
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of. information contained in
DOE’S Research and Development
Reports to business, industry, the
a~ademic community, and federal,
state and local governments.

Although a small portion of this
●I 9

report is not reproducible, II IS
being made available to expedite.
the availability of information on the
research discussed herein.



LA4JR -$3-2512

TITLE.

AUTI+OR;S).

SUBMITTED TO

INVARIANT IMBEDDING IN TWO DIMENS1ONS

LA-uR--88-2512

DE88 014405
V. Faber
Daniel L. Seth
G. Milton Wing

(conference on Transport Theory, lnvnrianL Tmbedding,
and Integral Equations
.January 20-22, 1988
smLt: Fe, New Mexico

D1.S(”l,AIMliR

“l”his rcpd WHS prcpurctl m un mwourrl of work sponsored hy WI ,i,wnc} IIf Ihc IIIWXI SIHIm
(iovcrnmcnt Ncilhcr the Ilnllrd SIHICS (hwcrnmcnt nor nny :qicncy Ihmctd. 111)1unyd their

cmployms. nmkcs mry wnrrmrly. caprcss tw implied, or IUAUIIICS iIIIV lc~~l Iid?llll, or reqxmsi-

hihly Ior the nccurucy. t.mnplclcncss, or rxduhrcm (If mIy Inf{)r!,lnll{m, q)pur;llu%, pI{duc”l, or

pIIRCW d!schwl. (M rcpr’-scnls ihn! 11s IIW WIlllkl IMll lll[rlngC prlVHlcly IIW’IKNI ll@ls MCfCr-

cnur herein 10 nny qxcIk ct)mmtrcud prtdrrct, prt~css, or wrvwc hy IIdC mum, lrmlcmtrrk,

nmrmfnctnrcr, or t)thcrwiw dtms m)l ncccwwrily c:msIIIutc m imply it~ cmhmcmcni, rccunl-

mcndn[mrr, or (nvorira hy !hc Ilrritcd SIIIICS (iuvcrmncrr[ w ntry tiucncy !hcrmd I“hc Vlcwm

d t)purmns O( Hu!hors c~prcwcrl hcrem do 1101 ncccw+rily SIHIC or rcflcv! Ihmc of Ihc
I Initml SIHICS (hwcrnmcnl tw ,Iny ngcncy [hcm)l.

l\vnt.l flI1lnfl{ nI#lllbI~nltoIla lh~lturrll~het lWngnllnB lhnllhnlJS Uuvernmnnl fnlalna nnoneMclu#fva, toy filly .lfmltcmnga lopubll#h ofr9produca

IIVPIIUIIIISIIW it,, m ,)1 IhIq t.Nm!IIIIUtIOII IU in nlbw nthmrn m do MI lot II S rlovarnmww pu?~qes

lhp I,,% AIw!!,,q NIIIOmInl Inljmnlof” vI.tIL#*w.13lhnt llwc puhltql!at IIlan-ItV N’IIU arllclmnnwtwh ~erformadundaf Ihnaugpmasnf lha U !j UaVmlrnmI10f[n9rgy

LosA!lallrims
MASTER

Los Alamos National Laboratory
Los Alamos,New Mexico 87545

lllsrlllnul KJNIll lt~l:: l%’:’” ~1 I I “ “’”

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.

For additional information or comments, contact: 

Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



INVARIANT IMBEDDING ‘- - ‘--- -
DIMENSIONS

V. FABER. DANIEL L. SETH. and G. MILTON WING, Computer

tions, Los Alamos hTational Laboratory, Los Alamos, hTew Mexico*

IN TWO

Research and Applica-

INTRODi JC’FION

J. Comnes [1] has noted that the doubling and addition formulas of invariant imbedding

can be extended conceptwdly to very general situations. All that is needed is a black box

“process” with n “ports.” The i th port has vector input /, and vector output J, . (In Fig.

