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Foreword

During the period 1975-1980, Dr. R. L. Gluckstern maintained an

active practice in the field of accelerator physics through consult-

ing with a number of groups, while at the same time he was Vice-chan-

cellor for Academic Affairs and Provost at the University of Massa-

chusetts, Amherst (1970-1975) and Chancellor of the University of

Maryland (1975-Present). The Accelerator Systems Development Group

(MP-9) at LAMPF has been fortunate to have his advice during the

development of the LAMPF proton linear accelerator to its design

goals. During the first few years of this period, extensive modeling

studies were being conducted to develop tuning procedures and optimum

tunes for the machine. In particular, we were looking at the longi-

tudinal dynamics of the 201.25 MHz drift-tube linac to explain dis-

crepancies between observed and predicted performance, using many

measurements of tank field characteristics obtained during the 1975

"Great Shutdown" and measurements with beam. The notes include

analyses of the effect of frequency perturbations on field distribu-

tions in uncompensated low-beta Alvarez tanks, and the acceptance

characteristics of such tanks as functions of field tilt and injection

energy, comments about the radial dependencies of longitudinal accep-

tance, the measurement of axial field distributions in long tanks,

and the influence of an unpowered but resonant tank on a coasting beam.

The effects of multipole aberrations in magnetic systems were also

studied.

During the same time, the potential need for an accelerator

system capable of producing pions for cancer therapy, but optimized

for a hospital environment, led to the Pion Generator for Medical

Irradiation (PIGMI) project. The possibility of achieving higher

accelerating gradients using modern technology made feasible the

consideration of the alternating-phase-focusing concept, where longi-

tudinal acceleration and transverse focusing are both achieved using

the rf field without the need for focusing magnets. Analyses were

made of the longitudinal, transverse, and coupled motions.
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Soon after the Accelerator Technology (AT) Division was formed,

the potential of a new type of low-velocity accelerator structure

invented in the USSR was realized. This structure, called the radio-

frequency quadrupole (RFQ), provides a spacially-uniform, time-varying,

strong-focusing quadrupole field at the rf frequency. This field is

perturbed geometrically to produce a longitudinal component which can

be carefully tailored to bunch and accelerate a particle beam.

Between 1978 and 1980, the theory, computer beam dynamics, and me-

chanical realization of this concept was developed, and in early

1980, a proof-of-prlnciple test was completed. This structure is

a major breakthrough in accelerator technology, and will find wide

application. Gluckstern enthusiastically joined in the program, and

a series of notes in this compilation contributed substantially to

our understanding as the development program progressed, beginning

with the analysis of a point-charge model.

Another note discusses the general properties of the longitudinal

and transverse beam dynamics, including coupling and space-charge

effects, and another the relation of frequency and field distribution

parameters from the structure analysis code SUPERFISH to the RFQ beam

dynamics parameters. Exploitation of the outstanding characteristics

of the RFQ as a beam buncher required a detailed understanding of how

to vary the RFQ longitudinal fields in an approximately adiabatlc

manner in order to obtain good longitudinal bunching without introducing

excessive coupling to the transverse phase space. In two important

notes, Gluckstern covers longitudinal and radial effects in the initial

bunching region of the RFQ. In order to match the beam transversely

into the time-varying focusing field, the quadrupole field is tapered

at the input end, over a short distance, from a low value up to the

final level. An analysis shows that the resulting acceptance is

indeed almost independent of incoming particle phase. Finally, the

tolerance of the RFQ to misalignment errors is explored. As predicted

from this study and because of the way the RFQ is built, we found

on the proof-of-principle test that the RFQ is very forgiving of errors

in manufacture or tuning.

Throughout this entire period, the high-average-intensity of

LAMPF, the subsequent Fusion-Materials-Irradiation Test (FMIT) facility



linac project of AT-Division, and other high-intensity applications

caused an increasing need to understand and control the factors which

contribute to degradation in the transverse or longitudinal emittance

of the accelerated beam. We need to control the beam quality to prevent

excessive beam losses along the machine that would cause maintenance

problems due to radioactivity buildup, and to achieve requirements on

the final beam quality. Bob Gluckstern was a pioneer in this field,

producing a series of seminal papers at the accelerator conferences of

the late 1960's and early 1970's. Our interest, and that of others

in the accelerator community, has been renewed and intensified in the

past couple of years, and Gluckstern has returned to the fray. The

analysis of emittance behavior is extremely complicated and has not

yet yielded very complete or convenient guidelines. In a series of

notes presented at the beginning of this compilation, Gluckstern

catalogs the contributing factors to emittance dilution, and treats

some aspects in detail. A need for improved simulation studies and more

accurate experimental measurements prompted work on the characteriza-

tion of multidimensional phase-space distributions and on errors in

emittance measurements.

The notes are arranged in approximately reverse chronological

order, beginning with the currently important topics of emittance

growth, phase-space distributions, emittance measurement errors, and

then the RFQ accelerator structure. Next coiaes a series on longi-

tudinal and transverse dynamics from the LAMPF work, to which is added

e later note on the permanent magnet developments of Halbach. Finally,

there are three notes on alternating-phase-focusing.

It was our great pleasure and privilege to work with Dr. Gluckstern

during this period, and we look forward to more adventures in acceler-

ator technology.

Robert A. Jameson
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NOTES ON BEAM DYNAMICS IN LINEAR ACCELERATORS

by

R. L. Gluckstern

ABSTRACT

A collection of notes is presented, on various aspects

of beam dynamics in linear accelerators, which were produced

by the author during five years (1975-1980) of consultation

for the LASL Accelerator Technology (AT) Division and

Medium-Energy Physics (MP) Division.
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EMITTANCE GROWTH - I

I. Introduction

There is still no definitive model for predicting emittance growth

in beams. Clearly, many different effects can contribute, including

1. non linear particle motion

2. couplings between component oscillations

5. misalignments, steering errors and other "noise"

4. mismatches in phase space

5. beam instabilities, resonances, and particle-particle interactions

In the present note, we comment on some of the features of emittance

growth in the above context, in the hope that particular computational

models can be built to help interpret observed growth.

II. No Space Charge; One Dimension

A. Motion governed by a simple harmonic oscillator is clearly periodic,

and points in phase space rotate at constant angular velocity pro-

vided the velocity axis is scaled by the angular frequency of the

oscillator. If the initial phase space distribution is matched to the

"circular" trajectories, the beam will have a constant cross sec-

tion which will not grow. If the beam is not matched, its distribu-

tion in phase space will change as pattern rotates, and beam en-

velope oscillations will be observed at multiples of the particle

rotation frequency, depending on the symmetry of the initial dis-

tribution.

B. Perturbations to all particles which are independent of the particle

position and velocity (like steering errors, magnet position mis-

alignments) will generate rigid body motion of the original phase

space distribution in that space. Although the beam may exceed

aperture limitations, there is still no growth in the phase space

area occupied by the beam.

C. Adiabatic variation of the oscillator parameters (mass and spring

constant) does not affect the conclusions reached above about con-

stant emittance and coherent response to misalignments. However,

the scale of the axis in the phase space plot will change adiabat-



ically, as will the rotation rate.

D. If our one dimensional oscillator has non-linear behavior, the situa-

tion may change. In this case the trajectories will not be circular.

Nevertheless, a beam initially matched to the phase space trajectory

will not grow, although different parts of the distribution will

"rotate" at different rates.

E. If the phase space distribution is not matched to the trajectory,

streaming or filamentation will occur because the "rotation" rate will

depend on the amplitude of the oscillation. The beam will then appear

to fill the entire area within the externally tangent trajectory on a

time scale determined by the difference between the rotation fre-

quencies for a particle at the external tangent point and a particle

at the internal tangent point.

F. If misalignments are present in the non-linear oscillator, even a

matched beam will grow, since coherent osci1lations wil 1 force some

particles to larger and smaller oscillation amplitudes. In this

case, the difference frequency will be determined by the "coherent"

oscillation amplitude generated by the misalignments. Non-linear

orbit perturbations due to magnet inultipoles will similarly cause

mismatch and subsequent beam growth.

III. Xo Space Charge; Several Dimension:

A. Motion governed by uncoupled simple harmonic oscillators will appear

to behave in each dimension as if the others did not exist. Beam pro-

files in real space will appear to change though, within fixed maxima

in each coordinate, if the frequencies of rotation in different direc-

tions are different. If the frequencies are the same (such as with

axial symmetry) the beam profiles will correspondingly remain fixed.

Uncoupled misalignments will similarly not introduce any behaviors

different from those for a single oscillator. Also uncoupled non-

linearities will behave as before.

B. The presence of a coupling term (derivable from a Hamiltonian) will

cause the two coupled oscillators to exchange energy at a rate de-

termined by the coupling strength but by an amount which depends on the

initial state of each oscillator and how "resonant" the coupling term

is in the Hamiltonian. If the coupling dies out, there will be a



permanent change in the oscillation of each oscillator which can

appear as an emittance growth in each phase space since all relative

phases are present between the initial oscillations.

To illustrate, let us calculate the effect on the transverse

motion due to coupling with the longitudinal motion given by

? 2
x1 + kt"x = ekt zx- (!)

To lowest order in e we shall take the uncoupled solution for z,

namely

z * ZQ sin fkj.s + * £) • (2)

A phase amplitude calculation (equivalent to using a Green's

function) leads to achange in amplitude of the x oscillation

(radial variable in the phase space plot) given by

AA , z
—.— = k o f ds E(sl sin^(2kt- k£) s + 2<(>t - 4>£J +

sin ((2k, + k £ ) s

If we assume that c(s) decreases slowly to zero as s -> °°, we ob-

tain

k
^ t

k z ECo) [
COS

t o v '

(3)

Let us further assume that 2k - k. is much smaller than 2k + k.,

in which case the first term in the bracket dominates.

The result is an elliptical distortion of amplitude

""" k J (4)



at an orientation given by

+t =

If all initial values of §. are present for each particle in the

transverse phase space (A, <f> ), the transverse emittance wil] appear

to grow by

Vo
2 (2kt-k£)

(6)

One further observation is significant: The apparent growth of emit-

tance will overshoot ("6) by a factor of about 2 and will oscillate with

frequency 2k - k. before settling down. A smaller oscillation of fre-

quency 2k + k0 will also be present, so the emittance will have thet JO

general form

. o~ 2 ITAS =



Although we have treated only the lowest order non-linear coupling,

the general case will be quite similar if the coupling term in (1) is

replaced by

, 2 x m-1 n
e kt z (7)

In particular

AE (») 4c(o)kt 2

Et * 2 m + n (mk - nk.)

where we have assumed the dominance of the frequency difference mk -nk0
t JC *

C. The presence of further non-linearities adds to the complications of

matching the phase space in several coordinates at one time. Obviously

(3) corresponds to a skewing of the multidimensional phase space shape

resulting in apparent growth of the projected areas. Misalignments will

also be converted to emittance growth by way of increasing the values

of z and A in (8).

D. Clearly, exact resonance of the form mk =nk- will lead to emittance

growth limited only by the development of amplitudes sufficiently large

that k and k0 will be moved off resonance by couplings and/or linear-
t A/

ities. If the parameters k and k* cross a resonance during their adia-

batic change, a further contribution to the growth will take place pro-

portional to £ evaluated in the vicinity of the resonance. Since there

may be many non-linear coupling terms present at one time, one can ex-

pect high order resonances to provide continuing small contributions to

emittance growth during traversal of the accelerator. The factor

2~ in (8) suggests that high order resonances provide diminishing

contributions.

E. We have thus far ignored the strong focusing character of the transverse

oscillations. This should not alter the conclusions, unless one operates

near the stability limit, in which case the periodic focusing variation

nearly resonates with the transverse oscillations. Formulas for emittance

growth will however contain the Courant-Snyder parameter



3 in some factors, a feature which is consistent with the smoothed
c. s.
approximation which makes use of the relation

k. = 3 '* '•
t c.s.

F. Special mention needs to be made of coupling between the two transverse

dimensions from magnetic multipoles, quadrupole fringing, magnet rota-

tion misalignment, etc. Because the two transverse frequencies are the

same, it can readily be shown that although each oscillation is perturbed
2 2

by the coupling, the quantity x + y remains unchanged. Thus, a
TT13-X JTlclX

beam with different emittance in the two transverse directions will tend

to enlarge until it is "circular", while a "circular" beam (equal trans-

verse emittances) will not grow in the presence of couplings between the

two transverse directions.

G. Our discussion of couplings can be generalized to the situation where all

three frequencies are unequal, in which case resonance can occur when a

linear combination of the three frequencies (with integer coefficients)

vanishes.

IV. Space Charge

A. The simplest space charge model for which calculations are possible

is the two dimensional KV distribution which provides linear, uncoupled space

charge forces and a self consistent equilibrium phase space distribution. In

this ideal case, all earlier considerations should apply, and emittance

growths should not be greatly different from the no charge case.

B. Because computational models can only handle a finite number of charged

particles, there will be density fluctuations, leading to the presence of

non-linearities in the space charge density, which are irregular. Further-

more, al_l_ six dimensional phase space distributions have non-linear, coupled

space charge forces, as do all four dimensional distributions other than

KV. In fact, non-linear external forces will even perturb a KV distribu-

tion so that non-linear space charge forces develop. As a result, we ex-

pect coupling terms of all kinds in the presence of space charge, with

coefficients which go up linearly (or even faster if the space charge

causes growth of the non-linearities) with the average current.



C. The parameters which seem to govern the behavior and growth of beams with

space charge are the ratios of the space charge defocusing force to the

external focusing force in both the longitudinal and transverse directions.

Instabilities develop as either of these parameters approaches 1. Designs

which have these parameters in the range from 0.5 to 0.8 appear to require

emittances which are matched in size in all three directions, and which lead

to rapid emittance growth which settles down at a factor of between 1.5 and

2. If one examines the variation of emittance with axial distance, it may-

be possible to identify which non-linear terms are important.

D. Another feature of some of the numerical computations is that the presence

of bunching forces occasionally leads to localized regions in which the

space charge defocussing exceeds the external focussing. Localized in-

stabilities then develop in such a way that the beam contains turbulent

eddies. Some form of turbulent diffusion may then need to be included in

any definitive analysis.

E. Particle-particle collisions will cause scattering of occasional particles

outside the stable region of the beam. However, because of the large num-

ber of particles in a beam bunch, these effects are insignificant in accel-

erators. Nevertheless, since computations contain only a finite number of

particles, it is not uncommon for such computations to exhibit artificial

"collisional" growth. It is essential that this effect be removed from

computational models in order to obtain a realistic simulation of an actual

beam.
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EMITTANCE GROWTH - II

Summary

The following paper reviews the usual known mechanisms which can

contribute to emittance growth. Thesa include mismatching, coupling,

misalignment, non-linearities, space charge, all of which have the capa-

bility of leading to apparent emittance growth either singly or in com-

bination.

Special attention is given in Section (11) to the case of fluctuating

space charge density along the axis. In particular, if this density

fluctuation varies with longitudinal phase, an emittance growth can be

calculated directly.

It would be useful at this point to study the axial charge density

and its variation with longitudinal position. If this should be of

sufficient magnitude to account for computed growth, it may open the way

to further study and control of emittance growth via a relatively simple

parameter.



The linearized uncoupled equation for particle motion is of the

form

x" + kt
2x = 0 • (1)

A distribution of particles occupying a circle in the (x, x'/k ) phase

space will travel in circles at rotational frequency k /2TT and the

phase space boundary will not change in time. Such an initial distri-

bution (occupying a circle) is called matched to the focusing system.

Several complications can now be introduced. They will be discussed

one at a time.

(1) Suppose the beam is mismatched, that is, centered at the phase

space origin but in the shape of an ellipse. This ellipse will ro*-ate

as a rigid body at frequency (k /2TT) and the phase space area will be

preserved. However, the beam envelope will appear to be pulsating and

space charge forces will vary with double the rotation frequency.

(2) If the beam is misaligned, the initial distribution will be

off-center in phase space. Once again phase space area will be preserved,

but there can be both a coherent oscillation and a "breathing" oscillation.

(3) If the restoring force is non-linear particles further away

from the phase space origin will rotate more slowly. A perfectly matched

beam (requires a figure different from a circle) will once again be

preserved. However, a tsmatched or off-center beam will filament in

time, ultimately occupyii "-he entire matched boundary which contains

the initial beam. In this case, the emittance appears to grow by an

amount which is of the order of the mismatch, or of the order of the

ratio of the coherent oscillation amplitude to the matched beam size.

The time of growth will be determined by the difference in rotation

frequency between the matched trajectory externally tangent to the

phase space beam distribution and the one tangent internally.

(4) Let us now introduce couplings in the form

x" + kt
2x = e(s) . (2)

10



The lowest order coupling to the longitudinal motion is of the form

e(s) a
I*

(3)

corresponding to the variation in r-f defocussing due to the oscillating

phase of the accelerating field.

