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Foreword

During the period 1975-1980, Dr. R. L. Gluckstern maintained an
active practice in the field of accelerator physics through consult-
ing with a number of groups, while at the same time he was Vice-Chan-
cellor for Academic Affairs and Provost at the University of Massa-
chusetts, Amherst (1970-1975) and Chancellor of the University of
Maryland (1975-Present). The Accelerator Systems Development Group
(MP-9) at LAMPF has been fortunate to have his advice during the
development of the LAMPF proton linear accelerator to its design
goals. During the first few years of this period, extensive modeling
studies were being conducted to develop tuning procedures and optimum
tunes for the machine. 1In particular, we were looking at the longi--
tudinal dynamics of the 201.25 MHz drift-tube linac to explain dis-
crepancies between observed and predicted performance, using many
measurements of tank field characteristics obtained during the 1975
"Great Shutdown' and measurements with beam. The notes include
analyses of the effect of frequency perturbations on field distribu-
tions in uncompensated low~beta Alvarez tanks, and the acceptance
characteristics of such tanks as functions of field tilt and injection
energy, comments about the radial dependencies of longitudinal accep-
tance, the measurement of axial field distributions in long tanks,
and the influence of an unpowered but resonant tank on a coasting beam.
The effects of multipole aberrations in magnetic systems were also
studied.

During the same time, the potential need for an accelerator
system capable of producing pions for cancer therapy, but optimized
for a hospital environment, led to the Pion Generator for Medical
Irradiation (PIGMI) project. The possibility of achieving higher
accelerating gradients using modern technology made feasible the
consideration of the alternating-phase-focusing concept, where longi-
tudinal acceleration and transverse focusing are both achieved using
the rf field without the need for focusing magnets. Analyses were

made of the longitudinal, tramnsverse, and coupled motions.



Soon after the Accelerator Technology (AT) Division was formed,
the potential of a new type of low-velocity accelerator structure
invented in the USSR was realized. This structure, called the radio-
frequency quadrupole (RFQ), provides a spacially-uniform, time-varying,
strong-focusing quadrupole field at the rf frequency. This field is
perturbed geometrically to produce a longitudinal component which can
be carefully tailored to bunch and accelerate a particle beam.

Between 1978 and 1980, the theory, computer beam dynamics, and me-
chanical realization of this concept was developed, and in early
1980, a proof-of-principle test was completed. This structure is

a major breakthrough in accelerator technology, and will find wide
application. Gluckstern enthusiastically joined in the program, and
a series of notes in this compilation contributed substantially to
our understanding as the development program progressed, beginning
with the analysis of a point-charge model.

Another note discusses the general properties of the longitudinal
and transverse beam dynamics, including coupling and space-charge
effects, and another the relation of frequency and field distribution
parameters from the structure analysis code SUPERFISH to the RFQ beam
dynamics parameters. Exploitation of the outstanding characteristics
of the RFQ as a beam buncher required a detailed understanding of how
to vary the RFQ longitudinal fields in an approximately adiabatic
manner in order to obtain good longitudinal bunching without introducing
excessive coupling to the transverse phase space. In two important
notes, Gluckstern covers longitudinal and radial effects in the initial
bunching region of the RFQ. 1In order to match the beam transversely
into the time-varying focusing field, the quadrupole field is tapered
at the input end, over a short distance, from a low value up to the
final level. An analysis shows that the resulting acceptance is
indeed almost independent of incoming particle phase. Finally, the
tolerance of the RFQ to misalignment errors is explored. As predicted
from this study and because of the way the RFQ is built, we found
on the proof-of-principle test that the RFQ is very forgiving of errors
in manufacture or tuning.

Throughout this entire period, the high-average-intensity of

LAMPF, the subsequent Fusion-Materials-Irradiation Test (FMIT) facility



linac project of AT-Division, and other high-intensity applications
caused an increasing need to understand and control the factors which
contribute to degradation in the transverse or longitudinal emittance
We need to control the beam quality to prevent

that would cause maintenance

of the accelerated beam.

excessive beam losses along the machine

problems due to radiocactivity buildup, and to achieve requirements on
the final beam quality. Bob Gluckstern was a pioneer in this field,

producing a series of seminal papers at the accelerator conferences of

the late 1960's and early 1970's. Our interest, and that of others

in the accelerator community, has been renewed and intensified in the
past couple of years, and Gluckstern has returned to the fray. The
analysis of emittance behavior is extremely complicated and has not
yet yielded very complete or convenient guidelines. 1In a series of
notes presented at the beginning of this compilation, Gluckstern
catalogs the contributing factors to emittance dilution, and treats

some aspects in detail. A need for improved simulation studies and morc
accurate experimental measurements prompted work on the characteriza-
tion of multidimensional phase-space distributions and on errors in
emittance measurements.

The notes are arranged in approximately reverse chronological
order, beginning with the currently important topics of emittance
growth, phase-space distributions, emittance measurement errors, and
then the RFQ accelerator structure., Next comes a series on longi-
tudinal and transverse dynamics from the LAMPF work, to which is added
2 later note on the permanent magnet developments of Halbach. Finally,
there are three notes on alternating-phase-focusing.

It was our great pleasure and privilege to work with Dr. Gluckstern

during this peried, and we look forward to more adventures in acceler-

ator technology.

Robert A. Jameson
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NOTES ON BEAM DYNAMICS IN LINEAR ACCELERATORS
by

R. L. Gluckstern

ABSTRACT

A collection of notes is presented, on various aspects
of beam dynamics in linear accelerators, which were produced
by the author during five years (1975-1980) of consultation
for the LASL Accelerator Technology (AT) Division and

Medium-Energy Physics (MP) Division.
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EMITTANCE GROWTH ~ I

Introduction

There is still no definitive model for predicting emittance growth

in beams. Clearly, many differcnt effects can contribute, including

1. non linear particle motion
2. couplings between component oscillations

5. misalignments, steering errors and other ''noise"

4. mismatches in phase space

5. beam instabilities, resonances, and particle-particle interactions

In the present note, we comment on some of the featurcs of emittance
growth in the above context, in the hope that particular computationsl

models can be built to help interpret observed growth.

No Space Charge; One Dimension
A. Motion governed by a simple harmonic oscillator is clearly periodic,

and points in phase space rotate at constant angular velocity pro-

vided the velocity axis is scaled by the angular frequency of the

oscillator. If the initial phase space distribution is matched to the

"circular" trajectorics, the beam will have a constant cross sec-

tion which will not grow. If the beam is not matched, its distribu-
tion in phase space will change as pattern rotates, and beam en-
velope oscillations will be observed at multiples of the particle
rotation frequency, depending on the symmetry of the initial dis-
tribution.

B. Perturbations to all particles which are independent of the particle
position and velocity (like steering crrors, magnet position mis-
alignments) will generate rigid body motion of the original phase
space distribution in that space. Although the beam may exceed

aperture limitations, there is still no growth in the phase space

area occupied by the beam.
C. Adiabatic variation of the oscillator parameters (mass and spring

constant) does not affect the conclusions reached above about con-
stant emittance and coherent response to misalignments. However,

the scale of the axis in the phase space plot will change adiabat-



ically, as will the rotation rate.

If our one dimensional oscillator has non-linear behavior, the situa-
tion may change. In this case the trajectories will not be circular.
Nevertheless, a beam initially matched to the phase space trajectory
will not grow, although different parts of the distribution will
"rotate" at different rates.

If the phase space distribution is not matched to the trajectory,
streaming or filamentation will occur because the '"rotation'" rate will
depend on the amplitude of the oscillation. The beam will then appear
to fill the entire area within the externally tangent trajectory on a
time scale determined by the difference hetween the rotation fre-
quencies for a particle at the external tangent point and a particle
at the internal tangent point.

If misalignments are present in the non-linear oscillator, even a
matched beam will grow, since coherent oscillationswill force some
particles to larger and smaller oscillation amplitudes. In this

case, the difference frequency will be determined by the ''coherent"
oscillation amplitude generated by the misalignments. Non-linear
orbit perturbations duc to magnet multipoles will similarly cause

mismatch and subsequent bheam growth.

T1I11. xNo Space Charge; Several Dimension:

A.

Motion governed by uncoupled simple harmonic oscillators will appear
to behave in each dimension as if the others did not exist. Beam pro-
files in real space will appear to change though, within fixed maxima
in each coordinate, if the frequencies of rotation in different direc-
tions are different. If the frequencies are the same (such as with
axial symmetry) the beam profiles will correspondingly remain fixed.
Uncoupled misalignments will similarly not introduce any behaviors
different from those for a single oscillator. Also uncoupled non-
linearities will behave as before.

The presence of a coupling term (derivable from a Hamiltonian) will
cause the two coupled oscillators to exchange energy at a rate de-
termined by the coupling strength but by an amount which depends on the
initial state of each oscillator and how ''resonant" the coupling term

is in the Hamiltonian. If the coupling dies out, there will be a



permancnt change in the oscillation of each oscillator which can
appear as an emittance growth in each phase space since all relative
phases are present between the initial oscillations.

To illustrate, let us calculate the effect on the transverse

motion due to coupling with the longitudinal motion given by

. 2 2
X' o+ kt X = ekt zZxX* (1)

To lowest order in e we shall take the uncoupled solution for z,

namely
z = =N sin (k£5 + ¢2) . (2)
A phase amplitude calculation (equivalent to using a Green's

function) leads toachange in amplitude of the x oscillation

(radial variable in the phase space plot) given by

AA z . . : -
e ktTo f ds e(s) [sm_((Zkt- k!L) 5 + 2¢t - ¢2) +

sin((?kt + kz)s + 3¢t + ¢R)}

If we assume that £(s) decreases slowly to zero as s = «, we ob-

tain

ke2pe (o)

BA(=)

+ 2o
2k -
A 2k k

2
_kt + kl

[cos (2¢)t - ¢Q) cos (2¢t + ¢Q)) }
2

(3

Let us further assume that 2kt - kz is much smaller than 2kt + kR’

in which case the first term in the bracket dominates.

The result is an elliptical distortion of amplitude

= £Oo_
A 4(§xt . kﬂ) w



at an orientation given by

b =% G ()

If all initial values of ¢2 are present for each particle in the

transverse phase space (A, ¢t), the transverse emittance will appear

to grow by
B KB SO0 (6)
Et 2 (2kt—k2)

One furtherobservation is significant: The apparent growth of emit-
tance will overshoot (6} by a factor of about 2 and will oscillate with
frequency 2kt— k2 before settling down. A smaller oscillation of fre-
quency Zkt+ kl will also be present, so the emittance will have the

general form
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Although we have trcated only the lowest order non-linear coupling,
the general case will be quite similar if the coupling term in (1) is

replaced by

2x m-1n .
€ kt 4 (7)
In particular
X n  m-2
AEt () } 4L(o)kt z0 A , ®
Ee 2 (mkt - nk))

where we have assumed the dominance of the frequency difference mkt—nkl

The presence of further non-linearities adds to the complications of
matching the phase space in several coordinates at one time. Obviously
(3) corresponds to a skewing of the multidimensional phase space shape
resulting in apparent growth of the projected areas. Misalignments will
also be converted to emittance growth by way of increasing the values

ofz0 and A in (8).

Clearly, exact resonance of the form mkt=nk2 will lead to emittance
growth limited only by the development of amplitudes sufficiently large
that kt and kz will be moved off resonance by couplings and/or linear-
ities. If the parameters kt and kl cross a resonance during their adia-
batic change, a further contribution to the growth will take place pro-
portional to € evaluated in the vicinity of the resonance. Since there
may be many non-linear coupling terms present at one time, one can ex-
pect high order resonances to provide continuing small contributions to
emittance growth during traversal of the accelerator. The factor

2-(m+n] in (8) suggests that high order resonances provide diminishing

contributions.

We have thus far ignored the strong focusing character of the transverse
oscillations. This should not alter the conclusions, unless one operates
near the stability limit, in which case the periodic focusing variation
nearly resonates with the transverse oscillations. Formulas for cmittance
growth will however contain the Courant-Snyder parameter



Bc in some factors, a feature which is consistent with the smoothed
+Se.

approximation which makes use of the relation

Special mention needs to be made of coupling between the two transverse
dimensions from magnetic multipoles, quadrupole fringing, magnet rota-
tion misalignment, etc. Because the two transverse frequencies are the
same, it can readily be shown that although each oscillation is perturbed
by the coupling, the quantity x2max + yzmax remains unchanged. Thus, a
beam with different emittance in the two transverse directions will tend
to enlarge until it is "circular", while a "circular" beam (equal trans-
verse emittances) will not grow in the presence of couplings between the

two transverse directions.

Our discussion of couplings can be generalizedto the situation where all
three frequencies are unequal, in which case resonance can occur when a
linear combination of the three frequencies (with integer coefficients)

vanishes.

IV. Space Charge

A.

The simplest space charge model for which calculations are possible

is the two dimensional KV distribution which provides linear, uncoupled space
charge forces and a self consistent equilibrium phase space distribution. In
this ideal case, all earlier considerations should apply, and emittance

growths should not be greatly different from the no charge case.

Because computational models can only handle a finite number of charged
particles, there will be density fluctuations, leading to the presence of
non-linearities in the space charge density, which are irregular. Further-
more, all six dimensional phase space distributiomns have non-linear, coupled
space charge forces, as do all four dimensional distributions other than

KV. In fact, non-linear external forces will even perturb a KV distribu-
tion so that non-linear space charge forces develop. As a result, we ex-
pect coupling terms of all kinds in the presence of space charge, with
coefficients which go up linearly (or even faster if the space charge

causes growth of the non-linearities) with the average current.




The parameters which seem to govern the behavior and growth of beams with
space charge are the ratios of the space charge defocusing ferce to the
external focusing force in both the longitudinal and transverse directions.
Instabilities develop as either of these parameters approaches 1. Designs
which have these parameters in the range from 0.5 to 0.8 appear to require
emittances which are matched in size in all three directions, and which lead
to rapid emittance growth which settles down at a factor of between 1.5 and
2. If one examines the variation of emittance with axial distance, it may

be possible to identify which non-linear terms are important.

Another feature of some of the numerical computations is that the presence
of bunching forces occasionally leads to localized regions in which the
space charge defocussing exceeds the external focussing. Localized in-
stabilities then develop in such a way that the beam contains turbulent

eddies. Some form of turbulent diffusion may then need to be included in

any definitive analysis.

Particle-particle collisions will cause scattering of occasional particles
outside the stable region of the beam. However, because of the large num-
ber of particles in a beam bunch, these effects are insignificant in accel-
erators. Nevertheless, since computations contain only a finite number of
particles, it is not uncommon for such computations to exhibit artificial
"collisional" growth. It is essential that this effect be removed from

computational models in order to obtain a realistic simulation of an actual

beam.
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EMITTANCE GROWTH - II

Summary

The following paper reviews the usual known mechanisms which can
contribute to emittance growth. Thesa include mismatching, coupling,
misalignment, non-linearities, space charge, all of which have the capa-
bility of leading to apparent emittance growth either singly or in com-
bination.

Special attention is given in Section (11) to the case of fluctuating
space charge density along the axis. In particular, if this density
fluctuation varies with longitudinal phase, an emittance growth can be
calculated directly.

It would be useful at this point to study the axial charge density
and its variation with longitudinal position. If this should be of
sufficient magnitude to account for computed growth, it may open the way
to further study and control of emittance growth via a relatively simple

parameter.
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The linearized uncoupled equation for particle motion is of the

form

x" + ktzx =0 - (1)
A distribution of particles occupying a circle in the (x, x'/kt) phase
space will travel in circles at rotational frequency kt/2ﬂ and the
phase space boundary will not change in time. Such an initial distri-
bution (occupying a circle) is called matched to the focusing system.

Several complications can now be introduced. They will be discussed
one at a time.

(1) Suppose the beam is mismatched, that is, centered at the phase
space origin but in the shape of an ellipse. This ellipse will ro-ate
as a rigid body at frequency (kt/2ﬂ) and the phase space area will be
preserved. However, the beam envelope will appear to be pulsating and
space charge forces will vary with double the rotation frequency.

(2) If the beam is misaligned, the initial distribution will be
off-center in phase space. Once again phase space area will be preserved,
but there can be both a coherent oscillation and a "breathing" oscillation.

(3) If the restoring force is non-linear particles further away
from the phase space origin will rotate more slowly. A perfectly matched
beam (requires a figure different from a circle) will once again be
preserved. However, a - ‘smatched or off-center beam will filament in
time, ultimately occupyi. “~he entire matched boundary which contains
the initial beam. In this case, the emittance appears to grow by an
amount which is of the order of the mismatch, or of the order of the
ratio of the coherent oscillation amplitude to the matched beam size.

The time of growth will be determined by the difference in rotation
frequency between the matched trajectory externally tangent to the
phase space beam distribution and the one tangent intermally.

(4) Let us now introduce couplings in the form

X"+ k% = e(s) 2)



The lowest order coupling to the longitudinal motion is of the form

k2 %@ - )

e(s) = — -1571”—" (3

s

corresponding to the variation in r-f defocussing due to the oscillating
phase of the accelerating field.

A phase-amplitude analysis of (2) and (3) in the case of slow
variation of parameters (coupling decreases with energy) leads to the
conclusion that an initially matched circle in the (x, x//kt) space

will be distorted to an ellipse, with relative amplitude distortion

2
() k (b - d)
AA 3 s” = ¢ %)

A 8|2kt - kzlkt |¢Sl

and with orientation depending on the initial phase of the longitudinal
motion. In arriving at (4) we consider the primary contribution to
come from the difference frequency 2kt - kl rather than from the sum
frequency Zkt + kl' Furthermore the maximum distortion will be reached

when
2k, - kls =m (5)

and will have a value approximately double that in (4).

Since all phases of longitudinal motion are presumed to be present,
all orientations of the distorted ellipse will be present at once, and
the beam will appear to grow in emittance by a relative amount which
is twice that given in (4).

(5) Higher order couplings of the form

Y Lo -00% 0007 -0 -0
e(t) =5 x 2 * T6lo_] * T2 120{¢_| *°°°

are also present, but contribute decreasing amounts to the growth, un-

less a particular resonance of the form

11
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14
o

2k. - nk

should dominate over a significant portion of the accelerator.

(6) An important point to mention at this time is that the rms
emittance of the beam will not change in lowest order in the coupling,
but will instead vary as the square of (4). The reason for this is
that the coupling leads to an increase in amplitude for some particles
and a decrease in amplitude for some others. Clearly the 100% emittance
contour will grow as indicated in (4) and the 90% contour somewhat
less than that given by (4). The test of each application must be
considered separately.

(7) The effect of misalignments and steering errors can also be
discussed at this point. In such a case, the term e(s) in (2) represents
an external driving term which is the same Yor all particles, and there-
fore leads to a coherent oscillation of the beam as a whole. This will
not correspond to an emittance growth unless there are non-linearities
which lead to filamentation as discussed in Section (3).