1, such J process is represented as an n -gon, but this is only :i visual device. )

Addition forrnultis result when two Oi more of these proccsscs are joined together to

form u new process in some regular way. For example, four congruent squares can be jux-

taposed to form a larger square. (This program is carried out in some detail in Sec. 2.) At

eixh join. the output of one process becomes the input of t!le other and vice versa. (We

always suppose the join to occur at one or more pints.) Addition formulas resu!t from the

combination of these shared quantities Corones has thus pointed out that invariant imbed-

ding is not. as is somcrirncs asscrtwi, an inhmcntly one-dimensional ( 1-D) method, but

works ~~tlceptuidl~ in uny number of dimensions; some previous work that is conceptually

:dong these lirics, with rcfcrerwcs to uthcr such works, can bc found in Refs. 2-4, The

details can. 0( course, hccomc vc~,’ cwmplicatcd, We shall sht~w [hat the rncth(xi is mnpu

tari(m::!ly t“casiblc for ccrt;lltl two-(jitllcrlsiorl:ll” (2 D) prot)lcms. “1”()~xmt’(mn 10 the thrust 01”

these proc’ccdings. wc shall iISII;Ill Y phrasc (~ur (iisc’ufsio:ls In lcrrns ()! tr;lnsp[m thc(wv

mthcr tharl spcnkinp of mf~rc llt~strocl prm:csscs.
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Figure 1. N - port process.

1 INVARIANT lhlBEDDING IN 1-D

1.1The Addition Formulas

Consider m infinite slab of materiai of thickness z. Linear transport of particles occurs

in the slab in u manner independent of the x and y coordinates. We suppose no internal

particle sources. The left face of the slab may be considered a “port,” M may the right

side. The input of particles at the left face is described by a vector / !, which may have as

components energies, direr. xiors. etc. These are assumed 10 be discrete quantities. The

vector 11 will not be allowed 10 depend on the .r and j’ coordinates, (We are mmsiciering

the entire left face to be a port). For instance, /, might be the \ector whose ~cm]ponents

give the number of particles per unit area entering tt,e left f~ce fit six different :mgles.

Similarly, /~, J ~, and .12 are input and output vectors as shown in Fig. 2. (Note th~t the

indexing does not a~ee with Fig. 1.)

The components of the input and output vectors Me sometimes referred to as states (see

[5]). /\l[hough cncrgjes und directions m-e often the physica!]y interesting states, such

descriptors as color. size. tiud generation number ure quite :idmissiblc.+’ i“)bscrvc that the

symbol / is used in Uig. 2 ftw “input, ” with ./ for “(wtput. ” ,11s0, ue do nol rnct..i~m ;lny -

thin~: :lbout the pwticlcs Inside lhc slab, S:IVCto cmp}l;~sizc !h;lt ;\ll proccsscf mc linc;lr.

WC :lswwi;ltc with this process u tr;msiti(m m;~tfix

/! =/\(:) , (1.1)

.— ——.-
“ lhr nutnher {M tIa IFS can tmmnnr vrrv I~rur ramiv ,SIITV,SC UIIWI pan,(kq CNI rntwr In IIIV (,I ri~},t dIIrCtI{III~ it UIIV {If I : corr

gIcn. Ihrrr ●m Ihi’n ‘WIIMMIddr IImr I. ad Ihr IIIPUI IWId (IIIIpIIt ) VeCtIJn WIII havr %1 CIWIIIWIIWIIII
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Figure 2. Slab of width z.

[1 [1J, /,

J2 ‘A 12
(lo~)

Because / and ,/ are vectors, A is not a simple two-by-two matrix. It is customarily writ-

ten in block form:

[1

T+ R+
A=

R_ T_ ‘ (1.3)

To understand the meaning of !;le T and R matrices, observe that ( 1.2) give~

J,= T+l, +R+12 (1 .4)

If 1~ =() this yields

./, =T.], (1 .5U)

Thus T+ provides the information about particles transmitted lhrough the slab to the richt— ——
when the only input is at the left face.

~~mn, suppose /, = (). Then

J,= R412 (1.5b)

1Icncc h’ , provides informaliol] ;ibout parliclcs reflcctcd from Ihc Slilh I() :IIC ri ul]t ~vhcn the
—— .—

~mlv input is at the right t’ace: ‘l- and R mnv similar]y bc undcrsto~ xi.

In rn;lnv CilSCS of in[crcsl the matcri:d is isotropic it (I(XS not kll[)w its ri~lll l“lolil lfs

ll’!’t. * Then

..— ...-. .



In some of what follow we assume ( 1.6I holds. Suppose \ve now huve two slabs of

thicknesses ; 1 and z ~. .4ssume dmt we know the transition matrices ,4 (: ~) and A (: ~). Let

us juxtapose the two sltibs forming one of ;hickness z, + : ~. Can we rind the resulting trm-

sltion mm-ices. which We denote by.4 (; , : ~)’?

This problem was first addressed by R. Redheffer [see [6]) and the bibliography

therein ) but in a somewhat different context. \%’eshall sketch the fundamental derivation.