A phase-amplitude analysis of (2) and (3) in the case of slow

variation of parameters (coupling decreases with energy) leads to the

conclusion that an initially matched circle in the (x, x//k ) space

will be distorted to an ellipse, with relative amplitude distortion

AA
(CO)

2 k t - k £ k t

s _ (4)

and with orientation depending on the initial phase of the longitudinal

motion. In arriving at (4) we consider the primary contribution to

come from the difference frequency 2k - k. rather than from the sum
t X/

frequency 2k + k.. Furthermore the maximum distortion will be reached

when

|2kt - kjs (5)

and will have a value approximately double that in (4).

Since all phases of longitudinal motion are presumed to be present,

all orientations of the distorted ellipse will be present at once, and

the beam will appear to grow in emittance by a relative amount which

is twice that given in (4).

(5) Higher order couplings of the form

e(t) =~ x
24 1 2 0 l<f>

are also present, but contribute decreasing amounts to the growth, un-

less a particular resonance of the form

11



2k - nkg = 0t &

should dominate over a significant portion of the accelerator.

(6) An important point to mention at this time is that the rms

emittance of the beam will not change in lowest order in the coupling,

but will instead vary as the square of (4). The reason for this is

that the coupling leads to an increase in amplitude for some particles

and a decrease in amplitude for some others. Clearly the 100% emittance

contour will grow as indicated in (4) and the 90% contour somewhat

less than that given by (4). The test of each application must be

considered separately.

(7) The effect of misalignments and steering errors can also be

discussed at this point. In such a case, the term e(s) in (2) represents

an external driving term which is the same '/or all particles, and there-

fore leads to a coherent oscillation of the beam as a whole. This will

not correspond to an emittance growth unless there are non-linearities

which lead to filamentation as discussed in Section (3).

If there are misalignments and coupling present at the same time,

without non-linearities (or in a time too short for their effect to

be felt) there may be appre-

ciable growth. Consider"a

beam displaced as shown. The

coupling will distort the

circles such that

2+ •> R+(l + <5)

R ->• R (1 - 6)

12

where 5 is given in (4). The increase in area (emittance) can be shown

to be
for A < a

AW
W - tan for A > a

+ ^£4 for A » a
ira



If the "misalignments" are quadrupole rotation errors or other

similar errors where the driving term depends on the oscillating dis-

placements, the e(s) term will contain x(s) , y(s) , <|>(s). For a sys-

tematic variation in e(s) the description will be that of the coupled

systems discussed in the next Section. For e(s) which behaves in a

random fashion the description will be that discussed in Section (11).

(8) Let us consider both oscillations which enter into the

coupling, in the form

ii j i 2 n-1 m
x + k, x - £nx y

it , , 2 n m - 1
y" + k. y = Emx y

(6)

derivable from the Ex y term in the Hamiltonian. It can be shown that

a resonance of the form

nl^ - mk2 = 0 (7)

leads to the possibility of significant energy exchange between the two

oscillations. It can be shown further that the energies of the oscilla-

tions (equivalent to the emittance within the phase space trajectory)

satisfy the relationship

W W
— + - i = const . (8)
n m

The conclusion from (8) is that the presence of terms which can resonate

causes an exchange of energy for various particles. Because all

oscillation phases are present, the smaller emittance will appear to

grow until it is approximately the same size as the larger one. It is

this phenomenon which has been interpreted by some as a thermal connec-

tion between oscillation modes leading to an equipartition of energy

(emittance). Computation results appear to be consistent with such

growths. Moreover, a beam matched in all coordinates will have approxi-

mately equal emittances in these coordinates. This is again confirmed

in the computations.

13



(9) It is of course important to know if such coupling terms are

present. This is indeed the case for the external fields where

couplings are due to

(a) The non-linear dependence of the longitudinal restoring

force on phase;

(b) The radial dependence of the transit time factor;

(c) Multipole components in the quadrupole magnets;

(d) Fringing fields of the quadrupoles

(e) The higher order difference between v and
z

V =

It is, of course, true that all space charge distributions other than

the two-dimensional K-V one will lead to non-linear and coupled terms

in the equations of motion. It is of course difficult to estimate

the magnitude (and fluctuation) of such terms, but an order of magnitude

estimate might be obtained by assuming Gaussian shaped distributions.

(10) The primary effects of space charge distributions is to

decrease the small oscillation frequency in each direction by a factor
1/?

(1 - y) , where y is the ratio of the space charge gradient to the

external focussing gradient near the beam center. In addition, the non-

linear terms clearly make the oscillation frequencies amplitude dependent.

Calculations done by several groups indicate that high current

beams are limited by the values of y and y. in the range of 1/2 to 2/3.
1/2

This corresponds to (1 - y) "~ .7 to .6 — that is, depression of the

phase advance by 30% to 40% compared to the zero space charge value.

In the analysis mentioned in Section (2) it is important to recognize

that the coherent oscillation frequency will be that of the zero

space charge beam. In treating the longitudinal-transverse coupling

in Section (4), it should be mentioned that the k and the k. in the
1/2 1/2

denominator of (4) are to be multiplied by (1 - y.) and (1 - \i0)
2 t x.

respectively, while the k- in the numerator, which has its origin
in the accelerating field strength, remains unchanged. The result is
an increase in (4) by a factor ~(1 - y) of 2 or 3. In the case k = k-,

(* - * s > m a x * |*sl, M = 2/3 one has

14



9

w "" * k 4 '

suggesting that the emittance will grow by its own order of magnitude.

For such a large value of AW/W, even the rms emittance will grow

appreciably.

(11) Let us now consider (2) with a driving term which corres-

ponds to a space charge density which fluctuates along the axis. In

this case (2) can be written as

x" + kt
2x = xe(s) , (9)

where e(s) is the fluctuating density component only (e(s) average to 0

over s). Equation (9) can be solved approximately by a phase amplitude

method. Setting

x = A sin (k s + (J>) x1 = k A cos (k s + <J>)

one obtains

A. ke(s)
sin (2kts + 2<j>) . (10)

To lowest order in £, (J) is constant and (10) can be integrated to obtain

00

cos 2<j> /= \-2 — J ds sin 2k s e(s)

0

fct**p/ds cos 2k s e(s)

0

= R sin 2<j) + I cos 2* . (11)

15



Once again the result is a distortion of magnitude

AA
max

00

ds e(s) e i2k,-s (12)

This will be turned into an apparent emittance growth if nonlinearities

have time to filament the distortion, or if e(s) depends on another

parameter (e.g., thp longitudinal phase of the particle oscillation)

and therefore leads to R and I having a range of values.

From (12), the most serious situation .is clearly one in which £(s)

contains a strong component of frequency 2k . This is, in fact, the

case for a mismatched beam, in which case the space charge density

will fluctuate with the frequency 2k . If the mismatch also depends

on longitudinal position within the bunch, all the necessary ingredients

are present to lead to emittance growth. At this point the computations

require selecting a particular model for e(s) and proceeding accordingly.

Let us imagine that £(s) has a component which varies with longitu-

dinal position, such that e(s) is given by

C(s) — £n (s) + G1(s)(4> ~ ^ )

Writing

f> = <p cos (k, ,s + <i>n)s max a %

we can extend (10) to

A' , k t

where we have kept only the 2k - k. term. We can now rewr i te (12) as

- p = R1 s in (2<J> - 4>g) + I., cos (2<t> - <>0) >

16



where

AA
max l/- ̂  * I / d. e(s)1 4 max j y

In this case, since all value of <j>. are present, the apparent emittance

will grow directly by max

A

As a final calculation, let us take a model where e(s) has random

fluctuations of the form

c(s) = e. jT - T < s < jT

3 = 1, 2, 3, ...

where all the e. are uncorrelated. Then (2k is replaced by 2k - k.

if longitudinal variation is included)

2ik s J 2ik ---f)Tk t

The average over the e. leads to

ds £(s) e
2ikts 2 -=• sin k T

— o 1 o J

(ktT)
2 max

Since s = J T, one can write
max max

AA
A

r sin2k T
Smax

17



or

Aw /AA\
W ^ A /

|sin k T|
= 2e J

rms rms ,
U ti

1/2
Thus the emittance will grow by an amount proportional to (k s )

t max
k. s

where t max is the number of transverse oscillations that have taken

211

place. The function — — — has a broad maximum of about 1.55 at x = 1.15

and varies from 1.41 to 1.55 to 1.41 as x goes from TT/4 to 1.15 to IT/2 .

18



3-8-80

ESTIMATING THE FREQUENCIES OF COLLECTIVE MOTION

IN A K-V BEAM

The basic equations of motion in a K-V beam are

.. _•_ , 2 Ix

1 a (a + b)

y" + k, y =
Iy

b(a + b)

(1)

(2)

where I is proportional to the beam current, and 2a,2b are the elliptical

beam widths (in x and y).

The corresponding envelope equations are

2

a" + k, a

b" b -

I
a +

I

b 3a
(3)

(4)

where e^ and e are proportional to the x and y beam emittances.

The general procedure is to put a" = b" = 0 in (3) and (4) and to solve

for the matched beam sizes a. and b.. The small oscillation frequency is

then obtained by expanding a and b around aQ and b_. We shall do the simple

analysis for a round equilibrium beam by setting

kl = k2 = k

(5)

a" + k2a ~ + —
a + b 3

a

b" + k2b =
a + b ,3

b

> • (6)

19



2 * I SClearly k
2
a * - I + S ^ aQ = b Q • (7)

a

Setting

ao

a = a_ + u u « a.

b = bQ + v v « bQ

one finds

I_ _ i_ v _
4a0 4a0 a0

2
Jtu 3e

_ _ _ _

4a0 4a0 a0

Using (7) we can eliminate E from (8) and (9), obtaining

u" + u(4k2 - | 2 )
a / 4a,.o / 0

v" + v/4k2 - | -is-\ - - -1— (u + v) • (11)

V a 0 / 4aQ
2

We can now return to (1) and (2) and recognize that

y = T
9 ? (12)

2 a o k

is the ratio of the space charge defocusing force to the external focusing

force, and that the tune depression factor is

(! y) . (13)

20



In terms of p, one can write (10) and (11) as

u" + k2u(4 - 3y) = - k2 ^ (u + v)

v" + k2v(4 - 3p) = - k2 | (u + v)

(14)

(15)

Setting 5 = u + v, r\ = u - v , we have

- 2y) = 0

n" + k n(4 - 3u) = o

(16)

(17)

from which we get the oscillation frequencies

k = k/4 - 2p breathing - x and y 180° out of phase
a

k, = k/4 - 3p breathing - x and y jLn phase .

These are the small oscillation modes set up by a K-V beam with slightly

mismatched parameters a and b.

1.0

.9

. 8

.7

.6

.5

.4

. 3

.2

. 1

.0

.00

.19

.36

.51

.64

.75

.84

.96

.96

.99

1.00

2.00

1.90

1.81

1.73

1.65

1.58

1.52

1.44

1.44

1.42

1.41

2.00

1.85

1.71

1.57

1.44

1.32

1.22

1.06

1.06

1.01

1.00

k aQ

y = 1 -

For non-K-V beams, the frequencies will be similar.
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5-25-79

ADIABATIC BEHAVIOR OF BUNCHED BEAM

The approximate equations of motion (linear and uncoupled) for a

three dimensional beam with ellipsoidal space charge (semi-axes a, a, b)

d
ds V ds

2iTeET .

~ s m J I
AMc S

(1 - y.) (1)

g3A d£
2TT ds "

2iTeET

A|3 Me
s i n (2)

( g dx

3 ds I1 ds
(3)

where k takes into account the r.f. defocussing as well as the primary

(smoothed) quadrupole focusing. Here

15 IA B ,. , el X 1 (4)

= Y- ohms "72 ET^sinT*"! = 30 ohms "JT ~ T 72TT
ab ' s' Me ab B k̂

. c , el A
u = 45 ohms —„- —
Z Me ab

(5)

where we have assumed that the

ellipsoidal space charge function

IF «
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The adiabatic variation of E, J4> | , 3, k_ will cause the dimensions
s t

of the bunch, a, and b to vary, according to the relations.

Longitudinal

*s '*" *•' « ' F ^ 7 Tn<

§

Note that the phase space area does not vary adiabatically. Also, we have

included a growth factor Gp for the longitudinal motion which takes into

account the effect of couplings and non-linearities, corresponding to

observed emittance growths.

Transverse

x s a - [3\2(1 - V ] 1 / 4 Gt

(10)

The phase space areas occupied by the beam then vary as

\ - h2 > wt ~ Gt2 •
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We can us« (8) and (9) in (4) or (5) to give us the values of u and

u as the parameters change. As a result of studies of the oscillation

modes of charged particle bunches, one should avoid the regions near

U - 1, Un ~ !• As a guide, one should choose parameters in such a way

that y and \1Q vary smoothly and do not exceed 0.5 or 0.6.

The variation of )J and {J. with the parameters can be obtained by

using (8) and (9) in (4) and (5), leading to

GP;
2

u ~ (8k )"1(1 - u )+1/2((3k0)
+1/2(l • P J ' ^ G_^ c " " ' (13)

L V. L. XJ )

Smooth variation of y. and u therefore corresponds to smooth variation

of (5k and 3k0 independently. The former (|3k ) corresponds to constant

transverse phase advance per period. The latter (|3kp) also corresponds

to constant longitudinal phase advance per cell, and is related to the ac-

celerating parameters by (2) such that

2
£̂ ~ 2AMc '

The product ET sin 0 | should therefore be approximately proportional to (?.
s

It would be useful to monitor the values of y and p during computa-
t JC

tional runs, as a guide to reasonable matching in the presence of space

charge.
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1-9-76

STABILITY OF TWO-AND THREE-DIMENSIONAL 7ARTICLE

DISTRIBUTIONS

In a high current accelerator, the tolerance on beam loss can be severe.

In order to estimate or predict the beam loss, it is important to explore the

low density (halo or tail) regions of the phase space distribution. In addi-

tion, since the actual charge distribution will not be completely stable, these

low density regions can regenerate even if beam apertures and scrapers are used.

The purpose of this note is to discuss the stability of various phase space

distributions, with a view to finding the "'most stable', and preparing the in-

coming beam optimally.

It is well known that the Kapchinsky - Vladimirsky distribution leads to

uniform two dimensional charge density, linear forces, and a stationary distri-

bution. A study of the mode spectrum for oscillation about the stationary KV

distribution* shows that for most values of the parameter y, defined by

space charge defocusing gradient at r=0
external focusing gradient (at r=0)

all frequencies are real and the KV distribution will be stable (0 < y < about .9),

Numerical calculations starting with a KV distribution nevertheless show

a gradual rounding and departure from the KV distribution with time. This is

attributed to the particle - particle space charge interaction in the computa-

tional model used, which introduces a collision-like term, whereas the KV model

represents a continuous fluid without collisions.

Since there are also collision terms in a real beam, it is reasonable to

expect a KV distribution (which seems not to occur in nature) to change with

time. In fact, all distributions should eventually tend to the statistically

stable one, namely the Boltzmann distribution. This one should be stable in

*R. L. Gluckstern, Proc. of the NAL Linac Conference 1970, p. 811;
(see also subsequent analysis by F. Sacherer, CERN)
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time, and is probably the most desirable for injection (will probably minimize

diffusion type effects).

It should be interesting to perform the following numerical calculations

(in the absence of acceleration, and with linear external forces).

1) Start with a KV distribution (a reasonablep might be 1/2) in 2 dimensions

(x, x', y, y') and watch it evolve in time, using a *nodel with N line

charges or currents.

a) Calculate space charge by calculating each pair interaction.

b) Calculate space charge assuming azimuthal symmetry.

c) See if the distribution settles dowm, and if so, how long it took to

do so.

d) Repeat a) and/or b) and c) for twice as large an M, or 4x or lOx .

(Keep total current the same). Does it tend to the same final distri-

bution? If so, does the rate depend on N? (The cutoff will have to

be handled carefully).

e) Repeat for p = .2, )J = .93.

2) Repeat 1) for another initial distribution (for example, n = 1 in the ana-

lytic forms described in Gluckstern, Chasman, and Crandall, Proc. NAL Linac

Conf. 1970, p. 323).

3) Start with a Boltzmann distribution in 2 dimensions and repeat 1).

4) Use a Boltzmann distribution in 3 dimensions (zs z', x, x', y, y
1) with

spherical symmetry to make the analysis simple. See what changes take place

in going from 2 to 3 dimensions.
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Analytic expressions needed

1) KV Distribution

f(W) - W)

4
a) Initial distribution

d/r2
x = r cos<t>

x = a cosa

- a

Each of the bracketed quantities is to be selected randomly on the interval

0 to 1, and the delta function interpreted as a narrow strip.