If there are misalignments and coupling present at the same time,
without non-linearities (or in a time too short for their effect to
be felt) there may be appre-
ciable growth. Consider-a
beam displaced as shown. The
coupling will distort the

circles such that

3, R+(l + 3)

R+ R_(1 - §)

where § is given in (4). The increase in area (emittance) can be shown

to be ~
28 for A < a -T
2 2 N 2
AW 46 | VAT - a® -1VA” - a” .
o < 26 + - P tan 2 for A > a »
46 A
£35 + T for A >> a y




If the "misalignments" are quadrupole rotation errors or other
similar errors where the driving term depends on the oscillating dis-
placements, the €(s) term will contain x(s), y(s), ¢$(s). For a sys-
tematic variation in €(s) the description will be that of the coupled
systems discussed in the next Section. For €(s) which behaves in a
random fashion the description will be that discussed in Section (11).

(8) Let us consider both oscillations which enter into the

coupling, in the form

x" + klzx = £nx

(6)

il
V]

g+ ey

derivable from the Exnym term in the Hamiltonian. It can be shown that

a resonance of the form

— =0
nk, mk (7
leads to the possibility of significant energy exchange between the two
oscillations. It can be shown further that the energies of the oscilla-
tions (equivalent to the emittance within the phase space trajectory)

satisfy the relationship

= const . (8

wx
= +
n

a|=

The conclusion from (8) is that the presence of terms which can resonate
causes an exchange of energy for various particles. Because all
oscillation phases are present, the smaller emittance will appear to
grow until it is approximately the same size as the larger one. It is
this phenomenon which has been interpreted by some as a thermal connec-
tion between oscillation modes leading to an equipartition of energy
(emittance). Computation results appear to be consistent with such
growths. Moreover, a beam matched in all coordinates will have approxi-
mately equal emittances in these coordinates. This is again confirmed

in the computations.

13
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(9) 1t is of course important to know if such coupling terms are
present. This is indeed the case for the external fields where
couplings are due to

(a) The non-linear dependence of the longitudinal restoring
force on phase;

(b) The radial dependence of the transit time factor;

(c) Multipole components in the quadrupcle magnets;

(d) Fringing fields of the quadrupoles

(e) The higher order difference between v, and

v =Jv22 + sz + vy2 .

It is, of course, true that all space charge distributions other than
the two-dimensional K-V one will lead to non-linear and coupled terms
in the equations of motion. It is of course difficult to estimate
the magnitude (and fluctuation) of such terms, but an order of magnitude
estimate might be obtained by assuming Gaussian shaped distributions.

(10) The primary effects of space charge distributions is to
decrease the small oscillation frequency in each direction by a factor
1 - u)l/z, where U is the ratio of the space charge gradient to the
external focussing gradient near the beam center. In addition, the non-
linear terms clearly make the oscillation frequencies amplitude dependent.

Calculations done by several groups indicate that high current
beams are limited by the values of e and Hy in the range of 1/2 to 2/3.
This corresponds to (1 - u)llz ~ .7 to .6 -~ that is, depression of the
phase advance by 307% to 407% compared to the zero space charge value.

In the analysis mentioned in Section (2) it is important to recognize
that the coherent oscillation frequency will be that of the zero
space charge beam. In treating the longitudinal-transverse coupling
in Section (4), it should be mentioned that the k, and the kl in the
denominator of (4) are to ge multiplied by (1 - ut)l/Z and (1 - U£)1/2
respectively, while the kl in the numerator, which has its origin
in the accelerating field strength, remains unchanged. The result is

an increase in (4) by a factor ~(1 - u)—l of 2 or 3. In the case kt - kl’

@4 -9

& max * l¢s,, U = 2/3 one has



"
[p™]
>[5

AW ~3
W 4 7’

suggesting that the emittance will grow by its own order of magnitude.

For such a large value of AW/W, even the rms emittance will grow

appreciably.
(11) TLet us now consider (2) with a driving term which corres-

ponds to a space charge density which fluctuates along the axis. 1In

this case (2) can be written as
" 2
=" + kt x = x€(s) , (9)

where €(s) is the fluctuating density component only (e(s) average to 0

over s). Equation (9) can be solved approximately by a phase amplitude

method. Setting
x = A sin (kts + ¢) X' = ktA cos (kts + ¢)

one obtains

ktE(s)

-l:—' = ——2—'— sin (Zkts + 2¢) . (10)

To lowest order in €, ¢ is constant and (10) can be integrated to obtain

AA cos 2¢ .
Tl kt 5 f ds sin 2kts e(s)
0

sin 2

ds cos Zkts e(s)

+
o
N
&
c:"“\s

R sin 20 + T cos 2¢ . (11)

il

15
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Once again the result is a distortion of magnitude

<0
AA k .
max _ RZ + 12 - 7t; f ds e(s) e1.2kts . (12)
0

This will be turned into an apparent emittance growth if nonlinearities
have time to filament the distortion, or if €(s) depends on another
parameter (e.g., the longitudinal phase of the particle oscillation)
and therefore leads to R and I having a range of values.

From (12), the most serious situation is clearly one in which £(s)
contains a strong component of frequency 2kt' This is, in fact, the
case for a mismatched beam, in which case the space charge density
will fluctuate with the frequency 2kt. If the mismatch also depends
on longitudinal position within the bunch, all the necessary ingredients
are present to lead to emittance growth. At this point the computations
require selecting a particular model for €(s) and proceeding accordingly.

Let us imagine that €(s) has a component which varies with longitu-

dinal position, such that €(s) is given by
e(s) = EO(S) + €1(S)(¢ - ¢S)
Writing

¢—¢s=l,bm cos (kls+¢£) s

ax

we can extend (10) to

k
A’ t .
7¥-= wmai7r El(s) sin <(2kt - kl)s + 2 - ¢1) ’

where we have kept only the Zkt - kl term. We can now rewrite (12) as

%§»= R1 sin (2¢ - ¢2) + I1 cos (2¢ - ¢£) s



where

0

AA k ' -

2 -

max _ofp 2,1 2_ _t v I-/f ds £(s) o1 (Zkp-ke)s

4 “max !
0

In this case, since all value of ¢£ are present, the apparent emittance

will grow directly by 2AAmax .

A

As a final calculation, let us take a model where €(s) has random

fluctuations of the form

e(s) = Ej jT - T < s < 3T

where all the Ej are uncerrelated. Then (2kt is replaced by 2kt - kg

if longitudinal variation is included)

T

2ik s Jmax 2 2ik s\ -2i(j- DTk

t t 2 t

d (2) e = €. ds e e

s ; h]
0 i=1

MfH

The average over the Ej leads to

2ikts 2 sinzk T
ds €(s) e = g T -- 7
(ktT)

Since s =7J T, one can write
max max

. 2
sA 2 - 52 sin ktT c .
A - k T t “max

t

17
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or

lsin ktT|

AW _ (AA)
— = 2{ — = 2¢ A
W A Jrms rms (ktT)

1/2 ktsmax

Thus the emittance will grow by an amount proportional to (ktsmax)l/z

k s . . .
where t max 1is the number of transverse oscillations that have taken
Vs

place. The function 210 %
Vx

and varies from 1.41 to 1.55 to 1.4l as x goes from T/4 to 1.15 to m/2 .

has a broad maximum of about 1.55 at x = 1.15



3-8-80

ESTIMATING TIlE FREQUENCIES OF COLLECTIVE MOTIONM

IN A K-V _BEAM

The basic equations of motion in a K-V beam are

" 2 Ix
x" + k1 X = TG+ ) (1
v+ Kk 2 = Ly (2)
> 2 T b + b)

where I is proportional to the beam current, and 2a,2b are the elliptical
beam widths (in x and y).

The corresponding envelope equations are

2
€
" 2 I 1
a" + k1 a=_—T% + 5= (3)
a
I e 2
n 2._ _—__2
b+k2b—a+b +23 (4)

where € and €, are proportional to the x and y beam emittances.

2
The general procedure is to put a" = b" = 0 in (3) and (4) and to solve
for the matched beam sizes ay and bO. The small oscillation frequency is
then obtained by expanding a and b around a, and bo. We shall do the simple

analysis for a round equilibrium beam by setting

ky =k, =k
(5)
€1=€2— €
\
2
" 2 1 e’
a + k"a = 2+ b + 3
a
, > (6)
2 I €
" - ———
B+ kb =+
b
J

19
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2
2 2_1I . ¢ =
Glearly kiajy =7+ ;‘5 ay = by M
0
Setting
a= a0 +u u << ao
b = b0 + v v << bO
one finds
2 Iu I 382
W+ kiu=s-—5-—5v-"5u (8
4 2 4 2 4
a, a, a,
2 Iv Iu 3€2
VW' kTy = —— L ey . (9)
4 2 4 2 4
%0 20 3

Using (7) we can eliminate € from (8) and (9), obtaining

o'+ u<4k2 -3 —%>= -5 @ (10)
a 4a
[s] )]
v+ v(%;k2 - %‘ —15) = - (u+v) - 1un)
a 2
0 430

We can now return to (1) and (2) and recognize that

R S
W=7

2a0 k

is the ratio of the space charge defocusing force to the external focusing

(12)

force, and that the tune depression factor is

g 1/2
%

= (1-H4 (13)



In terms of U, one can write (10) and (11) as

W K -3 = -KE v (14)

VKV - = -k R ) (15)

Ry~ XYy el

Setting £ =u + v, n = v, we have

!
=]
i

(16)

it
o

£+ K2 (s

2u)

(1n

]
o

"+ kP - 3u)

from which we get the oscillation frequencies

ka = k¢4 ~ 2 breathing - x and y 180° out of phase
kb = kv4 - 3u breathing - x and y in phase.

These are the small oscillation modes set up by a K-V beam with slightly

mismatched parameters a and b.

O .
% k k
1.0 .00 | 2.00 2.00
.9 .19 | 1.90 1.85 K 2 2
2 _ 94 20
.8 | .36 | 1.81 1.71 2 2
k 00
.7 .51 f 1.73 1.57
.6 .64 | 1.65 1.44 2
kb 302
.5 .75 | 1.58 1.32 =14+
4 | .84 | 1.52 | 1.22 k %
.3 .96 | l.44 1.06 )
.2 .96 | 1.44 1.06 w=1- E‘E
10| .99 | 1.42 1.01 | %
.0 [1.00 { 1.41 1.00

For non-K-V beams, the frequencies will be similar.



5-25-79

ADIABATIC BEHAVIDR OF BUMCHED BEAM

The approximate equations of motion (linear and uncoupled) for a

three dimensional beam with ellipsoidal space charge (semi-axes a, a, b)

are

a <p3 do ) _ 2TeRT cin ]¢ I el
L oje? 22} = . 2lent | - u,) (1
ds ds AMcz ] 2

83 do 2 2meET
¥ = -5 ds U N 2
1 d dx | _ 2
Pa(oB)- o leanuy ‘”

2 . X
where kt takes into account the r.f. defocussing as well as the primary

(smoothed) quadrupole focusing. Here

2
_ 15 1) B - el A 1 (4)
Mo = 3 °omms 5 %7 sinf¢_| ~ 30 ohms == 5 5y

W= 45omms Sk, A Lo (5)

Mr_‘2 ab B

2a

where we have assumed that the

2b

ellipsoidal space charge function

3b 2a

22




The adiabatic

. | . . .
variation of E, ]¢S], B, kt will cause the dimensions

of the bunch, a, and b to vary, according to the relations.

Longitudinal
U= (b -

. 3
_BA

Sy 2m

8\

b=—2‘1?

Note that the phase
included a growth f

account the effect

observed emittance
Transverse
~
X = a ~
~
B;V = E}_{_
T Me

1

6) 0 : i G (6)
s’ max [B(kgz(l _ “2)]1/4 9
1/4 6, 2 _

k(1 - W) ARN [B’kﬂ (1 - uQ)]J/4 c, (7

b~ [ a ] e, ()

space area does not vary adiabatically. Also, we have

actor Gp for the longitudinal motion which takes into

.1

of couplings and non-linearities, corresponding to

growths.
2.2 ~1/4
[B k(- ut)] G, (9
22 /4
[B k. (1 - ut)] G, . (1m)

The phase space areas occupied by the beam then vary as

W, ~ G

, o~ G- (11)

23



We can use (8) and (9) in (4) or (5) to give us the values of My and

I, as the parameters change. As a result of studies of the oscillation

L

modes of charged particle bunches, one should avoid the regions near

M, =1, Mg = 1. As a guide, one should choose parameters in such a way

t
that ut and u2 vary smoothly and do not exceed 0.5 or 0.6.

The variation of He and “9 with the parameters can be obtained by
using (8) and (9) in (4) and (5), leading to

+1/2 -1 _ -2

/2 (Bkg)_l(l ~ Hy) G, G (12)

+1/4

Mo ~ (Bkt) a - ut)

+1/2 +1/2

-1
My~ Bk T - w) r -wu

DT ey

2) t 12
Smooth variation of Hy and My therefore corresponds to smooth variation
of Bkt and Bk2 independently. The former (Bkt) corresponds to constant
transverse phase advance per period. The latter (Bkl) also corresponds
to constant longitudinal phase advance per cell, and is related to the ac-
celerating parameters by (2) such that
2,2 . s (el

_ el )

B k2 2

AMe

The product ET sin]¢sl should therefore be approximately proportional to 8.
It would be useful to monitor the values of ut and HZ during computa--

tional runs, as a guide to reasonable matching in the presence of space

charge.

24



1-9-76

STABILITY OF TWO- AND THREE - DIMENSIONAL PARTICLE
DISTRIBUTIONS

In a hish current accelerator, the tolerance on heam loss can be severe.
In order to estimate or predict the beam loss, it is important to explore the
low density (halo or tail) regions of the phase space distribution. In addi-
tion, since the actual charge distribution will not be completely stable, these
low density regions can regenerate even if beam apertures and scrapers are used.
The purpose of this note is to discuss the stability of various phase space
distributions, with a view to finding the "most stable’”, and preparing the in-

coming beam optimally.

It is well known that the Kapchinsky - Vladimirsky distribution leads to
uniform two dimensional charge density, linear forces, and a stationary distri-
bution. A study of the mode spectrum for oscillation about the stationmary XV

distribution® shows that for most values of the parameter 1, defined by

space charge defocusing gradient at r=0
external focusing gradient (at r=0)

u:
all frequencies are real and the KV distribution will be stable (0 < u < about .9).

Numerical calculations starting with a KV distribution nevertheless show
a gradual rounding and departure from the KV distribution with time. This is
attributed to the particle - particle space charge interaction in the computa-
tional model used, which introduces a collision-like term, whereas the KV model

represents a continuous fluid without collisions.

Since there are also collision terms in a real beam, it is reasonable to
expect a KV distribution (which seems not to occur in nature) to change with
time. In fact, all distributions should eventually tend to the statistically

stable one, namely the Boltzmann distribution. This one should be stable in

*R. L. Gluckstern, Proc. of the NAL Linac Conference 1970, p. 811;
(see also subsequent analysis by F. Bacherer, CERW)

25
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time, and is probably the most desirable for injection (will probably minimize

diffusion type effects).

It should be interesting to perform the following numerical calculations

(in the absence of acceleration, and with linear external forces).

1)

2)

3)

4)

Start with a KV distribution (a reasonable ] might be 1/2) in 2 dimensions
(x, x", v, v') and watch it evolve in time, using a model with N line
charges or currents.

a) Calculate space charge by calculating each pair interaction.

b) Calculate space charge assuming azimuthal symmetry.

¢) See if the distribution settles dowm, and if so, how long it took to
do so.

d) Repeat a) and/or b) and c¢) for twice as large an ¥, or 4% or 10x—--.
(Keep total current the same). DNoes it tend to the same final distri-
bution? If so, does the rate depend on N? (The cutoff will have te
be handled carefully).

e) Repeat for p = .2, U = .98,

Repeat 1) for another initial distribution (for example, n = 1 in the ana-
lytic forms described in Gluckstern, Chasman, and Crandall, Proc. NAL Linac

Conf. 1970, p. 823).

Start with a Boltzmann distribution in 2 dimensions and repeat 1).

Use a Boltzmann distribution in 3 dimensions (z, z', x, x', y, y') with
spherical symmetry to make the analysis simple. See what changes take place

in going from 2 to 3 dimensions.



Analytic expressions needed

1) KV Distribution

() = §(W - W)
(o]

,2 .2

- 2 -
W= %— + '12—- + (']:*'E"H) (x~ + yz) : ‘.]0 = =

a) Initial distribution

ol llflless) T
tar A2 \a? \az(l - y = r sind

x' = 0 cosa
X 6(—1——'2'——11 al - l.é_H 2o 02> y' = 0 sino

Each of the bracketed quantities is to be selected randomly on the interval

0 to 1, and the delta function interpreted as a narrow strip.

An alternative formulation which avoids the delta function comes akout by

writing

a cosy¥

la
]
N

c=a vl - 4 siny

leading to

[d{iﬂ)] [d(;n)] [d(co;_gy)] starting distribution.

27



b) Individual motion equation (nj is the number with radius rj)

X'+ kzxi = K i a

This assumes azimuthal symmetry. For pair interactions make the replacement

l »
"
N
-
(-
A
-
[
| .2
i [
[
"
"
H
|
-

i N i#i ij

It turns out to be convenient to go to the dimensionless variables

in which case

=+ Xi = M 12 E;ffi.;;-_
ds Ri N
X. = cosl costd ax,
* -t = /T siny coso
Yi = cosy sind ds
dy

|

1 -4 sind sina



2) n = 1 distribution (Proc. NAL Conference, P. 825) (Uniform distribution

within hypersphere)

\
FR(rB) ew
) g = 0 defines the
outer houndary Ro
2y = 1 1-¥
g(RY) = 3 1 (Vi R)
R2
2y . 211 L-¥on . 2
J(®) -/ ar {u - o I, R)} . Iy 2 IR
0
R 2
. o 2(1 - ) _ 2
o T T u3/2 B h i Ro) df = g dR

a) The individual particle motion is given by

da"¥ X, i
i X% _ 3 i R5<Ri
2 ) [ 2 =
ds Rl N

Here Xi is not the same as in 1). The initial distribution is chosen according

) ) [+60)] [45)]

3) Two dimensional Boltzmann distribution

to

a) Must first solve numerically for the function g Mv2 et
( 28T l?f)
2 dg - “8
dR2 dR2 4
dg _1-u
dR2 4

29



30

b) Let

Individual particle motion is governed by

2 n
d"X i
X5 . Xi fFer 7
5> + X, = 1 P —n 3 i
dS-— 1 [o] R < —
i N

) [l

4) Three dimensional Boltzmann distribution

1 4 2dg) _ - -g
2 dr (r dr) L-we

The distribution requires spherical coordinates, and the individual motion

equation requires the change

|

=]
=]



This analysis can be carried out along the same lines as that in 3) and will be

done later.

