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Abstract 

Using a variational technique, a set of coupled model equations for the 

mode-conversion process near the ion - cyclotron frequency is derived. The 

system is truncated to first order in Larmor radius but includes the effects 

of p^ilicit gradients and a poloidal field. From the equations a conservation 

rule is extracted which ensures conservation of total energy and provides an 

explicit expression for the wave damping in differential form. The equations 

are integrated numerically for the standard cases of fast waves iv.cident from 

either the low-or high-field sides of the mode-conversion layer. The scaling 

of the damping processes is discussed and implications for current RF-heating 

experiments on the Princeton Large Torus are drawn. 
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In a plasma where two or more propagating waves may coexist, the presence 

of gradients in the plasma parameters can give rise to localized regions where 

one mode is strongly coupled or converted to another. This so-called mode 

conversion process, first pointed out by Stix [1], has received increasing 

attention in recent years because of its potential importance to the RF 

heating of thermonuclear plasmas. Mode conversion takes on a special 

significance whun a wave which is accessible from the plasma periphery couples 

to another wave which can be efficiently damped by the thermal motion of 

electrons and ions. In particular, recent experimental successes in heating 

tokamaks near the ion cyclotron frequency have suggested that mode conversion 

may play a key role in the understanding of the wave damping mechanisms [2-6]. 

Near the ion cyclotron frequency, mode conversion may take place from the 

fast magnetosonic wave to an ion Bernstein wave either at the second and 

higher ion cyclotron harmonics [7,8] or near the two-ion hybrid frequency in a 

multiple species plasma. Approximate scattering parameters for these cases 

have been worked out by several authors [9-12] , and these results have been 

recently reviewed by Stix et al. [13]. Early work was based on approximate 

differential equations derived by neglecting explicit gradient terms and the 

effects of dat.ping near the mode conversion zone. This work was extended with 

an elegant treatment by Swanson [14,15], reviewed in Ref. 13, who showed that 

the presence of strong damping can dominate the mode conversion process. 

However, as Perkins [9] has pointed out, the effect of a poloidal field in a 

tokamak (or a gradient in the direction of B) can have a profound influence 

through a resulting change in the parallel wavelength, and this result has 

been confirmed in the numerical work of Jacquinot [16]. Moreover, the effects 

of explicit gradient terms in the wave equations can be expected to modify the 

results to some degree with regard to wave damping and the conservation of 
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energy [13]. A totally self-consistent treatment of the mode conversion 

problem including the above effects and a simple means of calculating wave 

damping on each particle species have, to date, not appeared. 

In this paper our aim is to extend the present theory of mode conversion 

to provide a quantitative, self-consistent model of the wave damping and its 

scaling with plasma parameters. An essential element of this analysis is the 

conservation of total energy and power flow throughout the mode conversion 

zone. In Section I, we shall derive the wave equations using a variational 

technique including the effects of gradients along B and strong damping. In 

Section II, we show that these equations lead to an energy conservation law 

with explicit expressions for calculating the wave damping for each particle 

species. In Section III, we outline a straight-forward numerical procedure 

for solving these equations, and in Section IV we consider the specific case 

of mode conversion near the ion cyclotron frequency and its harmonics in 

tokamak plasmas. Finally, a comparison to previous theory is made, and in 

Section v the implications for ongoing experiments are discussed. 

I. Derivation of the Wave Equations 

The approach taken in this section is to derive a set of coupled second 

order equations for the electric fields from a variational principle which is 

based on a method developed by Berk et al. [17]. In related work, a similar 

expansion technique was recently applied to this problem by Swanson [18], who 

reported similar results for the case where VB is perpendicular to B. In this 

work we wish to extend the theory to include more general situations and to 

provide explicit expressions for the power flow and wave damping. 

In the variational method the wave equation is developed in k-space as is 

done in uniform plasma theory. However, instead of selecting a particular 
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wave vector, _k, an integration is performed over all Jc values in the direction 

of the inhomogeneity. The application of the exact variational integral leads 

to a coupled set of integral equations. A useful approximation scheme exists 

in which the variational integral is expanded in Ĵ -space and converted to 

jo-space according to a specific prescription for the ordering of t he 

operators. This approximate integral leads to a coupled set of differential 

equations which will subsequently be solved numerically. 

From Maxwell's equations we can obtain the familiar wave equation 

V x ( ? x E l - l ! 2 E - ^ J = 0 (1) *- — > o — 2 — c 

where Ĵ  is determined from the constitutive relation 

J = g • E . (2) 

For a nonuniform medium, the operator a is to be understood as an 

integral operator lacking the property of translational invariance. The ave 

equation may be derived from the variational integral 

/ dx E+(x) . {- Vx[Vx E(x) ] + k 2 E(x) + -^y^ / dx1 £tx,x' ) E(x' ) } , 
C 

(3) 

where E_+ is the adjoint field satisfying the adjoint of Eq. (3). 

If we Fourier decompose the fields, i.e., 
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dk 
I(x) = J 3 E(k) e 1 ^ * * , (4) 

(2n) 

then the var ia t ional integral can be recast in Jr-space as 

dk 
/ 3 fe <-3s> • [*. x (S. x l ) + k ] • I ( k . ' 

( 2 T I ) 3 

A i d i l ' + 
+ ^ 9 / r E V k ) • a ( t , k ' , U ) . E ( k ' ) j , (5) 

c ( 2 n ) J 

whfcre I is the unit dyadic. In Eq. (4) we take the Fourier decomposition over 

all' three spatial dimensions. It is only necessary to carry the Fourier 

integral for those directions where the fields are inhomogeneous. Thus for 

the cases we will be considering, the integral will be done in one and two 

spatial dimensions. For chose directions where there is no spatial variation, 

a specific wave number, Jc, will be chosen. 