An alternative formulation which avoids the delta function comes about by

writing

r = a cosijj

a = a /! - u si

leading to

starting distribution.
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b) Individual motion equation (n. is the number with radius r.)

2 2 i
x. " + k x . = k Vi - ^

r . 2

r .< r . a

This assumes azimuthal symmetry. For pair interactions make the replacement

r.<r.

It turns out. to be convenient to go to the dimensionless variables

x = Xa

S = ks

in which case

= U

X i R.<R. J

2 ~

cos<J)

Y. = cos<J; sinfj)

dX.

ds
- y s in^ cosa

ds
/ I - M sin'Jj s ina
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2) n = 1 distribution (Proc. *!AL Conference, P. S25) (Uniform distribution

within hypersphere)

R dR I dR
-1 + ug

R)

g = 0 defines the

outer boundary R

o y
ti) R I

3/2 o 1
dJ = g dR

a) The individual particle motion is given by

d2x.

? + xi
dS~ 1

"i R.<R.

Here X. is not the same as in 1). The initial distribution is chosen according

to

d/R
,2\

3) Two dimensional Boltzmann distribution

a) Must first solve numerically for the function g

1 - y e-g

/ Mv̂  e^ \
\ 2RT " "kT /

g(0) = 0

dR2
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b) Let

•o = t dR2 e'8 dH = e S dR2

H = H(<°) = I dR"
o I

Individual particle motion is governed by

d2X.

c) Initial distribution

4) Three dimensional Boltzraann distribution

. 2 dR l r 2 S ) = 1 - ^ " 8

The distribution requires spherical coordinates, and the individual motion

equation requires the change
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This analysis can be carried out along the same lines as that in 3) and will be

done later.

5) Plotting variable

It is most useful to plot the distribution as a function of the energy

variable W, as the distribution progresses apart from constants, it appears

to be expressible as

2 i d S

This should be checked numericalIv.

•»
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1-6-79

IMAGE CHARGE CALCULATIONS NEAR A CYLINDRICAL 30UNDARY

A. The potential for a line charge in a cylinder can be solved by using
a single line charge. But for a point charge in a cylinder, one has to
use some type of expansion (usually called a Green's Function Method.)

Suppose we have a point charge 0 located a t z = O , r = a , 0 = O i n
a cylindrical pipe of radius R. One can write for a general solution of
the Poisson (Laplace except at z = 0, x = a, y = 0) equation which vanishes
at r = R, and at z = +»

R ' '
oo oo . / o r \ e

n=l m=-°° '
where Jm(prJ = ° •

Wri t ing V2<f> = - 4TTQ6(Z) <5(X - a)5(y) (2)

i t is possible to in tegrate ( 2 ) , w i th $ replaced by ( 1 ) , across the discon-

t i n u i t y , unfo ld ing the orthonormal set i n r,G to obta in

A - 2 0 - ^ R / • (3)
m n " R PnmJm+l « P j

One therefore obtains

00 ,« Jml-^-J "m
Hr,B,z) - I I J2 a ' a / cos rt e

 R , (4)
n = l m = O K S P . •• Cl- s

where 2 = 2 f o r m = 0, and 1 f o r m * 0.
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B. Convergence
The series in (4) and the fields which can be derived from it are

P i z I
convergent only from the "—I?— , where p_m is given asymptotically by

s (2n + 1) £ + (m + \ large m,n. (5)

Thus (4) can be used only when |z| is large enough to get useful convergence.
In principle, the radial force due to the image alone, evaluated at the
charge, is obtained by setting r = a, 6 = 0 in (4) and evaluating the sum
for ever decreasing values of |z| (slower and slower convergence). Another
form of calculation is needed near or at z = 0.

C. An alternate series to (1) is

e(r

oo

f "
,e,z) = I dk V An

) n=0 n
(k) cos n 8

In(kr)

Fn(kr)

Fn(ka)
n

0 < r < a

r < a < R

(6)

where

Kn(kR)
(7)

Using (2), one can eventually find

49-
71

00

I
J

dk cos kz cos ne
n=0 n

In(ka)Kn(kR)In(kr)

In(kr)Kn(ka)

0 < r < a

In(ka)Kn(kr)

a < r < R

.(8)

33



Since the first term in [ ] vanishes for R -> °°, and the second term is

independent of R, the first term is the image potential and the second

is the self potential in free space. Thus

Mmage

oo

dk cos
cos ne In^a)Kn(kR)In(kr)

n=0
(9)

D. Convergence
This expression has no singularities for 0 < r < a and therefore

converges well, except if both r and a are near R, in which case there is
an effective point charge image a t r = 2 R - a , 6 = 0 , z = 0 .

E. Approximations

The existing PARMILA program calculated the

centroid of the actual charge distribution.

It is then possible to use (9) to calculate the

image fields from such a charge placed at the

centroid- However, an approximate method is

desirable in order to make the calculations

fast.

The proposed approximation is to replace the cylinder by a square,

oriented along the radial line to the centroid, and use the 4 primary

images, located at

© © © 0-Q

-Q

34

2R-a

0

-2R-a

0

a

2R

a

On

Actually, if a is near R, one should
probably not use images 3 and * , or one
should add the next 4 (with charge +Q) at

-Q
2R-a

2R

2R-a

-2R

vJ
-2R-a
2R

©
-2R-a

-2R



Another possible variation is to use a square of the same area as the circle,
which should give more correct fields near r = 0, but less correct fields
near r = a.

F. Suggested procedure:
(1) Use a square 2R x 2R

n op op

(2) Try centroid locations at x' = 0, j , ̂ - , ̂  , and z1 = z = 0,

±x, ±5- ±R , +2R. Calculate the fields E . , E, from 2 image
charges, and for 4 image charges

(3) Repeat (2) using (9)
(4) Repeat (2) for a smaller square if (3) and (2) are not sufficiently

close to one another.
When the comparisons are made, it will probably be a simple matter to improve
the procedure as necessary.
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7-12-79

SIX-DIMENSIONAL PHASE SPACE DISTRIBUTIONS

I. INTRODUCTION

Numerical calculations are being carried out for particle distributions

and the corresponding phase space projections and emittances in the presence

of space charge forces and non-linear longitudinal external forces (from

an accelerating bucket). The result is an asymmetric distribution in the

longitudinal displacement, which makes fitting to an ellipsoid problematical.

The purpose of this note is to develop a realistic parametrization of the

distribution to help in the fitting and analysis of the computations.

We shall assume axial symmetry in our 6-D phase space distribution which

is taken to be of the form

1 ~ ̂ 2 ~ ~2 ~ £a h K

2 _3

b'

(1)

The distribution is then determined by the shape parameter m, by the scale

parameters a, b, c, d, and by the dimensionless asymmetry parameters £, 6.

II. PROJECTIONS

A. The projection onto the spatial coordinates is obtained by integrating

(1) over x1, y1, z1. The process is simple and leads to the real space

charge density

i- 2 2 3 2 -| m+f-
p(r,z) = const 1 - ̂ j - -^ - e ^ - 6 ^ § ' (2)

'- a b b a ->

At this point it is important to point out that z = 0 has been defined to be

the position of maximum density. It is also clear that there is an r dependent

asymmetry in the longitudinal direction governed by both e and 6.

B. The projection onto the z,z' plane is equally straightforward, and is

2 3 ,2 - , m + 2

Z _ SZ _ Z^

G(z,z') = const — ^— d • (3)
&-.
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C. The projection onto the x,x' plane can similarly be derived and is

2 2 3 2 ,2-im-Hr-im-H
d z '- a2 " hZ " h3 °a2~ b " ' r2 J

2 ,2-i_ ,.x__ ̂  x_|__
°a2~ b " ' r2 JH(x,x') = const

Unfortunately, the integral can be carried out in terms of simple functions only

for special values of m. However, the outer borders in the x,x' distribution

correspond to small values of — . in which case the distribution is approximately

r 2 ,2 -im+2
H(x,x')s const 1 - ~ - -- • (5)

a c -*

2 x2 x'2

[Corrections to (5) are of order 6 near the border —•-• H = 1 and of

"order 6 and e near (x,x') = (0,0) .1 a c

III. NUMERICAL CALCULATION OF PARAMETERS

A. Parameter m

The value of m governs the shape of the distribution and can be

most easily obtained by examining the even moments o"" r and z, which will be

independent of e,6 to second order. Using

11-V 61
4«

0

one finds

aj [aj [bj ^TT^ m m r ( m + 4 + i + j + k )rN rN rH
Specifically

37



~2 = ~2 =
* y

2 =2 = 2 =
y 2(m + 4) ' z 2(m + 4)

3a 4 = 3b'
y 4(m + 5)(m + 4) ' z 4(m + 5)(m + 4)

2 2 =
5)(m 2 2x z 2 2

y z

a2b2

5)(m

r m + 4 ' r (m + 5) (m + 4)

2 2
r z =

a2b2

2(m + 5)(m + 4)

(8)

The value of m can be inferred from (8) by using combinations like

(712'
m + 4 3(m + 4)

(m + 5)

m + 4

m + 5
r z

(9)

This permits testing the consistency of the form of the distribution (1).

B. Scale Parameters a, b, c, d

Once m is set, the scale parameters a and b can be determined from (8)•

For example

= 2(m + 4) xZ = (m + 4) rl , hl = 2(m + 4) zl .

2 2
Similarly c and d are obtained from

(10)

c2 = 2(m + 4) x'2 , d2 = 2(m + 4) z• 2 (ID
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C. Asymmetry Parameters e, 6

In order to determine £, 6, we must take odd moments of the distribu

tion in (2). The average of

2i 2j 2k+l
x y Jz

then requires expansion of (2) to terms linear in c and 6, i.e.

a b b a 4
a b

As a result, it can be shown that

. )2i/- i 2 j r-i 2 k + l

(bJ
T(m + 4 )

(12)

Specifically

b
1 [2C + &

2 (m + 4)

fe
4 (m + 5) (m + 4)

2 2 2
x z _ y z _ 1̂  r z

a2b = a 2 b = 2 a 2 b

|e + 26

(13)

_ 3 2~
Clearly the three observables z, z and zr in (13) can be used to calculate

e and 5, and to check the consistency of the form of the distribution once again.
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IV. EMITTANCE

A. x, x' Emittance. Once the parameters a, c are determined, it is

possible to obtain a measure of the x, x1 emittance by evaluating the area and

number of particles contained within the curve

H(x,x') = P H(0,0) (14)

where P is a number between 0 and 1. If the shape of the curve is given by

(5), one finds for the emittance

1

E = TTac 1 - P
,m+2

(15)

If the fraction of the beam within (14) is chosen to be .90 (to minimize the

effect of stragglers), one can show that P is equivalent to (.1)(m+2)/(m+3)#

In any event, the 90% contour defines an emittance in (15) which corresponds to

a, c being reduced by the same factor. A further test of the index m is pro-

vided by the dependence of this emittance on the choice of P (or the 90%

figure).

B. z,z' Emittance. Once the parameters b, d, e, 8 are determined, it

is possible to obtain a measure of the z,z' emittance by evaluating the area

and number of particles contained within the curve

G(z,z') = PG(0,0) , (16)

where G(z,z') is given in (3). To first order in £ and 6, the curve will be

given by

z2 , z ' 2 , ez3 în+2 f, , 6 z
b2 d2 b 3 r - + 2 b

The asymmetry in (17) can be exhibited by evaluating the z intercepts, z+,

i )4
given approximately by setting z a ± b [ l - P J on the right side of (17)

and by making z' = 0. This leads to
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—=. <*> + 1 — pb - - 11 r

1

,m+2
1 - Pm+2 ~m+2

2(m + 2)
(13)

Once P is determined from the 90% condition, (18) provides further confirmation

of £ and 6, obtained earlier from (13).

V. SUMMARY

We have suggested a parametrization of the 6-D phase space distribution

which exhibits the observed asymmetry in the longitudinal direction. Procedures

are developed for obtaining the values of the parameters from moments and con-

tours of the computed particle distributions. This should eliminate the diffi-

culty of matching an ellipse to the asymmetric distribution in the longitudinal

phase space, and should enable comparisons of emittance for different asymmetries.
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5-24-78

PROJECTIONS OF MULTIDIMENSIONAL PHASE-SPACE DISTRIBUTIONS

From a distribution in multidimensional phase space f(R ), where

R2 = x2 + y2 + z2 + x'2 + y'2 + z'2 ,

we want to find the projected density distribution in x, y:

/dz dx1 dy1 dz1 f(r2 + z 2 + x'2 + v'2 + z'2)

2TT 2TT a,

f d cos 2$ / do / dajs2ds2f(r2 + s2)

0 0 0

go to z = s cos * cos 9

x1 = s cos $ s in 6

y1 = s sin * cos a

z1 = s sin $ sin a

ip(r2) •*• / dt t f ( t + r2) = /dw (w - r2) f (w) .

Try

f(w) = (1 - w)n

CO

p(r2) = / dw(w - r 2 ) ( l - w)n

1

/ dw(l -
Jo

r2 - - w ) ) ( l - w) n

by completing the square. The upper limit is 1 because f(w) is to stop at 1.
.2

n + 1
- w)n+2
n + 2
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p ( r 2 , *

To get a parabolic result n = -1; behavior is singular.

Suppose

2 2
f(t + r ) = 6(t + r - 1) i.e., a six-dimensional surface, then

= <5(w - 1)

i dw(w -

= 1 - r'

so the resulting projection is parabolic.

Try f(w) = /w (1 - w)n

1

f dw(w - r2)/w (1 - w)n .

•V

Forn = 0: f [l - r5] - r2 | [l - r3]
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Try f(w) =

/ dw(w - r2) - L = f (1 - r3) - r22(1 - r)
J2 ^r J

Try f(w) = -1- ; n < 1
w

f , , 2, 1 1 V, J-Zn\ r2 f, 2-2n]
/ dw(w - r ) — = " 2 Z w [ 1 - r J • TCf L1 " r J

r 2
+ r4"2n

2-n 1-n ( l -n) (2-n)

For n = 1:

/*dw (w - r2) 1 = 1 - Hn

For n = -g-:

/dw(w - r2) - U y = 2(1 - r) - 2r2 ( 1 - l)
7.2 w 3 / 2

= 2 - 2r - 2r + 2r2 = 2 - 4r + 2r2



If f = i 5 (t + r2 - 1) +

t 1 2 1/2+ 4 dw

1 - r2 1 -
+

r r2 /I \

= 1 - r Conical.

Suppose f(w) =

only near
w=1

only up to
w=l

We can generalize:

P(t) •• J dw(v; -t) f(w)

(a) Suppose f(w) extends to w = °°

•Ip'(t) = - / dw f(w)
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p"(t) = + f(t)

This is the way to get f(t) from p(t),

_
For example p = Pg e

= P
-at

f(t) = a2p0 e"
at

(b) Suppose f(w) cuts off at w = 1

P'(t) = dw f(w) t < 1

0

f(w) t < 1

0 t > 1

t > 1

If p' is not continuous, but has a discontinuity A'

f(w) = p"(t) + A'6(t - 1) •

2

This is the case for 1 - r , 1 - r, or any function which has a dis-

continuous derivative at r = 1.

P
For example: p = 1 - r = 1 - t

p1 = -1

p " = 0 + A1 6(t - 1) : A1 = 1

f(w) = «(t - 1)
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Or: p = 1 - r = 1 - /t

2/t

f(w) = - 4 T 2 + l«(w - D

How does one populate the 6D phase space?

x,x' = U,a polar coordinates

D — II 4- W • !• IAI

z,z' = W,Y

dxdx'dydy'dzdz1 f(R2) -> UVW dUdVdW dadgdy

spherical
coord.

U = R sin 0 cos <j), V = R sin 6 sin <J>, W = R cos 9

3 2 ?

•* R s in 6 cos e cos <J> s i n <|> R dR s i n 0 do d<() dadgdy

•* (da ) (d6 ) (dy ) (cos <j> s in ^ d<J>) ( s i n 3 e cos 9 d9)

x R5dRf(R2) or j R4dR2 f ( R 2 )

where UVW i s always p o s i t i v e , 0 < < f ) < ^ , a n d 0 < 9 < i . The term

(cos <}> s i n <J) dcf>) i s d(cos 2<j>)/4, where cos 2<j> i s chosen between -1 and 1 ,

and t h e ••

0 and 1.

and the term (sin 0 cos 9 d0) is d(sin 9)/4 where sin 9 is chosen between

For example, i f f(R2) = i s ( R 2 - 1) + - \

R5dR f(R2) -> 16 + ^ + 3MR2-j) + d(R3)

3
This implies choosing R uniformly in 0 to 1 and then 3 times that many
particles at R = 1.
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1978

SLIT HIDTH EFFECT

The emittance of low-intensity linac beams is commonly measured by

passing a slit and collector assembly in steps through the beam. At each

step, part of the beam passes through the slit and travels a distance L

to the collector, where the width of the beam is measured to provide infor-

mation about the angular spread of that part of the original beam. The

finite slit width, 2b, produces an error.

