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ABSTRACT 

Evaluation of the effects of backfilling nuclear waste repository 

rooms is an important aspect of waste repository design. Consolidation 

of the porous backfill takes place as the room closes with time, causing 

the supporting stress exerted by the backfill against the intact rock to 

increase. Estimation of the rate of backfill consolidation is required 

for closure rate predictions and should be possible if the creep law for 

the solid constituent is known. A simple theory describing consolidation 

with a spherical void model is derived to illustrate this relationship. 

Although the present form of the theory assumes a homogeneous isotropic 

incompressible material atypical of most rocks, it may be applicable to 

rock salt, which exhibits considerable plasticity under confined pressure. 

Application of the theory is illustrated assuming a simple steady-state 

creep law, to show that the consolidation rate depends on the externally 

applied stress, temperature, and porosity. 
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List of Symbols 
True stress 

True deviatoric stress 

True strain 

True plastic strain 

True stresses in the triaxial loading 
configuration 

e-j» £n - e, True strains, strain increments, and plastic 
^ strain increments in the triaxial loading 

d£. , d€„ = d€_ configuration 
p P p de£, de£ = de^ 

0 > OJ = g. Irae stresses in the spherical shell 
r ™ ° configuration 

e > e„i = e 0 T r u e strains, strain increments, and plastic 
" " strain increments in the spherical shell 

de , dtj = de configuration 
,„P j.P ..P 
de , d€j = de„ 
r' 0 9 

— P 
e Equivalent plastic strain 

Equivalent plastic Btrain increment 

Equivalent stress 

True axial strain rate in the triaxial 
loading configuration 

Time 

Temperature 
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List of Symbols (Coat.) 

t, 

at 

a, b , b See Figure 1 

Porosity 

£1 
dt 

A, B, Q, H, u, and n Constants iu the siipgsle creep model given 
by Equation (3.1) 
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Introduction 

Evaluation of the effects of backfilling nuclear waste disposal 

rooms is an important aspect of waste repository programs. Backfilling 

is proposed for a number of reasons, among which are greater isolation 

of the waste and reduction of subsidence. Barriers to radionuclide mi­

gration are also possible by proper selection of backfill material. All 

of these features have in common the requirement that the rate of con­

solidation of the backfill must be determined because the backfilled 

region, between the heat source (the waste container) and the structural 

components of the repository, influences heat flow, transmissivity of 

fluids, and the extent of deformation of the structure itself. 

Complete elimination of porosity during backfilling operations is 

believed to be virtually impossible. Therefore, structural response and 

permeability calculations require a constitutive relationship for a porous 

material in a temperature field with an externally applied pressure 

(imposed by creep of the solid rock surrounding the repository). A con­

siderable advantage will be gained in the development of these consti­

tutive relations if the creep consolidation of the porous material can be 

described in terms of the creep characteristics of its solid constituent. 

Success in this approach minimizes the need for a large and costly 

material testing* program to establish the creep properties of materials 

of varying porosity all composed of the Bame solid. 

The relationship between dynamic inelastic compaction of a porous 

solid and deformation of its solid matrix has been considered in detail 

in shock mitigation studies. The possibility exists, therefore, of 

addressing creep consolidation of porous materials in an identical manner. 
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The purpose of this report 1B to suggest a theoretical approach by which 

such a constitutive model can be developed. 

The example discussed assumes voids in the material become approxi­

mately spherical in shape after a short transient period. Some Justifi­

cation for these assumptions can be made for rock salt, which is being 

considered for backfilling WIPP waste disposal rooms, because salt deforms 

in a manner similar to metals under certain conditions. The theory in a 

more advanced state can be extended to other void geometries and the in-

compressibility assumption, which in part satisfies the conditions of 

classical plasticity theory, can in principle also be removed. A more 
(2) general theory of elastic materials with voids is also available. ' 

These more complex questions are not addressed in this paper. 

Model Description 

The compaction model is based on the symmetric collapse of a hollow 

sphere of homogeneous isotropic incompressible elastic-plastic material. 

A time-dependent pressure P(t) is applied to the outer boundary while the 

inner boundary remains stress free as shown in Figure 1. The porous 

aggregate is imagined to be a three dimensional array of these spheres, 

with the outer boundaries overlapping so that the only void volume is 

that of the spherical voids. These voids are considered noninteracting 

so that the pressure supported by the spheres is assumed to be the pressure 

supported by the porous aggregate. 

In the actual backfilling process, the aggregate is usually composed 

of sharp angular grains of rock which fit together in random orientations 

to cause a porosity in many cases of 60$ or greater. Vibratory compaction 
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can decrease the void volume to some extent, but clearly the voids are 

far from spherical. This does not completely discredit the model, however, 

because as further compaction occurs by creep the voids should become 

more spherical in nature. The progression to more spherical shaped voids 

is implied by the tendency of the voids to minimize their surface area. 