5) Plotting variable

It is most useful to plot the distribution as a function of the energy

variable W, as the distribution progresses apart from constants, it appears

to be expressible as
R
2 2 2 DI R, "
n=.]: dX 1{dy + LA g R.<R i -
N W T 2\ds 7 By Jdof 4o
H N
o

This should be checked numerically.
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1-6-79

IMAGE CHARGE CALCULATIONS NEAR A CYLINDRICAL BOUNDARY

A. The potential for a line charge in a cylinder can be solved by using

a single line charge. But for a point charge in a cylinder, one has to

use some type of expansion (usually called a Green's Function Method.)
Suppose we have a point charge 0 located at z =0, r = a, 6 = 0 in

a cylindrical pipe of radius R. One can write for a general solution of

the Poisson (Laplace except at z = 0, x = a, y = 0) equation which vanishes

at r = R, and at z =

Prm
© @ imo o _r é. R {Z[
o(r0.2) = ] A e m 3 (_J%%_) (m
n=1 m=-o»
where J (p ) =0
Writing v2¢ = - 4n08(z) &(x - a)s(y) (2)

it is possible to integrate (2), with ¢ replaced by (1), across the discon-
tinuity, unfolding the orthonormal set in r.3 to obtain

J (p"’”a>

A = 20 R 7 (3)
mn R anJm+] (pnm)
One therefore obtains
dJd pnma J pnmr pnmIzl
ST 4 "R/ MR TR
o(ryo,2) =} ] - ————p —-——cosm8 e , (4)
n=1 m=0 m L . (pnm)
where 2m =2 form=20, and 1 for m # Q.



B. Convergence
The series in (4) and the fields which can be derived from it are

Pl 2|
convergent only from the ——f(——
e

» where Pom is given asymptotically by

(5)

Targe m,n.

o e 35 ( 4 )3

Thus (4) can be used only when |[z| is larage enough to get useful convergence.

In principle, the radial force due to the image alone, evaluated at the

charge, is obtained by setting r = a, 8 = 0 in (4) and evaluating the sum

for ever decreasing values of |z| (slower and slower convergence). Another
form of calculation is needed near or at z = 0.
C. An alternate series to (1) is
In(kr) .
, <r<a
o . Inikai
»
8(r,8,z) =f YA (k) cosné | (kr) (6)
n=0 " n
», r<asR
0 Fnikai
where
Kn(kR)
Fn(kr) = Kn(kn) - —I—n—(—m In(kr‘) (7)

Using (2), one can eventually find

) i I_(kr)K,(ka)y |
) I (ka)K _(kR)I (kr) 0<r<a
-4 fdk cos kz co; g | .0 T ?kR) n + .(8)
n n In(ka)Kn(kP)
0
L a<r<R
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Since the first term in [ ] vanishes for R - », and the second term is
independent of R, the first term is the image potential and the second
is the self potential in free space. Thus

o I (ka)K (kR)I (kr)
- 49 cos ng °n n n _
¢1‘mage R fdy cos kz } no 2 I, (kR) (9)
0

n

B. Convergence
This expression has no singularities for 0 < r < a and therefore

converges well, except if both r and a are near R, in which case there is
an effective point charge image at r = 2R - a, 6 = 0, z = 0.

E. Approximations
The existing PARMILA program calculated the
centroid of the actual charge distribution.
It is then possible to use (9) to calculate the
image fields from such a charge placed at the
centroid. However, an approximate method is
desirable in order to make the calculations

fast.

The proposed approximation is to replace the cylinder by a square,
oriented along the radial line to the centroid, and use the 4 nrimary
images, located at

o ¢ O 0O 0
X! 2R-a -2R-a£ a a (
’ 3 o )’ 2R ).

Actually, if a is near R, one should
probably not use images ¥ and % , or one
shou]d add the next 4 (with charge +Q) at

Rl

2R£,

y 0]

32R a




Another possible variation is to use a square of the same area as the circle,
which should give more correct fields near r = 0, but less correct fields

near r =

a.

F. Suggested procedure:

(1)
(2)

(3)
(4)

When the

Use a square 2R x 2R
Try centroid locations at x' = 0, %—, %%—, %?-, and z' =z =0,

i%3 ig- *R , *2R. Calculate the fields Ex" EZ from 2 image
charges, and for 4 image charges

Repeat (2) using (9)

Repeat (2) for a smaller square if (3) and (2) are not sufficiently
close to one another.

comparisons are made, it will probably be a simple matter to improve

the procedure as necessary.
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7-12-79

SIX~DIMENSIONAL PHASE SPACE DISTRIBUTIONS

I. INTRODUCTION

Mumerical calculations are being carried out for particle distributions
and the corresponding phase space projections and emittances in the presence
of space charge forces and non-linear longitudinal external forces (from
an accelerating bucket). The result is an asymmetric distribution in the
longitudinal displacement, which makes fitting to an ellipsoid problematical.
The purpose of this note is to develop a realistic parametrization of the
distribution to help in the fitting and analysis of the computations.

We shall assume axial symmetry in our 6-D phase space distribution which

is taken to be of the form

r2 22 z3 r2 z x'2+ 12 z'2 n
£(x,x',7,7',2,2") =const | 1 -5~ 5 ~cfo g 2R ST ———-T .
. 272 3 2D 2 7 |
a b b a c d -

(1)

The distribution is then determined by the shape parameter m, by the scale

parameters a, b, c, d, and by the dimensionless asymmetry parameters £, .

II. PROJECTIONS

A. The projection onto the spatial coordinates is obtained by integrating

(1) over x', y', z'. The process is simple and leads to the real space

charge density

rz 72 23 r2 2 nHé% ’
p{r,z) = const l.l -5 - —‘-:2-- €3 - 6—2-3:’ . (2)
- a b b a

At this point it is important to point out that z = 0 has been defined to be
the position of maximum density. It is also clear that there is an r dependent

asymmetry in the longitudinal direction governed by both € and 8.

B. The projection onto the z,z' plane is equally straightforward, and is

2 3 2
El- Z €2 z' :,m+2
-;?'_ 1533- —52
G(z,z') = const N . (3
1+ (SB'



C. The projection onto the x,x' plane can similarly be derived and is

1 X _z _ez _ .
H(x,x') = const %? - aZ b b3 az b c2 . (4)

Unfortunately, the integral can be carried out in terms of simple functions only

for special values of m. However, the outer borders in the x,x' distribution

correspond to small values of % » in which case the distribution is approximately

= x2 <2 m+2
- a c
2 x2 x'2
Corrections to (5) are of order §° near the border -§-+-——£ ~ 1 and of
a C

‘order 6 and £ near (x,x')= (0,0)._‘

ITI. NUMERICAL CALCULATION OF PARAMETERS

A. Parameter m

The value of m governs the shape of the distribution and can be
most easily obtained by examining the even moments o” r and z, which will be

independent of €,8 to second order. Using

1
o-1 g-1 _ T'()T(B)
[dtt (1-t) = Tat8 (6)
0
one finds
R IRY I‘{i+% r(-+l ric + %
[5] [XJJH O ) R A B 2 . T(m + &)
a a] b 1 T T Tm+ 4 +1+3+Kk)
{EI I
(7)
Specifically
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2 2

5 ... 3 e b h

x2 = ;7 T 2(m + 4) 22 = 2(m + 4)

—5 - 4 — 334 = 3b4

X y o b4m+ 5)(m+ 4) ° =z 4(m + 5)(m + 4)

4 2b2
2 = a 5 = 5 = a

Y T rmr @ 8 222 Tyl T hmr Y mE s [ ®
5. .

T m+4° r  (m+ 5)(m+ &)

22 _ aZp?
TE T Tm A5 m+ &) J

The value of m can be inferred from (8) by using combinations like
A [m + 4] 24 3(m+ 4)
+ : +
(;‘2’}2 m 5 (;Z} 2 (m 5)
8 ¢))

r2z2 - [m + 4]

== " lm¥s

r2 22 .

This permits testing the consistency of the form of the distribution (1).

B. Scale Parameters

a, b, ¢, d

Once m is set, the scale parameters a and b can be determined from (8).

For example

a2 = 2(m + &) x2 = (m + 4) 2 s b2 = 2(m + 4) 22

Similarly c?

c2 = 2(m + 4) x'2

38

and d2 are obtained from

(10)

, a2 = 2(m + 4) 2'2

(11)



C. Asymmetry Parameters €, &

In order to determine £, §, we must take odd moments of the distribu-

tion in (2). The average of
21 2 2k+1
Xy z

then requires expansion of (2) to terms linear ine and 6, i.e.

3 1
f r2 22 m+§ 3 szB r2 4 r2 z2 m+§
-2 oty 3tiay o272 +-
a b b a a b
As a result, it can be shown that
. TR ., 1 R 3
[?_‘_JZI[XJZJ[EJZR-H-_ ) T'(m + 4) . F{l + 2] . F[_‘] + 2] ] F{k + 2] .
aj laj (b T T Tm+5+1i+ 3 +Kk) 1 1 1
T[z "2 3P
3 . .
[e[k +§] + 8(i + 3 + 1):| 12)
Specifically
3

YL )

b 2 (m+ &)

e 5

S s ke > )

b3 4 (m+ 5)(m + 4)

- = 5 (E"fua]

xz _yz_lrz_ _1 2

a2y azb 2 azb 4 (m + 5)(m + 4)J

Clearly the three observables z, z3 and zr2 in (13) can be used to calculate

€ and §, and to check the consistency of the form of the distribution once again.
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IV. EMITTANCE
A. x, x' Emittance. Once the parameters a, c are determined, it is

possible to obtain a measure of the x, x' emittance by evaluating the area and

number of particles contained within the curve

H(x,x') = P H(0,0) (14)

where P is a number between 0 and 1. 1If the shape of the curve is given by

(5), one finds for the emittance
L
EX = mac|1 - P2 | - (15)

If the fraction of the beam within (14) is chosen to be .90 (to minimize the
effect of stragglers), one can show that P is equivalent to (.1)(m+2)/(m+3).

In any event, the 90% contour defines an emittance in (15) which corresponds to

a, ¢ being reduced by the same factor. A further test of the index m is pro-

vided by the dependence of this emittance on the choice of P (or the 907

figure).
B. =z,z' Emittance. Once the parameters b, d, £, § are determined, it

is possible to obtain a measure of the z,z' emittance by evaluating the area

and number of particles contained within the curve

G(z,z') = PG(0,0) , (16)

where G(z,z'") is given in (3). To first order in € and §, the curve will be

given by
2 2 3 -.
2z z' €z m+2 [ § =z } .
L 4+ & =1 -~ 7P 1 + .= (]_7)
+20b
b d2 b3 "

The asymmetry in (17) can be exhibited by evaluating the z intercepts, z,,

13
iven approximately by setting z = £ b 1 - Pm+2 on the right side of (17)
g P

and by making z' = 0. This leads to
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) [ 1 JE 1 1
+ m+2 £ m+2 8 m+2
_— =+ - - — - —_—— -
5 1-P 5 1-P TCE) P (18)
Once P is determined from the 907% condition, (18) provides further confirmation

of € and §, obtained earlier from (13).

V. SUMMARY

We have suggested a parametrization of the 6-D phase space distribution
which exhibits the observed asymmetry in the longitudinal direction. Procedures
are developed for obtaining the values of the parameters from moments and con-
tours of the computed particle distributions. This should eliminate the diffi-
culty of matching an ellipse to the asymmetric distribution in the longitudinal

phase space, and should enable comparisons of emittance for different asymmetries.
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5-24-78

PROJECTIONS OF MULTIDIMENSIONAL PHASE-SPACE DISTRIBUTIONS

From a distribution in multidimensional phase space f(Rz), where

2 2 2

R = x" + y° + 22 + x'2 + y'2 + 2'2

we want to find the projected density distribution in x, y:

J{hz dx' dy' dz' f(r2 r22 e x? eyl
L\ & g
v
2n 2w o go to z = s cos ¢ cos O

$ €c0s @ sin 6

1
f d cos ZCDfde fdafszdszf(rz + 52) X!
1 0 0 0 y' = s sin d cos o

! s sin @ sin o

N
n

2]

p(rz) +/ dt t f(t + r‘2) =fdw (w - rz) f (w)
0 r2

Try

fw) = (1 - w)"

2]

o(r2) =/dw(w - P31 - w)"
2

r

1

=j.mdl—r2-(1—w”(1—ww
2

r

by completing the square. The upper limit is 1 because f(w) is to stop at 1.

2
r

. [(] ) r‘2)(1 _ w)n+.| ) (-I _ w)n+2]
n+1 n+?2
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2y _ 2,n+2 1
o(r™) = (1 - r7) n+1)(n+2

To get a parabolic result n = -1; behavior is singular.

Suppose
f(t + rz) = §(t + r2 - 1) i.e., a six-dimensional surface, then
=§(w-1)
_ 2
—fdw(w-r)d(w-])
2

A

=1 - rz

so the resulting projection is parabolic.




Try f(w) = —
VW
1
fdw(w—rz)-]—=-§(l-r3)—r22(1-r)
2 W
r
2 ,2.43
—'3—"2Y' +3Y'
_ 1
Try f(w) = -— 3 n<]
W
1 2
1 - 1 4-2n r- 2-2n
ldw(w'r)T_Z-n[]_r ]-__n[]-r ]
W
r
IR R sl
2-n  1I-n T-n}{(2-n
For n =1
1
dw(w-rz)]—=1-r -rzln-]?
2 r
A
- 3.
Forn-z.
] 2
2 1 1
‘/.de(W-Y‘)-w—37?—2(]-Y‘)-2Y‘ (F-])
r

44

2-2r-2r+2rf=2-4r+2r

2




1 2 1
If {f=—-5(t+r 1)+ s
2 4(t+r‘2)3/2
f
1+
dw(w - r?) [6(w 5 LA ;/2 ]
2 dw
r
1 r
- 1 - r‘2 .\ 1 2\#1/2‘ r_z 2w-]/2
2 4 5
2 2
c1-r 1-r ro/1
T YT 'T(F“)
=1-r Conical.
S(w ~ 1) 1
Suppose f(w) = +
2 4w3/2
only near only up to
w=1 w=1

We can generalize:

o

p(t) =,/P dw(w - t) f(w)
t
(a) Suppose f(w) extends to w = =

o

p'(t) = - J(- dw f(w)

t



p''(t) = + f(t)

This is the way to get f(t) from p(t).

-arz
For example o = fp ©
= o, e-at
f(t) = a2p0 et

n
j—)

{b) Suppose flw) cuts off at w

o'(t) = -J/- dw f(w) t <1
1 t
P
0 t>1
Sy = | F(w) t<1§
0 t>1

If o' is not continuous, but has a discontinuity A’

flw) = o''(t) +4'8(t - 1)

This is the case for 1 =~ rz, 1 - r, or any function which has a dis-

continuous derivative at r = 1.

2 o
For example: p=1-r =1-1
p' = -1
p'' =0t A §(t-T) A" =1
flw) = 8(t - 1)
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Or: p=1-r=1-/%
1 1
p' == —({=-35at t=1
2/5( 2 )
1 1
o= + 5 8(t - 1)
o) 4t3/2 2
fw) = ;/2 + %-G(W - 1)
4w

How does one populate the 6D phase space?

X,x' = U,o polar coordinates
| -

Yoy’ = V.8 RZ = 02 + V2 4 WP

z,z' = W,y

) ] 1 2
dxdx'dydy‘dzdz' f(R") » UVW dUdVdW dadRdy

spherical
coord.

U=RsinBcos ¢, V=Rsin® sind, W =Rcos 8

3 2

B cos 6 cos ¢ sin ¢ deR sin 6 d0 d¢ dadpdy
3

-+ R” sin

+ (da)(dB)(dy)(cos ¢ sin ¢ d¢) (sin”e cos 6 do)
x R°aRF(R?) or 5 R1dR? £(R?)

where UVW is always positive, 0 < ¢ < g-, and 0 < 6 < % . The term

(cos ¢ sin ¢ do) is d(cos 2¢)/4, where cos 2¢ is chosen between -1 and 1,
and the term (sin36 cos 6 d8) is d(sin46)/4 where sin4e is chosen between

0 and 1.

For example, if f(Rz) = -]2--6(R2 - 1) + —lg
4R
2 2 3
5 2y, 1., RE%R _ 38(R%-1) + d(R%)
R“dR f(R") 78+ 7 5

This implies choosing R3 uniformly in 0 to 1 and then 3 times that many
particles at R = 1.
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SLIT WIDTH EFFECT

The emittance of low~intensity linac beams is commonly measured by
passing a sl1it and collector assembly in steps through the beam. At each
step, part of the beam passes through the slit and travels a distance L
to the collector, where the width of the beam is measured to provide infor-
mation about the angular spread of that part of the original beam. The

finite s1it width, 2b, produces an error.

The apparent measurement at Xg» xO‘ is
bounded by

X +‘x‘L = xO'L txgte

X'X[):ib




For ¢ very small, the J/hx'J,hx integral becomes approximately

1 b
X0t

B(XgeXg)= %Efdx' p(XD + xgl - x'L,x')

XO"

o

Let OOO p
_ 9p
o1 7 3x’
_ 9p
P10 7 3x
_ azp
P20 x
_3%
Po2 ' 2
- 829

P11 T mxoxT
Now do a Taylor expansion.

2.2 2 2

T by bu, b2 b

b(*p*p) = 2 /d“[‘)oo TBet TS P20t T P01 * 02 T T
-1

where the arguments of 00* P07° etc., are xg, xé

2
1
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b2 b2

b2

B(*gs%g) = oo * & P20 * o2 P02 T 3L

Now 1et us calculate the apparent emittance

E

2 _ 2

—_ .

Xo*o

o *o

7 _ ' 2 . .
Xq ——/'dxo_/'dx0 Xg p(xo,x0>

l\"!

Let

-/‘dx[')_/;lxO 6(%O,x('))

A (using P00 only)

Integrate by parts

ff"o2

P20 |*%%p =
°02 )
P00 )
etc.
b2 2

using 6(x0,x6)



m
1993
It
I
[ve]
]
(]
N
+
(=
(.AJ' ~N
S~
I=
N,
+
(we)
[}
N
=S
SN———

Try to express in terms of Courant-Snyder a, B, vy, where By = 1 + «

Assume distribution f(W)

W= Yx2 + 2oxx' + Bx'2
J(' dxdyx' f(W) =1
Llet x' = - %-x + X y dx!' = dv
/B B
2
j/ax v f(%; + vz)
/B
Let x = w8 W vlay =l
dudv = 2mrdr
= mdW

f duf dv £(u? + v2) = n/de(W)

oo

=

So the normalization is dw f{W) =

[}

A= x2 =f/x2dxdx' W)
2
i/%x x2 gl-fé%—+ vz)
/B
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deu uzfdv fW)

=dew %9- W cos® F(W)

©

e%[memw

0

1
[ Kon}
=|

12_Y—
X -72—!
XX = dxxfdv(y—-%x>f(w)
/B
=d/;gj{;v u (v - au) Fw)
- o
=-3 0]
2 2
E0 =AB -C
W’
i
M
b =3
Ez —E2+£ Bﬁ_..pl_f_g:g.
TR0 3127 L2 2 2 L
2 g2y B (8, u.y
t 0 03 \pZ 172
ANE +PE _E_-_Q.px.
E=Ey+3 7L 2)

dudyv

W

Vi cos 6
/W sin

dW
7?-d6

SUF (W) dW
AL

6



6~6~78

ASPECTS OF THE 4-VANE STRUCTURE

The following note contains three sections. 1In the first,
an exact solution for Laplace's Equation near the axis of a
four-vane structure is derived using a very simple Schwartz
transformation.