-4=3

The apparent measurement at x Q, xQ' is
bounded by

x + x'L = XQ'L + x0 ± e

x - xQ = ± b
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For e very small, the Jdx'jdx. integral becomes approximately

Let x' = x^ + £ u

x o ) s ? / du p(xo

Let p00 • p

•to - &

P1O = 3x

p20 = ^ T

p02 = -~?7

P71 = 3X9X1

Now do a Taylor expansion.

1
.2 .2

5(X0'X0) = \ /"du[p00 " bu p10 + V p20 + T p01 + ^[2 p02 " T"

where the arguments of pQ0, p^1, e t c . , are xQ , X
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b2 b2 b2

POO + T p20 + 772 p02 " 3LoL

Now let us calculate the apparent emittance

2 o 7. 2
E = xo xo " V o using

=/dxo/dxo xo

/dx'/dx

— 2Let xQ = A (using p 0 0 only)

Vo = c

Integrate by parts

p2O d xo d xo 2

0

A

etc.

= A + V . xA = B + %3 ' 0
3L

00 dxOdxO

XOX6 = C " 3L
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E 2

2
Try to express in terms of Courant-Snyder a, 3, j, where BY = 1 + a

Assume distribution f(w)

W = YX2 + 2axx' + 3x ' 2

;' f(W) = 1

Let x ' = - | x + ^ - ; dx' = —
3 s

Let x = u/g u2 + v2 = W = r2

dudv = 2^rdr

'dWf(W) = TTdW

-00 *-00/

du f dv f (u 2 + v2) = IT /(

'•ISo the normalization is / dw f(W) = -

'0

= x2 = if.x2dxdx' f(w)
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f(W)

u cos2 f(w)

= B § / W f(W)dW = | WI.

u = /w cos e

v = v̂w s in 9

dudv = ^ - de

ff _ /Wf(W)dW
/f(W)dU

B = x ' 1 = J W

C = xx ' =

= /du /dv u (v - ail) f (w)

- - W2 w

EQ
2 = AB - C2

2 In I.I

T \ I 1 T + 2 W " T L

2Ef
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6-6-78

ASPECTS OF THE 4-VANE STRUCTURE

The following note contains three sections. In the first,

an exact solution for Laplace's Equation near the axis of a

four-vane structure is derived using a very simple Schwartz

transformation.

The second section is an attempt to estimate a correction

to the frequency and the ''external" fields because of the

central region. This section should be carefully checked

before using.

Section III treats the 4-vane structure as a point-

charge model. The relation of the point-charge parameters to

the Kapchinsky-Teplyakov A and JC are derived in terms of the

vane modulation parameter m = b/a.
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I. We can solve the two dimensional Laplace problem in the following

geometry

b

2
The solution can be obtained by the Schwartz transformation w = z and

the problem is then standard in the w-plane. Without providing the details,

I give the solution, which, since it is a function of the complex variable z,

and satisfies the right boundary conditions, must be the correct one.

u = — Re sin
IT

(1)

u(x,y) = — s i n

r -

/(x2

-

2
_ y -H b 2 )

2 2 2
h 4x y

, 2 , 2
b + a

" /(x2 2
- y

2N2- a ) + 4x2 2
V

-

(2)



As a check

u(x,O) = ^ sin
"I i f x 2 + b 2 - l x 2 - a 2 | 1

L b2
 + a2 J

s i n
•1 / b 2 - a2 + 2x2\

V b 2
+ a 2 /

(3)
x < a

u(O,y) = 7 s i n l 2 , 21 , 2 . 2.- b I - (y + a )

b 2
 + a2"

V
2 y > b

b + a
y < b

(4)

u(0,0) = J sin"1 ̂ — 4
b + a

(5)

(Our earlier guess was u(x,3 which i s not

terribly accurate at x = y = 0.)

It is possible to expand u(x,y) near x,y = 0 as a multipole expansion. The

result is
cos26 cos40

u(x,y) . I _ 2 -1 a + x2 - y2 (b2 - a2)(x4 - 6x2y2 + yA)
V ~ 2 TT

 t a n b uab + . 3. 3
4 a b

Conclusion: The Quadrupole strength will be constant if the product of a

and b is constant ! ! !
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II. Is it possible to calculate the resonant frequency approximately? The

best way appears to be to use a variational statement in terms of an electric

field trial function.

It is well known that

2 = /(VxE)
2dv

2
(k to

c

(7)

2 •*

is a variational statement for k in terms of trial functions E which satisfy

the proper boundary conditions and which are continuous and have continuous

values of AxE

We will divide the "wave guide" into two regions (I and II) separated by

r = p, where p is chosen such that

a,b < p < A,R
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The trial function in region I will be taken to be

E* = E.(Y..(k,r) - ctJ (k,i
0 O i l 11

corresponding to

H = V fv fV r^ - fl7 llr v

(8)

where a = (9)

and k- is chosen such that H (p) = 0, i.e.
X Z

a = Vk ip )

For k̂ jD « 1 , YgG^p

is Euler's constant. So

2 [UklP

o^f n̂ , and la I » 1.

(10)

s 1 , where Unv = y = .5772

(11)

This means that k̂ p is near a zero of J. (x), In fact, if

k.R = p + e

where 0 then

= E Ĵ Cp) t y

= Y1(p)

One obtains, from (9)
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1 + £

2

1 + e

J l
J l
Y l

h

"(P)
' ( P )

' ( P )

( P T .

~ I i
ex ' la l

e =
a J i > ( p )

= e

,<p>
f(p) (12)

, H =
J i t ( p ) / \ Y i ( p ) ~ 2 Ji'< p )

Let us now calculate k

(VxE)2dv + I (VxE)2dv

: [u
E2dv + I E2dv

(14)

In region I we have

X = k1E0(YQ(k1r) - a(jQ(k1r)) (15)

In region II we have

= 0 , since we will choose E to be the solution of Laplace's

Equation (solution for the potential is in (2)). So we have

dv(Y. - aJ.) 2 + -^ I dvE2
(16)
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xdx(Y0(x) - oUQ(x))' f (y*> - aj0 — (Yj_(x) - aJ1(x))'

rklR

xdx(Y1(x) - a J ^ T iYo(x) -
.2.x

- x(Y1(x) - aJ^x) ) (YQ(x) - aJQ(x))

Using (9) and (10), one finds

k R

xdx(YQ - aJQ)

[
k

2̂ 2 , 2 2
.2 kl P (Y1(k1P) - aJ1(k1P))2J (17)

2 2
From (16) and (17), neglecting terras of order p /R ,

2
2k

2 2
k - k, s

1 ' rdr! dGE2

0 I I I I
1 R2(Y()(k1R) - OUQC^R 2TT

(18)

Let us now try to evaluate E , and tie it at r = p to E . For

2 2 2 2 2
r = x + y » a , b , Eq. (2) can be written as

u(x.y) = I sin
2 . 2-> 2 , o , 2 r 2 2-v / 2 . 2^2 . 2 r 2 2-v
c + y J + 2b (x - y ) - /[x + y J - 2a [x - y /

21.2 . 2b + a
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v _ - i / x 2 - y 2 \ _ v . -i, 2e) = I ( 1 _ 2 6 )

so that

„ _ 2V
in region II at r = p . (19)

From (8)

2 E 0
-^ in region I at r = p . (20)

A match is therefore obtained with

V = -^ (21)

in which case (18) can be written as

7 ( 2
- ^ rdrd6 E

V
k2 - k,2 a —^ ^ ^ (22)

1 2irR2(Y0(k1R) - aJQ(k1R

Let us write

u(x,y) = - g(r,6)

2 | dvE" = ̂  I dv(VgHVg)

II

•^ ds(n -gVg) - \ dvg(V2g) (23)
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Since V g = 0, the second term in (23) vanishes. Since vg is in the 6

direction at large r, the only contributions to the first integral come

from the vanes. After some algebra, one finds

d v E2 a 16 ln _
77 /a* +

(24)

II

and

2p

k2R » (25)

We will try to keep the lowest two orders in I/a, noting that, to that order

U k l P
2

a * 1 toto

and

2p
—=• " 2R
b

This leads to

/27,2
u/a + b ̂

(26)

(27)

2 2 2 2
k R = p + 2pe + e

^ (a + 6)

- 2aJQ(p)Y0(p)

= p +2p(-+-^r+-77-
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G2 - 8

2 IT 3
) 0

But ^'(P) = J0(p) - - ^ - = JQ(p) and

So

46 8 0
, 2 TT T 3
J0 J0

,2D2 2 4
k R = p 6 +

a2irj 2 \ J0
(28)

My interpretation of (28) is as follows: The choice ofp (which to

this point is only restricted by a,b < p « A,R) should be the one which

minimizes Eq. (28), since the original formulation of k is a variational

one. This implies a positive value for which is chosen to be as

small as possible. Assuming b > a, this suggests choosing p = b, since

a smaller value will correspond to fields not accurately given by (19).

My guess is therefore that the frequency is given by (29):

(29)

with J^p) = 0, p = 3.83,J0(p) s-,403, YQ(p) s .051

= .5772

62

[Perhaps one should choose p

depend only on ^2 + fe2 .]

/ 2 2
/a + b in which case the frequency will



It should be possible to check the accuracy of (29) by comparing with

SUPERFISH calculations.

III. This is a follow up on the point charge model for the K-T, 4-line structure.

It contains the relation of the point charge parameters to the K-T parameters

(A and 70 in terms of m = b/a

c
a

a

)
i

L

i

C
<

a

a
<

i i >

i

Potential =

__Q

\{z - L ) 2 + x2 + (a - y )
:

a C O 8

n L
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What is the f i r s t harmonic?

r ~ 27TZ

of2 V * Q c o s T "

y ^ ^ V(z - L ) 2 + A2 '

2

t _ T
2 i /• d s „„„ 2_TTS

ds cos - ^ 2Q /

2 ' L i

a. = ^ K (w)1 L o

r"
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FOR THE COMPLETE CHARGE CONFIGURATION

2TTZ

u(K,y,z) = c o s " 1/ L o

^ ) - !«.(1 ^ " ) ! )

+ [same, with a •* -a, - b ]

+ -1- K 'z o

= - K,

K +
o

U(x,y,z) = cos
2TTZ

Lonsitudinal Term
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Transverse Term

E =2
x

"T I (z - L.)2 + a2
3/2

Q1 x

i [(2 - i - L.)- + b"

-2
0 (x ± a)

(z - i - L.) 2 + (a ± x ) 2
3/2

-2

i (z - L.) + (b ± x)'
3/2

x - a x + a

9 ?
h + (a - x)

3/2
A2 + (a + x) 2

3/2

(A2 + a2)

2x - 6a x

A 2
+7

2

__3ax_

(A2 + a2)
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First and third terms in E

= 20
2x

9 9
"T" [ ( z - L . ) + a"

1

3/2

a ' + <z - !? -

1 9 9
(z •- ̂  - L t)~ + a"

3/2

L L .
Average from - — to -r is

CO

1 / ds
E i TV 2f 2 2\

\s + a )

\3/2
and

CO

I - 9 ?
*" 2 ^)

/ 2 2
\ s + a )

5/2

La

9

1 x - - -
La"

d_
ds

s
2 V l / 2

s + a )
ds

9 9
S" + a " -

2
s + a

9 9 9
s ' + a" - 3s"

2 2
s + a

3/2

p -> 9 9 9 9

s - 2a = - [ ( a - 2s ) + (a + s ).

2Q

+

2
2

La

20'

+

2
?

Lb

2Q

+

2
9

La"

2Q'
2

2"
Lb So,

x L W b 2 / > L U 2 ~ a
2

y 2 )L 2 ' 2
. a b
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Therefore:

U = T • "i

Therefore, in terms of K-T parameters. A ,

(ka) (mka)

V = 16
2 ' " L o\ L

Y' _ A / Q 0̂

9 - 01 1 , £? are radii o!" the "beads"

Probably should choose

0' = Q C = e? = f. *̂  » n k =
2TT

V = 8k VL (K (ka) _ K (»ka)
2 TT 2 \ O O

A =
1

„ . .. (ka) - K (mka)
•n \ o o

= 0 at m = 1

> 2 S £V / 1 , 1 \
A0 " 3 VL ~2 I "2 + "TT )* a m a /

3f = •-- ' -J*-- = at HI = 1

Coefficients

may not be exactly

correct.
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If we choose £ = -5-
o

4 BALL K-T

, / 1 \ I (ka) + T (mka)
lf ~ 2 ^2 v s - ~9 "

\ m / m"T (ka) + I (mka)
o o

2
A, = 2(K (ka) - K (mka)) v s . -„—m- — —

m"l (ka) + I (mka)
o o

Look similar enough to be believed

n' /1 Y* i =
Might be necessary to make r̂— =1 — I J

Hard to know what to choose.

At any rate, we have related [he coefficients of the constant and cos(kz)

terms of thn potential for the 4-ball case to those in K-T!
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1-79

"'KAPCHI.VSKY - T"PLYAKOV'' -- I.IKE STRUCT'IR?

A. In_ tr_qdu c.t_ion

What ve are doing is to group all structures which have only r-f fields

with quadrupole behavior near the axis (to produce transverse focussing via

alternating sjiadient behavior) and with an accelerating wave along the axis.

B. Longit_udl_na\ F|vnamics

The result of the analysis for the longitudinal motion is the ̂ jtjy]d_ard_

loaded Dendulum

d
—•: + —.—f;—r (cos$ -
, 1 Pin|P |
ds s

wnere

sin| 'si

In K-T terms

2tre

) =0
linearized % =

ds~

E is the average accelerating

electric field on the axis (the

amplitude of Lht: wave component

traveling A'ith the beam).

E - JJT

zh ® "»i*,
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C. Transverse Dynamics

22 / k
~ + x [- - — + K cost | ^ + '40 I = 0
ds" \

K - -SfVA0 = -&-5X
mv mv a

V
The K term is the alternating gradient term and the - ~- is the standard

r- f- defocussing term required by Earnshaw's Theorem.

We will convert this Mathieu equation to a matrix formalism by replacing

the i:os( -̂ jr + ';')) by t r for distances -— to simulate the square wave's first

harmonic.

2

d2x x , , UK kl , . , 2

~ T + X( - ~4 - ~T ) = ° , TTK
 k».

ds b = -£• ;

,2 2
O r --^ ± (b + a)x = 0 b - a = p^

ds" b + a = q"

Matrix formulation

, 0. sin(p&) » •
cosCpx.) c — \ / cos

-psin(pil) cos(p&) / \ qsinh(q£) cosh(q£)

2 , 2 irK
p + q = ~2

2 2 , 2
q - p = K
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, ., , , „ • > _ . sin(p.1)sinh(qg,) , 2 2
cosy = cos(p£)cosh(q£) + r

 7 ^ (q - P )

Expand for small y, p£, q?,, to bth order.

2 4

_ + u_
24

2 2 4 4
1 -

24

•> 9

6

( q
2 - P-

4
3-

2 2
r_ja -

2.2

i12

2 4 2 2 . n 2
U , y_ „ , , 2 ( q - p )& u^.

"" 2 24 ' ?7T "" 4!

4 ^
?• ( g " +

~ 24

This can be approximated for

- p2)
9 9 9

The definition of transverse wave number k is

l ' S°
2 2 0 2 / 2 2 . 2

2 48

kn 2 v 2 n 2
o, ir K &
2 ~ 192"
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[The true Mathieu equation solution in lowest power of k A" multiplies the 2nd

term by -jr = .99. ]
IT

So

,2,2
2V , JJ2

192
v_/_eW

192 4 I 2 2
\ mv a

K-T's equation (7) (UDC 621.384.64 1969-70)

9 2
B"E, a2SA

2 2 '
where E_ = T-'c , 3fl E_ = mv"

1 4*192
Ratio is — « • »—

of 8TT IT

Coef 5! ic ients

IT

D. Transverse Longitudinal Coupling

The longitudinal motion is governed by the accelerating wave traveling

''ITS
along with the particle, cos( -—jr- ) cos (cot + <ft) . The radial dependence of

pA

this term is controlled by :he requirement that this traveling wave have a

Factor which permits E to satisfy the Laplace Equation (non-relativistic).

This then leads to the standard factor

T f 2TT , , , 7T2 2

I ( pX r ) - 1 + — r r
o 3A gx2

This leads to the usual coupling term in the linearized form.

k 2

— (x2 + 2)
2
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The corresponding term in the transverse motion comes from the dependence of

the r.f. defocussing term on the phase motion, and is written directly as

d2x , 2
+ k

, 2 A
ktx " -T^Wf x

2
where k *" includes the alternating gradient effect in the "smooth:l approximation.

