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The Theory of Mode Conversion and Wave Damping

Near the Ion.Cyclotron Frequency
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Abatract

Using a variational technigue, a set of coupled model equations for the
mode - conversion process near the ion-cyclotron frequency is derived. The
system is truncated to first order in Larmor radius but includes the effects
of e>licit gradients and a poloidal field. From the equations a conservation
rule is extracted which ensures conservation of total energy and provides an
explicit expression for the wave damping in differential form. The equations
are integrated numerically for the standard cases of fast waves ircident from
either the low-or high~field sides of the mode~conversion layer. The scaling
of the damping processes is diacussed and implications for current RF-heating

experiments on the Princeton Large Torus are drawn.
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In a plasma where two or more propagating waves may coexist, the presence
of gradients in the plasma parameters can give rise to localized regions where
one mode 1is strongly coupled or converted to another. This so~called mode
conversion process, first pointed out by Stix [1], has received increasing
attention in recent years because of its potential importance to the RF
heating of thermonuclear plasmas. Mode conversion takes on a speci§1
significance whnn a wave which is accessible from the plasma periphery couples
tc another wave which can be efficiently damped by the thermal motion of
electrons and ions. In particular, recent experimental successes in heating
tokamaks near the ion cyclotron frequency have suggested that mode conversion
may piay a key role in the understanding of the wave damping mechanisms [2-6].

Near the ion cyclotron frequency, mode conversion may take place from the
fast magnetosonic wave to an ilon Bernstein wave either at the second and
higher ion cyclotron harmonice [7,8) or near the two-ion hybrid frequency in a
multiple species plasma. Approximate scattering parameters for these cases
have been worked out by several authors [9~12], and these results have been
recently reviewed by Stix et al. [13]. Early work was based on approximate
differential equations derived by neglecting explicit gradient terms and the
effects of dainping near the mode conversion zone. This work was extended with
an elegant treatment by Swanson [14,15], reviewed in Ref. 13, who showed that
the presence of strong damping can dominate the mode conversion process.
However, as Perkins ([9] has pointed out, the effect of a poloidal field in a
tokamak (or a gradient in the direction of B) can have a profound influence
through a resulting change in the parallel wavelength, and this result has
been confirmed in the numerical work of Jacquinot [16]. Moreover, the effects
of explicit gradient terms in the wave equations can be expected to modify the

results to some degree with regard to wave damping and the conservation of



energy [13]. A totally self-consistent treatment of the mode conversion
problem including the above effects and a simple meaus of calculating wave
damping on each particle species have, to date, not appeared.

In this paper our aim is to extend the present theory of mode conversion
to provide a quantitative, self-consistent model of the wave damping and its
scaling with plasma parameters. An essential element of this analysis is the
conservation of total energy and power flow throughout the mode conversion
zone. In Section I, we shall derive the wave equations using a variational
technique including the effects of gradients along B and strong damping. 1In
Section II, we show that these equations lead to an energy conservation law
with explicit expressions for calculating the wave damping fcr each particle
species. In Section III, we ocutline a straight-forward numerical procedure
for solving these eguations, and in Section IV we consider the specific case
of mode conversion near the ion cyclotron frequency and its harmonics in
tokamak plasmas. Finally, a comparigson to previous theory is made, and in

Section Vv the implications for ongoing experiments are discussed.

I. Derivation of the Wave Equations

The approach taken in this section is to derive a set of coupled second
order equations for the electric fields from a variational principle which is
bagsed on a method developed by Berk et al. {17]. In related work, a similar
expansion technigue was recently applied to this problem by Swanson [18], who
reported similar results for the case where VB is perpendicular to B. 1In this
work we wish to extend the theory to include more genperal situations and to
provide explicit expressions for the power flow and wave damping.

In the variational method the wave equation is developed in k~space as is

done in uniform plasma theory. However, instead of sgelecting a particular



wave vector, k, an integration is performed over all k values in the direction
of the inhomogeneity. The application of the exact variational integral leads
to a coupled set of integral equations. A useful approximation scheme exists
in which the variational integral 1is expanded in k-space and converted to
x-gpace according to a specific presecription for the ordering of the
operators. This approximate integral leads to a coupled set of differential
equations which will subsequently be soclved numerically.

From Maxwell's equations we can obtain the familiar wave equation

2 idde 5 - o (N

E . (2)

For a nonuniform medium, the operator g is to be understood as an
integral operator lacking the property of translational invariance. The ave

equaticn may be derived from the variational integral

[axE(x) « {-vx[wx E(x)] + x° E(x) + =5 [ dx' glx,x') E(x")} .

(3)

where Ef is the adjoint field satisfying the adjoint of Eg. (3).

If we Fourler decompoge the fields, i.e.,




Ex) = [ —5Ep X E (4)

then the variational integral can be recast in k-space as

& . 2
5 Bk« [kx (kx 1)+ k]« EBR
(27)
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whese 1 is the unit dyadic. In Eg. (4) wel take the Fourier decomposition over
all’ three gpatial dimensions. It is only necessary to carry the Fourier
integral for those directions where the fields are inhomogeneous. Thus for
the cases we will be considering, the integral will be done in one and two
spatial dimensions. For choge directions where there is no spatial variation,
a gpecific wave number, k, will be chosen.

