
LBL-1l298 <': ~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics, Computer Science &
Mathematics. Division

To be presented at the International Computer Symposium on Software
Development: Methodology and Management, National Chiao Tung University,
in cooperation with Academia Sinica~ Taipei, Taiwan, Rep. of China,
December 16-18, 1980

HIGH LEVEL PERFORMANCE ESTIMATE OF RELATIONAL QUERIES

Harry K. T. Wong

August 1980

TWO-WEEK LOAN COpy

This is a Library Circulating Copy
w'hich may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

' ..

High Level Performance
Estimate of Relational Queries

by

Harry K. T. Wong

Department of Computer Science & Applied Mathematics
Lawrence Berkeley Laboratory

University of California
Berkeley, California

Abstract

Performance estimate of queries is a necessary part of

any efficient database design methodology. In this paper, a

high level performance estimator for relational queries is

presented which is different from conventional evaluators

such as SYSTEM R [Selinger 1979] in that performance is

predicted without the details of the low level constructs

such as links and indices. Rather, abstractions and reason-

able assumptions of these low level constructs are used in a

set of formulas to estimate the performance of a set of

queries against a schema.

The major results of the paper are (1) The realization

and motivation of the need of high level performance estima-

tors of this kind, and (2) a fast way to estimate the cost

of N-way joins. The second result is interesting in that

the algorithm for N-way joins is found to be similar to

matrix multiplication optimization, with straight forward

This work was supported by the Applied Mathematical Sci
ences Research Program of the Office of Energy Research U.S
Department of Energy under contract W-7405-ENG-48.

1

extensions.

2

The motivation of this research comes from a project on

relational database design [Wong and Shu 1980]. Some under

standing of our database design approach will help to

motivate the need of high level evaluators.

Our database design approach is based on the conviction

that semantics and efficiency are two inseparable, crucial

database design issues. The semantics of a database is usu

ally expressed via a set of legality conditions, called

semantic integrity constraints. Examples are functional

dependencies, subset-superset relationships, cardinality of

relationships, etc. Our database design methodology hinges

on a technique that can 'trade' semantics with performance.

More specifically, a method is developed so that given a set

of processes (representing the application dynamics) and a

set of integrity constraints (representing the semantics of

3

the application), an additioncil set of proce~ses will be

generated which are required to enforce the integrity con-

straints when the original set of processes is active in the

application. This extra set of processes will-represent the

effort needed to enforce the integrity constraints. A sim-

pIe example here will clarify the approach:

Given a relation

PRODUCT PNO, VENDOR, PRICE, PNAME),

assume that we have an integrity constraint on PRODUCT

PNO -> PNAME

which asserts that a given value from PNO uniquely deter-

mines a value from PNAME. The following process

insert (p,s,50,'xyz') into PRODUCT

requires the enforcement of the functionality PNO -> PNAME.

The following enforcement process is generated along with

several alternatives as an extra process to the original

insert

update PRODUCT
set PNAME = 'xyz'
where PNO = P

The meaning of this statement is that the function PNO ->

PNAME is maintained by updating all the ranges of p to the

value 'xyz'.

Now, the 'goodness' of a schema candidate can be meas-

ured by the efficiency of running the original set of

processes and the set of the generated processess. That is,

each time a schema is 'tuned' , in addition to the effi-

4

ciency of the original processes, the efficiency of the gen-

erated processes is also subject to optimization.

with this technique, database design is transformed

into a more technically tractable problem: the optimization

of the performance of two sets of processes. The second set

of processes (corresponding to the enforcement of con-

straints) is dependent on how the schema is changed, so this

optimization of performance is not the same optimization

problem in traditional physical database design, which is

concerned with a single set of processes throughout the

design procedure. Our objective is to derive a schema so

that the cost of running the original processes and the

extra processes is smallest.

Coming back to our example above, if insertion activi-

ties on relation PRODUCT are done often, the frequency of

running the extra process is large and the cost of running

it is large. An alternative in our methodology will con-

sider is to break PRODUCT into two relations:

PRODUCTI
PRODUCT2

PNO, VENDOR, PRICE)
PNO, PNAME)

And now the extra process is no longer necessary since the

functionality PNO -> PNAME is now expressed directly in PRO-

DUCT2 and its enforcement is part of the underlying DBMS.

