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INFLUENCE OF A VACUUM REGION ON THE STABILITY OF A HIGH-BETA SCREW PINCH

by

Thomas E. Cayton

ABSTRACT

To ascertain the influence of a vacuum region on the
stability of a high-f} screw pinch, the stability properties
of two confinement configurations are compared. Both
configurations Involve diffuse equilibrium profiles and a
rigid> perfectly conducting cylindrical shell. In the first
problem, perfectly conducting plasma extends to the rigid
conducting wall; the plasma is extremely tenuous in the
outer region of the pinch, however. In the second case,
profiles identical to those of the first problem are chosen
for the central portion of the pinch, but the outer tenuous
plasma is replaced by a perfectly insulating vacuum region.
The two configurations are found to be unstable for the same
range of external parameter values; different modes are
unstable in the two cases, however. Thus, the presence of a
vacuum region does not affect the stability boundary of the
pinch, but it does affect the nature of the unstable modes.

I. INTRODUCTION

In ideal magnetohydrodynamic (MHD) stability analyses of high-g pinch

configurations, an uncertainty concerning the outer portion of the pinch is

frequently encountered. In many Instances, experimental measurements suggest

equilibrium profiles in which current density, pressure, and mass density in

the outer region are negligible compared with their values in the central

portion of the pinch. Therefore, in the outer region, the magnetic field

closely approximates a vacuum field. The uncertainty is this. Does the

plasiaa really extend to the vacuum vessel, or does a vacuum region separate

the plasma column and the wall? The boundary conditions appropriate for a

linear stability analysis are different for the two configurations; therefore,

the eigenvalues that result may also differ. The objective of this report is



to shed some light on the Influence which the outer portion of the pinch

exerts on MHD stability.

To ascertain the influence of a vacuum region on the stability of a

high-(5 screw pinch, we compare the stability properties of two configurations.

Both configurations involve diffuse equilibrium profiles and a rigid,

perfectly conducting cylindrical shell. In the first problem, perfectly

conducting plasma extends to the rigid conducting wall; the plasma is

extremely tenuous in the outer region of the pinch, however. In the second

problem, profiles identical to those of the first problem are chosen for the

central portion of the pinch, but the outer tenuous plasma is replaced by a

perfectly insulating vacuum region. On one hand, the nature of the

equilibrium magnetic field in the outer region, together with the very small

mass density suggest that there is little distinction between the two

configurations. But on the other hand, the electrical conductivity Is uniform

throughout the domain of inter-St in one case, while in the other case an

Interface between perfectly conducting plasma and perfectly Insulating vacuum

divides the domain. It Is well known that certain perturbations (surface

waves) propagate along such surfaces of discontinuity. ssipce these

perturbations may be unstable, and because surface waves have no counterpart

in continuous media, a real distinction may exist between" the two

configurations. We shall find that the presence of a vacuum region does not

affect the stability boundary of the pinch. It does affect the nature of the

unstable modes, and their growth rates, however.

The report is organized as follows. The stability problems for the two

configurations are formulated in Sec. II. Numerical results are presented in

Sec. III. Results are summarized and conclusions are presented in Sec. IV.

II. TWO STABILITY PROBLEMS

We use the linearized equations of ideal magnetohydrodynamics in standard

cylindrical polar coordinates to examine the stability of diffuse screw pinch

equilibria. The equilibrium density, p, pressure, p, and the magnetic field

components, Bg and B 2, are functions only of the radial coordinate, r, and

they satisfy the equations of ideal magnetohydrostatics,



[p+i.(Be
2 +B*)J- + ̂ _ - 0 , (1)i.(Be

where a prime denotes diffentiation with respect to r. We use a system of

units whose characteristic length, mass, and time are defined in terms of the

following physical quantities: 1) the equivalent sharp-boundary radius of the

pinch, a; 2) the mass density measured on axis, PQ; 3) The magnetic field

measured for from the plasma, B_ .

Numerical results presented in Sec. Til are obtained using the

rigid-rotor profiles of Ref. 1,

2 Z 2
sech (r /rQ + o)

p(r) = p 0 j , (2)
sech a

Bz(r) = Bzeo tanh (r
2/r\ + a) , (3)

rn tanh (r2/rft + a) - tanh a

_?) r ^

where the parameter a is related to the plasma (5 by 0 = sech2a, and TQ » [1 +

(1 - B)l/2]l/2 a.