If the variation of Eq. (5) is taken with respect to E^(-k,), then the 

wave equation in integral form results. However, approximate differential 

equations can be formulated by expanding the kernel about k, Ĵ' = 0 which 

contain the essential physics of mode conversion and which are considerably 

easier to evaluate numerically. Such an expansion amounts to the usual finite 

Larmor radius expansion but includes the effects of explicit gradients. For 

example, in the case of a one-dimensional spatial inhomog<aneity considered 

below, we replace a by the series 

N 
a (k, k-> = S a { n , m ' (k - 0, k- = 0) k V m . (6) 

n,m 
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where k and k'are in the direction of the inhomogenity. Then the integral in 

Eq. (5) can be transformed to x-space by using the transformation 

/ ^ k m E ( k ) e i k X = < - i ) m ^ • (7) 
2 1 1 dx m 

The application of this technique leads to a set of coupled differential 

equations of the form 

^ — G | — . E + F • ̂ — E + H • E = 0 , (8) 
d x = d x — = dx — = — 

where G, F, and H are matrices whose elements are functions of x. To 

facilitate the analysis we resolve the JS-vector in components aligned along 

the local is-field (p,r|»5) and define another coordinate system (x,y,z) aligned 

along the gradient as shown in Fig. 1. For definiteness we assume a plasma 

density and magnetic field variation of the form 

V*> - V 1 + i ) _ 1 

B (x) = const , (9) 

a 

which is appropriate for a narrow zone either side of the mode conversion 

layer in a tokamak. Oblique incidence and B y * 0 effects may be included by 

taking Jc * o, although situation? where the gradients are strongly two-

dimensional, such as near the plasma periphery, are excluded. We assume n 

and n z are specified by boundary conditions and are preserved according to 
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Snell's law consistent with the assumption of a one-dimensional gradient. We 

note that the procedure outlined here laads to a set of partial differential 

equations when two-dimensional gradients are considered. The solution of this 

problem is considerably more involved numerically and will be left to a later 

work. 

The details of the above calculation for specific cases of interest are 

carried out in the appendix, and we summarize those results here. Including 

the effects of both fundamental and second harmonic heating, the matrices 

G, F, and H are given by 

2 2 ~ 
sin 9 - cos 6 Z 

2 ~ i cos9 Z_ 

-i cos 9 Z_ 

2 ~ 
1-cos e z_ 

(10a) 

and 

F = 
2ik sin9cos0 (1-Z„) z 2 -ik cosQ + 2isin9cos9 k Z_ 

-ikycosS + 2isin6cos9k Z_ -2ik sine coseZ-z 2 z 2 

(10b) 

H = 

k + k cos 9 - k + k K + |U|2zT -cos&UZ- ' o z y o xxo 2 2 

-k yk z sine - ̂ 0
2 K x y o + i|u| 2Z 2 - i cos9 U Z^ 

2 2~ 
"V'z" 1" 9 + k o Kxyo " i , U ' 2 2 + i c o s 9 U Z 2 ' 

C - kz 2 + CVo + W \ - cose U V (10c) 
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where u = ik_sin6 + k„ 

m 2 
•Scxo = Kyyo = 2k v.w cose < Z1 + Z-1) 

2 
K«*°- l2kJ%oco.9 ( Z1 ' 2-l' t 1 0 d ) 

to „ Z„ 
2 2 _ „ 2 k V^ cos9 c 2mQ z t 

Z n is the plasma dispersion function evaluated at the n harmonic. In the 

above, thv parallel electric field, E., is neglected so that E_ is of the form 

(Ep, E
T ) ) ; however, E- corrections can be easily included as a perturbation and 

the resulting matrices are given in the appendix. We note that considerable 

simplification results when 9 •» 0, that is, when there is no component of the 

gradient along B. Equation (10) forms the starting point for our 

consideration of the mode conversion problem. If explicit gradients are 

neglected in the above, the dispersion relation derived from the determinant 

of the coefficient matrix corresponds to the usual WKB dispersion relation 

valid to first order in Larmor radius, which has been investigated by previous 

workers. A generalization of this concept including gradient effects is given 

in Section III. 

II. Energy Conservation Principle 

The importance of gradients; in the flow of enerr-y has been suggested by 

b .ix [13] and otherB [19] for the mode conversion problem. This fact is 

readily apparent from the above results if Eq. (8) is first written in "self-
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adjoint" form. Define the vector 1! by 

E 
G • E' 

where the prime denotes differentiation with respect to x. E uation (8) 

becomes 

P • E" + P. . E = 0 , =o — =1 — (11) 

where 

£1 

o 1 

^"1j 

*t Note that Eq. (11) is formally self-afljoint, i.e., P = - P , P = P *t 

when F is antihermitian, and G and H are hermitian. This is in fact the case 

when KJJJJQ/ Ky and 2 are real while K^o i s P 1 1 1 6 imaginary, that is when 

damping is zero. 