The standard coupling analysis treats the 2k - k,, '"resonance"' as the

dominant term leading to a change in transverse amplitude of

*A
 k o 2 X

oA ^ Z max8kt 1

max
This implies the need to keep i , *i < 1 in order to keep the transverse motion

s
from deteriorating. Specifically, the effect is exactly the same as in the

Quad Focussed Alvarez Linac, provided k and k, are chosen appropriately.

E. Space Charge Effects

The space charge terms are most readily estimated by assuming a uniformly

charged ellipsoid. This will lead to linear terms in the equations forx and

x of exactly the same form as for the Quad Focussed Alvarez Linac. Specifically

in the focussing terms (but not in the coupling term unless there are further

couplings from the space charge distribution) one has

h2 — h2 (1 - ̂

\2 — \2 (1 - V

74



where

k 2 = 90 ohms el A_

Me" a~c£

2 _ 45 ohms el A n ^

Me a eg

and f(—) s — - , where c is the longitudinal semi-axis, and

1 * ~ i a is the transverse semi-axis.

Calculational experience suggests that the beams will deteriorate if ]J_

or U get too close to 1. A crude estimate of the current limit can be obtained

by choosing ]j ̂  3/4, as in conventional accelerators. This leads to two
9 f\

estimates (setting Me = 900 x 10 eV) .

900 MV ,O] ,,2 3ac" 03

2

I. = 30 amp. (BAk.)2 - ^ — (1OO8)3 y

I = 20 amp. (BAk ) 2 - S - — (100B)3 u
1 t J

Typical values at injection - after bunching starts

if % i if ̂  i (180° bunch)

BAkj = phase advance per cell ^ —

BAk = phase advance per cell ^ —
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15 amp | •— (1006)3

0.6 amp (1003)-

6

.005

.01

.02

W

12 KeV

50 KeV

200 KeV

I
max

75 ma

600 ma

5 amp.

7T TT

One still must see whether it is possible to obtain kJ3A ^ — , k BX ̂  -r

with realistic parameters in the K-T structure.
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1-79

RELATION OF STRUCTURE TO BEAM DYNAMICS PARAMETERS

IN A 4-VANE STRUCTURE

SUPERFISH gives the frequency and field distribution. This note suggests

how to relate this information to the K-T parameters.

00 CO

The general s ta t ic potential has symmetry

such that for z -*• z + ~~ , 6 - ^ ^ + 0 , the

sign changes (apart form the time dependence

of the f ie lds) . This condition is satisfied

by the form

2+4 na r cos ((2+4n)9)

n=0

00

X "* , T / 2Trr\ . Q /27rz\
/ b I . I -^— cos4n0 cos -Trr)

/ J n 4n \ Y>K I \ v>\)
n=0

n=0

n=0

S , / 4mirr \

nm 4n+2 V g\ j

cos l(4n+2;0 c o s
Tz \

r

OO 00

n=0 m=0

(4m+2)irz'
8A ,
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The accelerating term is B~,. and the focusing term is proportional to An

with proper normalization. These can be related to the A., and A_ or (H) and

2 2
')( in K-T, and thereby to the k. and k in the Alvarez Linac.

All that remains is to extract (and presumably control) the values of

A and B from the Superfish runs.

1) is the coefficient of the quadrupole field on the axis.

is the potential at r=0 which presumably can be calcu-

lated at each z (corresponding to a separate geometry) by finding

the central potential with the two 'electrodes' being at - ,- .

V
2

P (T

Let quad gradient be B

V be potential at r = 0
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v = v = » E ! + v
2 2 2 0

V = I (p- + q")

vo - f

2
One should set V_ proportional to cos(kz) (to obtain k«")

2
and B (to obtain k ~)

and p , = a (for beam clearance).
min

This gives V and q . Then as V varies as cos(kz), and B, V remain fixed,

one finds p, q as functions of z. It may be necessary to adjust tuning.
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1-6-79

BEAM DYNAMICS IN THE 4-VANE STRUCTURE

(with emphasis on Jacobians)

The fields which govern the dynamics are:

E z = - ^ IQ(kr) sin kz sin (cot + a) (1)

Er = " 2 r c o s ^ s i n ^ + a^~ •^'Ii(kr^n(a)t + a) c o s k z W
a

YV \ /o\

E = -o r sin 2IJJ sin (cot + ct) (3)
2 a2

We will define the t = 0 time to correspond to a = 0, and take only that wave

component traveling in the +z direction. Actually )J1\ ( kz ) really need

to be replaced by i r n s i / ^ z ' w'iere ̂  = v̂ ~ wn'^ vary wit'1 position along
v

the linac to match the acceleration of the synchronous particle. Thus

r 0 ( k r ) cos (kz "

Ep = - ^ | r cos 2* s in cot + - j j | - I - j (kr ) s i n (kz - cot) (5)
a

xv
Ee = -g- r sin 2I|J sin cot (6)

One now changes to the independent variable z (which we will replace by s

to avoid confusion) and replaces t by the phase deviation from the traveling

wave, according to

ks = /kdz = cot - cb (7)

Thus

Ez = -k ip I o (kr) cos <|> (8)
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kAV XV
sin 1> — g " r CoS 2^ sin

a

- g - r s i n 2IJJ s i n ( k s + <j>)
a

Ex = - i n <J> - * V x s i n ( k s
3

sin (9)

s i n ( k s + <J>) (10)

The equations of motion, taking into account the variation of k, are

cL(]_d<i)
d s \ k 3 d s V

mv
V " T0 ( k r ) cos * " cosL

(11)

ds I k ds
_e

mv

• ^ 4 x sin (ks + i>)
a11 mv

(12)

K "ds \ k ds e kfcAV

mv
y i - i s r - sin*

sin

a mv
(13)

B. We_ can now reconstruct the Hamiitonian:

H = ± 4 + - ^ + ̂ - ^^[l o(kr) sin
4km/

cos

jeXV

ka mv
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Hami l ton 's equations f p = ~ , q = - —-) w i l l dup l i ca te (12) and ( 1 3 ) , but
v oq d p /

the $ dependence of the radial force in the quadrupole term must be accom-

panied by a radial dependence of the longitudinal force. Equation (11)

must therefore be replaced by (14)

£)•

a mv

2 2 2
cos (ks (14)

Equations (12), (13), and (14) should therefore be the basis of the numerical

calculation, with

p<> = ~T ds P r oP o r t i o n a 1 to 5w

K

px,y = \ cfs" P r°P° r t i o n a l t0 x,y

C. Smoothing of tlie quadrupole term:

Let us write (12), neglecting the variation of k, for small transverse

oscillation, as

x1 ' = + Ax + Bx sin (ks + (15)

This is a Mathieu equation for which one can expand the solution if desired.

However, a simple approximation can be constructed by replacing sin (ks + 4>)

by a square wave having the same first harmonic.

TT
'4

This leads to
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x'1 = (A ± \ B) x with "magnet-lengths" =\ • Use of matrix analysis

leads

X

where

k

to

1 l

2

2
t

V "
the

= -

774

' - 4 "/ '
smoothed

kt
2x

x2v2 /
2 ~T~( ~a Vir

motion

{

iv / k mv

k2AV
8

If this smoothing is applied to the Hamiltonian, the last term in (12) is
? 2

replaced by -kt x, the last term in (13) is replaced by -kt y, and the last
term in (14) disappears.

D. Importance of the second term j_n (14):

The term oscillates, therefore leading to cancelling contributions
2TT

over AS=-T~, except for the variation of a. Since

* 2
ds cos (ks + cf>) = -r- ,

half cycle

the maximum effect of the second term in (14), averaged over As = -r- , is

2TTIHVV

where 2a is the minimum and 2b the maximum vane separation. The relative

size of (17) compared to <$>" in (14) can be related to the size of k. in (16).
2 2

This relative size will be of order x k , which is proportional to the square

of the ratio of the beam size to the focusing period and is therefore com-

pletely negligible.
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E. CONCLUSION

The motion is adequately represented by (12), (13) and (14). When
the calculations are completed, the dependence of the quadrupole focusing
contribution on <J> should be negligible, as should the contribution of the
quadrupole term to the longitudinal motion. It is of course essential that
whatever approximation is used in the numerical calculations correspond to
a Jacobian which is exactly 1.
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APPENDIX 1

Summary of Discussion on Jacobian

Start with Hamiltonian system

H(p,q)

P 3q (1)

Convert to difference equation over interval L

qf = q1 + g(p»q) > g = + L ^

(2)

Statements which can be proven:

(a) If f(p.,q,j), 9(p1-»q^) is used on the right side of (2), then the
Jacobian will not be 1 except under very unusual circunstances

(b) If f(pi> q f ) , g(pi5qf) is used on the right side of (2), then the
Jacobian will be 1.

(c) Same as (b) for f(pf,qi), g(pf,q.j)

(d) If f(p,q), g(p,q) is used on the right side of (2), then the Jacobian

will be 1.

85



Note:

P~

Pf

While

J
Pi'

So, if

not be

The

•pi

transformations

+ l f ( p

= p + 2 f(p,

JP

J

,,.P.

this

qofq/

=£
q • p q

X

is used

the same as 1

.q)

0

1

1

J- -

for the

:hat at

can

q~ =

.,t.

be \

i

q" •-

written as

+ \ f(P,q)

^ |- f (P,q)

calculation, the phase space area at p,q will
i or f.

(e) If one does not start from an explicit Hamiltonian, but obtains f

from successive physical approximations, then one starts with

Pf = Pi + f(Pi.qi) (3)

Several options are now available for proceeding:

(1) Replace Pi by p-. directly. This will change the approximate relationship.

(2) Solve (3) for p.. and replace p^ in f by the expression obtained. This

may be impossible exactly, but it can be done by successive approxima-

tion. In this way one obtains

pf = Pi + f(Pf»qi) (4a)

Now integrate f with respect to q, to obtain H from (2). Then take the
/\ I A

derivative of H with respect to p f S as dictated by (2), to get g(pf,q1-)

qf
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The g in (4b) is then a consistent approximation (not necessarily what
was derived by the same physical approximation process used to obtain
f(p. ,q.)), leadino to a Jacobian which is exactly 1.

The process can be generalized to several variables by using an (i,f) com-

bination in f and q for each variable.
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APPENDIX 2

Jacobean for Longitudinal Motion

1. Easiest to start from Hamiltonian form corresponding to desired

sophistication/complication

H(<f>,W)

• _

3W T W 3<fi

f = 1
3* " 3W

2. Go to difference equation

+ f - *i = f(*,W) W f - W. = g((J>,W)

3. Prescription to obtain J = 1

Use <j>., Ŵ r on both right sides (in f and g)

or <j>f, W1 " '

4. Suggest <j>f = $i + f(<$>., W f)

W f = W.f = W. + g ( * r Wf)

In general iteration will be required for Wf.

5. Including dependence of energy gain on energy to first order

Wf = \S. + T(cos <fi - cos $s) + WfS s in <(>.

H = - T ( s i n (() - $ cos <]) ) + WS cos Q + h(W)
5 t

function ok)
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f = U = S cos <j> + h ' ( W )

t>f = 0 i + h ' (W f ) - S cos

Note: can be solved for explicitly

Wf =
W- + T ( C O S 6. - COS <J> )

I 1 O

1 - S s i n t}>i

6. Discussion of longitudinal motion - test of Jacobian

AW =/e Ez(z) cos (cot + <f>) dz

t = 0, z = 0

z = /v dt

- /"dz
"J v

--(1 -

£-0

V = V + AW

f(z)

= — - AW g(z)
-1-

g(z) is even in z

=/eAW =/e Ez(z) cos (^ + «J» - oiW

g(z) sin ^
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= cos <J> T + s i n <f> W S

T = e / E _ ( z ) c o s ^ d z
s

S = eo,/Ez(z) g(z) sin f- dz

AW = cos cf> T + s i n cf> W S

A<j> = - a AW + F(<|>,W)

a - ) T r y 4>f = <t>. - aW f

Wf = Wi + T cos <j>i + S Wf s i n

W i

• 1 / , v %

•(SfH-
H f ( l - S s i n cf>.) - T cos <j>1 = W.

1 - S s i n

3Wf /3W.

W7 = \9W7

-1

90



1 + 3G

So J = 1 - S s i n <f>i

L e t G = S cos 4>i

W f = W. + T cos $ . + SWf s i n <j>.

= (j). - aW f + S cos cj>.

b . ) T r y W f = W. + f (<f>. ,W f )
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J =

w i

1 7 *

'3W

r *)(*),.
wf = wi

,. = wf - f(*1,wf)

= 1 - 3f
3W7

9f

1 - 3f_
3W.

• - = 1

Requires 9g „ 3 f
3<j>.
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In example on p. 8 = T cos <j>. + SW-: sin <J).

g(4>i »Wf) = S cos <£.. - aWf

Basic Theorem

If W-

This corresponds to a particular prescription to iterate the differential

equations.

W = 1 f

•' -r 9

Since the system must be Hamiltonian, it must start with

H(q,p) =

= ~9q"^ W

•e
-

,w)

= _
9cj)

9W

Obviously

as required above.
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Obviously

W f = W^ + F(<J>f,W.j) will work equally well

<Pf
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6-13-79

TAPERED MATCHING IN THE RADIO-FREQUENCY-QUADRUPOLE (RFQ)

I. Introduction

Since the RFQ provides transverse quadrupole focusing from electric

fields which vary with the (r.f.) frequency, the transverse acceptance of

the 4 vane structure will vary with the phase at which the beam enters the

focussing system. In order to minimize or eliminate this variation the

vane separation (bore diameter) is tapered over the first several 8A so

that the quadrupole field gradient increases continuously from 0 to its

final value. The purpose of this note is to show that the acceptance

will indeed be approximately independent of entering phase.

II. Model

The electric quadrupole strength has the general form

K(s)

A simple analysis to smooth the quadrupole focussing gives for the

equivalent transverse wave number

where g is a number of order 1. The original differential equation

X" + K(s) X = 0 (1)

(which preserves phase space area) is then approximated by

X" + k*(s) X = 0 (2)



where the primary approximation is the assumption that K (s) does not
max

vary much in a distance SA.
2

We can solve (2) in terms of known functions if k (s) is replaced

by a power of s. In this case the equation (scaled in s so that the

coefficient of the second term is 1) becomes

X" + sP X = 0 (3)

which has the solution

(A)

where

-1

A = T (1 - ̂ y ) ( P +2)
P + 2

, (5)

B = r (i + -—) (P+2)1"9

are chosen so that X(oj = X , X1(o) = X '.

The asymptotic behavior of (4) leads to

X(S) ->\i IT- s A X cos (i|) + V) + B X ' f* + V)
I O O

where

E zE

•n
y = 2(p+2)

(6)
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The bracket in (6) can be written as

1 I = P cos ip + Q sin $ = vP" + Q cos (T-a) (8)

where

P = CAX + BX ') cos y
o o '

Q = (-AXQ + BXo') sin y
(9)

If the initial phase space is plotted with axes BX ' vs Ax , it is

clear that a matched final beam requires an X , X ' trajectory for

which P + Q = R" is constant. This translates into thr 45° ellipse

The initial phase space area occupied by the beam is

,2

Area I = -

o o

7T R
sin 2\i

(10)
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while the final phase space area is obtained from (?>) as

Area
t

Final

p.

S - R - | ^ s 4 R ( 1 1 )

Since

AB = r (i + -.) r(i --1~) =
p+2 sin IT

P+2

AB sin 2u = AB sin^Jj = ^ y (12)

and the initial (10) and final (11) areas are equal, as they must be.

Ill. Conclusions

Phase space areas are preserved, and a prescription for matching

is given by (9):

(AX + BX 'V cos "u + (-AX + BX ') sin'p = IT

° ° (13)

Since the matching dej)ends only slightly on p, the acceptance moving

a distance ^L (corresponding to a 180° shift in entering phase)

will be essentially unchanged. The rate of tapering (related to p)

will determine the orientation and eccentricity of the initially matched

ellipse.
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6-13-79

MISALIGNMENTS IN THE RFO

I. Introduction

Concern has been expressed, because of the very small aperture,

that misalignments in the RFQ may lead to unacceptable beam deflection

or growth. The purpose of this note is to estimate the size and na-

ture of such misalignments, and to project their effect on beam orbits.

II. Imperfections

A. Among those imperfections which have been considered are

1. Transverse vane location error

2. Error in vane curvature

3. Voltage perturbation on one or more vanes

4. Multipolo fields other than quadrupole

B. All of the above effects have the potential to shift the center

of the quadrupole, or to cause perturbations of the quadrupole

gradient some place within the bore. It is not hard to see that

the movement of the center will be of the form

AX, AYa^-a, or f a

where a is the bore radius, R is a typical dimension (like the

vane radius of curvature), and V is the vane voltage. Fven in

the case of higher order multipoles one will get effects which

are largest near the bore, but which lead to forces much smaller

than the quadrupole force, which clearly must dominate.

