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ABSTRACT

The Graetz problem of developing temperature profile in
a tube for a fully developed laminar velocity profile has been
numerically solved for a Bingham plastic. Constant properties
were assumed and viscous dissipation was ignored. Results are
presented for local Nusselt number, average Nusselt number, and
bulk fluid temperature each as a function of axial distance
from the tube inlet. The laminar Newtonian fluid is a special
case of the Bingham plastic; the results presented in this
article for this case appear to be more accurate than those

available in the literature.

*Sandia National Laboratories is a U.S. Department of Energy
facility. This work was supported by the Department of Energy
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NOMENCLATURE

ry/rw, ratio of yield stress to wall shear stress
specific heat at constant pressure

constant in series solution

pipe diameter

constant, see Eq. (12)

local convective heat transfer coefficient, hy =
9"/ (e -t )

thermal conductivity
= hygD/k, local Nusselt number

average of Nuy between entrance and axial
location x

wall heat flux

= uD/a, Peclet number

radial coordinate

pipe radius

=r/ro, dimensionless radius
eigenfunction

temperature

bulk or mixing cup temperature
uniform entrance temperature
uniform wall temperature
axial Qelocity

maximum axial velocity

average axial velocity

= u/u
axial coordinate
x/ro
= Ja , dimensionless axial coordinate

iii



GREEK

= k/pCp, thermal diffusivity

Bingham viscosity
to—t(x,r)
= ———————— , dimensionless temperature
to-te
t -t
=2 2 | dimensionless bulk fluid temperature,
t,7t see Eq. (13)

tox

0]

eigenvalue

density

local shear stress
wall shear stress

vield shear stress

iv



Numerical Results for the Solution of the
Graetz Problem for a Bingham Plastic in
Laminar Tube Flow with Constant Wall Temperature

INTRODUCTION

Many fluids exhibit a yield stress, a stress which must be
exceeded before the fluid will flow. Bird, et. al. [1] pre-
sented an extensive tabulation of materials with yield
stresses; some common examples are drilling mud, sewage sludge,
grease, paint, and thorium dioxide/methanol. If the local
shear stress does not exceed the yield stress, these fluids
will not support a velocity gradient. In pipe flow geometries,
it is possible that the fluid region near the centerline (low
shear stress, T<Ty) may move as a solid (plug flow) while the
fluid near the wall (high shear stress, T>Ty) supports a
velocity gradient. Figure 1 presents representative laminar
velocity profiles for Bingham plastics that exhibit a plug flow
region.

This article was motivated by the desire to understand the
heat transfer behavior of aqueous foams being used as a drill-
ing fluid in high temperature petroleum and geothermal forma-
tions. In some applications, aqueous foams offer several
advantages over conventional drilling fluids: 1) bottom hole
pressure is reduced because aqueous foams have a much lower
density than conventional drilling muds, 2) relatively little
fall back of cuttings when circulation stops, and 3) low loss
of circulation in porous formations. Additional details on the
thermal behavior of aqueocus foams circulating in geothermal
wellbores are presented in Blackwell and Ortega [2]. This
report is an extension of the work of Wissler and Schechter [3]
concerning the heat transfer behavior of Bingham plastics in
developing tube flow. ‘Slip at the wall has been ignored in

this analysis.



ANALYSIS
The constitutive equation for a Bingham plastic in pipe

flow is of the form [1,3,4]
du

dr

-]
0 for TSTY

d (1)
- 42 - l (T—ry) for jzry

dr n
where u is the axial velocity component, r is the radial coor-
dinate, 1 is the local shear stress, Ty is the yield stress,
and n is the Bingham viscosity. For constant properties, the

fully developed velocity profile has been shown to be [1,3,4]

u = wo 1 - (L)% - 2¢(1 - I c< I <
2n ro ro Yo (2)
U=Umaxl OS.E—.SC
To

where 71, is the wall shear stress, ry is the pipe radius,
and c=1y/Ty. The maximum velocity upax and the average

velocity can be expressed as

= W'o (1-¢)?

