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1. INTRODUCTION

Many aspects of a many-body system can be described in terms of one-body
transport models in which the system at any time is characterized by its single-particle
density rather than by the full many-body information. In these one-body models,
evaluation of the single-particle density is determined by a transport equation which
contains the self—consistent mean-field potential and a-collision term due to binary two-
body collisions. Recently, this approach in a semi=classical limit with-a Boltzmann-
Uehling-Uhlenbeck (BUU) form of a collision term bas been applied to nuclear collisions at
intermediate energies [1]. Common to all one-body models, only the average effects of two-
body collisions are retained in the equation of motion-and higher order correlations are
entirely neglected. This approximation corresponds to an ensemble averaging which is
evident, for example, from the "molecular cha9s assumption” introduced in derivation of
Boltzmann equation. As a result, these one-body models determine the ensemble averaged
single-particle density and cannot provide a description for the fluctuation processes in
nuclear collisions. On the other hand, at low and intermediate energies dynamical
fluctuations are substantial due to large available phase space for decay into many final
states. Therefore, it is of great interest to improve one-body transport models by

incorporating dynamical fluctuations due to high order correlations into the equation of
motion.

2. STOCHASTIC BUU EQUATION

Recently, we proposed an extension of one-body transport theory by incorporating
fluctuations into the equation of motion in a statistical approximation [2]. In a dilute
system, dynamics is mainly determined by two-body collisions, which (1) produce
dissipation by randomizing the singie-particle momentum distribution and (ii) induce
fluctuation by propagating correlations in phase-space. These two effects can be
incorporated into the equation of motion for the single-particle density. This yields in
semi-classical limit a stochastic BUU equation, or Langevin-Boltzmann equation, for the
fluctuating single-particle density,

[% + 5 =W - Vp] f(r,p,t) = K(f) + 6K(r,p,t). (2.1)
Here, K(f) has the form of the usual collision term in terms of fluctuating density,

K(fy) = (2?&)’ f dpdpadp W(12;34)[fof o F 1 F; — 51 i) (2.2)

where g is the degeneracy factor, f; = 1(rj,pj,t), f; = 1 —f; and the spin-isospin averaged

~*Work is supported in part by US—-DOE grant DE-FG05—-89ER40530.

QOCUMENT S UNLIMITES

+ MASTER

DISTRIBUTION OF THIS



transition rates are given in terms of N-N cross-section by

W(12:34) = g 386(p1 + P2 — s — B)i(e1 + €2 — €3 — €4). (2.3)

The additional term &K in eq. (2.1) arises from correlations not accounted by the collision
term K(f), and it is referred to as a fluctuating collision term. The fluctuating collision
term varies rapidly in time with a characteristic time in the order of duration time of a
two-body collision, and it is nearly irzpossible to calculate it explicitly. Therefore, it is
assumed that eq. (2.1) describes a stochastic process in which the entire single-particle
density is a stochastic variable and K acts like a random force. The fluctuating collision
term is characterized by a correlation function,

oK(x,p,t)0K(T,p" t") = C(p,p’) 6(r —r')é(t —t*) (2-4)

which is local in spatial coordinates due to localized two-body collisions. In a weak-
coupling limit, the correlation function C(p,p’) is explicitly evaluated and given by

C(p,p’) = f dpadpaW(11/;34)[ffy’ 384 + T,E, faf4]
-2 f dpadp W(12i1" [l T + Tty 1] (2.5)

+8(p - p) [ dp2dpadpaW(1234)[fifaEaE4 + TiFofif]
where W is the same transition rate which enters into the collision term K(f).

The correlation function C(p,p’) is entirely dstermined by the average properties of
the single-particle density. The parameters such as the mean-field potential and N-N
cross-section determining the average properties also describe the fluctuations in the
framework of the stochastic BUU model. This result can be regarded as a consequence of a
"fluctuation-dissipation theorem" which relates the fluctuation and dissipation properties
locally in phase-space. The stochastic BUU equation describes the dynamical evolution as
a diffusion process for the trajectories of single-particle density in an abstract space of all
single-particle densities. This description is equivalent to a generalized FP equation in
infinite dimensions for the probability distribution function of the single-particle density.
In some situations, instead of the full probability distribution of the single- particle density,
we may consider its first moment and second moment, i.e., variance and co-variances of
density. For small fluctuations, the equation for the first moment is just the BUU
equation describicg the mean trajectory, and the equation for the second moment can
easily be deduced trom the stochastic BUU eq. (29 [2]. A similar equation for the second
moment of density is derived using a somewhat different approach in reference [3].