Now for an operator of the form 

I u = P • u" + P. • u — =o — =<1 — 

it is easily shown that Lagrange's identity [20] for this system is given by 
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/ . IB - n . (L+v)* = £ - (v*. P . u) , (12) 

where 

+ *t *t L u = - P_ • u' + P, • u — =o — =1 — 

is the adjoint operator, and JI and v_ are any functions in c' ' on the 

domain. In particular, if we choose ji - _v = Ê and use Eq. (11) and its 

conjugate in Eq. (12), we find the following conservation relations 

ST (Sx + Tx) " -K*'V C O s 6 $2 - O \ 

*• 2 ~ * 2 ~ + E COS 9 Z„ E • + E, |U| Z„ E T L 2 L. L 2 L 

+ k 2 E • K • E - c.c.} , (13a) 

where 

T = - E T cos29 Z 0 E T - E T cosG U SL E_ - c.c. (13b) 

* " 2 * ' * , \ 
5 = E E s i n 6 + E E + E ( ik cos9 E + ik s i n 9 cos9 E ) - c . c . 
x p p n TI p "• y n z p' 

(13c) 

and 
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E, = E + iE L p n 

We assert that Eqs. (13b) ar.d (13c) are generalizations of the kinetic 

and Poynting fluxes respectively to the case of strong gradients and 

damping. Note that the kinetic flux, Eq. (13b), reduces to the WKE form given 

by Stix [21] in the limit of si'.ff iciently weak gradients and vanishing 

absorption. The expression for the Poynting flux, Eq. (13c), is readily shown 

:c be the x-component of E_ x ]£*, as represented in the (p,r|.!i) coordinates. 

The right hand side of Eq. (13a) represents the losses including both 

fundamental and cyclotron harmonic damping and is manifestly zero when wave 

absorption is absent. Thus Eq. (13) represents conservation of energy for the 

system, and, when the right-hand side is zero, the system is self-adjoint. 

Once the wave fields have been determined, the wave absorption is easily 

calculated for each species using Eq. (13a). 

III. Numerical Solution Procedure 

The wave Eq. (10) can be integrated directly to match given boundary 

conditions. We adopt two model cases corresponding to a wave of unit 

amplitude approaching the mode conversion zone on the cold plasma (fast wave) 

branch from the right or left (Table I). In order to specify the appropriate 

connection to outer WKB solutions, we consider Eq. (11) and it3 adjoint 

E" + | o " 1 • P • B = O (14a) 

+' -1*t *t + *- " So =1 " - * ° * ( 1 4 b ) 

Let S be the matrix which diagonalizes Eq. (14a), i.e.. 
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S • P • P. • S = L , = =o =>1 = = 

where L is a diagonal matrix of eigenvalues. Then letting 

8= (S** • l/V 1 . 

we find 

-1 -1*t *t * 2 • iQ * ?1 ' 2 = = 

Thus g diagonalizes the adjoint Eq. (14b), and these eigenvalues are 

related to those of Eq. (14a) by 

+ * 
\ = - \ 

If Wi define the vectors F_ and 6 by 

S • F = K 

2 • G = B + , 

we have 

F" - L • F = - S~ . S' • F 

G + L * . G * - g 1 .g' •<! 
(15) 
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When gradients are zero the right-hand side of Eq. ( 15) is zero, and the 

solutions reduce to decoupled plane waves. If the right-hand side is kept io 

first order, however, the usual WKB solutions for the coupled system result, 

and these may be used to construct the boundary conditions for the numerical 

integration. Note that the characteristic equation which occurs in the 

diagonalization of P . P , namely =o a1 

j I 0 ~ 1 ' =1 " X* I * ° ' ( 1 6 ) 

is a generalization of the uniform plasma dispersion relation to include the 

effects of gradients. 

Referring to Table I, the WKB solutions corresponding to each mode with 

ingoing or outgoing power (note that the slow wave branch is typically a 

backward wave) are matched to the numerical solution of Eq. (10) in the 

following way. Beginning with orthogonal initial conditions, Eq. (10) is 

integrated numerically four times over the chosen domain. The resulting 

solution vectors can be used to form a transfer matrix, D, which maps a vector 

or, say, the high field side into another ??. tne low field side, i.e., 

E = D • E -LF = -=HF 

At the domain boundaries we express J3 in terms of the outer WKB 

solutions, namely 

4 i * 

j-1 3 3 
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where j^ and £ are vectors of the form E_ » [E„, E ' , E x, E x']/ and the \^ are 

the solutions of Eq. (16). Solving for the unknowns in terras of the knovms 

for each case gives the following expressions for the scattering parameters 

low field incidence: 

E D + D trans 43 33 
Ein 

Eref D12 ( D43 + D33» ~ D13 (°32 + D42> 
Ein " D 

mc _ 42 32 
E, D 
in 

with D = D 2 2 (D 4 3 + D33) - D 3 2 D 2 3 - D 4 2 D 2 3 

high field Ji.cidance: 

Etrans „ n °12(D43 + D33 } " D13 , D32 + D42> 

(17) 

11 21 D 
in 

E - ^ P DAI •* D-.-> D „ D „ 
r f ef _ 43 33 _ 23 . „ 23 , «,-» 

= - D + D + D (16) 
E, 21 D 31 D 41 D 
in 
mc _ 42 32_ 22 22 E. 21 D 31 P " 41 D in 

Once all the coefficients c= are determined, the entire solution in the mode 

conversion zone may be reconstructed. In terms of tlis four linearly 

independent numerical solutions e.i = [E , E ', E , E ' 1 , we have 
—J T) Tl p p 

5 " S a j £j 
j=1 J 3 
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If we let 

and 

1 = [*1> e
2' e 3 ' E4'] 

| = [s^ s 2, s 3, s 4] , 

where 
7j ~ T22 Xj " T21 

" j = [ 1 ' V T 2 3 + >. T 2 4 ' XjS3jJ ' 

then 

and 

D = S -1 T • S 
|LF HF 

(19) 

a = T 
HF HF HF 

The solution procedure is as follows: 

(i) integrate the wave equation with four linearly independent 

boundary conditions, 

(ii) form S and T; compute D and the scattering parmaters, c=, 

(ill) compute a_ and then construct Ê  by superposition. 