If the variation of Eq. (5) is taken with respect to E"’(-lc_), then tae
wave equation in integral form results. However, approximate differential
equations can be formulated by expanding the kernel about k, k' = 0 which
contain the essential physics of mode conversion and which are considerably
easier to evaluate numerically. Such an expansion amounts to the usual finite
Larmor radius expansion but includes the effects of explicit gradients. For
example, in the case of a one-dimensional spatial inhomogzneity considered

below, we replace g by the geries

N
sk, k) = £ o™ (k =0, k' = 0) K%', (6)
n,m



where k and k'are in the direction of the inhomogenity. Then the integral in

Eq. (5) can be transformed to x-space by using the transformation

L R TILY- - 7
2y m
The application of this technigue leads to a set of coupled differential

equations of the form

T
&

E+H«E=0 , (8)

%™

where g, g, and I»__I are matrices whose elements are functions of x. To
facilitata the analysis we resolve the E-vector in components aligned along
the local B-field (p,7m,£) and define another coordinate system (x,y,z) aligned
along the gradient as shown in Fig. 1. For definlteness we assume a plasma

density and magnetic field variation of the form

B,(x) = B_(1 +§ 1,

const , (9)

i}

Bx(x)

2

2
x° + y
no(1- — ).
a

n( x)

which 1is appropriate for a narrow zone either side of the mode conversion
layer in a tokamak. Oblique incidence and By £ 0 effects may be included by
taking ky # 0, although situations where the gradients are strongly two-
dimensional, such as near the plasma periphery, are excluded. We assume ny

and n, are specified by boundary conditions and are preserved according to

.




Snell's law consistent with the assumption of a one-dimensional gradient. We
note that the procedure outlined here lzads to a set of partial differential
equations when two-dimensional gradients are considered. The solution of this
problem is considerably more involved numerically and will be left to a later
work.

The details of the above calculation for specific cases of interest are
carried out in the appendix, and we gummarize those results here. Including
the effects of both fundamental and second harmonic heating, the matrices

G, ¥, and H are given by

sinze - cosze 52 -i cosze EZ
G = (10a)
. 2 ~ 2~
i cosf Z2 1-cos8” B z2
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where U ik, sing + ky

2

Kxxo = Fyyo = 2K,V o cose (2, +z

1)

W
a =1 —L2 -
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Zn 1s the plasma dispersion function evaluated at the nth harmonic. In the

above, the parallel electric field, Eg, 1s neglected so that E is of the form
(Ep' Eﬁ); however, EE corrections can be easily included as a perturbation and
the resulting matrices are given in the appendix. We note that ccnsiderable
simplification results when @ +» 0, that is, when there is no component of the
gradient along B. Equation (10) forms the starting point for our
consideration of the mode conversion problem. If explicit gradients are
neglected in the above, the dispersion relation derived from the determinant
of the coefficient matrix corresponds to the usual WKB dispersion relation
valid to first order in Larmor radius, which has been investigated by previous

workers. A generalization of this concept including gradient effects is given

in Section III.

II. Energy (onservation Principle
The importance of gradientz in the flow of enercy has been suggested by
»:ix [13] and others [19] for the mode crnversion problem. This fact is

readily apparent from the above rxesults if Eq. (8) is first written in "self~



adjoint" form. Define the vector R by

12}

where the prime denotes dJdifferentiation with respect to x. Euation (8)

becones
» B +P, » B =20, (11)
=0 - =1 =
where i
8
E I
=° =
1 2
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Note that Eq. (11) is formally self-adjcint, i.e., Bo = - go ' P1 = I-’1 ’

when F is antihermitian, and G and H are hermitian. This is in fact the case
when K, .., IS'YO and "32 are real whilie ]Scyo is pure imaginary, that is when
damping is zero.

Now for an operator of the form

a

it is easily shown that Lagrange's identity [20] for this system is given by

v
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where

is the adjoint operator, and u and v are any functicas in ct1 on

domain. In particular, if we choose u = v = B and use Eq. (11)

conjugate in Eg. (12), we find the following conservation relation:

s}
Tix— (Sx *+ rl‘x) = -{EL

1 ~

2 hd o
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E cos 6 Z_  E EL cc)sleuz2 EL C.C

(12)
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and its

(13a)

{13b)

v * *
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nn b Y n z p
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We assert that Eqs. (13b) ard (13c) are generalizations of the kinetic
and Poynting fluxes respectively to the case cof strong gradients and
damping. Note that the kinetic flux, Egq. (13b), reduces to the WKE form given
by stix ([21] in the liamit of sufficiently weak gradients and vanishing
absorption. The expression for the Poynting flux, Eg. (13c), is readily shown
=¢c be the x-component of E x H*, as represented in the (p,n,E) coordinates.
The right hand side of Eg. (13a) represents the losses including both
fundamental and cyclotron harmonic damping and is manifestly zero when wave
absorption is abgent. Thus Eq. (13) reprzsents conservation of energy for tie
gystem, and, when the right-hand side is zero, the system is self-adjoint.
Once the wave fields have been determined, the wave absorption is easily

calculated for each species using Eq. (i3a).

