons are preferentially released.
Carbon compositions of coal chars increase as decomposition temperatures are increased
to 600°C, particularly for middle to high rank coals. Oxygen compositions of chars, relative
to the parent coal, do not decrease significantly until peak temperatures of 700°C or greater
are achieved, after the main phase of mass loss.

Nitrogen Evolution Behavior During Devolatilization

Figures 17 and 18 display the nitrogen evolution behavior of the polyimide on an
absolute and relative basis. respectively. Figure 19 displays the temperature sensitivity of
the IR-active, nitrogen containing light gas species. As indicated in Figures 17 and 18,

6



= - - ¥ _ [ W TN

and similar to the hydrogen, the nitrogen composition of the polyimide char is increased
relative to the parent structure as the carbon oxides evolve and as methane begins to
evolve. Between 550 and 600°C, NH3 and HCN are observed to evolve (Figure 19).

On a sample-mass normalized and relative basis, the evolution of these species shows
a sharp increase to peak decomposition temperatures between 700 and 750°C. Despite the
continuous, sharp decrease in nitrogen levels observed in the residual char, at 750°C and
greater there is a sharp decrease in the observed levels of these gases relative to the peak
values observed near 700°C. It is not clear at this time if a different set of volatile nitrogen
compounds are formed at these high decomposition temperatures or if there is a systematic
error in the gas measurements. The latter seems unlikely. It appears the char nitrogen
is preferentially evolved in low levels of various forms of benzonitriles (not detectable
in the gas phase), N2, or some combination of these species. These temperatures are
associated with the formation of condensible tar from the polyimide (Figure 7) and these
tars may be nitrogen rich relative to the parent structure. Because of its significance to high
temperature evolution of fuel bound nitrogen during char combustion, this phenomenon
should be more thoroughly investigated. It may be that the residual hydrogen content of
the polyimide char at temperatures greater than 750°C may be too low for formation of
NH3z or HCN in the char substrate (Figures 13, 14).

Nitrogen Evolution Relative to the Reference Coal, PSOC 1451D

Figure 20 displays the mass fraction of the parent polyimide nitrogen retained in
the char. As indicated, the parent polyimide nitrogen is retained in the char residue
preferentially during the carbon oxide evolution, which is not associated with significant
tar evolution. More significantly, this nitrogen retention behavior is significantly different
than the nitrogen evolution from bituminous coals, wherein there is a systematic loss of
fuel bound nitrogen during the main phase of devolatilization. The rapid, low temperature
evolution of coal nitrogen is associated with the tar evolution process. Similar to the
polyimide behavior, coals do not display any low temperature nitrogen-containing light gas
evolution (4). Unlike polyimide, primary coal devolatilization does not evolve significant
quantities of ammonia (4) at any temperature.

The significant differences in the nitrogen evolution behavior between an HVA bi-
tuminous coal and the polyimide during devolatilization is illustrated in Figures 21 and
22. During the main phase of mass evolution the HVA coal retains mass fraction parity
between evolved mass and evolved bound nitrogen. Due to significant differences in the
mode of mass loss, the polvimide never displays such parity.

It should be noted that all bituminous coals are cbserved to display this behavior
(Figure 23, from ref. 4). Low rank coals evoive tars havirg significantly different structures
than the average parent coal structure (2). These tars contain significant fractions of
bound nitrogen, but not in mass fraction concentrations equal to the parent coal (Figure
23). Consequently, during the low temperature, main phase of mass evolution of low rank
coals, significant fractions of fuel bound nitrogen are retained in the char, in a manner
similar to the polyvimide carbon oxide mass evolution phase. It is not known if the chars
from low rank coals or high temperature chars from middle rank coals will display the
same unusual nitrogen-containing light gas evolution behavior as the polyimide chars at

7



large extents of hydrogen evolution.

Future Work

The reproducibility of the unusual nitrogen-containing light gas evolution of polyimide
will be investigated. This is necessary because such chemical behavior may serve as a basis
for understanding the evolution of char bound nitrogen and the observed low conversion
efficiencies of char nitrogen to NOy. As indicated above, char compositions of devolatilized
and partially oxidized chars are similar to polyimides on a coalification band plot.

The global kinetics of nitrogen evolution from polyimide will be established and com-
pared to the nitrogen evolution kinetics of coals during the main phases of respective
sample mass losses.
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FIGURE 7
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FIGURE 9
CO and CO2 EVOLUTION:
THERMAL DECOMPOSITION OF POLYIMIDE
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FIGURE 11
Changes in Oxygen Composition with
Peak Temperature of Decomposition
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FIGURE 13
Changes in Hydrogen Composition with
Peak Temperature of Decompoziticn:
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