Finally, in this section we need to discuss the numerical accuracy of the 

process. As was pointed out by Swanson [13], the strong evanescense of the 
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Bernstein wave on the low-field side causes difficulty for numerical 

integration schemes. The key is to choo/je a domain wide enough so that the 

WKB outer solutions are good approximations and yet not «<-> wiris *h-*-. round-off 

error becomes appreciable due to the rapid growth of the evanescent 

solution. In practice the domain boundaries can be chosen with some latitude 

without significant changes in the solution. Moreover, the numerics can be 

checked in several ways. First, the WKB coefficients can be computed for each 

point in the domain. When these coefficients are sufficiently slowly varying, 

the WKB solutions are good representations. This can be checked by varying 

the domain width to see if the scattering parameters change significantly. 

Second, the energy conservation relation Eq. (13) gives a convenient check on 

the accuracy of the integration. The integrated damping should equal the 

change in total energy across the domain. Finally, if the input power is 

normalized to unity, the sum of all the remaining powers should be unity. In 

practice single precision is sufficient for ensuring accuracy of the 

calculation. 

IV. Numerical Results 

In the ion cyclotron range of frequencies, the heating regimes fall into 

two general classes: (i) minority fundamental heating and (ii) second or 

higher harmonic heating. In the minority heating case, mode conversion may 

occur at the two-ion hybrid resonance in a multi-species plasma which, if the 

minority ion is sufficiently dilute, occurs near the fundamental cyclotron 

layer for the ion. In experiments on the Princeton Large Torus the minority 

ion regime with either a small component of H or 3He in a Deuterium plasma has 

shown considerable effectiveness as a means to heat the plasma ions and 

electrons [4,22]. 
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The results of the numerical solution of the above mentioned system for 

parameters typical of the H minority regime on PLT are shown in Pigs. 2-4. In 

Fig. 2 the dispersion roots indicate that the Bernstein wave is coupled, 

although weakly, to the fast wave on the high field side of the H cyr.l-.ciron 

layer. Note that the roots are not degenerate or complex conjugate in the 

mode conversion zone due to the gradient terms which, as it will be seen, 

affect the strength of the mode converted wave. In the -.ase shown v>ere when 

B x = 0, the 3ernstein wave fields appear primarily in E which is directed 

largely along k_ on the Bernstein wave branch. Only a very small fraction of 

the incident power is mode converted for low field incidence, but minority ion 

damping is strong for this ease an J results in virtually complete absorption 

in a few passes. From the high field side, however, a significant fraction is 

converted into the backward Bernstein wave which is subsequently lost to 

electrons through Landau damping as the parallel electric field increases. 

Note that even though responsible for a large part of the wave damping, the E. 

field remains much smaller than the perpendicular fields. Note also that the 

actual wave damping does not follow the shape of the left-handed electric 

field as would be expected from plane-wave theory due to the interaction of 

both the kinetic and Poynting fluxes in the damping processes. The effects of 

altering the minority concentration is shown in Pig. 5. At even modest 

concentrations of 10% H the reflection coefficient for a low field incident 

wave increases significantly with a resulting loss in the single pass minority 

absorption. Coincident with the above the mode conversion efficiency for a 

high field incident wave increases with a resulting increase in the electron 

damping. Transmission coefficients for the two cases are similar, in 

agreement with Hef. 15. Mode conversion efficiency is also an increasing 

function of density, as shown in Pig. 6. of some experimental interest is the 
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fact that the minority ion absorption from the low field side is predicted to 

remain strong at high density, as shown. Minority ion damping is also 

expected to increase with increasing temperature, in contrast to expectations 

of plane wave theory, as shown in Fig. 7. At sufficiently high temperatures 

the low and high field incidence cases should approach each other. The effect 

of plasma current (poloidal field) on these results is shown in Pig. 8. For 

this case a zone slightly off axis is shown, and positive or negative current 

values correspond to locations above or below the midplane, respectively. In 

qualitative agreement with the model proposed by Perkins [9] , the poloidal 

field of one sign tends to enhance mode conversion and reduce electron damping 

through an effective decrease in the local k. value, while the opposite sign 

decreases mode conversion and increases electron damping. Also in agreement 

with Perkins, it is found that the asymptotic character of the equations 

change at sufficiently low plasma pressure and sufficiently high poloidal 

field values. This case occurs near the plasma periphery <n PLT where the one 

dimensional theory is invalid and will not be treated here. Note that the 

transmission coefficients for the two standard cases are no longer equal. As 

a function of the imposed k spectrum the minority heating from the low field 

side indicates a weak maximum at intermediate values, as shown in Fig. 9. 