However, this breaking up of PRODUCT may increase the fre-

quency of an expensive activity: join of PRODUCTI and PRO-

DUCT2. If this need of join is in frequent demand, the

decision of breaking up PRODUCT may be negated depending on

5

the estimated savings.

Given a relation schema R, a set of processes P and a

set of integrity constraints I, a methodology (which is

reported in [Wong80]) is used to generate a set of processes

pi which is required to enforce I when P is active. If cost

is a function of efficiency estimate of processes, the prob

lem of database design can now be stated as:

Derive a schema R so that cost (P) + cost (Pi) is minimal.

The meaning of this statement is that database design

is a tradeoff between performance and integrity. If we

modify schema R to reduce the cost of P, for example, we may

and usually will) introduce more integrity problems in R

(such as unnormalized relations, update problems), but these

integrity problems will be translated into extra processes

in pi, and the overall cost of P and pi may stop us from

modifying the schema. Using the above statement as our

objective, therefore, will guide us to derive a schema which

is reasonable in performance andy~t without intolerable

(i.e., expensive to enforce) integrity problems. Contrary

to traditional database design methods, our approach will

allow a schema with integrity problems (such as having rela

tions not in second normal form) as a candidate design as

long as it is comparatively inexpensive to enforce or repair

the integrity.

The methodology of generating processes from a set of

processes to enforce integrity is described in [Wong 80].

6

Because of our approach, a tremendously large solution space

of schemata is being explored for an efficient design. The

cost of examining all possible physical designs for each

schema candidate in order to evaluate the cost of a schema

is prohibitively expensive. In the second half of this

paper, we will describe a fast performance estimator used to

implement the cost function mentioned above. In our evalua

tor approach, a high level model is designed so that only

abstractions and reasonable assumptions of low level con

structs such as links and indices are used to calculate an

estimate of a schema. Section two reports an attempt to

design such a performance model that can provide fast yet

reasonable estimates of how efficient a schema is with

respect to a set of queries.

A high level relational query language called SQL

[Chamberlain 1976] will be used to express the set of

processes that represent the operation of the application.

It will be assumed that the reader is familiar with rela

tional model concepts (Codd 1970].

2. Performance Estimate

In our model, we assume a simple storage. structure of

relations. Relations are stored consecutively in pages and

they can be sorted in the order of anyone of the columns.

The unit of cost measure is the number of pages fetched from

the secondary storage.

7

The following information on the schema is assumed to

be available:

The size of each relation in the schema (the estimated

number of pages and tuples).

The cardinality of all columns of each relation. The

cardinality of a column Aof relation R is the number

of distinct values that can ~ccur in column A in ill

tuples in R. For example, the age attribute of the

PEOPLE relation may have a cardinality of 100. One

further assumption is that the values of any column of

any relation are evenly distributed. This means, for

example, that one percent of the tuples in PEOPLE have

the age value of 60. Rough as it is, this assumption

provides a reasonable solution in simplifying the for

mulas in the model.

The high and low values of every column in every rela

tion. For example, 1 and 10D are respectively the low

and high values of column age of relation PEOPLE.

The maximum size (# of bytes) of every column of every

relation.

The above information is actually derived from a

requirement specification by the users of the applicaton.

The requirement specification language is described in [Shu,

Wong & Lum 1980] and the derivation of information is

described in [Wong 1980 c].

A SQL query has the form

8

SELECT ...
FROM .•.
WHERE Q

Q is a predicate expressing a condition which the resulting

tuples from the query have to satisfy. To estimate the cost

of a query, the 'selectivity factor' of Q will have to be

estimated. The selectivity factor of Q is a number

representing a fraction of the tuples predicted to satisfy

Q. The selectivity factor of any predicate P can be com-

puted from the components of P [Selinger 1979]. Below are

some examples of selectivity factors of our model which are

essentially that of [Selinger 1979].

Let SF stand for Selectivity Factor.

If Q has the form "column = Value", then SF = l/(cardi-

nality of column). This is the result of the even distribu-

tion assumption mentioned above.

If Q has the form "column BETWEEN valuel, value2", then

SF = (value2-valuel)/(high value low value). This is

obtained through linear interpolation on values of a column.

If Q has the form "Ql AND Q2", then SF = (SF of Ql) *

(SF of Q2). Other example are covered in [Selinger79].

