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ABSTRACT

Eveluestion of the effects of backfilling nuclear waste repository
rooms is an important espect of waste repository design. Consolidation
of the porous backfill takes place as the room closes With time, causing
the supporting stress exerted by the beckfill against the intact rock to
increase, Estimetion of the rate of backfill consolidetion is required
for closure rate predictions and should be possible if the creep law for
the solid constituent is known, A simple theory desecribing consolidation
wivh & spherical void model is derived to illustrate this relationship,
Although the present form of the theory sssumes a homogeneous isotropic
incompressible material atypical of most rocks, it may be applicable to
rock salt, which exhibits considerable plasticity under confined pressure.
Application of the theory is illustrated assuming a simple steady-state
creep law, to show that the consolidation rate depends on the externally

applied stress, temperature, and porosity.
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List of Symbols

True stress

True deviatoric stress

True strain

True plastic strain

True stresses in the triaxial loading
configuration

True strains, strein increments, end plastic
strain increments in the trilaxial loading
configuration

True stresses in the spherical shell

configuration

True strains, strain increments, and plastic
atrain increments in the spherical shell
configuration

Equivalent plestic strain

Equivelent plestic strain increment

Equivalent stress

True axlal etrain rete in the triaxial
loading configuration

Time

Temperature
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See Figure 1
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Constants in the simple creep model given
by Equation (3.1)



Introduction

Evaluation of the effects of backfilling nuclear waste disposal
rooms is an important aspect of waste repository programs. Backfilling
ig proposed for a number of reasons, emmong which are greater isclation
of the waste and reduction of subsidence. Barriers to radionuclide mi-
gration are also possible by proper selection of backfill meterial. All
of these features have in common the requirement that the rate of con-
solidation of the backfill must be determined because the backfilled
region, between the heat source (the waste container) and the structural
components of the repository, influences heat flow, transmissivity of
fluids, and the extent of deformation of the structure itself.

Complete elimination of porosity during backfilling operations is
believed to be virtually impossible. Therefore, structural response and
permeability calculations require a constitutive relationship for a porous
material in a temperature field with en externally applied pressure
(imposed by creep of the solid rock surrounding the repository). A con~
siderable advantage will be galned in the development of these consti-
tutive relations if the creep consolidation of the porous material can be
described in terms of the creep characteristics of its solid constituent.
Suecess in this approach minimizes the need for a large and costly
material teating progrem to estublish the creep properties of materials
of varying porosity all composed of the same solid.

The relationship between dynamic inelsstic compaction of a porous
solid and deformation of its solid matrix has been considered in detail
in shock mitigetion studies.(l) The posgibility exists, therefore, of

addressing creep consolidation of porous meterials in an identical manner,
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The purpose of this report is to suggest a theoretical approach by which
such a constitutive model can be developed.

The example discussed assumes voids in the material become approxi-
mately spherical in shape after a short transient period. Some justifi-
cation for these assumptions can be made for rock salt, which is being
considered for backfilling WIPP waste disposal rooms, because salt deforms
in a msnner gimilar to metals under certain conditions. The theory in a
more advanced gtate can be extended to other void geometries and the in-
compressibility assumption, which in part satisfies the conditions of
classical plasticity theory, can in principle mlso be removed. A more
general theory of elastic materials with volds is also available.(z)

These more complex questions are not addressed in this paper.

Model Description
The compaction model is based on the symmetric collapse of a hollow

sphere of homogeneous isotropic incompressible elastic-plastic material.
A time-dependent pressure P(t) ia applied to the outer boundary while the
inner boundary remains stress free as shown in Figure 1. The porous
aggregate 1s imagined to be a three dimensional array of these apheres,
with the outer boundaries overlapping so that the only void volume is
that of the spherical voids. These voids are considered noninteracting
so that the pressure supported by the spheres is assumed to be the pressure
supported by the porous aggregate.

In the actual backfilling process, the aggregate is usually composed
of sharp angular grains of rock which fit together in random orientationa

to cause a porosity in many cases of 60% or greater, Vibratory compaction



can decremse the void volume to some extent, but clearly the voids are
far from spherical, This does not completely discredit the model, however,
because as further compaction occurs by creep the voids should become
more sphericel in nature. The progression to more spherical shaped volds
is implled by the tendency of the volds to minimize their surface area.
In practicel application of the theory, therefore, it is necessary to ob-
tain the initial compaction response experimentally up to the time when
the voids have developed sufficient sphernidicity. This partially de-
formed state cen then be used as an initial condition for the spherical
void analysis. Such an approach is quite consistent with our objectives,
because it is the long term response of the backfill that we seek to
model. Very long duration experiments are usually not conducred in great
numbers, and yet the later steges of such experiments are precisely the
reelm where the spherical void model is expected to glve realistic

predictions.