IIT. Numerical Solution Procedure
The wave Eg. (10) can be integrated directly to match given boundary
conditions. We adopt two model cases corresponding to a wave of unit
amplitude approaching the mode conversion zone on the cold plasma (fast wave)
branch from the right or ieft (Table I). In order to specify the appropriate

connection to cuter WKB solutions, we consider Eg. (11) and its adjoint

1 L] L] =

B + B, B, B=20 (14a)
4+ -] »

B '£o1t'£1t-.!.+=°~ {14b)

Let S be the matrix which diagonalizes Eq. (14a), i.e.,
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where L 13 a diagonal matrix of eigenvalues.

we find

Thus @ diagonalizes the adjoint Eq.

related to those of Eq. (14a) by

litn
I
]

L]

o
163

[
I

we have

"
1
e
.
L]
I
]
o
.
I

(14b},

Then letting

and these eigenvalues are

i mtpm g
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When gradients are zero the right-hand side of Eq. (15) is 2zero, and the
solutions reduce to decoupled plane waves. If the right-hand side is kept -o
first order, however, the usual WKB solutions for the coupled system result,
and these may be used to construct the boundary conditions for the numerical
integration. Note that the characteristic equation which occurs in the

-1
diagonalization of go . 21, namely

-M =0, (16)

is a generalization of the uniform plasma dispersion relation to include the
effects of gradients.

Referring to Table I, the WKB solutions corresponding tc each mode with
ingoing or outgoing power (note that the slow wave branch is typically a
backward wave) are matched to the numerical solution of Eq. (10} in the
following way. Beginning with orthogonal initial conditione, Eq. (10) is
integrated numerically four times over the chosen domain. The resulting
solution vectors can be used to form a transfer matrix, D, which maps a vector
or, say, the high field side into another on tne low field side, i.e.,

=E. .

Er

At the domain boundaries we express E in terms of the outer WKB

solutions, namely

4
Ay X
E= c, 8, 3" ,



where E and S are vectors of the form E = [Ey,

the solutions of Eq. (1

14

Ey', Eyr Ex‘], and the kj are

6). Solving for the unknowns in terms of the knowns

for each case gives the following expressions for the scattering parameters

low field incidence:

Etrans D43

_ 33
Ein D
Erer _ D12(043 * D33) = Py3(0yy * Dyp)
Ein D
Fre _ _Pa2 * P32
Ein D

with D = Dy, (Dyy + Dys)

high field jwcidance:

Etrans
E,_ - P11 °”
in
Fref _ D
£, 21
Emc D
— =D
B, 2

once all the coefficients c; are determined, the entire solution in the mode

conversion =zone may be reconstructed.

independent numerical so

= D32023 — Dyp Daj3

o 21203 * Pay) 7 P45fP3p * D)
21 )
Pa3 * P33 D23 23
D, —= +
D 31 o " U
a2 * P32 P22 P2
D 31 p 41 o °

3

lutions £y = [Eﬂ' Eﬂ

In terms of tie four 1linearly

'y Ep’ Ep'], we have

(17

(18)
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If we let
g = [§1l Ezl €3l €4l]
and
E = [§1r §21 §3I §4] '
2
1. =T, =T
) 225 21 .
where S,= [1,)\.. P WP
H + ). 3
3 3Tyt Ty 3733
then
p=2g" + T o § (19)
= = = =
LP HF
and
a=1" < 8 " .
as=az 2 H
HF HF HF
The solution procedure is as follows:
(i) integrate the wave equation with four linearly independent
boundary conditions,
(i1) form § and T; compute D and the scattering parmeters, 50

(111} compute a and then construct E by superposition.

Finally, in this 'section we need to discugss the numerical accuracy of the

process. As was pointed out by Swanson [13], the strong evanescense of the
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Bernstein wave on the low-field side causes difficulty for numerical
integration schemes. The key i3 to choouse a domain wide enough so that the
WKB outer solutions are good approximations and yet not «o wida *h~+ round-off
error becomes appreclable due to the rapid growth of the evanescent
solution. 1In practice the domain boundaries can be chosen with some latitude
without significant changes in the golution. Moreover, the numerics can be
checked in several ways. First, the WKB coefficients can be computed for each
point in the domain. When these coefficients are sufficiently slowly varying,
tha WKB solutions are good representations. This can be checked by varying
the domain width to see if the scattering parameters change significantly.
Second, the energy conservation relation Eq. (13) gives a convenient check on
the accuracy of the integration. The integrated damping should equal the
change in total energy across the domain. Finally, if the input power is
normalized to unity, the sum of all the remaining powers should be unity. 1In
practice single precision is sufficient for ensuring accuracy of the

calculation.

IVv. Numerical Results

In the ion cyclotron range of frequencies, the heating regimes fall into
two general classes: (i) minority fundamental heating and (ii) second or
higher harmonic heating. In the minority heating case, mode conversion may
occur at the two-ion hybrid resonance in a multi-species plasma which, if the
minority ion is sufficiently dilute, occurs near the fundamental cyclotron
layer for the ion. In experiments on the Princeton Large Torus the minority
ion regime with either a small component of H or 3He in a Deuterium plasma has

shown congiderable effectiveness as a means to heat the plasma ions and

electrons [4,22].