Umax T (3)
- 4
= Wo (1 -4 o4y
4n 3 3 (4)

The dimensionless form of Eq.(4) is presented in Fig. 1. Note
that c=1 corresponds to plug flow (u=upszx) while c=0 corre-
sponds to laminar Newtonian flow.

If axial conduction is neglected (Pe>100) and viscous dis-
sipation ignored, the steady flow constant property form of the

energy equation and its boundary conditions can be written as

at 1 3 ot
pPCpu(r) —— =k — —_(r—) t(o,r)=t t(x =t
P 9xX r or 2dr ’ ’ e (%o ' (3)
it
—(x,0) = 0
or



This analysis is restricted to Prandtl number>1 but still
sufficiently small that viscous dissipation is not important.

The following dimensionless variables will be useful:

8 = to"t(er) , r+_=_r_ , u+ -

to-te o

x* = ¥/Yo, pe = UD (g,
Pe

where t, is the wall temperature, to, is the uniform inlet
fluid temperature, o is the thermal diffusivity, and Pe is the
dimensionless Peclet number. For uniform wall temperature tg,

and inlet temperature ter the dimensionless energy equation is

+ 36 3 3 +
- 2 et 8(o,r*)=1, 8(x*,1)=0, 28{x7,0)

1
2 ox*t rt art dr+ 5rt

=0 (7)

with the dimensionless velocity profile being given by

2
g+ = 201-r? —20(1—i+)] c<rt <
1- i c + S (8)
3 3
= 5Ll:§l3_4 o < o< c
-4, ¢ B
=3 3
The classical separation of variables solution to Eg. (7) leads
to
o(xt,rt) = ] CpRy(rt)exp(-22xt) (9)
n=0

where C, is a constant to be determined from the boundary
conditions and R,(r*) and A, are eigenfunctions and

eigenvalues respectively that are determined from the solution

of

d +
S et By 4 29 g 20 ry(1)=0 , Rn(0) _g (10)

ar* drt 2 o+

From the orthogonality cohdition,



+ -
f1 Y rtrpdrt =2 dRp(1)
0 2 gt
Cph = = n i
n — - - (11)
[ r"‘erldr+ / u+r+RI21dr+
0 2 0

A more convenient constant G, will be defined as

__ Cp dRp(1) _ [dRp(1)/ar*1%/2
Gn—_________—

+ 12
2 ar* A2 [T U r+r2art (12)
0 2
VFrom Eq. (9), several useful heat transfer parametérs can be
developed. The dimensionless bulk fluid temperature is
+ - S %
bp(x ) = to-tp _ f1 utertdrt = 8 § 9%.exp(—k§x+) (13)

where tp is the bulk fluid or mixing cup temperature. Defin-
ing the local heat transfer coefficient in terms of the local
temperature difference (tp-ty), the local Nusselt number
becomes

Nuy = EiE = 2381 4 7 g exp(-aZxt) (14)

9 ort 8p n=0

The average Nu between the entrance and any arbitrary xt is

given quite simply by

"

+
Nug ( x+) l: X7 Nugax*t =1 1n(1/6p) (15)
X o

2x+t

Eq.(10) is the classical Sturm-Liouville problem. A
closed form analytical solution exists for plug flow (c=1, see
Burmeister [5] for a discussion), Sellars, Tribus, and Klein

[6] developed an approximate solution for laminar Newtonian



flow (c=0), and Wissler and Schechter [3] numerically
determined the first seven eigenvalues and eigenfunctions for
c=0.0, 0.25, 0.5, 0.75, and 1.0. Additional works are
referenced in [1]. The number of eigenvalues and
eigenfunctions reported by Wissler and Schechter [3] were found
to be inadequate for small values of x* and the calculations
were extended to include the first 60 eigenvalues for c=Q.0,
0.2, 0.4, 0.6, 0.8, 1.0.