Theoretical Development

a) Equivalent Stress and Strein

The creep compaction equetion derived in this section depends on the
application of data from triaxial loamding creep experiments to the
radially symmetric spherical shell pore collepse model.(3) A similar
analysis for cylindrical voids can be developed using & solution for
creep of a tube under pressure glven in Reference 4, In trisxial creep
experiments, an axial streas oy is applied to a right circular cylindrical

sample surrounded by a lateral hydrostatic presaure, Stresses and

11



strains for this configuration are therefore (see List of Symbels for

gymbol definitions):*
(’1’ o, = 53) , (dl:l, g, = des) .

The spherical shell model, on the other hand, is described by the following

stresses and strains:
(ar, oy = cg) , {dcr, any = des)

A relationship between these two geometrical configurations can be
obtained by the classical plasticity method of defining plastic deformation
ibe o

in terms of the plastic strain increment EEP and thz equivalent stress 7.

The equivalent plastic strain EP is defined as:

I =, (2.10)
where
—F B | p .p ] 102 -
de -Jg ldtid dsid} . (2.1b)

In terus of the principal strains,

R S 1 R

with all struins expressed as true (or logarithmic) strains. If the

*

Subscsipts 1, 2, and 3 are used ingtead of r, @, and z because the
published material data and conatitutive equatlons have been presented
in this form.



condition is added to thls definition that no volume change occurs during

creep,

d:P =0 . (2.2a)

the plastic strain increments for the two configurations under consideration

are given by:

P_ P . 3P
gy = -2de] = & (2.2b)
and
del = -20¢] = F® (2.2¢)

The axlal strain increment in the triaxial loading test 1s therefore
aqual in magnitude to the redial strain increment in the collapse of

spherical shells and:

el (2.3)

The equivalent stress is det'ined by:

e 3"1.1' °1JI;1/2 ’ (@ ke
or in terms of principal stresses
- . 1 2 2 2{1/2
R L A A N L A AN P

This definition shows that the equivalent atreas for spherical shell
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collapse ; equal to the stress difference (Ur - qe), and for triaxial

tests i% 15 equel *~ %Lz stress difference Pl - 03).

b) Compaction Equations

Three equations are required to define the collapse of a spherical
vold with time. Two of these equations, the equilibrium condition and the
relationship between plastic strain and instantaneous porosity, define the
extent of compaction and the externally applied stress at any given time,
The third equation, the creep law for the solid meterial, defines the
stress that can be supported by the solid es a function of temperature and
time. For simplicity, these equations will be discussed starting with
the creep law, then the equilibrium condition, and finally the plastic
strain relationship.

(5)

Creep constitutive equations are generally of the form

£l = él(;’ €19 T) k) (2.5)

where T is the temperature. The effective stress T, strain €., and

1
temperature T are functions ol t, the time, relative to gome initial
state of the material, The strain € in this equation is assumed to be
corpletely nonelastic in nature in the present analysis: 1i.e., elastic
strains are considered negligibvle, Furthermore, a yield point or a
threshold value for 5, below which no creep occurs, has yet to be

established as physically realiatic and so will not be considered,

Next, the equilibrium equation for a spherical ghell,

da,
rTi?+2(Ur' ce) =0 , (2.6)



is written in terms of the equivalent stress to obtain

dUr _
r-ar—"'20=0 . (27)

The creep lew, Equation (2.5) must be solved for 3, the reuult substituted
into Equation (2,7), and then Equat. n (2.7) must be integrated to obtain
the value of g, at » =D (Figure 1) in order to find the externally applied
stress that the porous solid can support. Before this step is possible,
however, a relationship between 21, the plastic strain increment, and r
is required.

In the absence of any yleld point for the solid material, the true

strain increment de_ of radially symmetric deformations is given v

g

ae, ="—r , {2.8a)

and, according to Equation (2,2c), is ulso related to the equivalent
plastic ctrain dee = - 5%— . Next, the equivalent strain is related to

the strain € of the creep law, (2.2b) sc that the relationship between

the strain rate él and t ie

_P_ L F Lo
gy € = 2 p (2.00)
Equation (2.8b) can be integrated to give
=P T
€ =¢ = -2 1ln FE (2.8¢c)

o]

which in turn can be further aimplified by evoking the constant volume

condition in the form

15



r3-.=a 3. 33 =p 3.3 . (2.9)

0 that

e = -2 In I . (2.10)

One can also show that the porosity* T 18 related to the dimensions of

the spherical shell according to

33 a
n=% , "= (2.11a)
b

and (2.11b)

vhere T is the initial porosity. The strain rate él from (2.8b) is

related to the rate of change of porosity by

3
1.
;’lL—BJ—B . (2.12)

b - 1% r

& =

win

tPorosit:y is defined as the fraction of the total volume occupied by the
voids, This analysis is not sophisticated enough to consider packing
factors and other microscopic void configuration details, all of which
are embedded in the porosity parameters.