i
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The results of the numerical solution of the above mentioned system for
parameters typlcal of the H minority regime on PLT are shown in Figs. 2-4. In
Fig. 2 the dispersion roots indicate that the Bernstein wave 1is coupleq,
although weakly, to the fast wave on the high field side of the H cyclucrson
layer. Note that the roots are not degenerate or complex conjugate in the
mode conversion zone due to the gradient terms which, as it will be seen,
affect the strength of the mode converted wave. In the -.ase shown here when
B, = 0, the Bernstein wave fields appear primarily in Ep which is directed
largely along k on the Bernstein wave branch. Only a very small fraction of
the incident power is mode converted for low field incidence, but mirority ion
damping is strong for this case and results in virtually complete abx~rption
in a few passes. From the high field side, however, a significant fraction is
converted into the backward Bernstein wave which is subsegquently lost to
electrons through Landau damping as the parallel electric field increases.
Note that even though responsible for a large part of the wave damping, the E5
field remalns much smaller than the perpendicular fields. WNote also that the
actual wave damping does not follow the shape of the left-handed electric
field as would be expected from plane-wave theory due to the interaction of
both the kinetic and Poynting fluxes in the damping processes. The effects of
altering the minority concentration is shown in Fig. S. At even modest
concentrations of 10% H the reflection coefficient for a low field incident
wave increases significantly with a resulting loss in the single pass minority
absorption. Coincident with the above the mode conversion efficiency for a
high field incident wave increases with a resulting increase in the electron
damping. Trangmission coefficients for the two cases are similar, in
agresment with Ref. 15. Mode conversion efficiency is also an increasing

function of density, as shown in Fig. 6. Of some experimental interest is the
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fact that the minority ion absorption from the low field side is predicted to
remain strong at high density, as shown. Minority ion damping is also
expected to increase with increasing temperature, in contrast to expectations
of plane wave theory, as shown in Fig. 7. At gufficiently high temperatures
the low and high field incidence cases should approach each other. The effect
of plasma current (poloidal field) on these results is shown in Fig. 8. For
this case a zone slightly off axis is shown, and positive or negative current
values correspond to locations above or below the midplane, respectively. 1In
qualitative agreement with the model proposed by Perkins [9), the poloidal
field of one sign tends to enhance mode conversi&n and reduce electron damping
through an effective decrease in the 1local kE value, while the opposite sign
decreases mode conversion and increases electron damping. BAlso 1n agreement
with Perkins, it is found that the asymptotic character of the equations
change at sufficiently low plasma pressure and sufficiently high poloidal
field values. This case occurs near the plasma periphery in PLT where the one
dimensional theory is invalid and will not be treated here. Note that the
transmission coefficients for the two standard cases are no longer equal. AS
a function of the imposed k, spectrum the minority heating from the low field
side indicates a weak maximum at intermediate values, as shown in Fig. 9.
Transmission increases at large k, while reflections appear to decrease. At
very low k, values, absorption decreases while, from the low field side, the
reflection coefficient increases significantly. Mode converted waves are
predicted to be weakly damped in this case, giving rise to significant power
carried by the Bernstein wave. To the extent that this power remains undamped
as the Bernstein wave propagates toward regions of ever decreasing wavelength,
higher order corrections may have to be included in the equations to determine

the ultimate fate of this wave power. 1A composite map of mode conversion

!
|
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efficiency for the high field incidence D/H minority case is shown in Fig.
10. It is observed that mode conversion should occur to some extent over a
broad range of parameters possible in the PLT experiments.

In the 35e minority case the results are similar to the hydrogen minority
case except that the mode conversion and fast wave cutoff are considerably
weaker, owing to the different charge-to-mass ratio of the 34e ijon. BAs a
consaquence, the results are more symmetric fc':»r both directions of incidence,
and, for a given e concentration, wave transmission is larger as shown in
Figs. 11 and 12. We note that the relative transparency of the cutoff zone
gives rise to significant mode convarsion and subsequent electron heating for
low field incidence at sufficiently high 3He concentrations.

In the second harmonic heating regime the Bernstein wave 1s weakly
coupled to the fast wave, but the coupling nonetheless has an important
influence on the fast wawve absorption, as suggested by Takahashi [23] and
Hwang et al. ([3]. The results for typical FLT parameters which indicate
significant second harmonic absorption are shown in Fig. 13. Note that the
reflection coefficient for low field incidence is low as a conseguence of the
fact that the cutoff associated with the fundamental minority cyclotron
resonance 1is absent. The scaling of second harmonic absorption with
increasing density and temperature, shown in Figs. 14 and 15, respectively,
indicates a favorable extrapolation of this regime to higher beta plasma.

It is useful to compare these results to previous work to ascertain the
accuracy of the numerjcal results and to point out the importance of the
gradient effects included in the formulation. A comparison of the present
theory to the gradient-free, localized absorption model developed by Swanson
indicates that the present work and Swaneon's results give similar values for

the fast wave scattering parameters, but both of these differ substantially
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from the Budden model (9] which does not include damping. Ta Fig. (16) we
observe that the mode converted power is strongly affected by the inclusion of
gradient termg, and consequently the strength of Jdamping on the Bernstein
branch is affected. While qualitatively the results of this work are similar
to Swanson's gradient-free model, quantitatively the mode converted power
differs by the factor required to ensure congervation of total energy.
Finally, we remark that both the fast wave scattering and Bernstein wave
absorption coefficients can be significantly affected by the presence of a

poloidal field.