The general Sturm-Liouville problem can be written as

9 (p(x)qw(x) + (q(x) + Ar(x))¥(x) = 0 a<x<b (16)
dx dx

with boundary conditions of the form

A ¥(a) + Ap(a)v(a) = 0
dx
(17)
Bi¥(b) + Bop(b)d_y(b) = 0

dx

where p(x), q(x), and r(x) are arbitrary functions and ¥(x) is
the eigenfunction. The numerical results presented in this
article were producedbby the SLEIGN code, described by Bailey
[7]. This code internally transforms the independent variable
x onto the interval (-1,1). Next, the second order
differential equation given by Eq. (16) is replaced (within the
code) by an equivalent system of two first order equations for

the new dependent variables p(x) and ¢(x) defined by

p(x)siné(x)
zp(x)cos ¢(x)

v(x)
p(x)v'(x)

(18)

where z is a scaling factor determined by the code. If z=1,

this is known‘as the Prufer'tfansformation {71. TQg eigenvalue
A is then determined by humericaily integrating thémtransformed
version of Eq. (16) from both boundaries toward the interior of
the internal (a,b) with an assumed A. The integration is ter-

minated at an interior point x=M and the solution from the left



Y, (M:2) is compared with the solution from the right ¥r(M:
A). During both the "left" and "right" integration process,
the correct boundary conditions are always used. The code
automatically chooses the match point x=M, picks an initial
guess for A and adjusts A until VYp=¢Yp within a user speci-
fied tolerance. The code has been extensively tested and addi-
tional details can be found in‘Bailey [71].
RESULTS

Table 1 presents numerical results for the local Nusselt
number (Nuy), average Nusselt number Nup, and bulk fluid
temperature as a function of the dimensionless entry length
x*¥. All calculations were performed on a CDC Cyber 170/Model
855 computer using single precision arithmetic (nominally 14
1/2 digits). The series for Nuy converges more slowly than
that for eb‘ A relative convergence criteria of 10-% on the
last term (normalized by the partial sum) was used. Sixty
eigenvalues were adequate for convergence for all values of
xt except 0.0001; for this x*, the relative error was
typically less than 7x10-° for all values of c. The numerical
results for c¢=1.0 were compared with the analytical solution;
for this case, the eigenvalues are the roots of Jo(kn//i) =
0 and the eigenfunctions are Rp(rt) = Jo(An/Y2 rt).
The results from SLEIGN were idéntibal to the analytical solu-
tion for the number of significant digits printed, except for
x¥ = 0.0001. For example, the analytical result was Nuy =
81.352 while the numerical result was 81.365. The c=1 (plug
flow) results were also compared with those presented in Bur-
meister [5]:; exact agreement was obtained for large xt but it
appears that the results of [4] are not accurate at small x%.

Sellars, Tribus, and Klein [6] developed an approximate
solution for c¢=0 (laminar Newtonian flow) and their results for
Nuy, Nup, and 8, are tabulated>ianays and Crawford [8]
and Burmeister [9]. Again, these results do not appear to be
accurate at small x*, o _

The results of Table 1 are also presented graphically in

Figures 2-4. For ¢ near zero, Nu and the bulk fluid



temperature are not very sensitive to ¢; for ¢ near unity, the
computed resulfs are much more sensitive to ¢. These results
stem from the dependence of the velocity profile on ¢ (see
Fig. 1).
CONCLUSIONS

The numerical solution of the Graetz problem of the
development of the thermal boundary layer within a tube for
laminar fully developed velocity profile under a constant wall
temperature boundary condition was presented for a Bingham
plastic. Local Nusselt number, average Nusselt number and bulk
fluid temperature were presented as a function of dimensionless
distance from the inlet. The results for plug flow agree with
the analytical solution, and the laminar Newtonian flow (c=0)
results of this work appear to be more accurate than those

available in the literature.



Table 1 Heat Transfer Results for Developing Flow of Bingham
Plastic in a Tube with Constant Wall Temperature

c=1.0 (plug flow)