Refer to Fig. 3. Obviously we wish. for example, to consider the output vector ~ ~ from

the slab of thickness z 1 as an input vector h’! for the slab of thickness :2. This requires a

certain comparability amongst the input and output \’ectors. The details are best left to the

reader. .Mso, we must require that when we form the slabs, J 1 does indeed become K 1,

etc. No particles are created or absorbed. This is a fundamental continuity assumption

physically appropriate to transport phenomena (and many other processes).

For notational convenience. write

[JT+(i) R ●(i)]
A(z, )=

/?_(i) T_(i)
, i=l .2.

We seek the matrix

such that

(J 1,[1[1L: ., ‘“K2

(1.7)

(1.8)

(1.9)

11 z~

Figuro 3, Two slabs to bc “joined, -



From Fig. 3 we have tsee (1.2) and ( 1.3))

J,= T+(l) l,+” R+(l)l~

JJ=R. (l)/ l+ T..(l )/z
(1.10)

L, = 7-.(2 X-, tR+(2)K~

The continuity requirement implies

J, =K, , 12=L2 (1.11)

E:i’.linating J,. 12. K,, L2 from (1. 10) and (1.11 ) finally gives (observe that the unsub-

scripted / denotes the idemity)

J2 = T_(l) [R_(2)(l - R+(l)/? _(2))-’R+(UU3] ~Z

+ [T_(l)R_(2)(/ -R*(l)R _(2)) -’T+(l) +R_(l)] 1,
(1.12)

Ll = [T+(2) (LR+(l)RJ 2))-lR.(l) T-(2)

+ R+(2)] K~ + [T+(2)(/ -R+(1)RJ2D-1(1)] 11 .

We now easily identify the e!cments of C (F~. ( 1.8)), which we write as R =(z, + Z2) and

TA( , + z ~). Revening ro the R and T notation yields

c,, =T+(Z , + z~) = T+(ZJU - R-(z 1)R+(z2))-’T+(z 1)

cl~=R+(z, +zJ=T+(z J(l - R_(Z,)R +(Z2))-lR_(Z 1)TJ:2J + K(z2)
(1.13)

C21 =R_(:, +Z2) =T_(:l)R+(22)(f -Ul)I?+ (Z2))-’~+(Zl)+R+ (Z1)

c~J=T_(:,+z~) = T_(:l)[R ,(z2)(1 -R_(z, jR+(z2))-’R _(z, )T_(:2)+ T-(:2)] .

Equation (1. 13) is often written in the form

A(z, +z~)=A(z, )* A(z J , (1.14)

where the “*product” i$ obtained by faming the elements of A (:, + Z2) by use of (1.13).

CleUly, [he inverse of the particular matrix (1 – R-(z I)R +(: ~)) must exist. [n the transpofi

theory of neutrons, the existence or non-existence of this inverse is closely connected with

the prohlcm of physical criticality of the system.

1.2 ‘I-hc I)ouhling l~fwmulns

(1.15)



These so-called “doubling” formulas obviously make it possible [o calculate the R and T

funcuons for ‘‘thick” slabs starting only with knowledge of a single “thin’- slab. Equa-

tions t 1.15) were apparently first noted by the astrophysicist van der Hulst [7].

Xcse tmmulits were very effecti~’ely used by G. Hughes et al. [5] who made extensive

calculations involving direction dependent neutron transport. The continuous angle depen-

dence was first discretized by careful ‘‘binning, ” a process conceptually easy but non-

rnvial in practice. As many as 256 bins were considered. The initial slab was taken

sufficiently thin to make it possible to employ the single scattering transport approxima-

tion. Excellent results were cbmined.

1.3 The *-Product

The properties of the *-product invite investigation, and a considerable amount of work

has been done. The operation is associative and has the identity

(1.16)

Under certain conditions there is an inverse. To pursue the properties of the *-product in

detail would take us far afield.

2 INVARIANT IM13EDDING IN TWO DIMENSIONS

2.1 Discussion of the Problem

We have implied that invariant imbedding in more than 1-D is conceptually possible.

but gives promise of being quite complicated. In this section we shall face some of those

complications. Transport in 2-D appears to be a somewhat unrealistic process. To see that

it is actually meaningfu! we simply consider tin infinitely long cylinder and confine our

investigations to a cross sectiorl of the cylinder, (This is the analogue of what was done

with the infinite slab in Sec. 1). To keep matters as simple ;M possible, we consider that

cross section to be a square, Qr, at worst, a rectangle, Later, we shall nntc that more com-

plicated regions, which can be i~pproxiimated by unions of squares, can be handlrd.