The second section is an attempt to estimate a correction
to the frequency and the "external" fields because of the
central region. This section should be carefully checked
before using.

Section III treats the 4-vane structure as a point-
charge model. The relation of the point-charge parameters to
the Kapchinsky-Teplyakov A and # are derived in terms of the

vane modulation parameter m = b/a.
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I. We can solve the two dimensional Laplace problem in the following

geometry

us=-\V
2

=V
U=

= X
0 a

The solution can be obtained by the Schwartz transformation w = z2 and
the problem is then standard in the w-plane. Without providing the details,
I give the solution, which, since it is a function of the complex variable z,

and satisfies the right boundary conditions, must be the correct omne.

54

Zz + f__— a2
o=Yre sintf——2— W
b +a”
2
4 - 2

o /(xz _ yz + bz)z + 4Xzyz /(xz _ y2 _ az)z + 4xky2

u(x,y) = - sin > 3

b™ + a
2)



As a check

r 2 2 ¥- s X2 a -
_Vv -1 i x" +b -fx - a2} “
u(x,0) = E-51n l 3 5
b-+a v s1n_1 (b2 - a2 + 2x2)
b2 + a2
(3)
X< a
\
"E 3 y>b
v -1ly? - - P rad |
u(0,y) =3 sin 7. 2 = 2 2 2
b+ a v . -1f{b°-a” - 2y <
T sin 5 5 ysSb
b + a ’
4)
2 2
vV . =-1b" ~
u(oyo) = ;T- sin —2—-—% (5)
b™ + a

2 2 2
(Our earlier guess was u{x,y) = V(b -a *+2x -2 which is not
2 b2 + a2

terribly accurate at x =y = 0.)

It is possible to expand u(x,y) near x,y = 0 as a multipole expansion. The

result is - ;— \
n“cos28 n cosAQI/
2 2 2 2 4 22 4
u(x,y) ~ 1 _2 -la x -y (b -a)x -6xy +v)
v 2 " w Ayt T T K + (6)

Conclusion: The Quadrupole strength will be constant if the product of a

and b is constant ! ! !
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II. 1Is it possible to calculate the resonant frequency approximately? The
best way appears to be to use a variational statement in terms of an electric
field trial function.

It is well known that

—.2

k2 _ f(VxF) dv W (7

JE“dv

2 >

is a variational statement for k* in terms of trial functions E which satisfy
the proper boundary conditions and which are continuous and have continuous

values of AXE

We will divide the "wave guide" into two regions (I and II) separated by

r = p, where p is chosen such that

a,b < p < A,R
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The trial function in region I will be taken to be

I
E, = EO(Yl(klr) - al; (k1)
corresponding to (8)
I = —
H EO(YO(klr) uJO(klr))
Y., (k,R)
1'71
where a4 = ———— (9
Jl(klR)
and kl is chosen such that Hz(p) =0, i.e.
Y. (k. p)
01
o = ——F— (10)
3o ;P
2 Uklp
For klp << 1, Yo(klp) = ;—in ] Jo(klp) = 1, where &ny = vy = .5772
is Euler's constant. So
2 Wk P
a ==t |— , and o] >> 1. (11)

This means that klp is near a zero of Jl(x), In fact, if

where Jl(p) = 0 then

2
~ 1 E 1
Jl(klR) =eJ; () + 5 1 (®)

"

Yl(klR) Yl(p) + EYl'(p) .

One obtains, from (9)
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e J1 (@

1w | P2 m
€ 1 1 =1 1 1
Y, (p) Y, " (p) a ’ lal
1+ e g——
Y, ()
=€
’ n
. Y, (p) [1 +(Yl (p) 9 (p))Yl(p) :, 2
L} 1
oJ, " (p) Y, (p) 23, (p) J od; " (p)
2
Y had 14 n
LG H .- lfp) - Ylfp) Y, () ) 3 fp) a2
a2 J; ') I, () Y, (p) 23,"(p)
Let us now calculate k2
J (E) 2av + J (v<E) 2dv
k2 I II (14)
j Ezdv + J Ezdv
I IT
In region I we have
VxEp = k B (Y (k1) - a(JO(klr)) (15)
In region II we have
VXEII = 0 , since we will choose EII to be the solution of Laplace's

Equation (solution for the potential is in (2)). Sp we have

k 2 dv(Yy, - aJ )2
2 1 I 0 0
k™ = —
J dv(Y1 - otJl)2 + —if J dvE2
I E II

(16)




k.R klR

1 2 2
J xdx(YO(x) - OLJO(X))2 = %? (Yo(x) - OLJO(X))2 + %f (Yl(x) - OL.Il(x))2

le le

k.R

' 2 x2 , v 2 x2 2
xdx(yl(x) - aJl(x)) =15 (g - aly))” + 7?-(Y1(x) - aJl(x))

le
klR
- x(yl(x) - aJl(x))[YO(x) - aly(x))
klp
Using (9) and (10), one finds
klR klR
xdx (Y, - aJ )2 = | xdx(Y, - aJ )2
0 0 1 1
kip kP
2
klzRu 2 kl2p2 2
= |- (Yo (kR) =~ @l (& R))° - —5— (¥, (k;0) - al; (k;0)) (17)
From (16) and (17), neglecting terms of order pz/Rz,
2kl2 2
-5 rdr| dOSE
E
22 0 11 11 (18)

2 2
R7(Yy(kR) = adg(kgR)) ™ 27

Let us now try to evaluate EII’ and tie it at r = p to EIB. For

r2 = xz + y2 >> a2, bz, Eq. (2) can be written as

1 /TXZ + YZJZ + 2b2(x2 _ yZ] _ g?xz + yZ)Z _ ZaZ(XZ - yz)

~V .-
ux,y) = o sin 5
b + a
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2 2
~V ., -1fx - vV . -1 V,m
= sin (—2——1—2)= = sin (cos 20) = ;(f - 28)
X +vy
so that
g=2 ion IT =
o = 7o in region at r =p . (19)
From (8)
2E
Eq = - TTle in region I at r = p . (20)
A match is therefore obtained with
E
v = k_O (21)
1
in which case (18) can be written as
- 2—2— [ rdrd® E:Z
\'
W2 klz ~ . 11 5 (22)
2mR (Y (kqR) ~ ol (kyR))
Let us write
\
u(x,y) = - g(r,0)
2
v 2 _V 2
p--2v% , 5=% (v
T
2| avE® = 25 | av(Ve)(Vg)
v T
II
2 > 2’ 2
= = | ds(n -ng] -~ | dvg(Vg) (23)
2 2 N
m m o



Since Vzg = 0, the second term in (23) vanishes. Since ﬁg is in the @

direction at large r, the only contributions to the first integral come

from the vanes. After some algebra, one finds

25- dvE2 = ;f-ln 2 (24)
v VaZ + b2
IT
and
n .2
Kr =k R - va’+ b (25)

1 (Y (kR) - uJo(klR)]2

We will try to keep the lowest two orders in 1/0, noting that, to that order

Yok R) = aJy(kjR) = Y (p) - oy (p)

(26)
k.o
=2 1~ .2 Hpp
a = dn 5= = ln ( 2R >
and _ 7
~ 2
Zn—-—g-p———=2n}-g£+2n—~—ig———
57 R 77
a + b a + b
(27)
T |, S
=5 t7
This leads to
4
- (o + 8)
k2R2 = p2 + 2pe + e? - 5 4

a%1,2 () - 20, (0)Y, (@)
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pY. (p) ) ( Y )
2 2 1 2 1 2 46 8 0
=p +_(_.T_________ + — 2pH+G _—— e
o Jl (p) 2 2 ] 2 0w 7 3

T
To 0 0
. J (@) 9
=0 1 1
" o_ = | - =
3" =59 5. (1 p)
=0
So
2 2
Y Y. ! Y Y
R S e 2"“1—(*11 +§%)+%'%'$£3
Q 1
aﬂJO \ JO 1 WJO JO JO
3y
k2R2= p2 _ 4 5 - ?4 5 (6 + - 0 (28)
and a nJ 0

My interpretation of (28) is as follows: The choice of p (which to

this point is only restricted by a,b < p << A,R) should be the one which
minimizes Eq. (28), since the original formulation of k2 is a variational
one. This implies a positive value for -~ é— which is chosen to be as

small as possible. Assuming b 2 a, this suggests choosing p = b, since
a smaller value will correspond to fields not accurately given by (19).

My guess is therefore that the frequency is given by (29):

3Y

2.2 2 4 4 0

kKR” = p” - 5= 3 2(6+—J0) (29)
0

with J,(p) =0, p = 3.83,3,(p) =-.403, ¥,(p) = .051

-T—r-g- = EB—p' = =
5 in 9R p b, Inu .5772
me n 4R

2
M 32 + b2
_fzz.. ,
[Perhaps one should choose p = va + b in which case the frequency will

depend only on /2 2 -



It should be possible to check the accuracy of (29) by comparing with

SUPERFISH calculations.

I1I1. This is a follow up on the point charge model for the K-T, 4-line structure.

It contains the relation of the point charge parameters to the K-T parameters

(A and 1) in terms of m = b/a

0

Oe—2l-C o0
r

Potential =
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What is the first harmonic?

o
|
=

cos Bodiiy

z - L,
i
- 27s
29 ds cos L
L J 2 2!
o s 4+ A
dw —(2@ W
v e L
2
w -1



FOR THE COMPLETH CHARGE CONFIGURATION

I T T 7\ _ 4 (L NE— 2')
Ul(x,y,2z) = cos Y 1 R ( T A% + (a-y) ) - L KO T x4+ (b-y)
—
o (2 AT - 2)
- 1 Ko( o B + (b-%) > ! ) KO T & + (a-x)

+ [same, with a > -8, b » -bl

2 2 2
2 2 ST . 87 ¢ ; V(e £,
K (c=)" + 8 Ko(c + g + -2——> = ¥ (c) F(;;E ¥ €‘>}‘o (c) + 5 K, (c)

~
(o]
—~
[¢]
{
(ws]
N’
[
+
e
|3V
I
P
o]
—_
o
N’
+
——
I\)l ™
o] N
+
O
S
~
=]
—_
[e]
N
+
>
( (S
~
(o]
—_
[el
'

R+ sk - K =0
o YA [a] 0
s 1 = I i
X }\l
K
g'o= K+ L
(o] [a] YA
2 2 K 2 2
+ € § + ¢
- K e K+ — ) ==
ZKO(C) kl(c) e + ((o > 3
r2 7'n2
2tz 16 2ma ' 21h .
= 2rz 18 f qr (=) - x [ == .ong .
U(x,y,2) cos — o) ) YO ( T ) Q o ( o ) Longitudinal Term
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Transverse Term

- Qg x
Ex =2 9 9 3/2
i ((z - L) +a
i
+2 Q=

z - = - L.)z + (a t %}
2 1

_ 0 (x £ a)
Z (( L 2)3/2

2: Q' (xth)
2 )3/2
x)

i ((z—L.)+(‘o1‘
1




First and third terms in E

- 29 2 : 2%

5
i ((z ~ L,)2 + ag)
i

L L .
Average from - 3 to 5 is

1 o ds
L ( ) 2)3/2
e s + a
N
2
La2
d_f ___ s ____
ds Y 1/2
s~ + a )
2
- & +a’ - 4
) 9 3/
s + a
ol
s - 2a° = —[(a2 - 252) + (a2 + 32)]
2 2
2Q—§' + ZQ—'-,}'
La La”
PR Tt
Lb Lb So,

3a
{1 - —
5 2
a'+(_z—]::'-Li)h
/2 ) I 2 2 3/2
(z - % -L) +a
) 2
(=" - 2a”) ds
N T\ 5/2
s” + a”
N
2
-1 x ‘35
La
d f s .
ds 373
(42 + o)
2 it
_ s ral - 38
) 3/2
s <+ a
8x { Q n') 8y (o' 1
E = .2 __a__*_,_n_._ E= [
X L (ah b2 L b2 a2
_ & ' 2 2
u=< %+f§)(x v2)
a
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Therefore:

2 2

U = (x

L

Therefore, in terms of K-T parameters, A _, A1 :

(ka) (mka)

)

2
]

Q.2 LY e,
1 62 2 1
Probalkly should choose
' =0 = =
0 g Cl 62 € AO
AV
1. 8k ve fy .
5% TR 3 (Ko(ka) ko(mka)>
ke ) ) i
A1 = . (Ko(ka) - Ko(mka) = 0 at m
_ 2 _ .2 8 ev 1 1
J(‘""Ao“""vx,2<2+22>
a m a
(- =)
o = Z_LIE_E; o .m ] - 4ke atm =1
U T

68

-y) (35 + %%) + cos<g%5) £% (Q Ko (gfi) -9 Ko (Z%E))

€. are radii o7 the "'beads"

2

1
-

=
]

el

]

-

i
5

Coefficients
may not be exactly

correct.



If we choose € =

Q0 >~

BALL K-T
) . Io(ka) + Io(mka)
5 1+ - Vs, Ty T e
m m"1 (ka) + I (mka)
o o
2(K (ka) - K (mka)) vs. S S
) o

9
m I (ka) + I (mka)
o o

Look similar enough to be bhelieved

Might be necessary to make Q

At any rate, we have related the coefficients of the constant and cos(kz)

terms

Hard to know what to choose.

of the potential for the 4-ball case to those in K-T!
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DISCUSSION OF BEAM DYNAMICS IN A
"KAPCHINSKY - TTPLYAKOV' - LIKE STRUCT'RT

A. Introduction

What we are doing is to group all structures which have only r-f fields
with quadrupole behavior near the axis (to produce transverse focussing via
alternating giadient behavior) and with an accelerating wave along the axis.

B. Longitudinal Nvnamics

The result of the analysis for the longitudinal motion is the standard

loaded pendulum

”
dz‘ k,” linearized ¥ = 9 - ¢q1
‘ i
==+ ——rr71 (cosd - cos¢ ) =0
2 sinjd 8 5
ds s d»"’ 2
ds”
where
2
k,
. 2me * oo . -
é{E}ﬁfT = ~—5E E is the average accelerating
s mvTRX . . .

B electric field on the axis {the
amplitude of the wave component
traveling with the heam).

In K-T terms raveling wi ! )
- Ul = 2V
. = <= AV or = = @
E 585 M 3
2 breV (:>
= e e sin|d
k, 5 5 () si | Sl

mv-(8))
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C. Transverse Dynamics

5~ 1s the standard

to simulate the square wave's first

a? kg 2w
x 2Ts
- —_ z =22 4y =
> + x > + K cos( an + g)) 0
ds
e . . eV
K = 3 \/AO = 55 1
mv mv-a
2
k
The K term is the alternating gradient term and the -
r. f. defocussing term required by Earnshaw's Theorem.
We will convert this Mathieu equation to a matrix formalism by replacing
27s LT . BA
. L2 ! + = F s
the cos( ot W) by 5 for distances 5
harmonic.
2
2 k
d"x , 1K Lyl
7+ ox(r = 2 ) = 0 K
ds b= -r
2 I
or “'; t (b+a)x = 0 > - a =
ds b+a =
Matrix formulation
i ) i 8
cos(pl) EigﬁE_l. cosh(ql) §&H§iﬂ~l
-psin(p) cos{(pl) gsinh(q%) cosh(q)
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sin(p%)sinh{ql)

cosl = cos(pl)cosh(gl) +

2pg
Expand for small p, pf, qf, to 4th order.
2 4 292 494 494
1 -~ l;l_ + ]J_ = 1 - P R X - + 9._.’—
2 24 2 24 24
2 2 5
+ g....;:._ﬂ_. l'pq 1 + Q. -2 ]
=Pq
4 4 4 ( 2 2)
2 -
= 1 + (q - p“)?,—‘ + Q, 5.(4— éqz" + _q"i‘é‘j"‘—’
et
2 2.2
L =-p)
12
2 4 > 2.2 (262 - 22 ’ 4,2 2.2
N T A TC G S P IO Rt Yt R A €l o S e
2 24 21 41 24

This can be approximated for U2

2 2,2 2 (g% + p>
R R I T

The definition of transverse wave number kt is

= Y_
kt 27 , so that
2 2 2, 2 2,2

K2 - -9-p o, &g *+p)

t 2 48

2

Xk 2 = . E&_ + “2K2&i

t 2 192



2
[The true Mathieu equation solution in lowest power of kzﬁ‘ multiplies the 2nd

term by 2% = .99.]
T
So
2 u2 Te yAY 2 eV ’
i Sk IR S (VR 72
BTA mv_ BA mv_a

K-T's equation (7) (UDC 621.384.64 1969-70)

22 =
_,.‘)_];é_ uz = ZI.Y._ (H’ 51n¢ 712 + ] J(,‘:@,__).‘__
s B Eo 872 8’ By %83
2
where EO = ch, 802E0 = mv"
.. 1 4192
Ratio is 5 . 5
of 8w T
Coefficients ) 29 ) o5
4 .
v

D. Transverse Longitudinal Coupling

The longitudinal motion is governed by the accelerating wave traveling
along with the particle, cos( - BA Ycos{wt + ¢). The radlial dependence of
this term is controlled by che requirement that this traveling wave have a
factor which permits EZ to satisfy the Laplace Equation (non-relativistic).

This then leads to the standard factor

ﬂz 2
I ( EX r) =1+ 5 T
BX"

This leads to the usual coupling term in the linearized form.
2

2
d“x 2, _ 1 o2 2
2 TMX T T 2 )
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The corresponding term in the transverse motion comes from the dependence of

the r.f. defocussing term on the phase motion, and is written directly as

2
x L, o2 ko x
ds2 e ¥ 2tan ¢q! X

2 . . .
where kt includes the alternating gradient effect in the ''smooth” approximation.

