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MODELING THE UNCERTAIN IMPACTS OF CLIMATE CHAMNGE

A. M. Liebetrau
Pacific Northwest Laboratory, Richland, Washington

ABSTRACT

Human and earth systems are extremely complex processes. The modeling of
these systems to assess the effects of climate change is an activity fraught
with uncertainty. System models typically involve the linking of a series of
computer codes, each of which is a detailed model of some physical or social
process in its own right (see [5] for examples). In such system models, the
output from one process model is the input to another. Traditional methods
for dealing with uncertainty are inadequate because of the sheer complexity of
the modeling effort: Monte Carlo methods and tre exhaustive evaluation of
"what if?" scenarios to estimate sensitivities fail because of the heavy
computational burden. More efficient methods are required for learning about
system models that are constructed from a collection of computer codes.

A two-tiered modeling approach is being developed to estimate the distribution
of outcomes from a series of nested models. The basic strategy is to develop
a simplified executive, or simplified system code (SSC), that is analogous to
the more complex underlying code. An essential feature of the SSC is that it
uses information abstracted from the detailed underlying process codes in a
manner that preserves their essential features and interactions among them.

0f course, to be useful, the SSC must be much faster to run than its complex
counterpart. The success of the SSC modeling strategy depends on the methods
used to extract essential features of the complex underlying codes.

The basic idea is to develop a computationally simple approximation to the
response surface of the underlying code (i.e., to develop a SSC), using a
judiciously selected set of model runs, that retains essential model features.
The success of this strategy depends upon both the sampling design, i.e., the
method of choosing the (input points for) selected model runs, and the method

: of approximation. Efficient sampling methods exist. One of the most widely-

E used is Latin hypercube sampling (LHS), which, when used to derive suitable

- response-surface approximations, has proved very effective for sensitivity and
uncertainty analysis; see [6] or [4]. By contrast, there are few sampling

) methods that take advantage of available output information to select

. additional runs. Multivariate adaptive regression spline methods (see [1],

[2], [3]) of approximaztion are attractive because output data are exploited to

define a "good" set of input regions. A suitable class of low-order {first-

or second-degree) piecewise polynomials generally provides quite adequate

approximations.

Once derived, the response surface approximations are linked to create the
SSC. Because the approximating functions involve piecewise polynomial

T
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functions, 1inking is comparatively easy. The resulting SSC can now be used
to perform analyses that would be prohibitive with the underlying code. In
particular, well-known and widely-used sampling strategies can be employed
with the SSC to estimate parameter sensitivities and model uncertainty.

Two examples are given to illustrate the proposed methods. Both involve
analyzing the regional-scale consequences of climate change. In the first,
the problem is to estimate the effects of climate change on an agriculture-
based regional economy. In the second, the task is to estimate the effects on
regional climate and its biosystems caused by global climate changes. In this
example, the regional climate is driven from boundary conditions obtained from
a global general circulation model. In both cases, sources of uncertainty in
the outcome can be thought of as hierarchy of several layers or levels.
Moreover, each layer can give rise to (i.e., be the source of) several
distinct types of uncertainty; see [5] for amplification.
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