Equations (2.5), (2.7), and (2.8a) or its various forms define the
compaction law, In applying these equations {2.7) is integrated assuming
a stress free condition at the inner void surface to obtain the stress on
the outer boundary,

¥ o} —
Opep = - f 2 g ar |, (2.13)
a

and the compaction stress is defined as

P(t) = -0, . ) (2.14)

=b

Examples

Creep response of geological materials is often observed to exhibit
all three primary, secondary and tertiary stages of creep., For simplicity,
however, application of the compaction theory will be illustrated with a

simple steady-state creep law:(5’6)

=B (3.2)

-R_%.' El/n
& ¢ ()

%)

where B, Q, R, U and n are constants. This law states that the steady-
state creep rate is dependent only on the instantaneous values of the
temperature and the effective stress, both of which in the general case
ere time dependent. The next assumption is that (3.1) is a single valued

function of the stress so that it can be inverted to

g = H(Aeﬁ%' )n (3.2)

where A = B'l is a constant, This equation and the strain-rate equation

17 L
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(2.12) can now be substituted into (2.13) to compute the pressure appliea

+2 the outer boundary of the spherical shell:

L n
. BT 3
o] ea[-h |1 -n [fTa
= -2u f 7] ol o | & (3.3)

g, =
r=o a 3 ﬂo[l - Tﬂz 3 r

Since % end T depend only on 4, D, end the current shell dimensions, (3.3)

can be integrated to give the compaction stress

AT .
_ _2u |2ae 1-1
P(t) = -0, - —[—Lﬁ\” : L = - (3-4)

There are two éimple ways of examining the implications of this

result: (1) the rate of change of porosity at constant temperature can be
assumed constant and various stress-porosity (or stress vs time) curves
co;puted, (2) the external stress can be assumed constent and the

porosity computed as a funétion of'time. Computational results for both
<" *ew 3¢ caser have been plotted in Figures 2 and 3 using reasonable values
for the various material constants. Material constant values(5’6) for
these computations are taﬁhlated in Table 1. The fact thet infinite
stress is required to completely eliminate all porosity is a natural con-

sequence of this type of analyais,

Summary and Critique

The main objective of this report is to suggest that the creep
consolidation of a porous rock can be estimated from the creep properties
of the golid constituent from which it is formed, The theoretical

approach hea been illustrated with a simple spherical void model of sr



homogeneous isotropic incompressible elastic-plastic material. While thege
agsumptions are clearly oversimplifications of most granular materials, there
may be some substance to the theory when rock salt is the backfilling
material. Application of the theory is illustrated with a very simple
steady-state creep law found to describe some parts of the creep of WIPP
rock salt at elevated temperatures.

Application of the theory is eleo clouded by the fact that the initiasl
state of the backfill is ept to contain highly irregular voids, Additional
laboratory information is required under such circumstences, to experimentally
define compaction response up to the point where the voids become more
spherical in neture, if, in fect, they ever do.

Perhaps the biggest constraint on the current theory is imposed by
the incompressibility restriction in connection with classical plasticity.
Thus, this theory cannot offer any guidance in the consolidetion of
granular materials when fracture is an important mode of deformation.
Dilation during inelastic deformation is a fracture related phenomencn
which likewise does not fit within the framework of the present theory.

If, on the other hand the rock exhibits some degree of plasticity,
then the present theory may be of some assistance in predicting the extent

of consolidation over a given time period.
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Table

1:

i

it

Rock Salt Material Constants

6.47 x 1013/5

0.042 MJ/mol (10 kcal/mol)
0.2

9.62 GPa

8.317 J/mo1%

2l

-
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Figure 1:

Spherical void model
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Flgure 2: Reduced pressure-porosity curves for vsrious values of constant compaction
rate 7 sasuming the initial porosity n, is 0.6, n is the poroaity, K is
the shear modulus and P is the pressure supported by the backfill, The
fact that the pressure becomes infinite as the porosity spproaches zero 1s
s compon festure of spherical vold modela.
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Figure 3: Comsolidation time for various values of conatant pressure P and temperature T. Tl is the porosity and an

initial porosity T of 0,6 i8 assumed, The time to achicve complete compaction is infinite for spherical
void models.