V. Summary and Conclusions

We have derived a set of coupled model equations for mode conversion near
the ion cyclotron frequency including the effects of gradients and a poloidal
field. The set of equations leads to an energy conservation rule which
includes finite Larmor radius effects in differential form. The equations may
be integrated directly, yielding the fast wave scattering parameters and the
wave absorption by each particle species.

In the case of minority hydrogen heating, strong minority absorption at
gufficiently low H concentration is expected for low field incidence over much
af the parameter range appropriate on PLT. Electron heating should be
feasible with high field incidence associated with mode conversion. Second
harmonic heating of deuterium in this regime 1is expected to remain
insignificant under typical conditions. The presence of a poloidal field
tends to remove vertical symmetry in the wave damping, due to the increase or
decrease in kE at locations above or below the midplane.

The results are qualitatively similar in the 3ye minority regime except

that mode conversion should play a less important role. Minority ion

|
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absorption is feasible with either Airection of incidence, and at sufficiently
high 3he concentrations electron heating should occur via mode conversion. It
is interesting to note that such heating may be observable for low field
incidence owing to the comparatively larger transmission coefficient for this
case.

For second harmonic heating it 1s expected that, even at the relatively
low plasma beta values in PLT, the absorption should be significant. Damping
is largely independent of direction of incidence for typical parameters and
due to the low reflection coefficient from the low field side, central wave
absorption should occur in a few passes. Little electron heating in this
regime for PLT conditions is expected.

While the above model is appropriate for the core of the plasma, further
work is necessary to extend the validity of the analysis to the plasma
periphery where the effects of strong poloidal field and two dimensional

gradients must be taken into account.



22

Acknowledgment

The authors wish to acknowledge helpful discussions with a number of
workers in this area, including D.G. Swanson, T.H. Stix, S.C. Chu, J.C. Hosea,
and J. Jacquinot. Helpful comments from J.R. Wilson and D. Gambier are also
appreciated. One of the authors (PLC) was supported by DOE Contract
# DE-AC02-76-CHO-3073, and another (R.J. Kashuba) was supported by MNcDonnell

Douglas IRAD funds.

U |

i
;
!
i

e



1

2}

[3]

[4]

(<]

(6]

(7

{8}

(el

[10]

[11)

[12]

[13]

[14]

(18]

23

References

STIX, T.H., Phys. Rev. Lett. 15 (1955) 737.
HOSER, J.C., et al., Phys. Rev. Let:., 43 (1979} 1802.

HWANG, D.L, et al., Proc. Joint Coni. of 4th . iter. Conf. on Plasma

Theory and 4th Inter. Congress on Waves and Instabilities in Plasma,

Nagoya, Japan, April 7-11, 1980.

HGSEA, J.C., et al., Bth International Conf. on Plasma Physice and

Controlle ..ucices vusion deuearch, biussels, . sww, (i980).

COLESTOCK, P.L., et al., Proc. 2nd Joint Grenoble-Varenna Inter.

Symposium on Heating in Toroidal Plasmas, Como, Italy, (1980).

TFR Group, 9th European Conf. on Controlled Fusion and Plasma

Physics, Oxford, England (1979).

WEYNANTS, R.R., Rev. Lett. 22_(1?74) 78.

SWANSON, D.G., NGAN, Y.C., Phys. Rev. Lett 35 8 (1975) 517.

PERKINS, F.W., Nucl. Pusion 17 6 (1977} 1197,

NGAN, Y.C., SWANSON, D.G., Phys. Fluids 20 11 (1977) 1920.

JACQUINOT, J., MC VEY, B.D., SCHARER, J.E., Nucl. Fusion 17 2 (1977)
8g.

SWANSON, D.G., SCHARER, J.E., MC VEY, B.D., MAU, T.K., Nucl. Fusion
17 2 (1977) 297,

STIX, T.H., SWANSON, D.G., Princeton University, Plasma Physics
Laboratory Report PPPL-1903; Handbook of Plasma Physics, Vol. I,
Galeev, A., Sudan, R.N., North Holland, Amsterdam (to be published).
SWANSON, D.G., Phys. Fluids 21 6 (1978) 926.

SYANSON, D.G., Nucl. Fusion 20 8 (1980) 949.




[16]

[17]

(18]

[19]

[20]

f21)

[22)

(23]

24

JACQUINOT J., Varenna—-Grenoble Inter. Sym. on Heating in Toroidal

Plasmas, Grenoble, France (1980) Vvol. I, 127.

BERK, H.L., DOMINGUEZ, R.R., J. Plasma Physics 18 (1977} 31.

SWANSON, D.G., “hys. Fluids 24 31 (1981) 203S5.

KUEHL, H.H., OBR"EN, B.B., STEWART, G.E., Phys. Fluids 13 (1970)
1595.

CODDINGTON, E.A., LEVINSON, N., Theory of Ordinary Differential
Equations, McGraw-Hill, New York, (1955).

STIX, T.H., Theory of Plasma Waves, McGraw-Hill, New York, (1962).

HOSEA, J.C., et al., Third Joint Varenna-Grenoble Inter. Symposium on

Heating in Toroidal Plasmas, Grenoble, France (1982).