The standard coupling analysis treats the 2kt - ky “"resonance” as the
domipant term leading to a change in transverse amplitude of

2
SA max

ky,
A 8kt Zkt - kR' I¢S,
This implies the need to keep T%E% < 1 1in order to keep the transverse movion
'8

from deteriorating. Specifically, the effect is exactly the same as in the

Quad Focussed Alvarez Linac, provided kt and kp are chosen appropriately.

a

E. Space Charge Effects

The space charge terms are most readily estimated by assuming a uniformly
charged ellipsoid. This will lead to linear terms in the equations fory and
x of exactly the same form as for the Quad Focussed Alvarez Linac. Specifically
in the focussing terms (but not in the coupling term unless there are further

couplings from the space charge distribution) one has

2
kz
2 2 N
k" ko Q-

2
— X ¢! '”2)
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ohms el A

Mok, = > > f
L Mc™ a ch
“tktz = 45 ohgs el 9A 5 (-6
Mc a cPh
and f(g) ] %E , where ¢ is the longitudinal semi-axis, and
1 -~ f =1 a is the transverse semi-axis.

Calculational experience suggests that the beams will detericrate if “Q

or pt get too close to 1.

by choosing U v 3/4, as in conventional accelerators,

estimates (setting Mc2 = 900 x 106 eV).
900 MV 2 3ac® 3
T2 (g AT R, BT p
90 ohms 3 (BX)B '3
2 2 3
IQ = 30 amp. (Bkkl) -ac g (1008)~ My
' (B))
I, = 20 amp. (Bkkt)z - (1008)> M,
(BY)
Typical values at injection - after bunching starts
a 1 c 1 °
Y v 5% ~ A (180° bunch)
gAkQ = phase advance per cell n g
Bkkt = phase advance per cell g
~ L = 3
Mo T3 He T 0%

A crude estimate of the current limit can be obtained

This leads to two
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—
R

15 amp

2

1 3
A (1008)

2
o 3
I = 0.6 amp (1008)
] W 1

max

.005 12 KeVv 75 ma
.01 50 XeV 600 ma
.02 200 KeV 5 amp.

One still must see whether it is possible to obtain kQBA 3 7

with realistic parameters in the K-T structure.
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RELATION OF STRUCTURE TO BEAM DYNAMICS PARAMETERS
IN A 4-VANE STRUCTURE

SUPERFISH gives the frequency and field distribution. This note suggests

how to relate this information to the K-7 parameters.

The general static potential has symmetry

such that for z—>z+§—>‘— , 6—>§+ 8 , the
A sign changes (apart form the time dependence
of the fields). This condition is satisfied
by the form
o0
_ 2+4n
| U= E a ((2-‘-411)9)
n=0
L ] { -
[e ]
27
- + E bn 4n BA ) cosb4nb cos( ) )
n=0
o0
E 4Tfr) < \ 41z
+ - —_—
< I4n+2 ( ) cos((4n+2)9 cos( BA)
n=0
V
[e ]
e 6Tz
+ = e ) e
E dn Ilm 3)\) cos4nd cos( B)\) +
n=0

Am Tant (ég%z) cos((4n+2)e) COSCQE%E)

[\“1

o0 o0
4m+2
- S,
' Bnm Ilm ( Bx
n=0 m=0

(4m+2)ﬂz)

Wr) cos{(4n8) cos( 2
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The accelerating term is BOO and the focusing term is proportional to ADO’

with proper normalization. These can be related to the A, and AO or (E) and

1

- 2 2
i in K-T, and thereby to the k, and kt in the Alvarez Linac.

2
All that remains is to extract (and presumably contro!) the values of

o il
AOO and BOO from the Superfish runs.

1) AOO is the coefficient of the quadrupole field on the axis.

2) B cos 2nz

00 B is the potential at r=0 which presumably can be calcu-

lated at each z {(corresponding to a separate geometry) by finding

the central potential with the two ‘electrodes” being at * 5 .

Let quad gradient be B

V. be potential at r = 0

AN 0
2
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<
1]
RS
1
=
1§
oo
+
<

2 0
\4 B 2

7 = - - = _,,_‘;L_ J
v, : =t Y

B 2 2
vo= 2

5 (p” + q7)

_ B 2.2

Vo o= 3 (@7 - pM)

5
One should set V, proportional to cos(kz) (to obtain kg“)

0
2
and B (to obtain kt )

and Poin = @ (for beam clearance).

This gives V and lnax Then as V0 varies as cos(kz), and B, V remain fixed,

one finds p, q as functions of z. Tt may be necessary to adjust tuning.
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1-6-79

BEAM DYNAMICS IN THE A-VANE STRUCTURE
(with emphasis on Jacobians)

A. The fields which govern the dynamics are:

e, = L 1(kr) sin kz sin (ot + ) (1)
Er = - X%—r cos 2¢ sin (wt + a)- E%y-11(kr)gin(mt + o) cos kz (2)
a
E, = x%—r sin 2¢ sin (wt + a) (3)
a

We will define the t = 0 time to correspond to a = 0, and take only that wave

component traveling in the +z direction. Actually %2;2} (kz) really need

to be replaced by gzgg}J{Ldz, where k = ﬁﬁ» will vary with position along
s

the Tinac to match the acceleration of the synchronous particle. Thus

£, = 4% 1 (kr) cos (kz - ot) (4)

E. = - Z%-r cos 2y sin wt + 52!~I](kr) sin (kz - wt) (5)
a

E, = f%-r sin 2¢ sin t (6)

One now changes to the independent variable z {which we will replace by s
to avoid confusion) and replaces t by the phase deviation from the traveling

wave, according to

80

kssfkdz=mt—q> (7)
Thus
E, = Eéy-lo (kr) cos ¢ - (8) |
i



XV

E, = kAV I (kr) sin $ = = r cus 2y sin (ks + ¢)
a
E = Y v sin 2y sin (ks + ¢)
8 al
E, = - Eéy-é-l](kr) sin ¢ - f%—x sin (ks + ¢) (9)
Ey = "t\—vf«ih(kr) +vas1n (ks + ¢) (10)

The equations of motion, taking into account the variation of k, are

3d (1_dg). . e KW -
k HE'(;§_H§) S w g [Io(kr) cos ¢ - cos ¢s] (1)
2 I.(kr)
d 1 dx) _ e kTAV 1 .
&k &) =% ( K )S‘“’
2
- 5%——97 x sin (ks + ¢) (12)
a“ mv
d (1dy 2 I, (kr)’
kds(kds) = - =5 kg-V y<]kr -)Sirﬂb
mv a
+ XY —Eg-y sin (ks + ¢) (13)

B. We can now reconstruct the Hamiltonian:

2 2 2
-9 ' y's  eAv [ X
H=*—+ 50+ - I,(kr) sin & - ¢ cos ¢
2k3 2 2k 4kmvé 0 S
2 2
+ X é y eéV 5 sin (ks + ¢)

ka"mv
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ap
the ¢ dependence of the radial force in the quadrupole term must be accom-

panied by a radial dependence of the lTongitudinal force. Equation (11)

Hamilton's equations (p = %g“ g = -~ éﬂ) will duplicate (12) and (13), but

must therefore be replaced by (14)

2
3d<1 d¢) ekAV[, ]
k? 5= [~ %)= - =5 |I{kr) cos ¢ - cos ¢
ds \}3 ds amyl L0 S
2 2 2
+ e; g X > Y cos (ks + o) (14)
a‘my

Equations (12), (13), and (14) should therefore be the basis of the numerical

calculation, with

) -

D® k3 ds proportional to Sw
=ld(x,y_)‘ . s s
px,y K ds proportional to x,y

C. Smoothing of the guadrupole term:

Let us write (12), neglecting the variation of k, for small transverse

oscillation, as

x'' =+ Ax + Bx sin (ks + ¢) (15)

This is a Mathieu equation for which one can expand the solution if desired.
However, a simple approximation can be constructed by replacing sin (ks + ¢)

by a square wave having the same first harmonic.

NE

—

This leads to



x'' = (A + %—B) X with "magnet-lengths" = %-. Use of matrix analysis

leads to the smoothed motion

't = - ki X
where
t 192 k2
k 25ﬂ_>_<_2_v.2_<_e_)2 1, .& BE& sin ¢ (16)
t 19 a4 mv2 k2 mvz 8

If this smoothing is applied to the Hamiltonian, the last term in (12) is
replaced by -ktzx, the last term in (13) is replaced by -ktzy, and the last
term in (14) disappears.

D. Importance of the second term in (14):

The term oscillates, therefore leading to cancelling contributions
over AS==%;3 except for the variation of a. Since

fds cos (ks+¢)2% .

half cycle
the maximum effect of the second term in {14), averaged over As = %? , 18
ek?xv a?
o \1-7 (17)
2mmy°-a b

where 2a is the minimum and 2b the maximum vane separation. The relative
size of (17) compared to ¢'' in (14) can be related to the size of kt in {(16).
This relative size will be of order x2k2, which is proportional to the square
of the ratio of the beam size to the focusing period and is therefore com-
pletely negligible.
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E.  CONCLUSION

The motion is adequately represented by (12), (13) and (14). When
the calculations are completed, the dependence of the quadrupole focusing
contribution on ¢ should be negligible, as should the contribution of the
quadrupole term to the longitudinal motion. It is of course essential that
whatever approximation is used in the numerical calculations correspond to

a Jacobian which is exactly 1.
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APPENDIX 1

Summary of Discussion on Jacobian

Start with Hamiltonian system

H(p,q)
LI _a.li 1 = B_H.
p = - aq q ap (])

Convert to difference equation over interval L

pe=p; +flpa) , F=-1z

ap = q; + 9(psq) , 9=+l

Statements which can be proven:

(a) If f(pi,qi), c(pi,qi) is used on the right side of (2), then the

e

Jacobian will not be 1 except under very unusual circunstances

(b) If f(pi, qf), g(pi,qf) is used on the right side of (2), then the
Jacobian will be 1.

(¢) same as (b) for f(pe.q;), 9(pe,qy)

(d) 1If f(p,q), 9{p.q) is used on the right side of (2), then the Jacobian

will be 1. _Bpt Py _ Gt
Pe—%—>08°—5—
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Note: The transformations can be written as
— 1 — — — 1 = —
p=rp;+5flp.q) q=g; + 5 f(p,a)

=, ] - =1 -
pe =P+ 5 f(p.q) a = q + 7 f(p.q)
While
_ £ 1
JP Qquf
J - #F ]
P;9;P q
J —— X Jd- .
pisqispaqa P,q,Pf-qf
So, if this is used for the calculation. the phase space area at p,q will
not be the same as that at i or f.

86

(e) If one does not start from an explicit Hamiltonian, but obtains f
from successive physical approximations, then one starts with

Pe = Py * fpysa;) (3)

Several options are now available for proceeding:

1) Replace P; by Ps directly. This will change the approximate relationship.
(2) Solve (3) for p; and replace p; in f by the expression obtained. This
may be impossible exactly, but it can be done by successive approxima-

tion. In this way one obtains

pf = pi + f(pf’qi) (43)

Now integrate f with respect to q, to obtain H from (2). Then take the
derivative of H with respect to Pgs as dictated by (2), to get g(pf,qi)

ge = a3 * 9(psaa;) (4b)



The g in (4b) is then a consistent approximation (not necessarily what
was derived by the same physical approximation process used to obtain
f(p;»9;)), leading to a Jacobian which is exactly 1.

The process can be generalized to several variables by using an (i,f) com-
bination in f and g for each variable.
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APPENDIX 2

Jacobian for Longitudinal Motion

1. Easiest to start from Hamiltonian form corresponding to desired
sophistication/complication

H{(®,W)
b= éﬂ = Vo= gﬂ.:
et T W ap = 9
of 29
o oW
2. Go to difference equation
dp = 05 = Flo,H) We - Wo = g(¢,W)

3. Prescription to obtain J = 1}
Use ¢;, W on both right sides (in f and q)
Or\ d)fs w.i n n n n

4. Suggest . = ¢, + Fos, W)

wf wi + g(¢i’ Wf)

In general iteration will be reauired for wf.

5. Including dependence of energy gain on energy to first order

We =W, + T(cos ¢, - cos o) + WeS sin o,

N )

h
q

H= - T(sin ¢ - ¢ cos ¢ ;) + WS cos ¢ + h(H)
+

(e«ny function ok)



|
=T

=S cos & + h'(W)

[
op = &5+ h‘(wf) - S cos ¢,

Note: wf can be solved for explicitly

W. + T{cos ¢. - cos 9_)
W= i s
f T -5 sin ¢i

6. Discussion of Tongitudinal motion - test of Jacobian

AW =J/; Ez(z) cos (wt +¢) dz

t=0,z=290

z =~/; dt

- [z
t'fv v=v5+%‘lf(z)

0 -4

S

zZ

AW g(z)
Vs

-1

g{z) is even in z

AW =ﬁ Ez(z) cos (‘;’—Z +¢ - al g(z))dz

S

= dz [cos(—“—’—z— + ¢>+ o g(z) sin (-‘”—Z— +
Vs Vs

)
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cos ¢ T+ sin¢ WS

_ wz _
T = esz(z) cos v, dz S
AW =cos ¢ T+sind WS
AG = - a AW + F(¢,W)

a.) Try ¢f = ¢.| = awf + G(¢19Nf)

—w1.+Tcos¢1-+SNfs1‘n¢1.

So¢ 3G, (26 oW

=
-
i

Hf(1 - S sin q>1.) - T cos ¢; = W,

. o
]-SS'Incb,i = gw?

-1
e ()
W, \BWg

$ .

¢.

i

1

e sz(Z> 9(2)

.z
sin o=
S

dz .



1+ 36

3¢i

S S S T

Let G = S cos ¢1

wf Ni + T cos ¢i + Swf sin ¢i

¢; - aWe + 5 cos ¢

wi + T cos ¢i
f 1 -5 sin P

W, + T cos ¢,
be =0 -\ TSy, )t O C08 ¢

b.) Try wf = wi + f(¢1,wf)
be = ¢.i + g(‘i’.lpwf)
(?_"’i) 1 +39_+§_q_<?ﬂi)
o0 . 9¢. oW o¢ .
Ty i f T
i i
() -5 (24
oW oW\ oW
i f
i P
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Requires
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a0 \ M
3¢-i 3w-i

(=),

.i

= W+ fg4.We)

Wf - f(¢1,wf)




In example on p. 8 f(¢1,wf) =T cos ¢, + SHe sin ¢

9(¢1,Wf) = S cos ¢, - al,
§S_=_ i =__3_f_
3¢i S sin ¢i awf

Basic Theorem

£ wi + f(¢1,wf)

it

If W

of = 05 + g{0;,We)
This corresponds to a particular prescription to iterate the differential

equations.
w 1

1]

|-

o' =

=
(=]

Since the system must be Hamiltonian, it must start with

H(q,p) = H(¢,W)

R TR )

cLaM L, ol

A=3p ¢ “tam
Obviously

3 1y = _ 9 '
) = - 2 en

f =-29 as required above.

=
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Obviously

i

W + F(¢f,wi)

= ¢.| + G(¢f,w1)

will work equally well.



6-13-79

TAPERED MATCHING IN THE RADIO-FREQUENCY-QUADRUPOLE (RFQ)

I. Introduction
Since the RFQ provides transverse quadrupole focusing from electric

fields which vary with the (r.f.) frequency, the transverse acceptance of
the 4 vane structure will vary with the phase at which the beam cnters the

focussing system. In order to minimize or eliminate this variation the

vane separation (bore diameter) is tapered over the first several BA so
that the quadrupole field gradient increases continuously from 0 to its

final value. The purpose of this note is to show that the acceptance

will indeed be approximately independent of entering phase.

I1. Model
The electric quadrupole strength has the general form

A simple analysis to smooth the quadrupole focussing gives for the

equivalent transverse wave number
ko (s) = gB) K. ()
where g is a number of order 1. The original differential equation
X" + K(s}) X =10 (1)
(which preserves phase space area) is then approximated by

" 2 -
X o+ kt(s) X=20 (2)
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where the primary approximation is the assumption that Kmax(s) does not

vary much in a distance BA.

We can solve (2) in terms of known functions if ﬁi(s) is replaced
by a power of s. In this case the equation (scaled in s so that the

coefficient of the sec~nd term is 1) becomes
xt+sPx=0 (3)

which has the solution

X(s) = x As Y2y 25 2 sx s M2 2s
[ ~1 T o 1 pt+2
p+2 P P12
4)
where
2
1 +2
A=T - )P
1 (5)
= 1 p+2
B =T (1+ 55 (0+2)
i
are chosen so that X(oj = Xo, X'(0) = Xo‘.
The asymptotic behavior of (4) leads to
2*2- %F
X(S) >~ 7 s A X0 cos (p + u) + B XO’ (v + 1)
(6)
where
+2
k N
= 2s _ _T "= s =
V=55 TV , sty =8t (N

h =
L
[3*]

~

ﬁ‘
+
L8]
~—
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The bracket in (6) can be written as

Pcos P +Qsiny = VP + Q7 cos (¥-a) (8)

—
[ S )
n

where

-l
n

. .
(Axo + on } cos u

(9)

2
1l

- t i
( AXO + BXO )} sin u

If the initial phase space is plotted with axes BXO' vs Axo, it is
clear that a matched final beam requires an XO, Xo’ trajectory for

2
which P2 + Q2 = R® is constant. This translates into the 45° ellipse

1
on

J2 sinp 455

The initial phase space area occupied by the beam is

_T R? (10)

Areat  x' TAB sin zn
o o
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98

while the final phase space area is obtained from (5) as

TR S PO b
- 2+p : J +p 4
= s .
Areca Final m - R p- S R (11)
2+p\. 2
= ”(T)R
Since
- 1 S SR 1
AB = T (1-+P+2) (1 p+2) = 2 STh T
p*2
AB sin 2u = AR sin—— = —_ (12)

pt2 p+2

and the initial (10) and final (11} areas are equal, as they must be.

. Conclusions

Phase space areas are preserved, and a prescription for matching
is given by (9):
5

5 2 2 2
X X ') s - -Al ! in"py = R”
(A ot BYO Y7 cos Tu o+ ( AKO + on ) sin"y = R %

Since the matching depends only slightly on p, the acceptance moving
a distance BA (corresponding to a 180° shift in entering phase)

will be essentially unchanged. The rate of tapering (related to p)
will determine the orientation and eccentricity of the initially matched

ellipse.



6-13-79

MISALIGNMENTS IN THE RFQ

I. Introduction

IT.

Concern has been expressed, because of the very small aperture,

that misalignments in the RFQ may lead to unacceptable beam deflection

or growth. The purpose of this note is to estimate the size and na-

ture of such misalignments, and to project their effect on beam orbits.

A,

Imperfections

Amrong those imperfections which have been ceonsidered are

1. Transverse vane location error

(3]

Error in vane curvature

Voltage perturbation on one or more vancs

=~ n

Multipole fields other than quadrupole

All of the above effects have the potential to shift the center
of the quadrupole, or to causc perturbations of the quadrupole
gradient snme place within the bore. Tt is not hard to sce that
the movement of the center will be of the form
AX, AY’L—AR—Ra, or —é\\—a

where a is the bore radius, R is a typical dimension (like the
vane radius of curvature), and V is the vane voltage. Even in
the case of higher order multipoles one will get effects which
are largest near the bore, but which lead to forces much smaller

than the quadrupole force, which clearly must dominate.