Equations (l)-(A) specify the equilibria in terms of two parameters, p

and ii. We shall consider two specific equilibria. In the first example, the

plasma is assumed to extend to a rigid perfectly c 'ducting cylindrical shell

located at r - rw; we shall designate this as the P-W system. In the second

case, the plasma region consists of a cylinder of radius r which is enclosed

by a perfectly conducting shell of radius rw > r ; a vacuum region exists

between the cylindrical surfaces r • r and r >• rw. We shall designate the

second configuration as P-V-W system. The two configurations have identical

equilibrium profiles for r < r . r is chosen sufficiently large so that

p(r - r ) « p(r « 0) and also so that the magnetic field closely approximates

a vacuum field. Surface currents are permitted to flow along the

plasma-vacuum interface of the P-V-W system in order that the two

configurations exhibit the same values for the magnetic field components at



the conducting wall, r - rw» Thus, the two configurations carry the same

axial current* The essential difference between them is that the tenuous

outer region in the P-W system is replaced by a vacuum region in the P-V-W

system. This difference is manifest in the profiles of the electrical

conductivity. The electrical conductivity is uniform throughout the domain of

interest, (0,rw), for the P-W system; an interface between perfectly

conducting plasma and perfectly insulating vacuum divides the domain of the

P-V-W system.

The displacement formulation of linearized MHD is used for the stability

analyses. Because of the symmetries of the equilibria, perturbation

quantities are assumed to be of the form,

f(r,6,z,t) - f(r) exp[i(me + kz - tot)],

where m, k» and o> are parameters. These parameters must be chosen so that the

displacement, £ - £rr + £ e| + £2z, satisfies the equation of motion,

2
-pa> £ + 7P * T , (5)

and appropriate boundary conditions. The relationship between u and the other

parameters is expressed by the other dispersion differential equation which is

derived from Eq. (5). In Eq. (5), P is the total perturbed pressure and T is

the tension vector, both of which may be expressed in terms of £r» £g» and 52>

and equilibrium quantities. When algebraic quantities are eliminated, Eq. (5)

becomes

2kBe(kBe - B z

r{ E ^-& }'Cr - 0 , (6)



where y is the ratio of specific heats,

2 2 2B = B; + £ , (7)

F = kB2 + ^ BQ , (8)

A = (pu»2)2 - (k2 + i^)[p<«)2(YP + B 2) -yp F2] . (9)

A. P-W Stability

Equation (6) applies to the entire domain. Appropriate boundary

conditions are

5r(r - 0) - finite, (10)

and

Cr(r - rw) - 0. (11)

Equations (6), (10), and (11) determine o> and £r(r) for given m, k, and

equilibrium profiles p(r), p(r), Be(r), and Bz(r).

B. P-V-W Stability

Equation (6) applies only to the plasma region. In the vacuum region,

the source-free Maxwell equations determine the electromagnetic field. The

solutions in the two regions are matched at the plasma-vacuum interface. This

interface is displaced from its equilibrium position, r » r , and its shape is

distorted by the perturbation. The linearized equation of the perturbed

interface is

r - r + 5r(r ) exp [l(m6 + ks - It)] . (12)



The unit normal, n, to the surface of the perfectly conducting plasma Is

n - r - 1 ( — e + kz)$r(r_)exp[i(m6 + kz - ut)] . (13)
- - rp - P

In the vacuum region bounded by the perturbed piassa-vacuum Interface and the

rigid, perfectly conducting wall at r - rw, the perturbed magnetic fisld has

the following components.

K£(|k|rw)

K;(|k|rw)

]

K;<|k|rw)
-I m(|k|r)^.

„'-- k fLi.y*«vir ,, , " ™ * V | K | rw j' , (16)
z

where 1^ and Im are modified Bessel functions of order m, primes designate

differentiation of these functions with respect to the*r argument, and BQ and

B^ are the 6 and z components of the equilibrium magnetic field in the vacuum

region.



Now, we impose force balance at the perturbed plasma-vacuum interface,

finding:

(pu)2 - F2)[pM2(Yp + B
2) - YPF

2]
(r5r)|r-r

(kBv + JL
rp

2kBQ(kB6 - - Bz)pu2B2 -
] , (17)
r = r]

rA rA r = r
P

where p, p, Bg and Bz are equilibrium quantities in the plasma region.

For the P-V-W system, Eq. (6), the regularity condition at r»0,

Er(r - 0) = finite, (18)

and Eq. (17) determine u and £r(r) for given m, k, and equilibrium profiles.

Equations (14) - (16) determine the perturbed vacuum magnetic field; Eq. (12)

determines the position and shape of the perturbed interface.

III. NUMERICAL RESULTS

In this =Tction we present numerical results obtained from the dispersion

differential equation for the P-W system, Eqs. (6), (10), and (11), and the

P-V-W system, Eqs. (6), (17), and (18).

In Fig. 1, the growth rate squared is plotted against axial wavevector,

ka, for m » 1, 8 " 0.5, u * 0.3, r » 2.0 TQ, and rw * 4.0rQ. For )ka| >

0.06, the eigenvalues for the P-W and P-V-W system do not differ preceptlvely



and only one solution, w(k), i« shown; for these modes the singular surface,

defined by F(rg) = (kBz + — B 9 ) | r = 0, occurs at r - rg < r_. The growth

rates for the P-W and P-V-W systems differ considerably when |ka| < 0.06; in

this case the singular surface occurs at r = r > r • The singular surface

lies in the vacuum region of the P-V-W system and the growth rates of these

modes are considerably larger than those of the P-W system. Both the P-W and

P-V-W system are stable when the singular surface reaches the conducting wall

ro » rt, (ka = - 0.014). Thus, the two configurations are unstable for the

same range of ka, but the growth rates of the unstable modes can be

considerably different for the two systems.