X NuX Num eb
.0001 81.352 161.146 .9682847
.0002 58.008 114.413 .9552662
.0004 41.502 . 81.375 .9369734
.0010 26.876 52.074 .9010919
.0020 19.531 ' 37.322 .8613197
.0040 14.372 26.914 .8062926
.0100 9.844 17.731 .7014360
.0200 7.744 13.174 .5904024
.0400 6.437 10.063 .4470782
.1000 5.817 7.620 .2178524
.2000 5.783 6.705 .0684313
.4000 5.783 6.244 .0067703
1.0000 5.783 5.968 .0000066
2.0000 5.783 5.875 .0000000
4.0000 5.783 5.829 .0000000
10.0000 5.783 5.802 .0000000

c=0.8
.0001 39.913 60.569 .9879594
.0002 31.453 47.802 .9810610
.0004 24.774 37.701 .9702898
.0010 " 18.079 27.529 .9464307
.0020 14.271 21.704 .9168451
.0040 11.299 17.129 .8719433
.0100 8.366 12.569 .7777295
.0200 6.777 10.003 .6702263
.0400 5.703 8.069 .5243750
.1000 5.111 6.401 .2779934
.2000 5.066 5.738 .1007254
.4000 5.066 5.402 .0132775
1.0000 5.066 5.200 .0000304
2.0000 5.066 5.133 .0000000
4.0000 5.066 5.099 .0000000
10.0000 5.066 5.079 .0000000
c=0.6

.0001 33.304 50.486 .9899536
.0002 26.265 39.866 .9841801
.0004 20.706 31.462 .9751443
.0010 15.135 22.998 .9550453
.0020 11.972 18.153 .9299621
.0040 9.520 14.353 .8915229
.0100 7.149 - 10.591 .8091051
.0200 5.892 8.503 .7116963



Table 1 Heat Transfer Results for Developing Flow of Bingham

Plastic in a Tube with Constant Wall Temperature (Cont)

.0400
.1000
.2000
.4000
1.0000
2.0000
4.0000
10.0000

.0001
.0002
.0004
.0010
.0020
.0040
.0100
.0200
.0400
.1000
.2000
.4000
1.0000
2.0000
4.0000
10.0000

.0001
.0002
.0004
.0010
.0020
.0040
.0100
.0200
.0400
.1000
.2000
.4000
1.0000
2.0000
4.0000
10.0000

Nu
X

5.038
4.539
4.494
4.493
4.493
4.493
4,493
4,493

30.513
24.065
18.970
13.860
10.956
8.703
6.520
5.364
4.585
4.126
4.082
4.081
4.081
4.081
4,081
4.081

29.061
22.921
18.066
13.196
10.426
8.274
6.186
5.075
4.319
3.861
3.814
3.813
3.813
3.813
3.813
3.813

c=0.6

Nu
m

6.943
5.593
5.048
4.771
4.604
4.549
4.521
4.504

46.252
36.524
28.825
21.068
16.625
13.139
9.684
7.764
6.332
5.094
4.593
4.337
4.183
4.132
4.106
4.091

44.053
34.788
27.454
20.064
15.830
12.505
9.208
7.372
5.999
4.803
4.314
4.063
3.913
3.863
3.838
3.823

%

.5738254
.3267612
1327436
.0220013
.0001002
.0000000
.0000000
.0000000

.9907923
.9854966
9772039
.9587394
.9356627
.9002269
.8239285
.7330460
.6025852
.3610479
.1592788
.0311343
.0002326
.0000001
.0000000
.0000000

.9912281
.9861812
.9782760
.9606662
.9386436
.9047981
.8318034
.7446142
.6188482
.3826712
.1780752
.0387508
.0003994
.0000002
.0000000
.0000000



Table 1 Heat Transfer Results for Developing Flow of Bingham
Plastic in a Tube with Constant Wall Temperature (Cont)

c=0.0 (Laminar Newtonian)

+
X NuX Num eb
.0001 28.244 42.814 .9914737
.0002 22.278 33.810 .9865668
.0004 17.559 26 .683 .9788795
.0010 12.824 19.501 .9617496
.0020 10.130 15.384 .9403183
.0040 8.036 12.152 .9073635
.0100 6.002 8.943 .8362189
.0200 4.916 7.155 .7511056
.0400 4,172 5.815 .6280276
.1000 3.710 - 4.641 .3952988
.2000 3.658 4.156 .1897101
.4000 3.657 3.906 .0439350
1.0000 3.657 3.757 .0005458
2.0000 3.657 3.707 .0000004
4.0000 3.657 3.682 .0000000
10.0000 3.657 3.667 .0000000
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