The critical consideration is whether any of the imperfections

has a systematic variation which is synchronized with the trans-
verse frequency. Since imperfactions are most likely to vary

with period BA, and since stability requires avoiding wave lengths

which are multiples of BX, there should be no trouble.

Another circumstznce where misalignments are important is if there
are fluctuations in regions smaller than the wave length of the

transverse oscillation which are uncorrelated with one another.
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This is the usual misalignment situation, when alignments are made
one cell at a time. Such effects seem to be absent in the present
case for the method of construction currently used for the REFQ.

The remaining imperfections are then ones which vary systematically

and slowly over long distances.
Analysis

A. All forms of misalignment can be put into the form

tt kzx—k2~ 1
X+t —t(»,(s) (1)

where €(s) is the effective misalignment. The solution of
(1) for X{o) = X'(0) = 0 is

S
X(s) = k, ds' e(s") sinkt(s—s') (2)

0
We will now handl:s the three special cases: sinusoidal
variation of &. random fluctuation of € in short blocks,
slowly varyiug €.
B, If ©(s) = EmaxSin(keS + o), one can see directly from (1)
that X will develop an oscillation with amplitude

t -
A R 5 Emax (3)

clearly the region kE near kt must be avoided. For long
wave length (k€-+ o), A= €max and the maximum displace-
ment will turn out to be 2A. For short wave lengths
(kt/ke << 1), A will be reduced from € by a factor which
is the square of the ratio of the wave length of the im-
perfection (like BA) to the wave length of the transverse
oscillation.

C. If e is random in short blocks of length % << 2W/kt, one
can easily show that the rms growth of x is

Y N

Xems = ket Erms\J-E— 4)



1V,

where N is the number of such blocks. When N is large ers
can be important, unless Erm% is extremely small, as in the

present case.

If e(s) is slowly varving, one can evaluate {2) by repeated
integration by parts leading to a series expansion in successive-

ly higher derivations of €{s}). The leading term is
X(®) = (o) cos kts (51

and the maximum displacement will be 2 ¢(o) during the transient.

The results for multipole effects will be similar, with added fac-

tors of the form

W (@)

where fm is a dimensionless multipole coefficient whose value is
less than 1, and where r/a is the ratio of beam size to hore

radius.

Conclusions

All systematic imperfections of wave length sufficiently
different from the wave length of the transverse oscillation
are unimportant. Random misalignments will only be important
if there are random fluctuations in geometry on a length scale
smaller than the transverse wave length., In all other cases,
the fractional beam displacement {compared to the bore radius),
or growth in beam size or emittance, will be proportional to

the relative vatue of the imperfection.
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5-24~79

BUNCHING REGION OF AN RFQ

The four vane structure is being used to accelerate and focus particles
starting at very low velocities (corresponding to 100 KeV protons). Ouestions
arise about how rapidly the accelerating field should grow with z (or B).

Here we will analyze the initial bunching of a monochromatic heam when the

accelerating field grows linearly.

[STE

Let y be the deviation of vy from its synchronous value, and let és = -
during the initial period of growth of the accelerating field. The equations

for the longitudinal motion are then

dy

_ elbT
y' = = === cosd
ds Mcz
(1)
dd 2m
,t)' = el - - T
ds B3x
leading to
b = .-.-_Tf_f;:'i;_~ cosd (2)
Mc"B7A *
We will define
9
:E%Eg = B (3)
McTBTA
and assume that B varies linearly with s according to
3 = B's B' constant. )]

TN



Thus

¢'' = -B's cosd

We cannot proceed further without some assumption.

(5)

Let us approximate cosd

,P

in the region -T < ¢ <0 (d=-35+1y)
by
i
cosd = cos (- 5 + )
= sin\b = \!) Jl
leading to - 7/
3w -
/
U 2 -B's . (6) 2 o/

s

The solutions to (6) are Airy functions of the form

v s, (— )2 3’2)

where
n + 2m

ol

2

o (D" 2 1, 7
Jn(x) - Z m! Tm+m+ 1) ¥Yax ©°° (x - o+ 5) E)

=0

Since we wish to have Y(0) = ¢O , V'{(0) =

0, we can write

€D
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where

1/3
A s U = 1
F(E)
2
1"_
A = @)® —~ (8)
3

Asymptotically, one finds

2
T'l= ,
- \1/6 _Q 1/2 [ 2 2,.031/2.3/2  m_
V= v, (8D i3 c gy 172377 % 3BT - 17
3
1/6 -1/12
L, 3 (2} " 2, .\1/23/2 T (9)
Ay I(3) _TE o8 (3(B )T - 12)
From (1b),
3 1/6 ~1/12
« B7A 3 2) (B an1/2 172 (2 ,.1/2 3/2  m_
TR CREVE (3) s B0 Sm<3(B ) - 12)
(10)
The area occupied by particles with -m < ¢ < 0 or - % < wo <-g is
~ A 3 1/3 .
- . BA 3 2 {2\ 5, 1/3 2 o (T2
Wp=m¥y = o 1"(3)(13) “’((2))
=1 B3A g—31/3 Fz <%) (B')l/3 (x McA for correct units)
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This is the area occupied by the inner half of the bunched beam.

Gt

Actual area is perhaps twice as large because wo extends to *T, but the

= 40

limits on § are controlled more by the wo = i? points.

actual 3

W = By 31/3 2 (%)(s’)”%mﬂ (11)

should describe the emittance of the beam which is to be accelerated.
To complete this phase of the calculation let us calculate the area

of the phase stable region. From (2) and (3) we write
$'' = ~Bcosd (12)

In order to calculate the phase stable area, we must assume B constant, in
which case (12) may be integrated to obtain
+ Bsin¢ = const. (13)

o2
2

. =T - - _T : - 2 : -
Since ¢A 5 ¢A = 0, ¢B 5 » we find ¢B = 4B, ¢'" + 2Bsind = 2B.
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In fact, the area is given by

i m ™
2 3 2 2
£ 8°A A
2 / y dé = T Ip'] do = i 2\/3 / sin (% - ;) a¢
o o 3
2 2 T2
3
X >
g stable 24 o BT (ven) i (14)
¢ \f; N~ for units
The ratio of (11) to (14) is
actual 5 g)
we ) ﬂ3/2 31/3[,._ (.3__ ’B‘,—l‘_/.:i (15)
o stahle 4 8 B1/2 :
e

From (7) it is clear that the beam starts to be bunched when J 1/3 starts

to become oscillatory, which happens at a critical distance such that

pr!/%s 32 . S, * ()t

c

This corresponds to a criticas given by

n
B =B's = B,2/3 or B,1/3 « B 1/2
c c c
2
1/3 p 1/2
The ratio "5172 in (15) can therefore be written as —;175- .

From this we conclude that after a few bunching oscillations, the bunch will

lie comfortably within the longitudinal stability region.
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5/25/79

RADIAL EFFECTS DURING INITIAL BUNCHING

Assume that we have a fraction K of the particles rotating in longitudinal

phase space as a rigid line of length A (in phase) with frequency k,.

A
i

— 27T —
The transverse space charge force exerted on these particles will have the

form

2 L o Kemo o2 1
kt - Ut) oM TA kt Tsin kggT -1

\

taking into
account average
spreading
Since this occurs at the start of bunching we shall ignore the u in the
t

first term and write for the transverse motion
H, K

x'""+k x = 2m—k 2 '—f_j;""

t At | Jsin k25|

where s=0 corresponds to zero phase spread in the bunch of length A. Ve

shall try to estimate the perturbation on the transverse motion when the

beam goes through the single "singularity” at s=0.
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Using the phase - amplitude method

¢t
N~
X = A sin(kts + )
(2) A'sin ¢r + A W'cos ¢t = 0
r =
X A ktcos(kts + P)
u Kk

_]_-_ [ 2 _ ' - ] + — " t .E - ___1____; s
kt(x + kt x) = A'cos Qt A P' sin ¢t = — rgin kQS; -1} A sin ¢t

leading to the relations (exact at this point in the calculations)

U kk
t t 1 2
hY = _ 92 - 1 { i
U 2m —5 [sin K] 1 sin \kts + V) 3)
u kk
A' tt 1 . i |
A = TR Tsin kpéT -1 51n(2Lts + 2U) (4)

We shall first approximate (3) to obtain ¥ and then use the ¥ in

approximating (4).

2
Because of the singularity at s=0, sin ¢t will average to 1/2 near s=0

and §' can be approximated by

Bty - ek 1 -
v A Isin k9s]

1 (5)

In order to handle (5) analytically near s=9, we shall neglect the -1 and

write

lsin kzsl k 52 + Ez (6)
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where we intend to take the limit € =+ 0 near the end of the calculation.

Hence | -,
A ek
I as= TR
¥ s +e ,__‘.__—“"__‘_‘“m"!
leading to
o= 1l - a_ s -1 s 7
U A X sinh c 7
2 . S
A P!
sinh x= = 1n ot tx
| 2z
‘ x +1 - X
Substituting (7) into (4), we find, with the same assumption ahout the
domination of the .i—— term
sin kpsl
A' a 3 a . .~-1 s
= e sin (2k s + 20 -~ 2 =- ginh = =) (8)
A t o k £
2 2 3
k. §s° + ¢

The integral of (8) would be infinite, except for the rapid variation of the

2 . -1 . : . .
“2 Sinh g— term near €=0. For this reason, the main contribution to the

K

integral will occur near s=0, and we can write

™ jw
N——

A
In & = ~458 __  gin 2y cos 2a rinh—l
A 2, 2 ° ks,
* k,¥s +¢
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Writing s = € sinh u, one finds

h

In

7
~

. o
a sin 2{ 2a N . 2a
= g du cos| ;— u = sin “do sin{ = v (9)

~u

The choice of u, is governed by the requirement that

Since we are to take the limit as ¢ - 0, this suggests that we must choose
u to be large, in which case (9) states that the amplitude changes by its
own order of magnitude when the transverse charge gocs through a singularity,
Our conclusions are therefore the following:
1) The amplitude changes hy its own order of magnitude each

time a portion of the emittance line becomes vertical in

the longitudinal phase space.
2) The corresponding change in the phase of the transverse

motion is infinite ~ meaning random because of modulus 27.
3) Each successive change of amplitude has a phase unrelated

to the previous one, and the amplitudes accumulate only in

an rms sense.
4) The "accumulation” will stop when the length of the rigid

line which is rotating (%F SX) becomes comparable with the

transverse beam size, since the transverse space charge

force is no longer that of a line charge.



5)

It would probably be instructive to compare these results
with numerical computztions. It should be kept in mind
that the behavior of the transverse motion being calculated
in this note corresponds only to the singular portion of

the bunched beam and will not apply to all pariicles.
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6~1-77

MEASUREMENT OF AXTAL FIELD DISTRIBUTIONS
IN A LONG TANK

I. INTRODUCTION
Slater has shown that measurement of the frequency change caused by

a small metallic or dielectric bead can be directly translated into infor-
mation about the magnetic and electric field in a resonant cavity at the point
where the perturbing bead is placed. The purpose of this note is to estimate
the higher order terms which may contribute in a multicell cavity in which
spherical metal beads are used along the axis of the cavity. The starting

point is Slater's formula,

2
f EZdV
Sw . _ 1JAV
w 2 2
f E2dV
v

where AV is the (inwardly) perturbed region, and where E; near the bead must

be computed in detail.

II. UNIFORM ELECTRIC FIELD

y4 The field near a metallic
(grounded) sphere of radius R is

given from the potential ¢ by

A
t
[

2R°
r Eocos (+] {l + = )



where
¢ =~ E_ [rcos® - R3cosd)= - E .z + E,R3cosb
0 — 0 9" ———
r2 I'Z

At the surface of the sphere Ey = 0, Er = 3E0c056 .

shell of radius R, thickness dR is

dRR? de Ei = R2dR 47 cos26 9E2 = 335 41k 2dR

0 av

and therefore

2 = 2
J Efdv 3E0 \Y

v

Slater's first order result is therefore

2
sw _ 1. 3EGAV
w 2 [E°dV

Jv

II1I. More General Electric Fields

The integral over a

It is possible to extend the calculation in II to electric fields

having gradients. For azimuthallly symmetric fields, this corresponds to

writing the potential as

$ = -E z + EOR3c056 -E rZPz(cose) + Ep 53 Ps(cosf)

0 r2 2 2 5

and eventually leads to replacing 3Eé by

2 2 4 3 g2p2
3ES > 3E] 4EfR

where
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In the vicinity of shaped metal surfaces, the gradient will be controlled by

the distance from these surfaces. In particular, one expects

o |~—-

to be of order é

where g is the distance from the surface. This implies a correction to E02
in Slater's formula of order

A
P

1 + const 27

Similar corrections occur because of the dynamic nature of the field and
R? . .
are of order 3z where A is the wave length of the r.f. This term will be
much smaller than the correction term R?/g? for cases where g corresponds

roughly to a gap length at low R.

IV. FIELD TILTS
In a multicell cavity, a perturbation in a single cell causes a tilt

in the electric field which may be quite large if the cavity contains many

cells. It is now important to take this tilt into account to determine
*

the local field which must be used in Slater's formula.

Consider the cavity to be made up of n cells, equivalent to the circuit

1 2 3 lM—l M (M+l! ..... N

The simplest form of analysis leads to the equation linking nearest neighbor

chain shown.

cells:

*This point was discussed by Owen et al., Proc. 1966 Linac Conference, p. 146.



2
wn k
{737 - 1] En h §-[En+l + En—l - Zhn] >

where k is an equivalent coupling constant. The simplest version of the boundary

conditions is E, = El, E

0 N - Dyel.

If all cells resonate at wn = wo, then the cavity will resonate in a flat

mode. If the Mth cavity has a perturbed frequency

Wy = Wy (1L +¢),

the entire cavity will resonate at
w = wy 1+ /M

and the circuit chain equation will be

§2F = 2 g n=1....... M-i, M+1, .....H

n kN n

and

which has a solution

2
E = E, 1+H\]—[(M-%)2—(n—%)2J n=1, ....M
E =E |1+28 W+3-m2-@+3 - n=M N
o " T

For a relative frequency perturbation € in the Mth cell, the fields are therefore
increased (relative to EM) in all the othei- cells. The denominator in the

Slater formula therefore must be corrected by the sum
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M-1 2 2
I1+5 [(M- H2 - (- %)2]

N [ 2
+1+ 7 1+%[(N+%—M)2—(M+%)«n)2]
n=M+1|_

2¢eg .0 _ 2
N[l+3kN(N + 1+ 3(N+ 1 2M)ﬂ

V. FINAL RESULT

The frequency shift due to a fractional field change in the Mth cell is

therefore

Sw . € 2¢ (N%+ 1 2
—J—ﬁ’il kN[ 3 + N+ 1~ 2M) ]}

The correction factor is plotted below.

1-

e (N [ ——= =———

3kN

1- 2 @N-1)(N-2)

If we now include the correction due to field gradients, the final

result for the frequency change of the cavity is
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Sw . € R ¢
— = [l + const P f(N,M)J
where
2
£ (N, M) =~12\5 [E-—;-i+ N+ 1 - 2M)Z]

The radius of the sphere may be related to € by approximating the integral
of the square of the electric field over the cell volume as that over the gap

region. In this case

3

€ = const E‘g

leading to

R2 ot [d] 43
=z = const €°°|=
g g

The frequency change expressed as a function of € is

Sw 2/3 i W3 [
[1 + const € [g] - f(N,M)

w

o=

Z|m

In view of the fact that neither the constant nor k are known well, one must
use an extrapolation procedure to separate the two terms, if both are important
for the range of parameters used. In particular, at each location in each
cell, one needs 3 bead sizes to determine £ and the two constants, and a 4th
bead size to check the extrapolation method. The starting point for analysis

of such measurements should be a plot of

fs—u—’/Ra vs R?
w

or QQ/R3 vs R?
w
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1-8-76

COMMENTS ABOUT r,r PHASE SPACE

Because of the fact that the transit time factor increases with r, at the
threshold for particle capture, only those particles with large transverse
amplitude will be accelerated. This note is an effort to predict what the
appearance will be in the r, r phase space.

Starting with the transit time factor

2

2

2m ) 2 2

I (——- i) ¢ 1+ "+ y7)
o\ BA BZAZ

it is clear that longitudinal capture will depend on

2 2

+
<x2> + <y2> - *max 5 Ymax

mlw

Let us treat a collection of particles satisfying

2
X 2 + v 2 =R
max max
X = a sin wt v = b sin{wt + ¢)
X = aw cos @t vy = bw cos(wt + ¢)
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T = a2 sinzwt + b2 sinz(wt + $)

IQ]U“

a2 + b2 a2 2
= S . 5~ cos 2wt + cos(2ut + 2¢)

r = — - c—cos(th+2w)

E)-E = a2 sinwt coswt + b2 sin(wt + ¢)cos(wt + 9)
a2 b2
= 5 sin 2wt + e sin(2nt + 2¢)
et _ ol
- = 3 sin(2ut + 2¢)
!
C_Z _ ‘/éj + l)j + z=12b2 26 < i.’*'_.b_z_
5 Z 3 5~ cos >
S a2 _ b2
2
2 2 2 2e2 4 4 2.2
2 a_+b + Lr = a , b bcos2¢
r 2 2 4 4 2
w
202 2, 2
r ; = rz(az + bz) . a2b (1 - cos 2¢)
w
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Intermediate ¢, a, b

E Iﬂo

Since all values of

a and b for which
,1r0r a2+b2=R2are
or acceptable, and as

long as all values

r2 of ¢ are permissible,
R the r, ;: phase space
¢ = .21 ,a=bs= R will be totally populated.
J2

The corresponding
0, 8 projection is ] r
[r2 é, 8] since the
variable canonically
conjugate to 0 is y

—_—
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1-8-76

DEPENDENCE OF TANK GRADIENT ON
INCOMING BEAM ENERGY AND TANK TILT

I Introduction

The dependence of the tank gradient on the incoming beam energy and
tank tilt turns out to be a sensitive method for exploring the dynamic
consequences of gap to gap field fluctuations in the first tank. This
note is a crude derivation of the connection between the parameters,
and serves as a means of understanding the relevant mechanisms.

In general we will assume that particles which traverse the entire
first tank are captured in the longitudinal bucket. This is not com-
pletely true, since the criterion used to signify traversal is the
transverse confinement. Nevertheless it is a reasonable first approxi-

mation.