In practical application of the theory, therefore, it is necessary to ob­

tain the initial compaction response experimentally up to the time when 

the voids have developed sufficient spheroidicity. This partially de­

formed state can then be used as an initial condition for the spherical 

void analysis. Such an approach is quite consistent with our objectives, 

because it is the long term response of the backfill that we seek to 

model. Very long duration experiments are usually not conduced in great 

numbers, and yet the later stages of such experiments are precisely the 

realm where the spherical void model is expected to give realistic 

predictions. 

Theoretical Development 

a) Equivalent Stress and Strain 

The creep compaction equation derived in this section depends on the 

application of data from triaxial loading creep experiments to the 
(a) 

radially symmetric spherical shell pore collppse model, ' A similar 

analysis for cylindrical voids can be developed uuing a solution for 

creep of a tube under pressure given in Reference k. In triaxial creep 

experiments, an axial stress o\ is applied to a right circular cylindrical 

sample surrounded by a lateral hydrostatic pressure. Stresses and 
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strains for this configuration are therefore (see List of Symbols for 

symbol definitions): 

(°1' °2 = "3) ' (d°l' d 6 2 = d E 3 ) • 

The spher ica l s h e l l model, on the other hand, i s described by the following 

s t resses and s t r a i n s : 

K < s-i = 0, ,) , (de r , d« 0 - de 9j 

A relationship between these two geometrical configurations can be 

obtained by the classical plasticity method of defining plastic deformation 
— P — 

in terms of the plastic strain increment de and the equivalent stress rs. 
—P The equivalent plastic strain e is defined as: 

c P = / d c P , (2.1a) 

-F • « H *« J 1 / 2 '• (2-ib) 

In tenia of the principal strains, 

w:.th all strains expressed as true (or logarithmic) strains. If the 

Subscripts 1, 2, and 3 are used instead of r, 8, and z because the 
published material data and constitutive equations have been presented 
in this form. 
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condition is added to this definition that no volume change occurs during 

creep, 

d e ^ = 0 , (2.2a) 

the plastic strain increments for the two configurations under consideration 

are given by: 

d«£ = -2deP = de P (2.2b) 

(2.2c) 

The axial strain increment in the triaxial loading test is therefore 

equal in magnitude to the radial strain increment in the collapse of 

spherical shells and: 

-? P P 
£ = s„ = e. 

The equivalent stress is defined by: 

(2.3) 

or in terms of principal stresses 

flta-^h-a,)8*^-.^!1* (2.1b) 

This definition shows that the equivalent s tress for spherical she l l 
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collapse s equal to the stress difference la - a.)i a™i for triaxinl 

tests it is equ°i *T thD stress difference (c-, - ^s)* 

b) Compaction Equations 

Three equations are required to define the collapse of a spherical 

void with time. Two of these equations, the equilibrium condition and the 

relationship between plastic strain and instantaneous porosity, define the 

extent of compaction and the externally applied stress at any given time. 

The third equation, the creep law for the solid material, defines the 

stress that can be supported by the solid as a function of temperature and 

time. For simplicity, these equations will be discussed starting vith 

the creep law, then the equilibrium condition, and finally the plastic 

strain relationship. 

Creep constitutive equations are generally of the form 

(2.5) 

where T is the temperature. The effective stress c, strain € , and 

temperature T are functions oi t, the time, relative to some initial 

state of the material. The strain e, in this equation is assumed to be 

completely nonelastic in nature in the present analysis: i.e., elastic 

strains are considered negligible. Furthermore, a yield point or a 

threshold value for <jt below which no creep occurs, has yet to be 

established as physically realistic and so will not be considered. 

Next, the equilibrium equation for a spherical shell, 

da 



is written in terms of the equivalent stress to obtain 

60 
r "37 + 2 0 = ° • ( 2' 7 ) 

The creep law, Equation (2.5) must be solved for a, the result substituted 

into Equation (2.7), and then Equat- n (2,7) must be integrated to obtain 

the value of a at r = b (Figure 1) in order to find the externally applied r 
stress that the porous solid can support. Before this step is possible, 

however, a relationship between e , the plastic strain increment, and r 

is required. 

In the absence of any yield point for the solid material, the true 

strain increment dr of radially symmetric deformations is given by 

dC,, = ^ " , (2.8a) 

and, according to Equation (2,2c), is L I S O related to the equivalent 
dF P 

plastic ttrain dc = - -g— . Next, the equivalent strain is related to 

the strain e. of the creep law, (2.2b) so that the relationship between 

—p r 

C-, = e = -2 - (2.oo) 

Equation (2.8b) can be integrated to give 

e, = e"P = -2 In -f- , (2.8c) 

which in turn can be further simplified by evoking the constant volume 

condition in the form 
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r 3 . r 3 „ . 3 . a 3 . b 3 . fe3 (2.9) 

= -2 m "F7?! (2.10) 

One can also show that the porosity TJ is related to the dimensions of 

the spherical shell according to 

" = ? ' ^'-^ 

[T̂ i] ^ LJJ . 