Given a query of the form

SELECT ...
FROM Rl, R2, ... Rn
WHERE Q

Q is a predicate expressed in conjunctive normal form. We

will use the notation SF(Rj) to stand for the selectivity

9

factor of the conjuncts of Q which are "local" to Rj. A

predicate is local to Rj if it involves only columns from

Rj.

The following notation is used throughout.

P(R)

N(R)

number of pages occupied by relation R

number of tuples of relation R

L(R) or L(R,A) length of tuples (# of bytes) of

relation R or length of column A of R.

C(R,A) Cardinality of column A of relation R

There are three main formulas in the model: single

relation query, simple join and N-way joins.

Simple relation query: Consider a query of the follow-

ing form

SELECT A, B, ...
FROM R
WHERE Q
ORDER BY J

The meaning of this query is that the tuples of relation R

are scanned and those that satisfy the predicate Q will have

their columns A,B, ..• projected and presented in the order

of column J.

If the relation R is sorted on column J, the cost would

simply be the estimated number of pages fetched, i.e.

SF(R) * P(R)

If, however, sorting is needed, cost

SORTING(R,J)*SF(R) is added to the formula above. SORTING

is a function to estimate the cost of sorting a relation on

10

j -

a column. It is similar to that of SYSTEM R and will not be

presented here.

Simple joins : Given a join query of the form

SELECT A,B, ...
FROM RI, R2
WHERE QI AND RI.A = R2.A

First, if both RI and R2 are sorted on column A, there

are SF(RI) * peRl) pages to be fetched from RI for tuples

estimated to satisfy the local predicate of RI in QI. It

take~ SF(R2) * P(R2) pages to find the matching tuples for

the join from R2 that satisfy the local predicates of R2 in

QI, hence the cost is

SF(RI) * peRl) + SF(R2) * P(R2)

If RI or R2 is not sorted on A, the cost of SORTING(Rl,

A) or SORTING (R2, A) or both is added to the above formula.

~-way joins

Given a join expression of the following form:

Rl[A]R2[B]R3[C]R4

where A, Bf C, 0.' are join columns between relations Rl,

R2, R3, We need to decid~ the order of doing the joins

so that the cost (# of pages fetched) is minimal. For exam-

pIe, the ordering

«RI[A]R2) [B] (R3[C]R4))

may be less expensive than

«(RI[A]R2) [B] R3) [C] R4)

even though the result is the same.

11

SYSTEM R considers the join order determination of N

way join. Starting with access paths to single relations,

the method is to consider all combinations of doing 2-way,

3-way and N-way joins among the relations with pruning

heuristics to cut down the search space. In this paper, a

different method is used. First, because of the lack of

access paths, the search space is smaller. Second, a more

efficient way of organizing the search is found. The idea

is that N-way join order determination is found to be simi

lar to matrix multiplication where a sequence of submatrix

multiplications is found so that the number of .arithmetic

operations is the smallest. The relations RI, R2, R3, R4

above can be thought of as the matrices involved and join

columns A, B, C, Dcan be thought of as the dimensions of

the matrices. A similar solution to the matrix multiplica

tion optimization can be used to find the optimal ordering

of join expressions. The technique used in the matrix mul

tiplication is a common technique called Dynamic Programming

[Aho et. a174] and can be used to compute the N-way join

cost. Starting with the 2-way joins, we successively com

pute the cost of larger and larger segments using the inter

mediate results of the smaller segments. The larger seg

ments themselves in turn are saved for yet larger segments

in the join sequ~nce. Let c be the cost function and c(i,

j) stands for the cost of doing the join sequence

Ri [] ... [] Rj .

12

Computing c(i,j) for the segment

Ri [] •.. [] Rj

involves locating a k between iand j so that the expres

sion:

c(i,k) + c(k+l,j) + cost of joining the two composite

relations

is smallest. Since the results of the' computations c(i,k)

and c(k+l,j) have been saved, the best cutting point k can

be efficiently found. In order to compute the cost of join

ing composite relations, we need to find the parameters of

the joined relations (such as N(R) and P(R)). This is

illustrated next.

We assume that the cardinalities of column A in the

join expression Rl[A]R2 ate the same, denoted by C(A).

First, the number of tuples in the join expression Rl[A]R2

is the the product of the cardinalities of Rl and R2 times

the product of their selectivity factors. To eliminate the

duplicated tuples due to the repeated value of column A, we

have to divide the result by the cardinality of column A.