C. The critical consideration is whether any of the imperfections

has a systematic variation which is synchronized with the trans-

verse frequency. Since imperfections are most likely to vary

with period BA, and since stability requires avoiding wave lengths

which are multiples of f3A, there should be no trouble.

D. Another circumstance where misalignments are important is if there

are fluctuations in regions smaller than the wave length of the

transverse oscillation which are uncorrelated with one another.
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This is the usual misalignment situation, when alignments are made

one cell at a time. Such effects seem to be absent in the present

case for the method of construction currently used for the RFQ.

E. The remaining imperfections are then ones which vary systematically

and slowly over long distances.

Ill. Analysis

A. All forms of misalignment can be put into the form

X" + kt
2X = kt

2 e(s) (1)

where e(s) is the effective misalignment. The solution of

(1) for X(o) = X'(0) = 0 is

s
X(s) =\f ds' e(s') sinkt(s-s

f) (2)

he will now handle the three special cases: sinusoidal

variation of e. random fluctuation of z in short blocks,

slowly varying e.

B. If c(s) = c sin(k s + a ) , one can see directly from (1)
max £

that Xwill develop an oscillation with amplitude

A = e (3)
, 7 - 2 m a x

t " e

clearly the region k near k must be avoided. For long

wave length (k -*- o) , A = e and the maximum displace-

ment will turn out to be 2A. For short wave lengths

(k /k « 1), A will be reduced from e by a factor which

is the square of the ratio of the wave length of the im-

perfection (like B?0 to the wave length of the transverse

oscillation.

C. If E is random in short blocks of length I « 2ir/k , one

can easily show that the rms growth of x is

^rms = t erms V 2 (4)
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where N is the number of such blocks. When N is large X
& rms

can be important, unless e is extremely small, as in the

present case.

D. If e[s) is slowly varying, one can evaluate (2) by repeated

integration by parts leading to a series expansion in successive-

ly higher derivations of efs). The leading term is

X (<*>) = e(o) cos kts (5 i

and the maximum displacement will be 2 E(O) during the transient.

E. The results for multipole effects will be similar, with added fac

tors of the form

m
f m ' ~ "

where f is a dimensionless multipole coefficient whose value is

less than 1, and where r/a is the ratio of beam size to bore

radius.

IV. Conclusions

All systematic imperfections of wave length sufficiently

different from the wave length of the transverse oscillation

are unimportant. Random misalignments will only be important

if there are random fluctuations in geometry on a length scale

smaller than the transverse wave length. In all other cases,

the fractional beam displacement (compared to the bore radius) ,

or growth in beam size or emittance, will be proportional to

the relative value of the imperfection.
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5-24-79

BUNCHING REGION OF AN RFQ

The four vane structure is being used to accelerate and focus particles

starting at very low velocities (corresponding to 100 KeV protons). Questions

arise about how rapidly the accelerating field should grow with z (or S).

Here we will analyze the initial bunching of a monochromatic beam when the

accelerating field grows linearly.

Let y be the deviation of y from its synchronous value, and let <J> = - •=•

during the initial period of growth of the accelerating field. The equations

for the longitudinal motion are then

, _ civ eET ,

(1)

j,i _ d4> _ 2TT
ds ,,3,

leading to

<!>" = - • — — - cos6 (2)
M e l A

We w i l l def ine

2ireET
o 3

Me "3 X

- B (3)

and assume that B varies linearly with s according to

B = B's B' constant. (4)

in?



Thus

<!>" = - B ' s cos<J> (5)

We c a n n o t proceed f u r t h e r w i t h o u t some a s s u m p t i o n . Let u s a p p r o x i m a t e cos<!>

i n t h e r e g i o n -TT < cj> < 0 (<j> = - - y + 4 ) )

by

cos(J> = c o s ( - — + \p)

leading to

* -B's (6)

~37T ~7T -7T
•o" / -7T 0 -r-

The solutions to (6) are Airy functions of the form

where

oo

m=0

f
n + 2m

m! r(n + m Vi
Since we wish to have ^(0) = if) , iK(0) = 0, we can write

• - • „ * -
1'2 } «->l/2'J") (7)
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where

/ 3/2

)

A - (B')1/6 $ } (8)
3

Asymptotically, one finds

,,.1/6 '\3/ 1/2 / 2 / 1, ,,1/2 3/2 Tr

From (lb) ,

^K!) i By<-» 1 / 2' 1 / 2-(I<»'' 1 / 2» 3 / 2-l 2
(10)

The area occupied by particles with -TT < <f> < 0 or - -- < t|) < •- is

s 63A -J 3 I / f 3 T2 (-1) (B1)1^3 (x McA for correct units)
8 \ J /
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This is the area occupied by the inner half of the bunched beam.

Actual area is perhaps twice as large because fy extends to ±TT, but the

limits on y are controlled more by the T/J = ±-r- points.

actual
W 33A|31/3r2(f)(B')1/3(McA) (11)

should describe the emittance of the beam which is to be accelerated.

To complete this phase of the calculation let us calculate the area

of the phase stable region. From (2) and (3) we write

<j>" = -Bcos0 (12)

In order to calculate the phase stable area, we must assume B constant, in

which case (12) may be integrated to obtain

— + Bsin<p = const. (13)

Since <{>
2

, we find cj>B' = 4B, <j>' + 2Bsincj> = 2B.
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In fact, the area is given by

TT TT

3TT

2 "

stable 3A

for units

rho ratio of (11) to 04) is

< a C t U a l 3/2 1/3 2 ( | ) 1/3

/ s t a b l e ' ' 4 " " 8 ~ ^1/1 ' '
e

From (7) it is clear that the beam starts to be bunched when J ._ starts

to become oscillatory, which happens at a critical distance such that

s
c

This corresponds to a critical given by

B = B'a E B ' 2 / 3 or B ' 1 / 3 * B ]

c c c

B.l/3 Bc

The ratio —j-jr, in (15) can therefore be written as — T T ) ' '
B ' B '~

From this we conclude that after a few bunching oscillations, the bunch will

lie comfortably within the longitudinal stability region.

106



5/25/79

RADIAL EFFECTS DURING INITIAL BUNCHING

Assume that we have a fraction K of the particles rotating in longitudinal

phase space as a rigid line of length A (in phase) with frequency kn .

The transverse space charge force exerted on these particles will have the

form

-f- kt

taking into
account average

spreading

Since this occurs at the start of bunching we shall ignore the p in the

first term and write for the transverse motion

1
x" + k x

t

P <
2TT ~ k.

A t
sin kns

(1)

where s=0 corresponds to zero phase spread in the bunch of length A. We

shall try to estimate the perturbation on the transverse motion when the

beam goes through the single "singularity"' at s=0.

107



Using the phase - amplitude method

x = A sin(k s +

x' = A k cos(k s +

(2) A ' s i n (J) + A ifj'cos <b = 0

^(x'^k/x) A'cos ei - A if/1 sin $ = 2TT ~ r ~ I -p"-" "'H
t t A \ |sin k.s

-p"-" "'H 1" - 1 ) A s in
|sin ks /r1

leading to the relations (exact at this point in the calculations)

' - - 2 1 T

A '

A
, . ,—r - 1 sin(2k s + 2$)
|sm kps| / t

(4)

We shall first approximate (3) to obtain i/) and then use the \l) in

approximating (4).

2
Because of the singularity at s=0, sin <f> will average to 1/2 near s=0

and if' can be approximated by

Try Kk

A \ | s in k^sf ~ J

In order to handle (5) analytically near s=0, we shall neglect the -1 and

write

sin k£s| = k ^ s 2 + e (6)
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where we intend to take the limit £ •+ 0 near the end of the calculation.

Hence ! ,

V i 8- + E*
a = TT —

leadin" to

* - 7 - sinh"1 -
0 k£ e

(7)

. , -1 1 . 1X + 1 + X
sinh x= — In

Vx2 + 1 - x

Substituting (7) into (4), we find, with the same assumption about the

domination of the -i—: •. r term
sin k.s I

sin (2k s + 2* - 2 f - sinh X £
t vo k e

(8)

The integral of (8) would be infinite, except for the rapid variation of the

-— sinh - term near e=0. For this reason, the main contribution to the

h z

integral will occur near s=0, and we can write

I n
K± = [ ds a — s in 2if) cos

2 °
, , - 1 s \
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Writing s = e sinh u, one finds

f
-uo

Af
In .— = —— o I du cos I -.-— u I = sin 2vj s in ! ,~- u (9)

The choice of u is governed by the requirement that

2k s = 2k e sin u « 1.to t o

Since we are to take the limit as £ -> 0, this suggests that we must choose

u to be large, in which case (9) states that the amplitude changes by its

own order of magnitude when the transverse charge goes through a singularity.

Our conclusions are therefore the following?

1) The amplitude changes by its own order of magnitude each

time a portion of the emittance line becomes vertical in

the longitudinal phase space.

2) The corresponding change in the phase of the transverse

motion is infinite - meaning random because of modulus 2ir.

3) Each successive change of amplitude has a phase unrelated

to the previous one, and the amplitudes accumulate only in

an rms sense.

4) The "accumulation" will stop when the length of the rigid

line which is rotating I -r— SAJ becomes comparable with the

transverse beam size, since the transverse space charge

force is no longer that of a line charge.



5) It would probably be instructive to compare these results

with numerical computations. It should be kept in mind

that the behavior of the transverse motion being calculated

in this note corresponds only to the singular portion of

the bunched beam and will not apply to all paiLicles.
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6-1-77

MEASUREMENT OF AXIAL FIELD DISTRIBUTIONS

IN A LONG TANK

I. INTRODUCTION

Slater has shown that measurement of the frequency change caused by

a small metallic or dielectric bead can be directly translated into infor-

mation about the magnetic and electric field in a resonant cavity at the point

where the perturbing bead is placed. The purpose of this note is to estimate

the higher order terms which may contribute in a multicell cavity in which

spherical metal beads are used along the axis of the cavity. The starting

point is Slater's formula,

Sm ̂ j, JAV

where AV is the (inwardly) perturbed region, and where Ej_ near the bead must

be computed in detail.

II. UNIFORM ELECTRIC FIELD

The field near a metallic

(grounded) sphere of radius R is

given from the potential 0 by

- E Q sin l - p-

11 7



where

$ = - E. frcos9 - R3cose]= - E_.z + E.R3cos6
U ~ U J Ts—

At the surface of the sphere Eo = 0, E = 3E cosO . The integral over a

shell of radius R, thickness dR is

dRR2 |dJ2 E 2 = R2dR 4TT cos2e 9E2 = 3E2 47TK2dR

and therefore

E2dv = 3E2 V
AV

Slater's first order result is therefore

1 3EAV
— 0
2 (• E-dV

JV

III. More General Electric Fields

It is possible to extend the calculation in II to electric fields

having gradients. For azxmuthallly symmetric fields, this corresponds to

writing the potential as

$ = -Enz + E R
3cos6 - _Ei r2P2(cos6) + E^ B £

0 ° r2 2 2 r5

and eventually leads to replacing 3E0 by

3Eo " 3Eo + I
where

v -Ej =

3z
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In the vicinity of shaped metal surfaces, the gradient will be controlled by

the distance from these surfaces. In particular, one expects

1to be of order —
g

where g is the distance from the surface. This implies a correction to

in Slater's formula of order

2
1 + const —r

Similar corrections occur because of the dynamic nature of the field and
R2

are of order -yj where A is the wave length of the r.f. This term will be

much smaller than the correction term R2/g2 for cases where g corresponds

roughly to a gap length at low 8.

IV. FIELD TILTS

In a multicell cavity, a perturbation in a single cell causes a tilt

in the electric field which may be quite large if the cavity contains many

cells. It is now important to take this tilt into account to determine

the local field which must be used in Slater's formula.

Consider the cavity to be made up of n cells, equivalent to the circuit

chain shown.

1 2 3 M-1 M M+l N

The simplest form of analysis leads to the equation linking nearest neighbor

cells:

This point was discussed by Owen et al., Proc. 1966 Linac Conference, p. 146.



E = f fE .. + E , - 2E ]
n 2 [ n+1 n-1 nj

where k is an equivalent coupling constant. The simplest version of the boundary

conditions is EQ = E r E^

If all cells resonate at u = u., then the cavity will resonate in a flat
n U

mode. If the Jlth cavity has a perturbed frequency

the entire cavity will resonate at

<o = w Q (1 + e/N)

and the circuit chain equation will be

6ZE = -4e
'n kN n

n = 1 M - 1, M + 1,

and

kN
(N -

which has a solution

E =
n kN - (n - 2/ n = 1, M

n = M,.

For a relative frequency perturbation e in the Mth cell, the fields are therefore

increased (relative to E ) in all the othrr cells. The denominator in the

Slater formula therefore must be corrected by the sum
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M-l

I
n=l

1 + ff f(M - I) 2 - (n - 1:

N
I

n=M+l
f§ [(N + J - M) 2 - (M+ 1) - n)2j

= N 1 + -||T: (N2 + 1 + 3(N + 1 - 2M)

V. FINAL RESULT

The frequency shift due to a fractional field change in the Mth cell is

therefore

6u> ̂  e
to ~ N

2e
kN I 3

+ (N + 1 - 2M):

The correction factor is plotted below.

If we now include the correction due to field gradients, the final

result for the frequency change of the cavity is
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6u> __ e f, , ^ R2 e -,„ „,
— = — 1 + const —2- - 7- f (N.M)
a) N I g k

where

f(N,M) = | |N2 t X + (N + 1 - 2M):

The radius of the sphere may be related to £ by approximating the integral

of the square of the electric field over the cell volume as that over the gap

region. In this case

R3

e = const -JT~

leading to

—s- = const £2

The frequency change expressed as a function of e is

£.f (!•«,.« .-[ff-f «(..«]
In view of the fact that neither the constant nor k are known well, one must

use an extrapolation procedure to separate the two terms, if both are important

for the range of parameters used. In particular, at each location in each

cell, one needs 3 bead sizes to determine e and the two constants, and a 4th

bead size to check the extrapolation method. The starting point for analysis

of such measurements should be a plot of

0)
vs R3

o r 5co/R3 v g R 2

0)
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1-8-76

COMMENTS ABOUT r,r PHASE SPACE

Because of the fact that the transit time factor increases with r, at the

threshold for particle capture, only those particles with large transverse

amplitude will be accelerated. This note is an effort to predict what the

appearance will be in the r, r phase space.

Starting with the transit time factor

T (*< \ - i * 2 . 2 , 2,I I Tfr rl = 1 + —~z r \x + y J
\ / 3 A

it is clear that longitudinal capture will depend on

2 . 2

2
/ 2\ 4. / 2\ Xmax +

V / + V / = 2
y ,,2
'max _ R

Let us treat a collection of particles satisfying

2 , 2 n2x + y = R
max max

x = a s i n 6)t y = b s i n (tot + 4>)

x = aco cos 0)t y = bco cos (bit + cj))
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2 2 2 2
a s in cot + b s in (cot +

y - cos 2&)t + — cos(2cot + 2<}>)

2 2
3 *

r r 2 2
— = a sincot coscot + b sin(o)t + <}>)cos(cot + <J>)

s in 2oot + | - sin(2cot + 2<j>)

— = | - sin(2o)t

2, 2
a b cos 2<J>

2 2
a + b

2 2
a - b

2 2 \ ' " 2*2 h h 2 2
a + b 1 , r r a . b a b

r - ^ I + —2~ = T~ + 7~ + ~9— c o s

CO

- c o s 2<J>)4
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Intermediate <£, a, b

= 0 , ir or
a = O, b = R or
b = O, a = R

Since all values of

a and b for which

2 ,.2 2
a + b = R are

acceptable, and as

long as all values

of <J> are permissible,

the r, r phase space

will be totally populated.

The corresponding

9, 6 projection is

[r2 9, 6] since the

variable canonically

conjugate to 6 is

P. = r26 .
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1-8-76

DEPENDENCE OF TANK GRADIENT ON

INCOMING BEAM ENERGY AND TANK TILT

I Introduction

The dependence of the tank gradient on the incoming beam energy and

tank tilt turns out to be a sensitive method for exploring the dynamic

consequences of gap to gap field fluctuations in the first tank. This

note is a crude derivation of the connection between the parameters,

and serves as a means of understanding the relevant mechanisms.

In general we will assume that particles which traverse the entire

first tank are captured in the longitudinal bucket. This is not com-

pletely true, since the criterion used to signify traversal is the

transverse confinement. Nevertheless it is a reasonable first approxi-

mation.

In all measurements and computations to date, the tank field is

tilted so that the lowest gradients are at injection. For this reason,

the injection parameters are likely to govern capture. It appears that

there are two more or less 'ndependent phenomena which govern.