(2.11a) 

and 

' • F W ^ ' 

(2.11b) 

vhere n is the initial porosity. The strain rate c from (2.8b) is 

related to the rate of change of porosity by 

4 a J 1 - i ] a°: 

[1 - tf 
(2.12) 

Porosity is defined as the fraction of the total volume occupied by the 
voids. This analysis is not sophisticated enough to consider packing 
factors and other microscopic void configuration details, all of which 
are embedded in the porosity parameters. 
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Equations (2.5), (2.7), and (2.8a) or its various forms define the 

compaction law. In applying these equations (2.7) is integrated assuming 

a stress free condition at the inner void surface to obtain the stress on 

the outer boundary, 

r b -
/ E f d r • (2.13) 

and the compaction stress is defined as 

P(t) = - a r = b . (2.14) 

Examples 

Creep response of geological materials is often observed to exhibit 

all bhree primary, secondary and tertiary stages of creep. For simplicity, 

however, application of the compaction theory will be illustrated with a 

simple steady-state creep law:^*7' 

"4 ™Vn RT e x = B e (;) ' 

where B, Q, R, u and n are constants. This law states that the steady-

state creep rate is dependent only on the instantaneous values of the 

temperature and the effective stress, both of which in the general case 

are time dependent. The next assumption is that (3.1) is a single valued 

function of the stress so that it can be inverted to 

o ' uKAe^i, I (3.2) 

where A = B" is a constant. This equation and the strain-rate equation 
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(2.12) can now be substituted into (2.13) to compute the pressure applied 

:.o the outer boundary of the spherical shell: 

= -2U / 
l[-fr)[l- T I O ] . 
3 10[1 - 1] 

£ (3.3) 

Since f] and v: depend only on a, b, and the current shell dimensions, (3.3) 

can be integrated to give the compaction stress 

P(t) = -o„ 3n 
2AeR T|-j1 
3L1 " 1] " 

n 
i - i n 

n 

n (3.U) 

There are two simple ways of examining the implications of this 

result: (1) the rate of change of porosity at constant temperature can be 

assumed constant and various stress-porosity (or stress vs time) curves 

computed, (2) the external stress can he assumed constant and the 

porosity computed as a function of time. Computational results for both 

• r • -i. .;-• .-dser have been plotted in Figures 2 and 3 using reasonable values 

for thh- various material constants. Material constant values* ' ' for 

these computations are tabulated in Table 1. The fact that infinite 

stress is required to completely eliminate all porosity is a natural con­

sequence of this type of analysis. 

Summary and Critique 

The main objective of this report is to suggest that the creep 

consolidation of a porous rock can be estimated from the creep properties 

of the solid constituent from which it is formed. The theoretical 

approach has been illustrated with a simple spherical void model of ar\ 
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homogeneous isotropic incompressible elastic-plastic material. While these 
assumptions are clearly oversimplifications of most granular materials, there 
may be some substance to the theory when rock salt is the backfilling 
material. Application of the theory is illustrated with a very simple 
steady-state creep law found to describe some parts of the creep of WIPP 
rock salt at elevated temperatures. 

Application of the theory is also clouded by the fact that the initial 
state of the backfill is apt to contain highly irregular voids. Additional 
laboratory information is required under such circumstances, to experimentally 
define compaction response up to the point where the voids become more 
spherical in nature, if, in fact, they ever do. 

Perhaps the biggest constraint on the current theory is imposed by 
the incompressibility restriction in connection with classical plasticity. 
Thus, this theory cannot offer any guidance in the consolidation of 
granular materials when fracture is an important mode of deformation. 
Dilation during inelastic deformation is a fracture related phenomenon 
which likewise does not fit within the framework of the present theory. 
If, on the other hand the rock exhibits some degree of plasticity, 
then the present theory may be of some assistance in predicting the extent 
of consolidation over a given time period. 
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Table 1: Rock Salt Material Constants 

B = 6.1*7 x 10 3/s 
Q = 0.0l»2 MJ/mol (10 kcal/raol) 

n = 0.2 
U = 9.62 GPa 
R = 8.317 j/mol°C 
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Figure 1: Spherical void model 
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Figure 2: Reduced preaaure-poroaity curvet for verloua values of comtant compaction 
rate f| aaauaing the initial poroelty no 1' 0.6. n ii the poroaity, u la 
the abear modulua and ? la the preaaure aupported by the backfill. The 
fact that tha preaaure becomea Infinite aa the poroaity approachea aero la 
a connon feature of apherlcal void modela. 
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Figure 3: Consolidation time for various values of constant pressure P and temperature T. *] is the porosity and an 

initial porosity r^ of 0.6 is assumed. The time to achieve complete compaction is infinite for spherical 
void models. 