This gives us the formula:

N = (N(Rl) * N(R2) *SF(Rl) * SF(R2))/C(A)

The number of pages occupied by these N tuples is bounded by

this number

P = N*(L(Rk) + L(R(k+l)) - L(Rk,A))/S

where S is the page size (number,of bytes).

13

Given Nand P, the cost of joining two composite rela

tions c(i,k) and c(k+l, j) can be computed using the formu

las for simple joins.

The following program describes the N-way join in a

more precise manner. Note that the cost of joining rela

tions Ri and R(i+l) is obtained from formulas listed above.

do i = 1 until n

c(i,i) = 0

end

/* d is a variable for the size of the join segment*/

/* i points to the beginning of the join segment */

/* j points to the end of the join segment and it */

/* is always equal to i+d */

do d = 1 until n-l

end

do i = 1 to n-d

j = d + i

end

c (i , j) = min (c (i , k) + C (k + 1 , j) + co s t 0 f

joining the two composite

relations) where i <= k < J

N-way join program

This algorithm has a computational complexity of O(n 3) where

n is the number of relations in the join sequence.

14

3. Conclusion

In this paper, we have presented a high level perfor

mance estimator that provides fast estimates of the cost of

a set of queries against a schema. The main goal of the

paper is to point out the need of this kind of estimator

where only the abstractions of low level constructs are used

to predict the efficiency of queries at the schema level,

not at the detailed physical structure level. Because the

latter level involves a large number of possible physical

structures for each schema, it is very expensive to evaluate

the efficiency of a large number of schemata since a very

large number o~ possible physical structures will have to be

looked at in order to decide whether a given schema can (or

cannot) have efficient physical design. This paper

describes a high level evaluator for relational queries.

This evaluator is used to give rough estimates for our data

base design methodology. Some interesting problems related

to this research are listed below.

- Incorporating the abstract forms of lower level physical

structures such as links (indexes) into the high level

evaluator so that the evaluation can be done more accu

rately,

- validation of the evaluator so that each underlying

assumption can be judged on its effect on cost esti

mates,

- examination of a similar evaluator for different data

15

models such as DBTG or IMS to see if it is possible to

come up with a set of reasonable assumptions and fast

formulas to predict efficiency, and

- consideration of more complicated query types such as

nested queries, and update commands such as insert and

delete.

Acknowledgement The author would like to thank Dr. Don Aus-

tin for his helpful comments. The careful and critical

review of Dr. Arie Shoshani is very much appreciated.

16

Reference

Aho, A.V., Hopcroft, J.E., Ullman, J. D., The Design and
Analysis of Computer Algorithms Addison=wesley, 1974-.--

Astraban, M.M. et aI, "SYSTEM R: Relational Approach to
Database Management", TODS Vol. 12, 1976.

Chamberlain, D.D. et al., "SEQUEL2: A Unified Approach to
Data Definition, Manipulation, and Control," IBM ~. of
Research and Development, Vol. 20, #6, 1976.

Codd, E.F., "A Relational Model of Data fOr Large Shared
Data Banks," CACM, Vol. 13, #6, 1970.

Hammer, M., Niamir, B., "A Heuristic Approach to Attribute
Partitioning," PROC. SIGMOD 79, Cambridge, MA.

Selinger, P., G. et a1. "Access Path Selection in a Rela
tional Database Management System," PROC. SIGMOD 79,
Cambridge, MA.

Shu, N., Wong, H.K.T., LUM, V., "Forms Approach to Applica
tion Specification for Database Design," IBM Research
Lab., RJ2687, 1980.

Wong, H.K.T., Shu, N., "An Approach to Relational Database
Schema Design," IBM Research Lab., RJ 2688, 1980.

Wong, H.K.T.,"Semantics, Performance Tradeoff in Relational
Datab~se Design," to appear.

Wong, H.K.T., "Database -Application Development Through
Requirement Specification," to appear.

17

L
1

. ,
"

This report was done with support from the United States Energy Re
search and Development Administration. Any conclusions or opinions
expressed in this report represent solely those of the author(s) and not
necessarily those of The Regents' of the University of California, the
Lawrence Berkeley Laboratory or the United States Energy Research and
Development Administration.

) .
·1 " f? to 1lOJ;~ 'f';-~~

f' ~
''':"

f'1 0 tl ~ t, ~. f

(;) "