Transmission increases at large k z while reflections appear to decrease. At 

very low k values, absorption decreases while, from the low field side, the 

reflection coefficient increases significantly. Mode converted waves are 

predicted to be weakly damped in this case, giving rise to significant power 

carried by the Bernstein wave. To the extent that this power remains undamped 

as the Bernstein wave propagates toward regions of ever decreasing wavelength, 

higher order corrections may have to be included in the equations to determine 

the ultimate fate of this wave power. A composite map of mode conversion 
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efficiency for the high field incidence D/H minority case is shown in Fig. 

10. It is observed that mode conversion should occur to some extent over a 

broad range of parameters possible in the PLT experiments. 

In the ^He minority case the results are similar to the hydrogen minority 

case except that tha mode conversion and fast wave cutoff are considerably 

weaker, owing to the different charge-to-masa ratio of the He ion. As a 

consequence, the results are more symmetric for both directions of incidence, 

and, for a given He concentration, wave transmission is larger as shown in 

Figs. 11 and 12. We note that the relative transparency of the cutoff zone 

gives rise to significant mode conversion and subsequent electron heating for 

low field incidence at sufficiently high 3He concentrations. 

In the second harmonic heating regime the Bernstein wave is weakly 

coupled to the fast wave, but the coupling nonetheless has an important 

influence on the fast ware absorption, as suggested by Trtkahashi [23] and 

Hwang et al. [3] . the results for typical Pi/T parameters which indicate 

significant second harmonic absorption are shown in Fig. 13. Note that the 

reflection coefficient for low field incidence is low as a consequence of the 

fact that the cutoff associated with the fundamental minority cyclotron 

resonance is absent. The scaling of second harmonic absorption with 

increasing density and temperature, shown in Figs. 14 and 15, respectively, 

indicates a favorable extrapolation of this regime to higher beta plasma. 

It is useful to compare these results to previous work to ascertain the 

accuracy of the numerical results and to point out the importance of the 

gradient effects included in the formulation. A comparison of the present 

theory to the gradient-free, localized absorption model developed by Swanson 

indicates that the present work and Swanson's results give similar values for 

the fast wave scattering parameters, but both of these differ substantially 
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from the Budden model [9] which does not include damping. Xn Fig. (16) we 

observe that the mode converted power is strongly affected by the inclusion of 

gradient terms, and consequently the strength of damping on the Bernstein 

branch is affected. While qualitatively the results of this work are similar 

to Swanson's gradient-free model, quantitatively the mode converted power 

differs by the factor required to ensure conservation of total energy. 

Finally, we remark that both the fast wave scattering and Bernstein wave 

absorption coefficients can be significantly affected by the presence of a 

poloidal field. 

V. Summary and Conclusions 

We have derived a set of coupled model equations for mode conversion near 

the ion cyclotron frequency including the effects of gradients and a poloidal 

field. The set of equations leads to an energy conservation rule which 

includes finite Larmor radius effects in differential form. The equations may 

be integrated directly, yielding the fast wave scattering parameters and the 

wave absorption by each particle species. 

In the case of minority hydrogen heating, strong minority absorption at 

sufficiently low H concentration is expected for low field incidence over much 

3f the parameter range appropriate on PLT. Electron heating should be 

feasible with high field incidence associated with mode conversion. Second 

harmonic heating of deuterium in this regime is expected to remain 

insignificant under typical conditions. The presence of a poloidal field 

tends to remove vertical symmetry in the wave damping, due to the increase or 

decrease in k_ at locations above or below the midplane. 

The results are qualitatively similar in the 3He minority regime except 

that mode conversion should play a less important role. Minority ion 
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absorption is feasible with either direction of incidence, and at sufficiently 

high He concentrations electron heating should occur via mode conversion. It 

is interesting to note that such heating may be observable for low field 

incidence owing to the comparatively larger transmission coefficient for this 

case. 

For second harmonic heating it is expected that, even at the relatively 

low plasma beta values in PLT, the absorption should be significant. Damping 

is largely independent of direction of incidence for typical parameters and 

due to the low reflection coefficient from the low field side, central wave 

absorption should occur in a few passes. Little electron heating in this 

regime for PLT conditions is expected. 

While t*e above model is appropriate for the core of the plasma, further 

work is necessary to extend the validity of the analysis to the plasma 

periphery where the effects of strong poloidal field and two dimensional 

gradients must be taken into account. 
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Appendix 

In the appendix we shall derive the wave equations using a variational 

tec'inique which is an adaptation of a method developed by Berk, et al. We 

wish to consider cases where there is a component of VB along B. In order to 

satisfy the divergence condition 7 • B_ = 0/ we must assume at least a two 

dimensional spatial variation. Later we shall specialize to variation along 

one direction; however, it is convenient to set up the variational integral in 

the more general form. 

A natural choice of coordinate systems for the problem consists of those 

directions specified by B_ and VB at the origin. If we choose £ aligned along 

B̂  and T) perpendicular to the B_ - VB plane, the inhomogeneities will be in 

the p - 5 plane (see Fig. 1). 