In all measurements and computations to date, the tank field is
tilted so that the lowest gradients are at injection. For this reason,
the injection parameters are likely to govern capture. It appears that
there are two more or less “ndependent phenomena which govern,

11 Calculation of Model
1. Tank gradient above the threshold gradient
a) In this region, a phase stable region will exist at injection.
The lowest energy particles which can be captured are those at the
bottom of the fish. It can readily be shown from the energy invariant

(approximate)

2 2
g8 _d_g) . zmeEr (0 P
2 \dz /- 2 2 6

const.

Mc™A

that



=
!

=
e

[2 2 .. .2" 3/2
min ~ Ys - ﬁ.flc etTAB ifbsl

LoJA T, 32
= 77 s an® ‘d’s,
057 Ey
Since cos ¢ 2 - 7~ = - » With E being the gradient at the

injection end of the tank, we can write near threshoid

¢ = ‘IZ(X - 1) where x =

frlll'ﬂ

o+

giving
774 A
W, o= Wo- 2 ffu 5 (x4
min S J’l_ S An
~T
or
2/3
= 1 + <|'"'s "’"’min) (3ﬂ)2/3
W 2/3(AH 2/3 o7/3
-S __..S_
An )

For ws = 750 Kev, wm.n = 720 Kev, Aws/An = 63 Kev one finds X = 1.063,
which is reasonably close to the measured values (1.03 to 1.055).

X
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b) Dependence on tilt. If the gradient increases along the tank,

the size of the phase stable region will grow and particles which at
first appear to be longitudinally unstable will be captured. Thus the
curve above will be shifted both to the left and downward since
particles with lower energy can be captured, and capture can take place
with Tower initial gradient. The analytic treatment of these effects
is more complicated, and not worth pursuing here.

2. Tank gradient below the threshold gradient

If there is a positive tilt, it is even possible to capture
particies without an initial phase stable region. A crude estimate
of the injection energy at which this takes place can be made by assum-
ing that particles travel at the crest (¢=0) until the bucket is estab-
lished, at which time they will be captured if they have the correct
synchronous energy corresponding to that longitudinal position. This

can be estimated to be

Al

) (- x0?
W . 2 An - X
min S *—Z—q—'

where q is the fractional increase in field level in the first ceii.

1
1124

The result is shown below.

X‘ W

Tilt

Increasing
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The apparent kink in the experimental data appears to be a result of the
composite of the two figures.

ITI Conclusion

It is important to normalize the gradients to tie injection end of
the tank in comparing the result for different tilts.

The general features of the dependence of X on wmin are reproduced
by the model. We have not included careful calculations of the effect
of increasing bucket size. Moreover, in the actual tank, the field
levels in the first few cells fluctuate significantly, and so one might

expect some departure from the numerical calculations.



6-26-75

FIELD DISTRIBUTION AT LOW 8

For the purpose of analysis, consider a uniform structure which will re-
ceive perturbations. One version of the field equation is

1 dzEz(z) - 8r2 Sw(z) 1)
EZ dzé ;?_- w
where Gwiz) is the local frequencv error. The circuit model has the form
cu 2 "
(1-k- —:2— W= -y = -k (Vogq *+ Vpq - 2V) (2)

If we use the field calculation of Chasman and Gluckstern, Equation (2)
can be used to interpret the result in terms of variations of cell fre-

guency.

Note 1. There is some ambiguity as to whether Vn in {2) is the gap voltage
or some normalized voltage based on energy storage (like

En J@; = Vn/ Jﬁ; )-

Note 2. The circuit analysis assumes that only one band is important.
For this reason it should require modification if the structure
is compensated.

Now let us perturb one cell by changing one gap only. In reality we
affect not only w, s but also the coupling to the adjacent cells. However,
we shall try to treat k as constant in using (2). For a more correct
treatment, Jule's thesis will have to be followed.

Setting mnz = mz(z) (1 -k)

and K = 7 125
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Equation (2) becomes

2, . 4, r
SV 2 ¥ B

where Sw, = w, - w. Equation (3) can now be used

a single perturbation. For low B this produces a

that shown below

{3)

to specifyv 6wn/w for
pattern of Gwn/w like

obtained by taking 62Vn and subtracting from Gwn/w the calculated

frequency change of the overall cavity.

Perturbation of the end cells requires an analysis involving the symmetry
at the ends. For the Smn/w shown above one needs to add the same function

translated by one cell, obtaining




which leads to Vn of the form

aff
-t ; end cell perturbation
at each end

Vn

showing the deviation from the simple tilt. This effect is clearly seen

in the bead pulling on Tank #1.

D. Displacement of the first full drift tube also leads to an interesting
effect. It can be obtained from the first pattern on pace 2

and leads to a Vn of the form
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—— f— —— — S CE—— S S—

4

showing the overshoot which is also observed on Tank #1. This can be
corrected by moving the first and/or second drift tube suitably.

These calculations should be done using some sample field calculations
and frequency calculations. The expectations are
1) That the effect of a single perturbation seems to extend over
4 or 5 cells with B = .07, corresponding to a distance of
.3) to .4x. For larger B these effects should extend over fewer

cells.

2) A value of K can be obtained from the calculations, which can
even be performed using a structure with varying cell length
corresponding to the first 5 to 7 real cells. It should then be
a simple matter to correct any observed fluctuations in the
field in the first few cells.

3) Some study will have to be made of the measured and computed
results to settle the guestion of whether to use En’ En Jﬁ;,
or Engn = Vn in Equation (3).

4) The effect on the dynamics requires also taking into account

Fn' A run of PARMILA with actual voltages should be made to

check that everything is 0K,



8-30-74

BEAM COASTING THROUGH RESOMANT TANKS

This note expands on a memo by D. C. Hagerman and M. Jakobson,
"Energy Loss by a Proton Beam Passing Through Accelerator Cavities
Without External RF Excitation," LASL Tech. Memo P-11-DCH/MJ-2, 2-19-64.
In this memo, the induced voltage is apparently correctly calculated,
but the phase ¢f this voltage relative to the driving current is not
taken into account. My feeling is that these are about 90° out of
phase since the beam is trying to resonate the cells out of phase with
one another and they won't do it. As a result the cavity acts 1ike
it is off frequency and is therefore reactive, as well as having a
smaller impedance.

For example, using an equivalent circuit model operated in a

zero mode:

1 -1
-ib(n) + V(n)<71-+ iwC + l) + vt ;+V(n )

Tl R kinC = 0

(No driving current, ib(n) is beam current, k is coupling)}. If there is
a mismatch of beam bunch space and cell length, ib(n) will have a dependence
Ie1n6 where § is the cell-to-cell phase difference.

Zero mode resonance gives

1'17L + joC = -kinC

Writing V(") ~ Ve’né, we find

_1e1”6+ Vein6<71_ + joC + l-)+ Veinacoss kioC = 0
jwl R
-kiwC
[+ Y kiuch -
- - iwC(i - cos §) V=20
62
2
V= +IR , where Q = wCR

2
1 - 188
2 129
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and

(D3R
1+ <k062)

2

P = Re (VI*) = 5

For%@~.o1 §~ .06 Q-=15,000, k~1

2 2\2
K- o7, 1+ (k—Q—‘L) ~ 730
2 2
For I =20 mA, R=30M/m , P = lﬁlJﬂ;é%EE§£.~ 16 %3 very small

This is an extremely crude caiculation.
I looked at improvements of the following kind:
(1) Need the 1st Fourier component of the beam distribution (makes

result smaller).

(2) Need to satisfy V = 0 for n =0, n=N. This puts a boundary
condition which modifies the em(S solution - need Green's Function to
do it properiy - but it does not change the result that the vo]iage is

out of phase with the current by an amount like

(3) Stepped or tapered phase. This introduces variations 1ike

e'" which makes the analysis even more complicated. However, the
phase change is stiil ~ n/2 as long as & # 0.

Conclusions:
1. Power loss much reduced over calculation in the referenced memo.

2. Might be observable for small 88, by looking for the voltage induced
in a cavity (not the energy loss of the beam).
3. Not sensitive to tuning, except if § = 0.



EFFECT OF FREQUENCY ERRORS ON TAMK FLATTENING

1 2 3 I - - - N

The basic theory is from coupled oscillator chain:

2
w
( - —"—.Z)in - 1‘-<in+] s - 21'n>n=1,2 - N

Boundary i0 = i]
condition e = Oy

7-24-76

If all W, = Wy > then w = 0g
2.
and & i, = 0

so that solution is in = I (constant)

If there is a frequency error, where w = Wy

2
o
’]
(D] =0J0(.I ~ €) 1 -—2——‘3 +2¢
®
wy = wo(l + €) 2
“
1 - = -2
®
Y T
roety =z (1g v 1p - 20y) =31y - )
0= 13 + i] - 212 etc.

-2eiy = 5 (igsr + iyoy - 2iy) 5 (i1 - iy)
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The central region of the tank is satisfied by having

1n =1+ Jn (NJ << 1)

1+20-1-3) =%y

er

+ 2e(I + J) 5

k -
S 2e(T+ M) = (1 an-1) - 1 - on) = K
giving
L4 Ae
J = + K
- rite = M 2
T=Tilt ~ 5= K N
Suppose Wy = m0(1 - e])

wy = wg(1 +ey)
E] ?’—'62

Then the frequency is no longer correct at w = Wy -
2

In fact, write 1 - —%—- = 2¢
o

£

In the central region,

2ei_ = %(1}1 +,q -21,)

2
s Kn KnN
i, = I+dn+ A
K
-?n(N—n)
2. _ ., _ 4del
8 1n =K = x
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1 “1 % . |
1-—2=1-—7- 5 —1—(]-281)\1—28)’—2814‘28.
(&) (.UO ®
w2
1——N7—-2€2+2€
w
For n =1,
_k KN K
(251“‘2’5)1“2‘(‘]"2_'2(4‘”)
3K
7 " neglect compared to %
_k
ZEI-'Z—K

e
. N4,
-
KN, K,
-t neglect compared to —Nzﬁ
K KN
(22 +2e)1 = 5 (0 - )
e, + 21 = K (g - KY)
(-2e, =3 ?
2 1= 5K
= - _ kKN
2(eq + £,)1 = kI Uze] - 282)1 - - 5
_ g2 7 f This is what is expected for e, * ¢,
€ N
J . _(e] + 82)
I~ k €y = &
€ = -——N..._.
w . 4E - Ey)
I k
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This gives the tilt and "bowing" 2N
of the tank fields =TT -

(B = maximum bowing at n = % )

KNZ

T8l

The importance of B in normalization or calibration must be considered
carefully. It will be important when £ and £, do not cancel exactly, even
if tuners are used to correct the frequency, since the tuners will not
duplicate the behavior of € and €y

The low power {bead pull) and high power situations can be compared
by estimating "oil-can" effects via €15 Ep» keeping the freguency shift
€ in mind, etc.



7-24-76

DISTRIBUTED EFFECT OF LOCALIZED FREQUENCY ERRORS

The simple chain of oscillators with only nearest neighbor coupling
is represented by the equation
2

®
n . _k /. . . _k 2,
( ';?—)1n -7 (1n+1 TS B 21n> =58,

From previous analysis of Maxwell's Equations one can show that couplings
also extend to next nearest neighbor cells (n + 2) and beyond (n * 3,
nz*d, etc). In fact, these couplings will extend in a significant way
for about 1 wave length on each side (many cells for low B, few cells

for high g).
The above equation is then extended to

2
© 28w k k k
n y. oo . 82 2 4 - 346, , _
(1-00———2 >1n— o n —2—6 1n+—2—6 1n+—2—6 1n+ --

On the assumption of decreasing importance of kj as ej increases, one
can solve this equation by iteration or expansion

k k 26w
1 .2 . 2 4 . _ - n
IR T A = MWt
2 . _ 2 4
8 1n—Aun+B(S un+C6un+---

k
1 2 4 2 (ne2 1 ) _
5 (A, + 88 uy + 6%, )+ % (A6, + 8o “n)’“‘é‘(AMn I

kA KB KA K.C koB K.A
1A 1 s 1 B KA
— =1 t— =0 -ttt =0
) koA kyh k22A
A= B= .- C=-+4 etc.
K 1 Ky k]2
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- 2
Lo o f Bu\ 2k, [ olen \\ f2k 2k, a5,
LI Sl e S el e el | REL M vt} ESEEE
n 1 Ky Ky Ky w

This implies that the simple version (which requires 621n # 0 only at
the frequency perturbation) should be extended to adjacent cells in
Tine with the above equation.
Let us solve this equation in steps.
Step 1 - leading term only. This is the conventional solution leading
to discontinuities in slope where perturbations occur, and to

curvature where the frequency is shifted

So = 5>
7 -
<1.—”—>= 1+S, Sy = Sy
n
623 = -.l_l j‘_(irl
N k

Step 2 - Now add other terms following two "integrations"

2
_ kp fuy, ks Ko\ 2/ 60
p =—5l—|+4] 5 -—"5]|6 23 I S
Ny 2\ w k 2 3 w /o
1 ] 1
e T I Ry R
jsolated extends to cells extends to
in cell n n+l cells n+2, etc.

Eventually a wall is reached modifying the tilt, bowing predictians.
This will be important if frequency perturbations occur within a wave
length of a wall, which is quite often. In fact, it is this phenomenon
which accounts for the fluctuations in 1n in the first few cells, when

an end cell perturbation is included.



In order to confine the influence of the Py term to the location of
the perturbation, it is possible to "soften" the frequency perturbation
by spreading it to adjacent cells. For example, instead of an end-cell
perturbation alone, one might consider moving the 2nd drift tube by
1/2 of the displacement of the end cell, the 3rd drift by 1/4, the
4th by 1/8, etc. In the absence of information about k2, k3 ---, one
will have to try different configurations experimentally. This should
aliow one to minimize the large field fluctuations near a frequency

perturbation.
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6-1-77

EFFECT OF MULTIPOLE ABERRATIONS

I. INTRODUCTION
Multipole aberrations result in coupling between the oscillations

in the two transverse directions. The basic formalism was written in
detail in MP-DO/2 (R. L. Gluckstern, R. R. Stevens, Jr., and P. W. Allison,
MP-DO/2, 1967) and can be taken over directly.

Aberrations will generally be present for all multipole orders, but
it is generally expected that they will be random for all orders except

m = 2 (main quadrupole term), m = 6, m = 10, ....., where the errors can

be expected to be systematic.

II. ANALYSIS
The general analysis starts with the assumption of a single multipole

aberration which modifies the scalar magnetic potential as follows:

2

Potential = K{-%— sin 26 + er cos {mf + ¢)}

Clearly, H=m J REB%E is the pole tip field due to the aberration in units

of the main quadrupole pole tip field, where RBORE is the bore radius.

From (51) and (52) (in MP/D0O/2, 1967), one can write:

SW + 8 el
X =KI[J(PcosCI> + iP cos ® )(P sin & + iP sin 0 ) ]
2By6s mml m X X y y Ux X y y

with

® = ks + 0°
X X
® = ks + ¢
y y

- i¢
%n =J e



A. Systematic Aberration

1. Resonance for k =k =k
X y

If the only contributions come from kX = ky = k, then the contri-

bution from a systematic aberration can easily be shown to cancel.

Specifically, since the bracket can be written as

J
m

_m d_ R . . 6
K Is (Px sin ¢x + i Py sin @y)

its average must necessarily be zero. In this case there is no beam growth,
other than a small amount which may originate from particular starting

phases.

2. Resonance of the form Y = 27/m

In view of the systematic nature of the aberration, if the change
in m@x from one magnet period to the next is close to 2m, the sums over
aberration impulses can accumulate. If we write

_2m+ 8
m

and extract only the cos m@x and sin m@x terms from the change in W,
L] ’

one finds

W nJKE  © m o, 0 mn(m-1) m~-2 _2» _. . .

oW . N _ n( i

2RY 2% _ nzo [PX sm(mCDx nd) (1f?§7-Px Pysln(On 2)<I>X + 2¢y + nd)

where we have taken into account the reversal of the sign of K and of

sin(%E-+ ¢) for the defocusing magnets, and where each magnet is of
length £.

The maximum value of the preceding expression occurs for
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R

P, =P, = _BEAM , <b}‘: = 0, @; = 1/2 giving
V2
W _ mJKL m _ ~ By 2
28y 8 Rgpam > W= W + wy B BSF RpEaM
-2
SW _ mJKL R, "
Wo oS BSF BEAM
-2
'ﬂ, m
_ K BSF (RBEAM) H
-3
RpoRE

For a(+ - + ~) focusing system with £ = BA/2, one can estimate the beam

growth in the smooth approximation to be

m-2

SRpEan _E _3 (RBEA;M_) .
RBEAM 2W 8 RBORE

) . - - =2
To illustrate the order of magnitude, for H = .05, m = 6, RBEAM =3 RBORE R
§=.126"

R, 1

R 6 °

that is, a 17% increase in beam radius if U stays within 10 (of 600) over

approximately 100 magnets. In actual fact, U will probably not sit on

, o
my = 2T or any other resonance with 1  accuracy for very long, so the result

for will likely be much smaller.



B. Random Aberrations

In this case

Sw
0S8 = KmiJ % [Re (P cos® + iP cos® ) (P sin® +iP sind )m_l]
rms X X y vi U x X Uy y

2By
rms

It may be possible to evaluate the last rms bracket for gemeral m

by averaging over @x and @y, but it will probably be easier to just

square and multiply the terms out and average over @x and @y explicitly.

In any case, the form of the final result, using the same assumptions

as before, will be

R m-2
ég " const (—B—}EA—I\1 H VN .
BORE Tms
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6-26-75

EFFECT OF MAGNETIC MULTIPQOLE

A. The most Tikely pattern of multipoles for a quadrupole is a systematic
series in the magnetic potential of the form
10

') - -
& = ézr“sin 20 + ©6r651n 60 + @iqgr sin 108

14

jqr sin 188+ (1)

+ 0

where the @2 term is the dominant quadrupole term. In addition, one might
expect random terms of all orders in the form

[ee]
- n n_.
?random E (pnr cos ng + g rsin ng) (2)
n=1

due to misalignments of individual pole tins and/or coils. It is possible
however that some of the terms in (2) may be systematic due to special coil
return configurations. These questions should be able to be settled from

maanetic field distribution measurements.

B. Systematic multipole effects by themselves will lead to a distortion
of the transverse phase space but should not lead to the development of tails
in the transverse phase space unless there are also present misalignments
or errors in the steering or significant transverse - longitudinal coupling.
The higher the order of the multipole, the more extended will be the tail.

C. Random multipole effects can lead to the formation of tails even in the
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absence of misalignments or steering errors. However the effect will be
enhanced if there is coherent transverse motion also present.

In the calculations which have recently been performed, it is important
to identify the primary terms which Tead to the generation of tails.
For this reason the calculation should be repeated with one multipole at
a time, .aking into account whether the multipole magnitude and phase is
systematic or random from magnet to magnet.