Figure 2 shows the eigenfunctions, £ (r), of the unstable modes of the

P-W and P-V-W systems when ka = -0.07, m = 1, 6 = 0.5, \i = 0.3, r - 2.0 rQ,

and rw - 4.0 rg. In this case the eigenvalues are almost identical, and the

eigenfunctions do not differ perceptibly for r/rg < 2.0. For the P-V-W

system, the plasma solution is joined to the vacuum solution at r/rg - 2.0;

the displacement £ is not defined for T/TQ > 2.0. In the P-W system, the

displacement is defined for the entire domain 0 < T/TQ < 4.0. The singular

surface for these modes lies in the plasma region, ro < r .
s p

The flow fields associated with the unstable modes of the P-W and P-V-W

systems are shown in Figs. 3 and 4, respectively, for the parameter value

given in Fig. 2. The region r/rg < 2.0 is shown. An arrow depicts the

displacement vector associated with the position at the tail of the arrow.

The two flow patterns do not differ perceptively. These flow fields are

indicative of internal or bulk modes which translate the cross section of the

plasma; recirculation occurs in the vicinity of the singular surface, T/TQ ~

2.0.

Figure 5 shows the eigenfunctions, £ (r), of the unstable modes of the

P-V-W and P-W systems when the singular surface occurs in the vacuum region,
rs > rp» ka * ~°'°*» m » 1, 0 - 0.5, u - 0.3, r = 2.0 r0, and rw = 4.0 rQ.

In this case, the eigenvalues of the two configurations differ considerably.

The eigenfunctions reflect the differences in the eigenvalues and are

considerably different also. In the P-W system, the eigenfunction resembles

the one shown in Fig. 2; but in the P-V-W system, the eigenfunction now

attains its maximum value at the edge of the plasma, whereas in Fig. 2, it

attains its minimum value there. A perturbation which decreases rapidly with

distance from the boundary is characteristic of a surface mode.2*3
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Fig. 1.
Growth rate squared versus axial wave-
vector. The two curves do not differ
perceptively when |ka| > 0.06. Mode
structures are examined in Figs. 2-4
for ka - -0.07, and in Figs. 5-7 for
ka - -0.04.

Fig. 2.
Eigenfunctions associated with unsta-
ble modes with ka - -0.07. The two
functions do not differ perceptively
in the range 0 < r/rQ < 2.0.

\ \

\ \

ko = - 0.07 ko= -007

Fig. 3.
Flow pattern for the P-W mode. The
region r/rQ < 2.0 is shown.

Fig. 4.
Flow pattern for the P-V-W mode. The
region r/rQ <. 2.0 is shown.



Other features of the unstable modes may be distinguished from their flow

fields which are shown in Fig. 6, for the P-W system, and Fig. 7, for the

P-V-W system; parameter values are the same as in Fig. 5. The region r/rg <

2.0 is shown. For the P-W system, the flow field resembles the one in Fig. 3.

Tha flow causes translation of the cross section of the plasma; recirculation

occurs near the singular surface, r »•• rs > r , which is outside the field of

view. This is an internal or bulk mode. The flow pattern of the unstable

ka - -0.04

Fig. 6.
Flow pattern for the P-W mode. The
region V/TQ < 2.0 is shown.

N

ka*-0.04

Fig. 5.
Eigenfunctions associated with unsta-
ble modes with ka - -0.04. The P-V-W
eigenfunction is typical of a surface
mode.

Fig. 7.
Flow pattern for the P-V-W mode. The
region r/rQ < 2.0 is shown.
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P-V-W mode, Fig. 7, is completely different. There is no reelrculation;

rather, the mode peels-off the edge of the plasma column.

Figures 5 and 7 indicate that the P-V-W system supports unstable surface

modes. The growth rates of the modes depend upon the properties of plasma in

the vicinity of the interface; this is a general feature of surface modes.

IV. DISCUSSION

We have compared the stability properties of two screw pinch equilibria

in order to ascertain the influence of a vacuum region on MHD stability. We

have found that the stability boundary for this pinch is not affected when the

outer tenuous plasma is replaced by a vacuum region. The presence of a vacuum

region does affect the nature of the unstable modes and their growth rates,

however. The P-W system supports only bulk modes; but the P-V-W system

supports both bulk modes and surface modes. Surface modes have no counterpart

in the P-W system. On the other hand, some of the bulk modes of the P-W

system have no counterpart in the P-V-W system. Some of the P-W bulk modes

are unstable, but they cannot exist in the P-V-W configuration; unstable

surface modes appear in the latter configuration which cannot exist in the

former. Thus, the presence of a vacuum region does not affect the stability

boundary of the pinch, but it does affect the nature of the unstable modes and

their growth rates.
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