For this system the linearized perturbed fields are spatially homogeneous 

in the Trdirection, thus in the frame along B, 

E (p,£) exp{i(k . x - at)} 

dk dk, 
2n ' 2-it / 2^ ! •ZT'EfH) e*P{i(iS ' * " o*)} • (AD 

This field may be used in the linearized Vlasov equation to solve for the 

perturbed current density 

dk • 

where 
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2 

Sfe^M-^/^^e^V-V^'V-^ 

• { / * 3 v Z • [ A l ^ — 5 + o ( f ( S ) ) / « t , f ) v ( f ) dt-} L 0) 3 V -

(A3) 

and 

t t t 
/ I ( t , t ' ) V ( f ) d f = / expfiut t - t" ) - / k . v d T } d t ' . (A4) 
— CD —OO t ' 

In Eq. (A3) the sum over s represents the sum over species type with an 

unperturbed distribution f^s'. The operator D is given by 

1 ' s a;i u av_ 

where H is the total energy and v- is the velocity along the magnetic field. 

The integral in Eq. (A4) is done over the unperturbed orbits. In 

performing this calculation we assume that any single particle responds to a 

constant local magnetic field. This assumption is tantamount to neglecting 

terms of the order rLVB/B where r L is the Larmor radius. Such an ordering may 

be relaxed to include these higher order terms at the expense of considerably 

more complexity; however, their contribution to the solution is found to be 

negligible. The evaluation of the integral in Eq. (A4) yields 
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where 

/ I(t,t') V (f ) dt1 - 1 S 1^ 

exp {i[k v /£} sin(4, + Q - */2) - N ( © - 7t/2)]} S^ , <A5) 

and 

S = 
-N 

NJ„ 
T, sinrt, - IV, J ' cosd) 
i r IN v 

NJ„ 
V, cosd, + IV, J • sind, 
1 r L

 v IN v 

V" 
(A6a) 

L N = (« - m - V,)" 1 (A6b) 

The argument of the Bessel function is k v /Q where 1 denotes the perpen

dicular to B_. The angle ¥ is that of k measured from p in the clockwise 

direction. The quantity j in 5q. (A3) can be modified by considering the 

trans formation 
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exp{ik^ r L s in (^ + e - it/2)} 

k . ' v 
expfi — - — (sin(|, cos[ Q - n/2 ] + cosq, sin[ 0 - n/2])} 

(A7a) 

and let $ be the angle of k ' measured from the p axis. Then expression <A7a) 

becomes 

expfik r sin($ + 0 - it/2)} exp J-i 
v , fk ' - k ) cos 0 

l l P p' 

(A7b) 

In addition in Eq. (A3) we use 

v exp{ik r L s in($ - 0 - it/2)} 

= £ exp[iM(* + 0 - ti/2)} s^* . (A8) 

m 

When Eqs. (A5), (A7), and (A8) are combined in Eq. (A3), the integral over in 

the velocity integral can be done implicitly to eliminate the double sum. In 

addition we convert from the p-coordinate to the guiding-center coordinate y , 

v cos 9 

Thus Eq. (A3) becomes 
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2 
9 . 

a te. *') - E (- r -0 / % «c < « P M ( V - %) vg + ( Y - k5)?} 

, ( s ) v (k ' - k 1 cos e 
/ d 3 v v . " 5 i M _ e x p { i - l i p ._f' 

+ 1 / d 3 v D ( f t 9 ) ) ^ V % • ( A 1 0 ) 

n 

We now consider the first velocity integral in Eq. (A10). Because of the v, 
derivative the only nonzero component is proportional to £ • V « We also use 
the integral respresentation 

an iv, (k ' - k ) cos 0 
J (a) - / V ^ e x P { P o P }' ( A 1 1 ) 

O ' 2% L Q ' 

where a = (k • - k ) v JQ . With these s u b s t i t u t i o n s , Eq. (A10) becomes 

S Qi< * ') = I (-S—) / % d 5 exp i[[k p - - k p )y g + ( y - k ? ) E ] 

H 3- { - ^ V«» " ^ ( ' " ' l I S V ^ i i } • < A 1 2 ) 

The form of Eq. (A12) is symmetric in the k,k* variables except for the L„ 
term. However, to the order of approximation we shall retain, only the lowest 
order expression will be required, which is then symmetric in k and k'. This 
fact is important to ensure that the final system of equations is self-adjoint 
in the absence of damping. 

Referring to the geometry in Pig. 1, we wish to consider the case of an 
oblique gradient and oblique propagation, i.e., 0 ± 0. That is, we shall 
henceforth consider the case of a one dimensional gradient with « component 
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along the field and secondly a component of the propagation vector 

perpendicular to the plane of the field and gradient. For this geometry the 

gradient is aligned along the x-directlon, therefore the integrals in Eqs. 

(A2) and (A12) along the z-direction may be immediately performed. Also we 

shall assume for the moment that E- • 0. 

In order to obtain specific equations we first expand S^, Eq. (A6a), 

which appears in Eq. (A12). We shall retain only the zeroth order terms in 

the Larmor radius r L except for the second harmonic resonant terms, N = 2. 

Then for the p , n components we have non-zero contributions 

>i - « : , - - i 1 2 ' 
(A13) 

2 
S„ = + l 'I ~ - (k + i k sine + ik cose) -2 I . I 4D l V z x 1 ij 4Q 

We note that each of the quantities is of the form 

S._, = cos9 + ik U„. . (A14) 
Mi x Ni 

This f a c t permits the v a r i a t i o n a l i n t e g r a l , Eq. (5) in the t e x t , t o be 

transformed t o x—space, and the r e s u l t i s of the form 

+ 2 
/ dx E (x ) [- Vx(V x I ) + k Q I ] • E(x) 

2 
4itqc l (o , f + dE.(x) ^ 

I - A - I • 1 *'v I \ =ose E ± (x , + U m . _ - V 
O S N L J 

( s ) f dE Cx) T 
°(* ) \ |oo.e E.(X) + trNJ -&- J. . 