TAKAHASHI, H., J. Physique, 38 (1977) Coll. Cé, 171.

i it e i S




Appendix

In the appendix we shall derive the wave equations using a variational
teclinique which is an adaptation of a method developed by Berk, et at.’" we
wish to consider cases where there is a component of VB along B. In order to
satisfy the divergence condition ¢ » B = (@, we must assume at least a two
dimensionzl spatial variation. Later we shall specialize to variation along

one direction; however, it is convenient to set up the variational integral in

the more general form.

A natural choice of coordinate systems for the problem consists of thosge
directions specified by B and VB at the origin. 1If we choose E aligned along
B and % perpendicular to the B ~ VB plane, the inhomogeneities will be in

the ; - E plane (see Fig. 1).

For this system the linearized perturbed fields are spatially homogeneous

in the %—direction, thus in the frame along B,
E (psE) expfi{k « x - ut)]
ak ak
= [52 [3EER exp{i(k « x - wt)} . (a1)

This field may be used in the linearized Vlasov equation to solve for the

perturbed current density

g(s)=fﬁzﬁlg (k. k') E (k') . (a2)

where
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2
if(k ' -k Jp+ (k' -k
g (k') = 5 (- 22) fapaget{le, ~Hplew (gt k)]
8 8
(s) . t
e {fdvy. [5 of ¢+ D(f(s)) [ UL, ¥ (£T) at')
-_— w ng e —
(a3)
and
t t t
[ Te£") ¥ (') at' = [ expliwlt-t') - [ k o v dr} at’. (n4)
- - t'

In Eq. (R3) the sum over 38 represents the sum over species type with an

unperturbed distribution f(S). The operator D is given by

(s) k « V £
(s)y _ df s A 5
(") =m, R . (a5)

where H is the total energy and ve is the velocity along the magnetic field.
The integral in Eq. (A4) is done over the unperturbed orbits. In
performing this calculation we assume that any single particle responds to a
constant local magnetic field. This assumpticn is tantamount to neglecting
terms of the order rLVB/B where rr, is the Larmor radius. Such an ordering may
be relaxed to include these higher order terms at the expense of considerably
more complexity; however, their contribution to the solution is found to be

negligible. The evaluation of the integral in Egq. (Ad4) yields
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t ®
[ xe,et) vg(:') ae' =4 I Iy

-co N==am

« exp {i[klvl/g sin(y + 0 - w/2) - N ( 0 - w2)]} Sy ¢ (A5)

where
r -
NJN
—— - L]
V.L 7 sing 1Vl JN cosy
L
NJ
S = VvV — cos} + 1V J ' si (A6a
Sq LT i 1 %5 sing )
v._dJd
N
L £ J
and

-1 (a6b)

The argument of the Bessel function is k J_v l/g where | denotes the perpen-

dicular to B. The angle ¥ is that of kl meagured from p in the clockwise

direction. The quantity g in 3q. (A3) can be modified by considering the

transformation
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exp{ikl r sin (o + & - n2}}

.
kv
)

(sing cos[ & - /2] + cosy sin[ @ - v2])}

(A7a)

and let @ be the angle of kl' measured from the ; axis. Then expression {A7a)

becomes

vl(k '~k )cos B I
exp{ikl r. sin(dp + 0 - n/2)} exp | -1 £ Qp (-
'(B7b)
In addition in Eq. (A3) we use
v exp{ikl r, sin(® - o - w2)}
=z expliM(e + o - w2)} s * . (a8)
m

wWhen Egqs. (A5), (A7), and (A8) are combined in Eq. (A3), the integral over in
the velocity integral can be done implicitly to eliminate the double sum. In

addition we convert from the p-coordinate to the guilding-center coordinate Yy

Vl coa O
vy = p - e . (29)

Thus Eg. (A3) becomes
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2

g (ke x') =z (- %‘] [ay, ag exp{a[ (k" -k J oy, + (k' = ke)e}

(8) vi(k'-k)cos @
3 plof 1 p p
« [avyvaek - avg exp{i 5

1 [y ¥ L, S Sy - (a10)
n

We now consider the first velocity integral in Eg. (A10). Because of the v5
derivative the only nonzero component is proportional to f « V . We also use

the integral respresentation

iv k' -k cos 0O
deexp{l("g"] }. (a1 1)

2%

It = f

where o = (kp' - kp) vl/g » With these substitutions, Eq. (R10) becomes

g (ko X') = g ( e ) dYg df exp i[[kp' ~ kp)yg + (kg' - kg);]

(s}
3 £ s - )
. [ a&v {_T Jo(a)gg-&l)(f(s)glans‘sl } (a12)

The form of Eq. (A12) is symmetric in the k,k' variables except for the LN
term. However, to the order of approximation we shall retain, only the lowest
order expression will be required, which is then symmetric in k and k'. This
fact is important to ensure that the final system of equations is self-adjoint
in the absence of damping.

Referring to the geometry in Fig. 1, we wish to consider the case of an
oblique gradient and oblique propagation, i.e., 9 # 0. That is, we shall

henceforth consider the case of a one dimensional gradient with 2 component

01—y
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along the field and secondly a component of the propagation vector
perpendicular to the plane of the field and gradient. For this geometry the
gradient is aligned along the .;-direction, therefore the integrals in Egs.
(A2) and (A12) along the ;-direction may be immediately performed. Also we
shall assume for the moment that EE = 0.