3. APPLICATION TO NUCLEAR COLLISIONS

The stochastic BUU model summarized in the previous section provides an extended
one-body transport description of many-body dynamics by incorporating dynamical
fluctuations in a theoretically sound basis. It opens up a possibility for a dynamical
description of multifragmentation processes in nuclear collisions at intermediate energies.
By employing standard methods for solving a typical Langevin equation, we can obtain the
numerical solutions of eq. (2.1) iteratively over short time intervals 14] Starting with a
definite density f(t) at time t, eq. (2.1) generates a set of densities {f{t+At)} at time
t+At. For the next step, we choose one of such possible states as the initial state, and eq.
(2-1) generates a new set of states at the next time step, and so cn. At each step the



generated states are randomly distributed around the initial state and their spread is
determined by the correlation function C(p,p’). In order to make this simulation
numerically tractable, we project the fluctuations on a collective property Q(p) and

determine the spread of trajectories in terms of the collective variable, Q= ﬁpQ(p)f(p,r,t).
The reduced correlation function corresponding to the collective variable is given by

c=[ dp,dpsdpsdpe(AQ)° W(12;34) 54 (3.1)

where AQ=Q(p1)+Q(p2)—Q(P3)—Q(p4). CQ is proportional to the diffusion coefficient for

the collective variable and it determines the rate of change of fluctuations in G. Now, we
can easily solve the Langevin process associated with Q by modifying it at each time step
according to

tFat
Q-Q+w | S arCyt) (3.2)
[ t

where w is a normally distributed random variable. Once the fluctuations are inserted in
Q, we can generate an event by renormalizing the momentum distribution to the new value
of Q at each time step.

We performed numerical calculations based on the scheme presented here, in which
the collective variable is chosen at the zcomponent of the quadrupole moment of the local

momentum distribution along the beam axis, Q(p =2p:—p:-p2. Each event of eq. (2.1) is
simulated with the help of the so-called Landau-Vlasov a.lgorit{nm [5]. Fig. 1 shows the
time evolution of the diffusion term together with the time evolution of the mean value of
Q in a head-on collision of 12C+12C system at various energies. From Fig. 1, we can see
that the fluctuations are large and peaked in time. There 18 a well-defined narrow peak
just after touching. The peak in the fluctuations is an order of magnitude larger than the
background which consists of numerical and thermal fluctuations. Consequently, large
dynamical fluctuations are introduced during the early stages of the collision. As a first
application, we study 40Ca+4Ca collision at bombarding energies E=20 and 60
MeV/nucleon. The collision at 20 MeV /nucleon is a typical low energy, ircomplete fusion
reaction. Fig. 2 shows the mass spectra obtained in both the BUU and the stochastic BUU
approaches. Both calculations lead to a similar result, namely an incomplete fusion residue
of mass A~45 together with a large number of nucleons and a few very small fragments,
A~2-3. This result is very interesting for two reasons: (i) at low energies, the fluctuating
theory does indeed lead to a fusion residue and not to an uncontrolled break-up of the
nuclear system, (ii) as expected at low energies, the fluctuating theory gives essentially the
same result as the average result of the BUU description. At higher energies, E/nucleon >
50 MeV, multiragmentation is expected to occur. As can be seen from Fig. 3, the
stochastic BUU calculations lead to a very reasonable mass spectrum of the produced
fragments. The mass spectrum is an inclusive quantity which hardly discriminates between
available theoretical descriptions. However, it provides a check on the reliability of our
calculations. Investigation of more specific and sensitive observables is currently being

performed.

1. G. F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 190.

2. i (A1{)181§))and C. Gregoire, Phys. Lett. B212 (1988) 269, and submitted to Nucl. Phys.



J. Randrup and B. Remaud, preprint LBL—25852 (198

bl ol o

G. Welke, R. Malfliet, C. Gregoire, M. Prakash and E

H. Risken, The Fokker-Planck Equation, Springer ( 1982‘}

uraud, Phys. Rev. C40
(1989) 2611.
15 C* C b=0
Q (Gevsc)?|y 50 Evis
22 ' “ e 30 MeV/A
[— 60 MeV/A
3
sl
A}
\“_
P S -~
0 »® & ™
time (fm.c)
12 Cs rzc b=0
sl 50 Evis
PR —.— 30 MeV/A
5},50" Jot” 1 — " soMewa
) —_ 60MeV/A
lGeV/cI‘ 05
ot PR T T »-
Y o 60 ™
Touching Pk time (fm/c)
Figure 1
Ae “Cas“ca  E-60MewA
h b=0
A wCa# mca E=20 MeV/A |i 50 Events
b-0 Iy
20 Events 15 - i
Mulfiphcily
' Multiplicity !]l
0 - 10 - |=
1)
Ih
; ; :P
} 5 - || H
! ' il
] |
: |=5 bl
A gl ity
ocemn "2 .‘n.ouza e 4~l""" >
0 ¢ 81256520228 0 4
Masses Masses
Figure 2 Figure 3



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employecs, makes any warranty, express or implied, or
assumes any legal liability cr responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process-disclosed, or represents
that its use would not infringe privately owned rights. Refercace herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do mot necessarily state or
reflect those of the United States Government or any agency thereof.