+ 

(A1S) 
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In the expression for L(j in Eq. (A6b), k» should be replaced by k z cose (the 

other terms contribute to higher order). The first part of Eq. (A15) may be 

rewritten 

/ dx E^ tx) {- 3 i ( a j E j [ x ] J + (3 A o A + k Q

2 ] E ± (x)} , (A16) 

where 

{8x,3y,az} = {-ik , - ik s ine + cose T ^ - , ik cose + s ine —2- I 
1 ' l V Z ?IX Z ?X I y z ax z ax 

(A17) 

All that remains to obtain the equations from Eq. (A15) is the velocity 

integrals. For the problems discussed here we shall assume the background 

plasma distribution is Maxwellian. Then 

_/_(sK m , m -.3/2 r v I , . 
D(f ) = -Tn(2tfa> e x p { " V~2~} ' ( R 1 8 ) 

2 
where v t = 2kT/m. Then the v, integral is given by 

-1 Z ( V 
! ^S^f V 0,-N^k v gcos 9 * k V. cose ' U 1 9 ) 

^^ z t z t 

where 1̂ , = (ai-NQ)AzVt cose and Z is the plasma dispersion function. The v 

integrals are of the form 
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/ AVL f(VL) N = ± 1 
(A20) 

N =» 2 

If we substitute Bqs. (A18) - (A20) into Bq. (A15), then the mode conversion 

equations are readily obtained. The E equation is found by taking the 

variation with reBpect to E + , namely 

(-T-7 - k 2 - k 2 + k ] E - i k f i k E + f - ik s i n e + cos9 — 1 E ) '-dx* y z O ' T ) y v y t | L z d x J p' 

2 

" 1 J - V «. « " a (*I>J{* + « } - Z[L J {E -IB }) 
^ c ' 2k V. cos6 *• L 1 J l p n J L _ 1 J i p ^ i ; 

+ i Y B T f ik £> i n6 " k - cose -=—1 i P s 4 L z y dx J k V cose z t 

f - i k s i n e - k + cose -=—1 (E + iE ) L z y dx J *• p n' 

The var ia t ion with respect t o E y i e l d s 

( T - J - - k Z - k 2 + k 2 ] E - f - ik s i n e + cose -z—1 "•dx^ y z o ; p *• z dx ' 

(A21) 

( i k v En - i k z s i n e Ep + cose •—&) 
y z 

2 

)• " 4 - -Zr-Z-* S ( « [ * , ] {E + IE } + Z[L . ] {E - U }) 
L c z 2k V t cose v L 1 J l p t ) ' L - 1 J l p n , ; 
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- i T 6 T [ik sine - k - cose -r̂ -l :—=• £ Hs 4 L z y dx J k V . cosS 
z t 

[-ik sine - k + cose -=2-1 (E + iE ] . (A22) 
L z y dx J l p n' 

The first terms on the right hand side of Eqs. (A21) and (A22) correspond to 

the fundamental resonance. The terms proportional to 

<o 2 V, 2 

ps ts 
c2 

correspond to the second harmonic resonance. Equations (A21) and (A22) are in 

the form of Eq. (8) in the text and are readily decomposed to yield the 

matrices G, F and H in Eq. (10) in the text. 

The above system is a set of two coupled second order ordinary 

differential equations. The effects of a small parallel electric field may be 

included as a perturbation without increasing the order of the system. 

Neglecting higher order terms E» can be expressed in tex-ms of the 

perpendicular fields by 

k kj; + k k E + k 2K E , » 0 . (A23) 
p f p n 5 n o zzo I 

If this equation is solved for E- and the result substituted in the p-% and jy 

5 elements of Eq. (A15) the resulting G, P and H matrices are perturbed by 

the following matrices: 
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G' 

2 2 2 2 3 2 2 
k ([cos 9 - sin e] - 2 sin 6cos6) -k k sin9(2cos 9 - sin 9) 

2 2 -k k sinQ(2cos 9 -sin 9) y z k J 

, 2 ,2 k sin 9 y 

F* = 

3 2 2 2 2 3 2 3 
2ik sin 9(sin 9 - cos 9) ik k (sin + cos9sin 9 - cos 9) 

2 3 2 3 2 
ik k (sin 9 + cos6sin 8-cos 9) Zik sin9cos9k 

k * o zzo 

(A24a) 

k 2 K o zzo 

(A24b) 

-k sin f 

3 2 -k k cosOsin 9 y z 

3 2 -k k cos9sin 9 y z 

-k k cos 9 
y z 

k~2K o zzo 

(A24c) 

Due to the fact that K z z o is large these perturbations are small and do not 

appreciably affect the fast wave scattering coefficients. However, on the 

weakly damped Bernstein wave branch, the resulting small but finite electric 

field can give rise to strong absorption on electrons. 
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Figure Captions 

Fig. 1 Geometry for the derivation of the wave equations. The magnetic 

field is '..n the \ direction, and the p direction is chosen to lie in 

the B_ - VB plane. 