Continuing our emphosis on particle transport, we ifituitively see tit once that p:uticle

direction is going to be the most difficult matter to handle, Energy, particle size or kind, or

other t:+pes of states usually offer much less complication. We sh:lll therefore consider par-

ticle directions as the only states.

Consider the case of a sq’lfirc, A particle impinging on one side of”the squ:ire ~.an result

in outputs {m the ;ldjacent :;ides :1s WCII;1son the opposite side. (“lcarly, more th;m the sim-

ple R :Ind T functions iMC rledcd. AS iin[)ther ~~)~~pli~iitio[]. wc n~)tc that li~c:ltion ()!”the

point of entry on the s(~uwc side is probably going ;(J pl:ly N role, Ndilficuitv aw)idcd in the

Slilh gt![}nlctry by our assumpti(m th:lt there Wii S no (X ,Y ) ~icpcndcncc.



addition and doubling formulas (Eqs, ( 1.13), ( 1.15)) suggest that me may then be able to

“add” (juxtapose ) these elements to obtain “thin” rectangles and then “add” Ihese rec-

tangles to eventually ‘‘double” the original elenlent. This is the essence of the program

we shall describe.

~ 7 Xotation and operators---

\Ve shall not at this point describe how to obtain results for the fundtimental square ele-

ment 1. That matter wiil be taken up in Sec. 3. We suppose all that information is avail-

able. For convenience we assume the square X is isotropic. It does not distinguish its top

from its sides or bottom. hlore accurately, it is insensitive to 90° rotations.

Figure 4 schematically shows X with input vectors denoted by u and outputs by v.

When four Z elements are joined-hence a doubling–the picture looks like Fig. 5. Here the

heavy atTows labeled 17 denote overall outputs resulting from the inpu~s u to each of the

foul fundamental squares 1:. Figure 6 indicates the situation after five doublings. In none

of these diagrams is any quantitative relationship among the u‘s and \”s implied.

Let us now introduce the necessary reflection and ~ansmission operators. Figul 7

indic~tes an input vector u on the left side of the square X This results in four output vec-

tors.

Figure 4

Figure 5

0
u v

u

)
v

h
v u

v u

Fundamental square of width h.

u v

I u

u u
—

1 2

V,L

4 3
—

u

u

Foui fundamental squares ‘joined-

together resultlng In a 2hx2h sauare

with known flux values,
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“1 Vv “

Figure 6. Result after five doublings (32hx32h, 25hx2sh).

one from the left face. one from the right, and one from e~ch of the two sides. The last are

new. There are no analogues in 1-D. We denote the required operators by R, T, S, f. If

we call the output vectors \‘~, \’ll,, Y’s, \’N, as shown in Fig. 8 (note that the indexing

corresponds to the customary way of labeling wind direction), and similarly write u = Uw,

we have (assuming momentarily that L$ = WE = U,v = ())

Vs = Suwl

VN,=TUW

lv,~=Suu
..- . .

R

11

/-

s

/

P’+
s

(2.1)

T

Figure 7, Possible exit vector operators R, S, ~, and T

associated with an incident vector u,
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v~

N

w E

s

Figure 8. Incident and exit vectors UN, UE, US, UW and

VN, VE, VS., Vw, respec~lvely.

NOWrecall the fact that Z is isotropic. We see at once that

2=S* , (2.2)

where * indicates adjoint (transpose iri this real case). Also we see that if the input is only

from the south, the same operators (permuted) apply. Thus. finally,

(2.3)

The

cise

2.3

four-by-four marnx operator (recall the elements themselves tare matrices J is the pre-

analogue of the transition matrix A of Sec. 1.1.

Addition

We now wish to adjoin two of the fundamental squares 1. We do so as shown in Fig.

9. Using the continuity assumption inmoduced in Sec. 1.1 we see

The R, 7, S, S* me the sume for the individual squares Xl iind X:. W’e now need to find
.

the tr:msltion matrix A ~ relating the irlput vcct~r



I

0
Vq

Figure 9. ‘Joining- two squares.