. Fringing fields in the quadrupole also lead to systematic multipole terms of

order 4, 6, 8, - - - - . It should be sufficient to use the results in

Eq (8) and (9) of MP-D0/2(1967) (See also 1966 Linac Conf. p.250) which
gives the net effect of a full quadrupole, taking into account the

fringing field at both ends. The results should be comparable with those in

Section B.
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PERMANENT MAGNET CALCULATION

A. If magnet materijal satisfies the following eguations

je=)
]

My + Hy
By = Hy

inside the material and

outside, then, one has the eaquations

VxH =

D

v-B

n
o

The second of these can be rewritten as

> .

Vel=-V- My = n ﬁo 8(boundary)

1-6-79

(1)

(2)
(3)

(4)

(5)

(6)

Equations (4) and (6) therefore correspond to a "magnetic" surface charge
density whose strength is (n - ﬁo), where 1 is the outward normal to
the material. It is therefore easy to use scalar potential theory to
solve for the fields due to regularly arranced sections of these permanent

magnets.

We will treat the two~dimensional problem only at this time.

Note: This work was triggered by Ron Holsinger's verbal explanation of
Klaus Halbach's invention, given to RLG on Dec. 21, 1978.



Setting A= -V, one finds for the potential at r,6 due to a "magnetic
1ine charge" of strength t Tocated at r',0'

o(r) = - %F' an (r'z - 2rr' cos (B - 6') + r‘z)
2
22 pe fan(r < ef(0-01))]
( 6 )n
= nort o+ ——-R Z
4 r,e1e
[22] . n
= - %E-Zn rZ s %%-Re ) %—iﬁilkl——— (7
n=1 " (x'+iy")
If we orient axes x'',y'' along ﬁo
x'''=x'cos y+y'siny
(€)
y''=-x'"siny+ y' cosy
r't = p'
xll + 1y|| = e'1Y(x| + 1y|) ' = g' - y

We now can integrate around the magnetic periphery, replaced T by

heM, = M dy'', obtaining

0

I

n=1

rne1ne

..ne1n9"+iny

¢(r,8) ’——fdv"-zn 2 y"2)+2Re %
r
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M ©  ~iny . AN
42 dy"" 4m("+y”)+2Q I £ JEEXL_F
"= (x"+iy")

Butfdy"F(x' ',y'') can be converted to an area integral by writing

fxlldyll _§_E_
axll

Therefore
M i ©  =inyg L soaN
= e [N i1 - ~
o(r,8) = 5 0/[dx dy -———————; Re e T{xtiy) _ r)1+]
X'y y||2 n=1 (x"+1'_y") ]

2M © _-in . 4N
___ORe[[dx'-dy.- P e b
n=0 (xlu+1y||)

Je can now rotate the axes back to x', y', obtaining

T e (xrip)"
¢(r,0) = dx 'dy’ Z Wi
ﬂ X +1y.\n+1

2M @ . .
g Re L0ce i) ewff(% (9)
n=0 X'ty

This is the basic relationship from which the potential can be calculated
for a set of magnet pieces regularly arranged in an azimuthal pattern.

B. N regularly arranged magnets:

Let us now calculate the poten-
tial from N such magnets arranged in
a circular pattern as shown. Clearly,
for the jth magnet

ijo
1 T | ( { + iy‘ )e

X, ¥ 1y, = XO Yo
J J 21




The potential due to the magnets j = 0, 1, ----, N - 1 is therefore

1Y0 i(Y]—(n+1)a)

i Y,-(ntl) 20
{x + 1y)n Io[e + e + e ( 2 )

ZM b
Cb(Y‘,e) = z]'TT—O. Re 20
n:

S ] (10)

where

- dx'dy'
N

Oth magnet (x' * 1y')

n+1

Let Y5 = Yo + 3jo. Then the bracket [ ] is

iyny N=T & oy
[e 0 1 a2 n)J’ here o = 21

j=0
The sum will vanish uniess n = 2+2M where & = 0,1,2 -~-, in which case
it becomes
Ty
Ne O
Therefore
2NM o iy
¢(r,8) = -759 Re | (x+iy)" Iy e 0 (11)
n=2+N .
2=0,1,2

For the lowest term (2=0, n=2; next Towest is 2+N=n). The maximum pole
tip field at r=a is

quad _ 4N
Heza = 2 Mo? 1ol (12)
max
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)



(2) Trapezoid
/ y
j]d>s'_<_i,y_'_=1j.__>_<'___
3

N 5

e
.

It can be shown, for fixed inner radius, that the shape of the outer
surface which gives the largest quadrupole strength for fixed area of
magnetic material, is not a circle, but is

o(¢) - const [cos 3¢}]/3
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8-30-74

PHASE ROCKING

This note was written to investigate simultaneous transverse and
longitudinal stability limits for a finite-sized bunch when longitudinal
oscillations are present. The motivation was partly for alternating-phase-

focused structures. (Ed.)

A. Smooth longitudinal approximation

Take phases to be -9, + ¢ and + ¢, + ¢ (¢, and ¢, taken to be positive)
with ¥ the amplitude of the phase oscillation. For each cell - assume all
cells same length - take an average for one cell.

_efrgy P2t % bp = % b2 - ¥
by = IVk:2 cos 2 COS( 7 " ‘p)' COS(_—‘Q—*) (1)
qbz - (i)-‘
by = T is equivalent synchronous phase

also governs the size of the fish

a Yo (2)

]

Sy

B. Transverse oscillation - average up per cell

cos 2u =1 - % (sin o, - sin6;) - & sin ¢, sin o, (32)
for wz =0
Al : 2 .
cos 2u.|. =1 - -2-<s1n(¢2 + lP)- s1n(¢] - w))~ é8_ s1n(¢2 + w)sm (cb] - xp)
for y # 0 (3b)
where 4 = ZZ:E;Y (3c)

150



Problem: Want transverse stability for all permissible values of .

b2 - 4
R T (4)

This was tried and found to require

9y = 8fog]
91 = 6log]
A ~ 4

in order to ha-e stability throughout the phase oscillation. This leads
to a poor acceleration factor cos 5[¢ | cos ||, requiring [¢.] to be 10°
or less, which is probably too small.

C. We have clearly neglected the alternating gradient in the longitudinal
oscillation and should not. Taking this into account for the linearized
motion, one finds

2
cos 2u =1+ A(sin ¢, - sin ¢;) - %r sin ¢, sin ¢, (5)

There is clearly no trouble in simultaneously getting longitudinal and trans-
verse stability for small oscillations (¢, = ¢, is probably best) but is
not at all clear how large ¢ can be, since we need a non-linear analysis of

the longitudinal motion for this purpose.

D. Mon-Tinear analysis of longitudinal motion.

[<3] [=)
a a
o drift o, drift
(D o
- -3
jo}] [=1]
ot ot
Sc S.
= =
¢ %
n n+l n+2 n+3 n+4
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2
Let x = éy( Mc ) and expand to 2nd order in ¢

eETax
) cos ¢] 5
Xppp = Xp *8in 00 = —— Y (6a)
l‘[)n+2 =V, - AXn+2 (6b)

(The form chosen has a unit Jacobian and is easily converted to a
differential equation.)

Now iterate to n + 4. After much work

(sin ¢y - sin oo + A sin 9, sin ¢2) A sin ¢y
xn+4 B Xn =¥, T+ A sin ¢2 1 + A sin ¢ Xn+4
cos ¢] . o COs ¢2 (wn - AXn+4)2
e A VTR (72)
(1 + A51n¢2)
= AXn+4(2 + A sin ¢2)__ A sin ¢2 .
Yn+d n T+ 5 sTn 6, T+4sin g, 'n
2
b <05 b(¥y - D)
- ) 3 (7b)

2(1 + 4 sin ¢,)

Writing X' = Xn+4 - Xn , ¥' o= wn+4 - wn one finds a Hamiltonian from

which these two equations can be derived

LM Lo
=350 v 3X
S, - S, +AS.S. 2 AS A2 + 85.) o2
1752 Y855, 2 ( 2) X
H(X.0) THES, 2 tTEes, Wrawas, 7
2 2
_Elw3__(:£(w-6X)3
6 6 7 L o 3 (8)
(] + ASZ)
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This should lead to fish shabed contours (H = constant) which control the
Timits of stability. Unfortunately. the results for these 1imits cannot

be put in simple form (I don't think).
A partial solution would be to obtain the Tocation of the unstable

fixed point and to infer the size of the phase stable reaion from the
distance between the stable fixed point (X = ¢ = 0) and the unstable fixed
point. The unstable fixed point turns out to be the solution of (7a)

and (7b) being simultaneously set = 0. However, this leads to a cubic
equation for wn or Xn+4 which is not readily solved.

E. Conclusions and comments

(1) Numerical calculations needed to get stability 1imit, although it
may be adequate to use Eq. (7a), (7b) rather than a full dynamics program.

(2) We have assumed equal cell Tength. It probably can be =xtended
without difficulty to unequal cell lengths, but then one has to watch for un-
equal strength in the "lenses." An adjustment may be necessary like -0y
-¢], ¢2, -¢], -0 ¢2. Swenson and Crandall have suggested -¢, 0, ¢, O,
-¢, 0... or simple variations thereof.

(3) Any solution will probably require A to stay constant (roughly).
This implies field gradients proportional io 8, which is inefficient at very
low B, but may be OK for the low g part alone.

(4) Probably should be used in some combination with magnets - perhaps

permanent magnets.
(5) 1If -90°, 0°, 90°, 0°, --- structure is used, the analysis will require
terms in the next order of &y(or X) since there will be symmetry around y = 0.
(6) The cubic difficulties are really troublesome, since for ¢y = -d7s
one should be able to get a simpler solution (the two cells are identical).
The trouble appears to be the method of going to a differential eaquation
(Xn’ ¢n+4)’ but this is essential to get preservation of phase area. On
the other hand, I am convinced that the result in Eq. (8) is correct. It
gives the expected 1imits for small oscillations, as well as for small angles,
and for small A.
(7) The idea is worth further exploration - probably numerically for

a while.
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6-24-75

ALTERNATING PHASE FOCUSING (APF)

A. Analysis of Longitudinal Motion
—> drift drift
Ly LZ
gap gap gap
a b a

154

Using the above geometry one can write a series of difference equations
representing the changes in energy and phase in one repeat length. The

small oscillation approximation leads to a longitudinal motion phase

advance per repeat period, Mg s given by

21 + £2 212
= [ 5-.’5 » . .
cos Ug 1+ 5 (Ea ind + Eb51n¢b) + 3 538551n¢331n¢b (1)
where
ETg
g = —3—352 Etc', 21 = %ﬂ ~%~§' L, etc.
a Mc By

on the assumption of an average of 2m r-f phase advance per gap. Longi-
tudinal stability clearly requires at least one negative rf phase. We

expect no significant effect of the transverse motion on the longitudinal

motion.



B.

Transverse Motion

Here we expect the longitudinal phase to play an important role in

the motion. The analysis is linear in x, X', and leads to a phase advance
y s p

per repeat period ut, given by

21 + R
cos U, = 1 - ———Z———-(easin(¢a + V) + Ebsin(¢b + w)>
2.9
+ 5 Eaebsin(¢a + w)sin(¢b + V) (2)

where P (assumed constant in the period) is the deviation of the longi-
tudinal phase from its ‘'synchronous’ value.

The first approximation is to set Y = 0 in (2) and observe that the
linear term in (2) is 1/2 the size and opposite in sign to the linear term
in (1). (This is precisely the Earnshaw Theorem about the impossibility

of simultaneous longitudinal and transverse focusing in linear approxi-

mation.) Setting this term = 0, one finds simultaneous % and t stability

as long cs
Vit (e sing) < 2 (3)

where € sin¢ = - € sin¢, = € sind .
a® ¢a b ¢b ¢
If the fields are too strong, the longitudinal motion becomes unstable

first.
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C. Longitudinal Stability Limit

This is the most difficult quantity to calculate, but is needed in
order to guide us as to realistic values to use for ¥ in (2). This
requires a non-linear analysis of the longitudinal motion which has been
carried out only in powers of easinqba and Ebsin¢b, assuming approximate
cancellation of the sum of these two terms. The result for the location

of the unstable fixed point is

2.2
P = 2 S . € € sind sind, - € sind - € _sind
UFP sacos¢a + sbcos¢b 21 + Qz ab a b a a b b

' 4
~ 1 - cos u
(21 + Q.Z)(Eacos(ba + €bcos¢b) ( 2)

2

3 2
W F ) (e cosd_ ¥ € sin"u, 4

bcosd)b)

where the last form has been chosen to reflect the disappearance of phase

stable region when the motion starts to become unstable.

D. Choice of Parameters

An attractive choice of parameters is one with large l¢a[ and l¢b[,
but not so large as to inhibit acceleration. A first try is ~60°, +60°,

with €2 adjusted so as to maximize acceptances. A primitive use of (4)

1,2
in (2) suggests that coupling effects can be reduced by going to a somewhat
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unequal pair like -65°, +55°, or -70°, 50° or even -75°, +45°. Numerical
calculations should explore these pairs.

Although this analysis is only for phase alternation of period 2 gaps,
other variations may prove to be at least as attractive (like [-90°, 30°, 30°]
or [-90°, 0°, 90°, 0°] etec.) These can be approximated in the present
analysis by suitable choice of €.s Eb’ 21, 22, etc., to reflect the

equivalent single impulse.

Longitudinal Transverse Coupling

A number of observations should be made with regard to the -t coupling.
1) The equation of transverse motion will have roughly the same
structure as that with a quadrupole magnet focusing sustem. This implies
effects on the transverse phase space of the order
k 2

SA 9 )
048 (5
A 8kt(2kt - ko) |¢a’b|

where the wave numbers kl,t are proportional to the phase advances uZ,t'
(1966 Linac Conference, RLG, P. 207).

2) In the absence of the linear terms in (1) and (2), one finds
g L 2ut. Equation (5) makes it clear that resonant effects may be
important, and should be explored numerically in some detail.

3) The traditional method of allowing for the 2-t sampling is to

choose parameters such that (2) leads to stability for all choices of (4)
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consistent with stable longitudinal motion. (One should check this
numerically because of the very crude approximations used in deriving (4).)
It is likely that this method will yield satisfactory results, although
transverse growths like those in (5) will be significant.

4) A possible method of interpreting numerical calculations of the
coupled motion is presented in the following: The radius of the bore tube
will define an ellipse in the initial transverse space representing the

acceptance. This ellipse is characterized by the area T and by the

Courant Snyder orientation and shape parameters $,0,y. The values of W,

B,0,y, will depend on the starting phase of the longitudinal motion.
Clearly the permissible starting transverse phase space (uncorrelated to
the starting point in longitudinal phase space) will be the overlapping
area of the collected of (x,x') acceptance ellipses.

The overlap of two ellipses can be approximated by an analytic treat-

ment of Gaussian phase space distributions of the form

_ Xx2+2axx'+8x'2

1
plx,x") = i

This leads to an overlap area of the form

-

1 _ 1 1 1 .

T vwz + "2 + T (Ble + Y18, 20‘1"‘2) 2
1 2 Y2

which goes to the correct 1limit for w] +> © for Wl and W2 close to omne

another (this corrects for the case of uniform phase space density within

elliptical borders).



Equation (7) can easily be generalized to several ellipses

IR
1 . lg/ 1 1 1 ..., 1
v n“ gttt + E : W, | Py YRy - 2040
ov W W W - ij
1 2 3 pairs

-

which can be written as

& V(-6

ov

Equation (8) permits taking a collection of starting points in longitudinal
phase space and determining the overlapping admittance in (x,x') space.

For a restricted region in longitudinal phase space the overlap area

should be quite large. For a large region in longitudinal phase space the
overlap area will be quite small. The optimum will very likely be a solu-
tion which maximizes the product of the areas in the (8W,¢) and (x,x')

phase spaces, and should be readily obtained numerically,

F. General Qbservations

1) Coupling effects will be quite important and should be investigated

numerically.

2) Tolerances on transverse alignments should be comparable with those

for quadrupole focused linacs.
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3) Tolerances on longitudinal drift tube alignments and lengths will

have to be investigated with care. They may be comparable with transverse

tolerances.

4) The additional use of permanent quadrupoles or solenoids should

be considered.

5) An alternating phase focused linac will have the r-f features of

a biprriodic structure. This should be borne in mind when trying to achieve

r-f compensation.
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1-9-76

ESTIMATE OF X-Z COUPLING IN APF

The differential equation for ¢ im an accelerator which has a varying ¢S

is easily derived, and turns out to be

2 2 2meE T 2 2
§~% - Q—%s = - —3——%— (1 + Wzré Jeosd - cos¢S (D
ds ds B7Mc"A B

Here we have neglected damping effects, but have taken into account the

dependence of the transit time factor on transverse displacement.

Conventional Linac

In the case of a conventional accelerator with constant ¢S, one has

k 2 2m1eE T

k = < = ¢ (2)
sin ¢S AMcZBB

and
2

2 k 2 2
d7y 2, _ 2 T
N t ok X = sin[d,] cosd 22,2 (3
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Alternating Phase Focusing

The analysis starts from the same point, namely

2 - q Slnq)s X = q COSq)S 2 2 (4)
ds BTA

In this case ¢S will have a strong focusing character. Note that the coupling

term will not fluctuate in sign when ¢S does.

It is possible to go to the smooth variables u and z which are given by

N

ds = BSFdz (5)
and BSF is the usual strong focusing (envelope) parameter, leading to
2 22
Do u s e, B ®
dz B7A

For an accurate calculation of the effect of the coupling term, one needs the

average of the right hand side. However, it is clear that the effect can be

approximated by

2 2
d ¥ 2 " m 2
2 + Ky = gq cos¢s> 27 <r > (7)

where kd= U is the phase advance in a period of length 1
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If one assumes sinC!)S to fluctuate between equal + and - values with

periodaf ,» an approximate form for k is given by

. 2,4
|q 51n¢5| ;ﬁ 64
cosp = 1 -———S =1- &
6 + 16
2
la sind_[¥, ¢
H v = k
44/3
la sind_| £ ©
443
in which case the coefficient of the right hand side of equation (7} is
k
c = cot 4\/3 > APF
q l °5¢s[ |¢sl v
= cotl¢sl éﬁi£1 12 APF (9)
This is to be compared with the same coefficient in the conventional case
(Equations 2-3).
2 - .
cot[¢5, k2 Conventional
Using |¢S| = 30° - conventional.

¢S = +60°, 1 = 60° - APF
2 2 . : X
and k= = k2 for the same equivalent focusing (q will have to be much

larger for the APF), the ratio of the coupling coefficients will be
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APF _ cot 60° 4#3 ~ 9.9 (10)

Conventional ~ cot 30°  60°

For smaller i, the ratio will be larger.

Conclusion

X - z and y - 2z coupling effects are probably larger in the APF than in
the conventional linac. Detailed coupled orbit calculations are needed to

determine the relative importance of the coupling term more precisely.
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