II Calculation of Model

1. Tank gradient above the threshold gradient

a) In this region, a phase stable region will exist at injection.

The lowest energy particles which can be captured are those at the

bottom of the fish. It can readily be shown from the energy invariant

(approximate)

-fa i -• —?5— i — o — - c i - const.

that



13/2
•s '

V 2 Et
Since cos <j> = 1 - TJ— ~ T~ 5 with E being the gradient at the

injection end of the tank, we can write near threshold

- I)1 whe^e x = 9—
" t

giving

v3/4

or

= 1 "s I! .
Bin2/3/AWs\2/3

; VAT
07/3

For Wc = 750 Kev, W . = 720 Kev, A W / . n - 63 Kev one f inds X = 1.063,

which is reasonably close to the measured values (1.03 to 1.055).
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b) Dependence on tilt. If the gradient increases along the tank,

the size of the phase stable region will grow and particles which at

first appear to be longitudinally unstable will be captured. Thus the

curve above will be shifted both to the left and downward since

particles with lower energy can be captured, and capture can take place

with lower initial gradient. The analytic treatment of these effects

is more complicated, snd not worth pursuing here.

2. Tank gradient below the threshold gradient

If there is a positive tilt, it is even possible to capture

particles without an initial phase stable region. A crude estimate

of the injection energy at which this takes place can be made by assum-

ing that particles travel at the crest (<j>=0) until the bucket is estab-

lished, at which time they will be captured if they have the correct

synchronous energy corresponding to that longitudinal position. This

can be estimated to be

W _ - V!s « ^_A_n_

where q is the fractional increase in field level in the first ce"u,

The result is shown below.

X

1

I Increasing
Tilt
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The apparent kink in the experimental data appears to be a result of the

composite of the two figures.

ill Conclusion

It is important to normalize the gradients to the injection end of

the tank in comparing the result for different tilts.

The general features of the dependence of X on W . are reproduced

by the model. We have not included careful calculations of the effect

of increasing bucket size. Moreover, in the actual tank, the field

levels in the first few cells fluctuate significantly, and so one might

expect some departure from the numerical calculations.
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6-26-75

FIELD DISTRIBUTION AT LOW 3

A. For the purpose of analysis, consider a uniform structure which will re-

ceive perturbations. One version of the field equation is

1 ^ z 1 ^ _ 3/ 6o.(z) m

7^ w
cz dz A w

where •-"'• •• is the local frequency error. The circuit model has the form

% k " k
(1 - k - - ^ ) V n - - f ^ V n = -* (Vn+1 + V n . 1 - 2 V n ) (2)

w

If we use the field calculation of Chasman and Gluckstern, Equation (2)

can be used to interpret the result in terms of variations of cell fre-

quency.

Note 1. There is some ambiguity as to whether V in (2) is the gap voltage

or some normalized voltaqe based on energy storage (like

Note 2. The circuit analysis assumes that only one band is important.

For this reason it should require modification if the structure
is compensated.

B. Now let us perturb one cell by changing one gap only. In reality we

affect not only mn, but also the coupling to the adjacent cells. However,

we shall try to treat k as constant in using (2). For a more correct

treatment, Jule's thesis will have to be followed.

Setting <^2 = a>2(z) (1 - k)

and K = A_A_



Equation (2) becomes

(3)

where 6w = OJ - w. Equation (3) can now be used to specify ow /w for

a single perturbation. For low 3 this produces a pattern of 6a> /w like

that shown below

8< n

obtained by taking 62V and subtracting from S<u /u> the calculated

frequency change of the overall cavity.

C. Perturbation of the end cells requires an analysis involving the symmetry

at the ends. For the 5u /w shown above one needs to add the same function

translated by one cell, obtaining
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which leads to V of the form

end cell perturbation

at each end

showing the deviation from the simple tilt. This effect is clearly seen

in the bead pulling on Tank #1.

D. Displacement of the first full drift tube also leads to an interesting

effect. It can be obtained from the first pattern on Dage 2

n
n

and leads to a V of the form

127



showing the overshoot which is also observed on Tank #1. This can be
corrected by moving the first and/or second drift tube suitably.

E. These calculations should be done using some sample field calculations
and frequency calculations. The expectations are

1) That the effect of a single perturbation seems to extend over

4 or 5 cells with g = .07, corresponding to a distance of

.3A to .4A. For larger B these effects should extend over fewer

cells.

2) A value of K can be obtained from the calculations, which can

even be performed using a structure with varying cell length

corresponding to the first 5 to 7 real cells. It should then be

a simple matter to correct any observed fluctuations in the

field in the first few cells.

3) Some study will have to be made of the measured and computed

results to settle the question of whether to use E , E i/g"~,

or E g = Vn in Equation (3).

4) The effect on the dynamics requires also taking into account

Fn. A run of PARMILA with actual voltages should be made to

check that everything is OK.
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8-30-74

BEAM COASTING THROUGH RESONANT TANKS

This note expands on a memo by D. C. Hagerman and M. Jakobson,

"Energy Loss by a Proton Beam Passing Through Accelerator Cavities

Without External RF Excitation," LASL Tech. Memo P-ll-DCH/MJ-2, 2-19-64.

In this memo, the induced voltage is apparently correctly calculated,

but the phase of this voltage relative to the driving current is not

taken into account. My feeling is that these are about 90° out of

phase since the beam is trying to resonate the cells out of phase with

one another and they won't do it. As a result the cavity acts like

it is off frequency and is therefore reactive, as well as having a

smaller impedance.

For example, using an equivalent circuit model operated in a

zero mode:

-i.v ; + \l^ ' -A- + itoC + -n-j + - ^ kiwC = 0
b VitoL R/ 2

(No driving current, iu is beam current, k is coupling). If there is

a mismatch of beam bunch space and cell length, ii, will have a dependence

Iein where 6 is the cell-to-cell phase difference.

Zero mode resonance gives

-A-
icoL

Writing V ^ - Ve1n6, we find

^ - , ^ 1«C + 1 ) + Vein6cos5k1«C = 0-le1n6
+

- I + ̂  - kicjC(i - cos 6) V = 0

T

,, _ +IR , where Q = wCR
?

1 - ikflf
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and

P = Re (VI*) = (I) R »

1 + / kOcT

For ££ - .01 6 ~ .06 Q = 15,000, k ~ 1

For I = 20 mA , R = 30 Mfi/m , P = 12 K^eter. ~ 16 ~, very smal 1

This is an extremely crude calculation.

I looked at improvements of the following kind:

(1) Need the 1st Fourier component of the beam distribution (makes

result smaller).

(2) Need to satisfy V = 0 for n = 0, n = H. This puts a boundary

condition which modifies the e i n solution - need Green's Function to

do it properly - but it does not change the result that the voltage is

out of phase with the current by an amount like

2 " ,nr2

(3) Stepped or tapered phase. This introduces variations like
. 2

e l e n which makes the analysis even more complicated. However, the

phase change is still ~ TT/2 as long as 6 # 0.

Conclusions:

1. Power loss much reduced over calculation in the referenced memo.

2. Might be observable for small <5g, by looking for the voltage induced

in a cavity (not the energy loss of the beam).

3. Not sensitive to tuning, except if 6 = 0 .
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7-24-76

EFFECT OF FREQUENCY ERRORS ON TANK FLATTENING

1 2 3

The basic theory is from coupled oscillator chain:

2'

Boundary iQ = i,

condition iN+1 =

I f a l l W = cog , then to =

and 6 i n = 0

so that solution is i = I (constant)

If there is a frequency error, where co = cog:

2

= wQ(l - e) 1 - -~- = +2e
CO

1 - -f- = -2e
CO

0 = i3 + i-j - 2i2 etc.
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The central region of the tank is satisfied by having

in = I + Jn (NJ « I)

+ 2e(I + J) = |(I + 2J - I - J) = -|

- 2e(I + NJ) = | ( l + J(N-l) - I - J

giving

T - Tilt = ^ = - ^ N

Suppose co, = (tiJ 1 - e-| \

el

Then the frequency is no longer correct at co =

In fact, write 1 —*— = 2e
CO

In the central region,

_ T _L i« J_ Kn KnN

-|n(N-n)
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1 - ~ = 1 - - L • -^o = 1 - (1 " 2e-j )(1 - 2e)_= 2E ] + 2e
CO (On CO

1 - = - 2E + 2E

For n = 1 ,

(2e1 + 2e)I = |

2el = £ K

- f̂  - | (4 -
3K
2 *"" neglect compared to -j-

-2N+1

1 JSli +_<-«. lv| K
2 2 neglect compared to -£

(-2e2 + 2c) l - | ( - J - f

2e I = | K

2e1 - 2e 2 II - - 2

e =
£2 " el This is what is expected for e,

J '
I

KM _
I

4 (

1 + e 2 )
k

E2 ' £ i !
k

£ 2 • - 6 ]

c N
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This gives the tilt and "bowing"

of the tank fields

(B = maximum bowing at n =

KN2
= ' WT

B = - -
..2e

The importance of B in normalization or calibration must be considered

carefully. It will be important when e, and z~ do not cancel exactly, even

if tuners are used to correct the frequency, since the tuners will not

duplicate the behavior of e, and £„.

The low power (bead pull) and high power situations can be compared

by estimating "oil-can" effects via e-,, z~, keeping the frequency shift

e in mind, etc.
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7-24-76

DISTRIBUTED EFFECT OF LOCALIZED FREQUENCY ERRORS

The simple chain of oscillators with only nearest neighbor coupling
is represented by the equation

1 " I •? - — M + 1

From previous analysis of Maxwell's Equations one can show that couplings

also extend to next nearest neighbor cells (n ± 2) and beyond (n ± 3,

n ± 4, etc). In fact, these couplings will extend in a significant way

for about 1 wave length on each side (many cells for low B, few cells

for high B).

The above equation is then extended to

k, 9 k 9 » k , fi
2 4 6

On the assumption of decreasing importance of k- as 6- increases, one

can solve this equation by iteration or expansion

k, 2 k2 .
6 \+* V = V--

k
C64un) + -f

k,A k,B k0A k,C k0B k,A

V - 1 + J - ° + + I

etc.
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So

2Scu_

GJ

2k
2 1-2S2&))(?-£)(•

This implies that the simple version (which requires 6 i ^ 0 only a_t

the frequency perturbation) should be extended to adjacent cells in

line with the above equation.

Let us solve this equation in steps.

Step 1 - leading term only. This is the conventional solution leading

to discontinuities in slope where perturbations occur, and to

curvature where the frequency is shifted

Step 2 - Now add other terms following two "integrations"

4k9 /6o)n\ / k -

isolated
in cell n

'i
i*2 *

extends to cells
n±l

+ ___

extends to
cells n±2, etc.

Eventually a wall is reached modifying the tilt, bowing predictions.

This will be important if frequency perturbations occur within a wave

length of a wall, which is q'uite often. In fact, it is this phenomenon

which accounts for the fluctuations in i in the first few cells, when

an end cell perturbation is included.
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In order to confine the influence of the pn term to the location of

the perturbation, it is possible to "soften" the frequency perturbation

by spreading it to adjacent cells. For example, instead of an end-cell

perturbation alone, one might consider moving the 2nd drift tube by

1/2 of the displacement of the end cell, the 3rd drift by 1/4, the

4th by 1/8, etc. In the absence of information about k~> Ic, — , one

will have to try different configurations experimentally. This should

allow one to minimize the large field fluctuations near a frequency

perturbation.
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6-1-77

EFFECT OF MULTIPOLE ABERRATIONS

I. INTRODUCTION

Multipole aberrations result in coupling between the oscillations

in the two transverse directions. The basic formalism was written in

detail in MP-DO/2 (R. L. Gluckstern, R. R. Stevens, Jr., and P. W. Allison,

MP-DO/2, 1967) and can be taken over directly.

Aberrations will generally be present for all multipole orders, but

it is generally expected that they will be random for all orders except

m = 2 (main quadrupole term), m = 6, m = 10 , where the errors can

be expected to be systematic.

II. ANALYSIS

The general analysis starts with the assumption of a single multipole

aberration which modifies the scalar magnetic potential as follows:

Potential = K { | - sin 20 + Jrm cos (m8 + <j>)>

Clearly, H = m J R™~ „ is the pole tip field due to the aberration in units

of the main quadrupole pole tip field, where RR0Rp is the bore radius.

From (51) and (52) (in MP/D0/2, 1967), one can write:

<$W + SW
x + SW r -,-j
- — s — 2 . = K I J (P cos $ + iP cos 0 ) (P sin $ + iP sin $ )
23y6s m m L m v x x y y x x y y J

with

$ = ks + <J>°
X X

= ks +
y
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A. Systematic Aberration

1. Resonance for k = k = k
x . y

If the only contributions come from k = k = k, then the contri-
x y

bution from a systematic aberration can easily be shown to cancel.

Specifically, since the bracket can be written as

J ,
T ^ §- (P sin * + i P sin $ ) 6

k ds x x y y

its average must necessarily be zero. In this case there is no beam growth,

other than a small amount which may originate from particular starting

phases.

2. Resonance of the form u = 27r/m

In view of the systematic nature of the aberration, if the change

in m$ from one magnet period to the next is close to 2ir, the sums over

aberration impulses can accumulate. If we write

2TT + 6

v = — s —
and extract only the cos m$ and sin m$ terms from the change in W,

x,y x,y
one finds

SW = mJK& V iyn B l n ( m Oo + n 6 ) _ 2 ^ = 1 1 p"1"2
 P* sin((m-2)$° + 2$

x
y B l n ( m O + n 6 ) ^ p P ((m2)$ 2$

2SY 2 - - 1 n=0 L x ' (D(2) x y x y

where we have taken into account the reversal of the sign of K and of

sin(-^- + <j)) for the defocusing magnets, and where each magnet is of

length I.

The maximum value of the preceding expression occurs for
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p
x = p

y = RBEAM , <5° = 0, $° = IT/2 giving

/2

6W _ mJK£ m = BY P2
W ~ -fi— RBEAM ' W ~ Wx + Wy " &~ RBEAM

br

6W mJK&
2W = " 5 ~

/R \m"2

SF / BEAM \ H/ RBEAM \

\ RB0RE /

For a ( + - + - ) focusing system with I = 0A/2, one can estimate the beam

growth in the smooth approximation to be

RBEAM

(huA " H.
\RBORE/

2
To illustrate the order of magnitude, for H = .05, m = 6, Rn_AM = •»• RDr>DTr >

6 = .1 = 6° '

R 6 '

that is, a 17% increase in beam radius if y stays within 1 (of 60 ) over

approximately 100 magnets. In actual fact, V will probably not sit on

my = 2TT or any other resonance with 1 accuracy for very long, so the result

for — will likely be much smaller.
R
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B. Random Aberrations

In this case

<5w
rms
23Y

= KmJiJ i^" I Re (P cos^ + iP cos* ) (P sin* +iP sin* )m~11rms L x x y y x x y y J_

It may be possible to evaluate the last rms bracket for general m

by averaging over $ r and $ , but it will probably be easier to just

square and multiply the terms out and average over $ and $ explicitly.

In any case, the form of the final result, using the same assumptions

as before, will be

AR
—- x consti .



6-26-75

EFFECT OF MAGNETIC MULTIPOLE

A. The most likely pattern of multipoles for a quadrupole is a systematic
series in the magnetic potential of the form

s = <i?r
2sin 20 + <?5r

6sin 50 + <S10r
10sin 109

+ *14r
14sin 149 + . . . . 0)

where the $„ term is the dominant quadrupole term. In addition, one might
expect random terms of all orders in the form

Random = £ V " 0 0 5 n9 + V"sl'n n6) (2)

n=l

due to misalignments of individual pole tips and/or coils. It is possible

however that some of the terms in (2) may be systematic due to special coil

return configurations. These questions should be able to be settled from

mapnetic field distribution measurements.

B. Systematic multipole effects by themselves will lead to a distortion

of the transverse phase space but should not lead to the development of tails

in the transverse phase space unless there are also present misalignments

or errors in the steering or significant transverse - longitudinal coupling.

The higher the order of the multipole, the more extended will be the tail.

C. Random multipole effects can lead to the formation of tails even in the

142



absence of misalignments or steering errors. However the effect will be

enhanced if there is coherent transverse motion also present.

D. In the calculations which have recently been performed, it is important

to identify the primary terms which lead to the generation of tails.

For this reason the calculation should be repeated with one multipole at

a time, .aking into account whether the multipole magnitude and phase is

systematic or random from magnet to magnet.