Fig. 2 Eigenvalues of the coefficient matrix for the minority hydrogen 

heating case, n e o = 4 x 10 1 3 cm"3, T e o » T ^ =» T d o » 2 keV, B Q = 

29 kG, f - 42 MHz, k z = 10 m"1, r^ = .95, T^ = .05, I p » 0 kA, R,, = 

1.32 m, a = 0.40 m. The density profile is parabolic and the 

temperature profiles are parabolic squared. 

Fig. 3 (a) Poynting flux for a wave incident from the high field side, for 

the parameters of Fig. 2, P f c r - 0.36, P m c = .20, P a b s = .44; (b) 

real part {solid) and imaginary part (dashed ) of the E field for 

high field incidence; (c) corresponding E field; (d) corresponding 

Bj field. The fields are normalized to the same hut arbitrary scale 

factor; (e) corresponding left-hand field, long dashed line 

represents |E+|; (f) absorbed power per unit volume, P e " .167 

(solid), P d = .01 (short dash), P,, = .26 (long dash); (g) kinetic 

flux (dash), and total power flux (solid); (h) plane wave 

decomposition coefficients, right going fast wave (solid), left going 

fast wave (dash), right going slow wave (short dash), left going slow 

wave (long dash). 

Fig. 4 (a) Poynting flux for a wave incident from the low field side for the 

parameter of Fig. 2 P t r - .37, P r e f - .11, P,^ » .02; (b) B field. 
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notation is the same as in Fig. 3; (c) E field; (d) E, field; (e) 

left-hand field; (f) absorbed power, P e = .03, P d = .03, p^ = .44; 

(g) kinetic flux and total power flux; (h) plane wave coefficients. 

Fig. 5 Scaling with minority hyd; . concentration for PLT parameters. 

Teo " Tpo * Tdo " 2 k e V ' neo = 4 x 1 ° 1 3 c m " 3 ' Bo = 2 9 k G ' f = 4 2 M H z ' 
k_ = 10 m" 1, I„ = 0 kA; (a) low field incidence (LFI), reflected z p 
power (solid), transmitted power (dash); (b) absorption fcr both 

standard cases, proton damping, LFI (solid), proton damping, HFI 

(short dash), electron heating via mode conversion, HFI 

(long dash); (c) high field incidence, HFI, transmitted power (lcng 

dash) mode converted power (short dash)- defined as the power still 

propagating on the Bernstein branch at r = 20 cm. B was fixed for 

this calculation. 

Fig. 6 Density scaling for the minority hydrogen case in PLT. n, -= . 1, 

other parameters are as in Fig. 5. (a) Low field incidence, notation 

is the same as in Fig. 5, (b) wave absorption, and (c) high field 

incidence. 

Fig. 7 Temperature scaling for the minority hydrogen case in PLT. T = 

T__ = TJ_ = T , other parameters are the same as in Figs. 5 and 6. 

(a) Low field incidence, (b) wave absorption, and (c) high field 

incidence. 

Fig. 6 Plasma current scaling for the minority hydrogen in PLT. Parameters 

are the sar.a as in Figs. 5-7, y = 10 cm, (a) low fiald incidence, 

(b) wave absorption, (c) high field incidence. 
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Fig. 9 parallel wavenumber scaling for the minority hydrogen case in PLT for 

several plasma current values, other parameters are the same as in 

Figs. 5-8; (a) low field incidence, (b) wave absorption, and (c) low 

field incidence. 

~ig. 10 Mode conversion scaling for PLT parameters; (&) percentage mode 

conversion defined as that power which is still propagating on the 

Bernstein branch at r = 20 cm for fixed density n Q O = 4 x 1(1'° cm 13 cm-3; 

(b) percentage mode conversion for fixed parallel wavenumber k z = 

Fig. 11 Scaling with minority He concentration for PLT parameters f = 25 MHz 

B Q = 25 kG; (a) low field incidence; (b) wave absorption; and (c) 

high field incidence. Other parameters are the same as in Figs. 5-10 

with ^He as the minority species. 

Fig. 12 Parallel wavenumber scaling for the He minority car« (a) low field 

incidence, (b) wave absorption, and (c) high field incidence. 

Fig. 13 Parallel wavenumber scaling for the hydrogen second harmonic case in 

pure hydrogen for B 0 = 14 kG, f = 42 MHz; other parameters are the 

same as in previous figures. (a) Lew field incidence, !b) wave 

absorption, and high field incidence. 

Fig. 14 Density scaling for the hydrogen second harmonic case in PLT. 

Parameters are the same as for previous figures. (a) Low field 

incidence, (b) wave absorption, and (c) high field incidence. 
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Fig. 15 Temperature scaling for the hydrogen second harmonic case in PLT 
Teo = Too = Ta* Otter parameters are the same as in previous 

figures. (a) Low field incidence, (b) wave absorption, and (c) high 

field incidence. 

Fig. 16 Comparison of mode conversion and absorption coefficients with 

(solid) and without (dashed) explicit gradient terms for the minority 

case depicted in Figs. 5-10. 



39 

TABLE 1 

Low Field Incidence High Field Incidence 

ci Left Boundary Right Boundary Left Boundary Right Boundary 

Left going trans 
Ein 

1 
Eref 
Ein 

0 

Fast 

J = 1 

Right going 0 
Eref 
Ein 

1 
Ê . trans 
in 

Fast 

•i = 2 j 

Right going 
E rac 
E. in 

0 
E rac 
in I 

Slow 

J = 3 

Left going 

slow 0 0 0 0 

i = 4 
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