In order to obtain specific equations we first expand Sy, Eq. (A6a),
which appears in Eq. (A12). We shall retain only the zeroth order terms in

the Larmor radius r; except for the second harmonic resonant terms, N = 2.

Then for the g,n components we have non-zero contributions

1 VJ.
= * = - —
S9=8%y=-1 4 2
(A13)
2
119
S, =+ ) e (ky + 1k, 8ing + ik cosd) .
We note that each of the quantities is of the form
Syy = €086 + ikx Uyy * (r14)

This fact permits the variational integral, Eq. (5) in the text, to be
transformed to x-space, and the result is of the form
1) - m

[ax ' (x) [~ vx(7 x 1) + K

4 W dEi(X)
+ ] 'm_“qscT— I “3"2 {cose 500+ Uy dx }
a8 =]

(s) dE Sx)
p(€ ") Ly {cose Ej(x) + Uy — 5 } . {A15)
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In the expression for Ly in Eq. (A6b), kE should be replaced by k, cosg (the

other terms contribute to higher order). The first part of Egq. (A15) may be

rewritten

[ ax g0 |- 3, (0,E51x1) + (3,8, + k) g (a16)
where

{ox,oy,02} = {-iky, -ik_ sing + coso a—:- ¢ ik cosp + 8ing -a—xa—- } o

(a17)

All that remains to obtain the equations from Eq. (A15) is the velocity

integrals. For the problems discussed here we shall assume the background
plasma distribution is Maxwellian. Then
8) m m 3/2 v2
p(£%) = - 22 expf- op} (a18)

T 27kT Vt

where vtz = 2kT/m. Then the vg integral is given by

- 2(1y)

[ av_ f(v ) =
Fe  E wNQ-kzvgcose kzvt coeg

[ (A19)

where Iy = (m—NQ)/szt cosf and Z is the plasma dispersion function. The vl

integrals are of the form
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2 v, 1
a - .
[ av fv ) V2 [ N=g 2
v a (A20)
1
)
N =
Vt 2

If we substitute Egqs. (R18) - (A20) into Eg. (A15),. then the mode conversion

equations are readily obtained. The E:,n equation is found by taking the

variation with respect to Eﬂ+' namely

2
d 2 2 2 d
(Z:2 - kR K ) B, " ik, (1kyET' + [-ik, sing + cose -] sp)
© 2
= P w - -
=i g T TN, cost (z[1.1]{13FJ + :I.En} Z[L_1] {E:p iEn}]
z(x, )
< qQ
+ i Z BB 2-2 [ikzsine - ky -~ coef dx_] m
s z t
d .
. [-ikz sing - ky + cosf Ex—] (Ep + 1En) .
(A21)

The variation with respect to l=."_,,+ yields

d 2 2 2 4d
+ k& ) Ep - (-ikz sinp + cose@ Ex—]

dE
* (ik, En - ik sing Ep + cos@ =2

2

- [ e o] e n ) o] ey )

i

:F
i
|
i
1
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w Z(L,)
-17p 2[ik sing - k, - cosd =] T
s 8 4 z b4 dx kzvtgoae
4a
* [-ik,sing - k, + cose vl [zp + mn] . (a22)

The first terms on the right hand side of Egs. (A21) and (A22) correepond to

the fundamental resonance. The terms proportional to

2 2
w v
= P8 ts
Bs 2 2
¢ Yeg

correspond to the gecond harmonic resonance. Equations (A21) and (A22) are in
the form of Eg. (8) in the text and are readily decomposed to yield the
matrices G, F and H in Eg. (10) in the text.

The above system is a set of two coupled second order ordinary
differential equations. The effects of a small parallel electric field may be
included as a perturbation without increasing the order of the system.
Neglecting higher order terms EE can be expressed in teims of the
perpendicular fields by

kkeE +k ko E 4+ kozxzzoEg =0 . (A23)
If this equation 1s solved for Ey and the result substituted in the g~ and -

£ elements of Eg. (A15) the resulting G: F and H matrices are perturbed by

the following matrices:
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-
2 2 2 32 3
k, ([cos“ - sin 8]" - 2 sin 8cosp} -kykzsine(2cosze - s:l.nze]
1
G' = H
2 k K
zzo
2 2 2 2
L kykzsine(zcos § -sin" 8) ky sin" @ _J
- (A24a)
3 2 2 2 2 3
2ik, 8in“g(sin" 6 - cos”8) ikykz(sin + cosesinze - cos3e]
1
vz ——e
F k 2K
o zzo
. 2, . 3 2 3 2 |
L.Ll\ykz (sin”e + cos@sin” f~cos 6) Ziky singcospk, |
(A24b) ‘

T
4 . 4 3 2
kz sin @ -kykz cosfsin g
B = —2——1
= ko Kzz':>
3 2 2 2 2
-k - .
ykz cosfsin ¢ ky kz cos @
(A24c)

Due to the fact that K,,, is large these perturbations are small and do not
appreciably affect the fast wave scattering coefficients. However, on the
weakly damped Bernstein wave branch, the resulting small but finite electric

field can give rise to strong absorpticn on electrons.
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Figure Captions

Geometry for the derivation of the wave equations. The magnetic

field is !n the gdirection, and the ;direction is chosen to lie in

the B - VB plane.