E. Fringing fields in the quadrupole also lead to systematic multipole terms of

order 4, 6, 8, - - - - . It should be sufficient to use the results in

Eq (8) and (9) of MP-D0/2(1967) (See also 1966 Linac Conf. p.250) which

gives the net effect of a full quadrupole, taking into account the

fringing field at both ends. The results should be comparable with those in

Section B.
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1-6-79

PERMANENT MAGNET CALCULATION

A. If magnet material satisfies the following equations

Bx "

inside the material and

B = H

(1)

x
(3)

outside, then, one has the equations

v 4 = o (4)

$ • $ = 0 (5)

The second of these can be rewritten as

V - f i = - V - f i o = n'M"o ^(boundary) (6)

Equations (4) and (6) therefore correspond to a "magnetic" surface charge

density whose strength is (ri • $L), where ri is the outward normal to

the material. It is therefore easy to use scalar potential theory to

solve for the fields due to regularly arranged sections of these permanent

magnets.

We will treat the two-dimensional problem only at this time.

Note: This work was triggered by Ron Hoi singer's verbal explanation of
Klaus Halbach's invention, given to RLG on Dec. 21, 1978.
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Setting H = -V<j>, one finds for the potential at r,0 due to a "magnetic
line charge" of strength x located at r',9'

= - ̂  an (r'2 - 2rr' cos (6 - 61) + r'2)

- 2r + 2 L

If we o r i e n t axes x ' ^ y 1 1 along lL

x 1 ' = x ' cos y + y 1 s in y

y ' ' = - x ' cos y

= e~ iY(x " + i y " = e~ i Y(x' + iy1 )

(7)

(S)

- Y

We now can integrate around the magnetic periphery, replaced T by

rf • &> = MQ dy", obtaining

- M x " 2 + yll2j + 2 Re
rneine

n=l
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-f dy" " + y" )+ 2Re
-irry

n

j dy"But f dy1'F(x'',y'') can be converted to an area integral by writing

• 9F
dy'

9x'

Therefor?

Q rr2MQ rr
«0(r,e) =~± //dx"dy'

-x Re 1n=1

4TT
•//•

Re IIdx"dy' e'in (x+iy)
n

can now rotate the axes back to x', y', obtaining

I
n=0 ••• +iy')

n + 1

(9)

This is the basic relationship from which the potential can be calculated

for a set of magnet pieces regularly arranged in an azimuthal pattern.

B. N regularly arranged magnets:

Let us now calculate the poten-

tial from N such maqnets arranged in

a circular pattern as shown. Clearly,

for the jth magnet

j + lyj «
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The potential due to the magnets j = 0, 1, , N - 1 is therefore

2Mn " f 1Y i(Y,-(n+l)a) i(Y?-(n+l)2a)
*(r,e) = TT9- ^ I (x + iy)n In e ° + e

 M ' + e V 2 ;

n=0 L

+ - — J (10)

where

Oth magnet v x i y ;

Let Y^ = Yn + 3jot. Then the bracket [ ] is

[ i y N-l • \]

j = o e J

The sum will vanish unless n = 2+£N where I = 0,1,2 — , in which case

it becomes

Ne

Therefore

n iYn
(x+iy)n IQ e ° (11)

Jl=0,l,2.

For the lowest term (£=0, n=2; next lowest is 2+N=n). The maximum pole
tip field at r=a is

Hquad = 4N M a

max
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C. Calculation of IQ for specific shapes:

(1) Sector

I
—

• }L
Zn_ Sin N

a b/ N 3TT

quad
H
r=a
max

sin
3TT

" t) 3,
"N

(13)
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(2)" Trapezoid

dx' d i / dx'

J U'+iy

I «s2 J

(3) Sector (r=a inside)

It can be shown, for fixed inner radius, that the shape of the outer
surface which gives the largest quadrupole strength for fixed area of
magnetic material, is not a circle, but is

p(<j>) - const [cos 3<S>]]/3
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8-30-74

PHASE ROCKING

This note was written to investigate simultaneous transverse and

longitudinal stability limits for a finite-sized bunch when longitudinal

oscillations are present. The motivation was partly for alternating-phase-

focused structures. (Ed.)

A. Smooth longitudinal approximation

Take phases to be -tf>, + $ and + <£2 + ty (4>i and $~ taken to be positive)
with ij> the amplitude of the phase oscillation. For each cell - assume all
cells same length - take an average for one cell.

+ *1 f (-g-JL[cos(| cos

<P2 " v-i
t> = 2 ^s equivalent synchronous phase

- also governs the size of the fish

Y = l (2)

B. Transverse oscillation - average U- per cell

cos 2u = 1 - -^ (s in 4>2 - s in cj>, J - -§- sin <J>2 s in ck (3a)

fo r ty = 0

cos 2y - 1 - -A - (s in(* + ^ - sinf<)» - A ^ s inf + )s in (

fo r i[; # 0 (3b)

where A =
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Problem: Want transverse stability for all permissible values of if).

Pl " '2 (4)

This was tried and found to require

- 4|4>,

- 6U

in order to ha-e stability throughout the phase oscillation. This leads

to a poor acceleration factor cos 5|<j> | cos
or less, which is probably too small.

requiring to be 10c

C. We have clearly neglected the alternating gradient in the longitudinal

oscillation and should not. Taking this into account for the linearized

motion, one finds

cos 2p. = 1 + A(sin - sin ) —^- sin sin >-, (5)

There is clearly no trouble in simultaneously getting longitudinal and trans-

verse stability for small oscillations (<f>2 = <£-] is probably best) but is

not at all clear how large ty can be, since we need a non-linear analysis of

the longitudinal motion for this purpose.

D. Non-linear analysis of longitudinal motion.

O

n

CD

n n+1

drift
o
o

01

n+2 n+3

drift

n+4
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/ M 2
Let x = <$Yl-rTQT i a n c l expand to 2nd order in

COS *T o , ,

- 1 v (6a)

*n " AXn+2

(The form chosen has a unit Jacobian and is easily converted to a

differential equation.)

Now iterate to n + 4. After much work

s in <f>i - s in <f>9 + A s in <j>-, s in $0\ A s in1 t ! L +
X^yi " x

n * n \ 1 + A s in <!>„ / + 1 + A s in 4O
 Xn+4

cos ^ 2 cos 0 2 ( * p - AX n + 4 ) 2

n

AXn + 4(2 + A s in (t>2) A s in

A s in

_ A cos ^ n - AX 4 ) 2

2(1 + A s in cj>2)
3

VJriting X' = X . - X , ^ ' = ty . - \\> one f inds a Hamiltonian from

which these two equations can be derived

3X

S. + A S l S o .b2 AS2 A(2 + AS2) ^,2 A

T
 +

 — AS2

C l ,3 C2 (fl - (SX)3
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This should lead to fish shaped contours (H = constant) which control the

limits of stability. Unfortunately, the results for these limits cannot

be put in simple form (I don't think).

A partial solution would be to obtain the location of the unstable

fixed point and to infer the size of the phase stable region from the

distance between the stable fixed point (X = \p = 0) and the unstable fixed

point. The unstable fixed point turns out to be the solution of (7a)

and (7b) being simultaneously set = 0. However, this leads to a cubic

equation for ip or X ,. which is not readily solved.

E. Conclusions and comments

(1) Numerical calculations needed to get stability limit, although it

may be adequate to use Eq. (7a), (7b) rather than a full dynamics program.

(2) We have assumed equal cell length. It probably can be extended

without difficulty to unequal cell lengths, but then one has to watch for un-

equal strength in the "lenses." An adjustment may be necessary like -<)),,

-(j),, <j>2, -<|>,, -<J),, <j>p. Swenson and Crandall have suggested -<$>, 0, <j>, 0,

-<j>, 0... or simple variations thereof.

(3) Any solution will probably require A to stay constant (roughly).

This implies field gradients proportional to B, which is inefficient at very

low 3, but may be OK for the low 3 part alone.

(4) Probably should be used in some combination with magnets - perhaps

permanent magnets.

(5) If -90°, 0°, 90°, 0°, --- structure is used, the analysis will require

terms in the next order of 6y(or X) since there will be symmetry around ip = 0.

(6) The cubic difficulties are really troublesome, since for fy? = -cfi,,

one should be able to get a simpler solution (the two cells are identical).

The trouble appears to be the method of going to a differential equation

(Xn, ^ + 4 ) * but this is essential to get preservation of phase area. On

the other hand, I am convinced that the result in Eq. (8) is correct. It

gives the expected limits for small oscillations, as well as for small angles,

and for small A.

(7) The idea is worth further exploration - probably numerically for

a while.
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6-24-75

ALTERNATING PHASE FOCUSING (APF)

A. Analysis of Longitudinal Motion

drift
L,

drift

L2

gap
a

gap
b

gap
a

Using the above geometry one can write a series of difference equations

representing the changes in energy and phase in one repeat length. The

small oscillation approximation leads to a longitudinal motion phase

advance per repeat period, y,, given by

cos

where

e =
a

E T g
a a a etc.

Me 2

27T 1

3V

£ £, sin4> sin<5>,
a b a b

etc.

(1)

on the assumption of an average of 2TT r-f phase advance per gap. Longi-

tudinal stability clearly requires at least one negative rf phase. We

expect no significant effect of the transverse motion on the longitudinal

motion.
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B. Transverse Motion

Here we expect the longitudinal phase to play an important role in

the motion. The analysis is linear in x, x', and leads to a phase advance

per repeat period u , given by

Q + 0

1 2 / \
cos u t = 1 ^ ^ easin(<J>a + i/0 + ebsin(<j>b + ip) J

a %
+ - ~ e e. sin(4> + i|))sin((J», + 40 (2)

o a D a b

where IJJ (assumed constant in the period) is the deviation of the longi-

tudinal phase from its "synchronous" value.

The first approximation is to set i> = 0 in (2) and observe that the

linear term in (2) is 1/2 the size and opposite in sign to the linear term

in (1). (This is precisely the Earnshaw Theorem about the impossibility

of simultaneous longitudinal and transverse focusing in linear approxi-

mation.) Setting this term = 0, one finds simultaneous % and t stability

as long as

where £ sin<|> = - e, sin0, = e sin<j> .
a a b b

If the fields are too strong, the longitudinal motion becomes unstable

first.
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C. Longitudinal Stability Limit

This is the most difficult quantity to calculate, but is needed in

order to guide us as to realistic values to use for ty in (2). This

requires a non-linear analysis of the longitudinal motion which has been

carried out only in powers of £ sincj) and £ sin* , assuming approximate
3. 3. D D

cancellation of the sum of these two terms. The result for the location

of the unstable fixed point is

9 9
1*2

UFP £ cos* + £,cos*.
a a b b

7 . *". e £, sincb sin<J>, - £ sin<j> - e, sin<j>,
£,-. + £„ a b a b a a b b

(JL + £,) (e cos* + £ cost}) ,
1 2 a a b b

+ £,cos<t,) I 1 c o s

I, + O (£ cos* + £ cos*)
1 2 a a b b

sin u. (4)

where the last form has been chosen to reflect the disappearance of phase

stable region when the motion starts to become unstable.

D. Choice of Parameters

An attractive choice of parameters is one with large | <j> | and | cj) | ,
a o

but not so large as to inhibit acceleration. A first try is -60°, +60°,

with z% adjusted so as to maximize acceptances. A primitive use of (4)

in (2) suggests that coupling effects can be reduced by going to a somewhat
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unequal pair like -65°, +55°, or -70°, 50° or even -75°, +45°. Numerical

calculations should explore these pairs.

Although this analysis is only for phase alternation of period 2 gaps,

other variations may prove to be at least as attractive (like [-90°, 30°, 30°]

or [-90°, 0°, 90°, 0°] etc.) These can be approximated in the present

analysis by suitable choice of £ , £, , %. , £„, etc., to reflect the
a b 1 L.

equivalent single impulse.

E. Longitudinal Transverse Coupling

A number of observations should be made with regard to the 1~t coupling.

1) The equation of transverse motion will have roughly the same

structure as that with a quadrupole magnet focusing sustem. This implies

effects on the transverse phase space of the order

k 2

A
A - 8kt(2kt -

where the wave numbers k0 are proportional to the phase advances \l0
J6 j t 36, t

(1966 Linac Conference, RLG, P. 207).

2) In the absence of the linear terms in (1) and (2), one finds

y. - 2u . Equation (5) makes it clear that resonant effects may be

important, and should be explored numerically in some detail.

3) The traditional method of allowing for the l-t sampling is to

choose parameters such that (2) leads to stability for all choices of (4)
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consistent with stable longitudinal motion. (One should check this

numerically because of the very crude approximations used in deriving (4).)

It is likely that this method will yield satisfactory results, although

transverse growths like those in (5) will be significant.

4) A possible method of interpreting numerical calculations of the

coupled motion is presented in the following: The radius of the bore tube

will define an ellipse in the initial transverse space representing the

acceptance. This ellipse is characterized by the area TTC-J and by the

Courant Snyder orientation and shape parameters 3,ot,Y. The values of W,

3,a,Y, will depend on the starting phase of the longitudinal motion.

Clearly the permissible starting transverse phase space (uncorrelated to

the starting point in longitudinal phase space) will be the overlapping

area of the collected of (x,x') acceptance ellipses.

The overlap of two ellipses can be approximated by an analytic treat-

ment of Gaussian phase space distributions of the form

( 2 2 \
_ Y* +2otxx'+3x' \

) (6)

This leads to an overlap area of the form

77
1 2

which goes to the correct 'limit for W ->• °° for W and W close to one

another (this corrects for the case of uniform phase space density within

elliptical borders).
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Equation (7) can. easily be generalized to several ellipses

W n W Tr 2 2 2 , 4 ......
ov » W_ Wo Wo ' . * i -i

1 2 3 pairs J

which can be written as

Equation (8) permits taking a collection of starting points in longitudinal

phase space and determining the overlapping admittance in (x,x') space.

For a restricted region in longitudinal phase space the overlap area

should be quite large. For a large region in longitudinal phase space the

overlap area will be quite small. The optimum will very likely be a solu-

tion which maximizes the product of the areas in the (5w,<f>) and (x,x')

phase spaces, and should be readily obtained numerically.

F. General Observations

1) Coupling effects will be quite important and should be investigated

numerically.

2) Tolerances on transverse alignments should be comparable with those

for quadrupole focused linacs.
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3) Tolerances on longitudinal drift tube alignments and lengths will

have to be investigated with care. They may be comparable with transverse

tolerances.

4) The additional use of permanent quadrupoles or solenoids should

be considered.

5) An alternating phase focused linac will have the r-f features of

a bip'^riodic structure. This should be borne in mind when trying to achieve

r-f compensation.
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1-9-76

ESTIMATE OF X-Z COUPLING IN APF

The d i f fe ren t ia l equation for 4> in an accelerator which has a varying <f>

is easily derived, and turns out to be

,2, ,2, 2TTeE T / 2 2 ,
d m d m o / , . , IT r >, , A I / - i \
— £ - —^s = - —=—o~ I ^ + "V^o" )cos^) - cos<j) J (1)
ds ds 3 Me X

Here we have neglected damping effects, but have taken into account the

dependence of the transit time factor on transverse displacement.

Conventional Linac

In the case of a conventional accelerator with constant <j> , one has

k n
2 2ireE T

1

and

2 k 2 2

H + k/X - - slnU 1
ds S i n ' < f ) s l

with X =

(2)
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Alternating Phase Focusing

The analysis starts from the same point, namely

,2 2 2

— 2 - q sin<j> X ~ q cos(f> „ „ (4)
ds S S 3 A

In this case <J> will have a strong focusing character. Note that the coupling

term will not fluctuate in sign when (J> does.

It is possible to go to the smooth variables u and z which are given by

X -v- S F

ds = Bc dz (5)

and S is the usual strong focusing (envelope) parameter, leading to

? 2 2
T + u = l3^ q c°s4> — x (6)2 + u = 3 s p q cos4»s 2

dz $ A

For an accurate calculation of the effect of the coupling term, one needs the

average of the right hand side. However, it is clear that the effect can be

approximated by

+ «x * < 8 > 4
ds B X

where ki6= JJ is the phase advance in a period of length
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If one assumes sin<j> to fluctuate between equal + and - values with

periodo£, > a n approximate form for k is given by

|q sin* |"^
cosu = 1 -

6 • 16 ( -# )

|q sin*

( 8 ;

in which case the coefficient of the right hand side of equation (7) is

cosq c o t

cot I* I : r J L r L k APF
s y

( 9 )

This is to be compared with the same coefficient in the conventional case

(Equations 2-3).

cot I* I k.
S JC

Conventional

U s i n g <j> = 3 0
s

- conventional.

= ±60°, y = 60° - APF

2 2
and k = k. for the same equivalent focusing (q will have to be much

larger for the APF), the ratio of the coupling coefficients will be
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A P F c o t 60° i V T a
Conventional cot 30° 60

For smaller y, the ratio will be larger.

Conclusion

x - z and y - z coupling effects are probably larger in the APF than in

the conventional linac. Detailed coupled orbit calculations are needed to

determine the relative importance of the coupling term more precisely.

* U.S. GOVERNMENT PRINTING OFFICE: 1380—677-115/177
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