Eigenvalues of the coefficient matrix for the minority hydrogen

heating case, n = 4 x 1(11‘3 cm'3, T = T = Tgo = 2 keV, B, =

eo eo po

29 kG, £ = 42 MHz, k, = 10 m ', ny = .95, my = .05, I, = 0 kA, R, =

1.32 m, a = 0.40 m. The density profile is parabolic and the

temperature profiles are parabolic squared.

(a) Poynting flux for a wave incident from the high field side, for

the parameters of Fig. 2, Ptr = 0.36, P,

me = <20, Papg = «44;  (b)

real part (solid) and imaginary part (dashed ) of the Ep field for
high field incidence; (c¢) corresponding E'ﬂ field; (d) corresponding
Eg field. The fields are normalized to the same but arbitrary scale
factor; (e) corresponding left-hand field, 1long dashed line
represents |E_|; (f) absorbed power per unit volume, P, = .167
(solid), Pgq = .01 (short dash), B, = .26 {long dashj; (g) kinetic
flux (dash), and total power flux (solid); (h) plane wave
decomposition coefficients, right going fast wave (solid), left going
fast wave (dash), right going glow wave (short dash), left going slow

wave (long dash).

(a) Povnting flux for a wave incident from the low field side for the

parameter of Fig. 2 Pyy = «37, Prgr = 11, Py, = 02; (bj B‘p Field,



Fig. 5

Fig. &

Fig. 7

Fig. &
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notation is the same as in Fig. 3; (c) Eﬂ field; (4) EZ field; (e)
left-hand field; (f) absorbed power, B, = .03, Py = .03, B, = .44;

(g) kinetic flux and total power flux; (h) plane wave coefficients.

Scaling with minority hyd: . concentration for PLT parameters.
Teo = Tpo = Tao = 2 keV, ngy = 4 x 10" em™3, 8, = 29 kG, £ = 42 Muz,
k, = 10 m 7, I, = 0 kA; (a) low field incidence (LFI), reflected

z
power {Bolid), ¢transmitted power (dash); (b) absorption fcr bhoth
standard cases, proton damping, LFI (sclid), proten damping, HFI
( short dash), electron heating via mode conversion, HFI
(long dash); (c) high field incidence, HFI, transmitted power (lcng
dash) mode converted power (short dash). defined as the power still

propagating on the Bernstein branch at r = 20 cm. B, was fixed for

this calculation.

Density scaling for the minority hydrogen case in PLT. y < -1
other parameters are as in Fig. 5. (a) Low field incidence, wotation
is the sawme as in Fig. 5, (b) wave absorption, and (c) high field

incidence.

Temperature scaling for the minority hydrogen case in PLT. T, =
Tpo =_Tdo = Ty other parameters are the same as in Figs. 5 and 6.
(a) Low field incidence, (b) wave absorption, and (c) high field

incidence.

Plasma current scaling for the minority hydrogen in PLT. Parameters
are the gare as in Figs. 5-7, vy = 10 cm, (a) low field incidence,

(b) wave aksorption, {c) high field incidence.

]

i
!
]




Fig. 9 Parallel wavenumber scaliag for the minority hydrogen case in PLT for
several plasma current values, other purameters are the same as in

Figs. 5-8; (a) low field incidence, (b) wave absoxption, and (c) low

field incidence.

¥ig. 10 Mode conversion scaling for PLT parameters; (a) percentage mode
conversion defined as that power which is still propagating on the

Bernstein branch at r = 20 cm for fixed density Ny = 4 % 1013 cm73;

(b) percentage mode conversion for fixed parallel wavenunber k, =
10 m~ 1.
Fig. 11 Scaling with minority 3ue concentration for PLT parameters £ = 25 MHz
’ B, = 25 kG; (a) low field incidence; (b) wave absorption; and (c)

high field incidence. Other parameters are the same as in Figs. 5-10

with 3He as the mirority species.

Fig. 12 Parallel wavenumber scaling for the 34e minority care (a) low field

incidence, (b) wave absorption, and (c¢) high field incidence.

Fig. 13 Parallel wavenumber scaling for the hydrogen second harmonic case in
pure hydrogen for B, = 14 kG, f = 42 MHz; other parameters are the
same as in previous figures. (a) Icow field incidence, (b)) wave

absorption, and high field incidence.

Fig. 14 Density scaling for the hydrogen sgecond harmonic case in PLT.
Parameters are the same as for previous figures. (a) Low field

incidence, (b) wave absorption, and (c! high field incidence.
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Fig.
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15 Temperature scaling for the hydrogen second harmonic case in PLT

16

Teo = Tpo = Ty Otler parameters are the same as in previous
figures. (a) Low field incidence, (b) wave absorption, and (c)} high

field incidence.

Comparison of wmode conversion and absorption coefficients with
{s01id) and without (dashed) explicit gradient terma for the minority

cage depicted in Figs. 5-10.
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TABLE 1

Low Field Incidence

High Fleld Incidence

Cj Left Boundary Right Boundary Left Boundary Right Boundary
E E
Left geing EEEEﬂﬁ 1 EEEE 1}
in in
Fast
j=1
E E
Right going 1] EEEE 1 EESEEE
in in
Fast
q =2 )
i
Right going El'l;c 0 o 0 !
in Ein !
slow
i=3
Left going
slow 0 o] 0 0
j=4
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