.

u=

(1us,
Uw,

to the output vector
,

V,v1
1

‘N 2

v~~
v

= Vs 2 “

L’s ,

VW,
k

Obviously, Eq. (2.3) yields four equations for each square. a total of eight. Two of Ihese

may be eliminated by use of (2.4). After a very considerable amount of algebra we find

V= ART1 . (2.7)

where



.$,1 - R?)-’s. : 5] - ~{~)-1~” : S(I– R2)-’5 lf+5(l– Ra)-l RS’ : s. +S(f – ft:)-’/i7’

1 As. (r – I-F)-l[fs”: 5+ S.(1- fty)-lRT : R+ S”(?-R2)-lM S[l - R2)-1.S. : S.(I- F)-’7’
.... .. ... .. .... .,

7“:]- ~~]-ly : 7“(/– /p)-1~ ; T(I - R2!-lS S+ ’f’[t - R7)-lltS” : R t 7“(1 - t{z)-’l{l’
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ii+S(l – li:j-’it58 i S. +5(1 - R3)-l RT i T+ S(l– R])-l RS cj([_ H2)-15. :
S(1 - li2)-17

.$. [, _~?)-ly ; .$*(1– li2)-’T I S“(I - IF)-’s 7“+.s”[1– nq-’m” : S+5*(I - t{z)-~m”
... .. . . .............................. ... .. . .... ... ...... .... .. ......,, .. ...

5+1(1 -[i3)-’RS* E R+”i”{l– [C2;-’RT ~ Y+ T(l-R2)-1R5 ‘I”(I – R2)-l S* : 7“[[ – ~{~)-1~

(2.8)



Clearly, A ~, is an analogue of A (:, + z ZJ. Rewrite (2.8)

where the .4ij are the bl~k matrices indicated by the dotted lines in [~-~). Also set

Equation (2.7) can be rewritten

Axw+j

For example,

(2.10)

From this equation wc see that A 11 is a T-like matiix, A 12 is ~ -like, A 13 is R -like. and A ,4

is again S -like. ,Ma.king this identificmion for the other Aij and noting that some certain

blocks in A ~ occur more than cmcc, we get

(2.13)

We now have results for a rectangle X, The operutor c~n be repeutcd to obttiin A ~z, the

transition matrix for a rectangle twice as long, but of the sumc width. Instead wc wish to

“build” a square 2X, the double of X.

2.4 Doubling

We double the origimd Miumc elcrncnt by juxtaposirig [W(J rcct:inglcs. ;IS indicated in

Fig. lo. The reasoning is straightfonvtird hut the algcbrn is messy, Wc simply write the

find result.
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R,+li(l-H~)”’lt,/i
.

SJ[l - 1(;) ‘J1

S2+ SJ(I - /Z~)-’lf,’li
. . . . . . .

7;(1- R;) 11’,
. . . . . .

SI+SZ(l- lt~)-’lt,li

Sl(l - H;)-’7I

.5”2+ 1;(/- R;)- ‘/tIs, 7;(/ -. If:) “Is?
. . . . . . . . . . . . . . . . . .

S21 - H:)-ls, R2 + .;2(1 N:)-lll $2

/{: + S,(l - fl~)-’li,s, S](I - /{;) -’.s?
. . . . . . . . . . . . . . . . . . . . . .

11(1- R~)-lSl SI + rl(l - K;)-’ ulsz
. . . . . . . . . . . . . . . . . . . . . . . . . .

f; t J2(I - K;)-’ n,s, $( I - It;) ‘.sl

S,(1 - Jz;)-’sl “Ii + 51(1 - n;)-’ i(lsj

(2.14)
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Figure 10, Joining two rectangles,

In Eq, (2.14)

,

vectors (Iclincd bv (2. lo), ‘Ilc (Jpcr:ltor A ~x m;lv Iw writtrn

\
‘1’t ,~’, 1:1 ,SJ

,i, ‘1”, ,s? R:
,’\ :X
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11)(2,1.{),



We mzy now treat 2X as the fundamental square. and. by iterating, Fid A 2.X. Clearly,

the mm-ices (and the input and output vectors) increase in order at each step. We shall say

more about this and its consequences shortly,

3 MORE ABOUT THE FUNDAMENTAL ELEMENTS

3.1 General Comments

In Sec. 2, we have observed that to start the doubling process, it is necessary to begin

with a fundamental square Z for which the transition matrix is completely known. It was

implied that Z would probably be “small.” This is not really necessary if, by one device

or another, we have all of the needed R, T, and S infornmion. However, in Sec. 1, we

observed that for the calculations made in [5], a thi,l slab initiated the process, and for it the

single scattering approximation sufficed. This suggests the probable usefulness of a small

Z, but the approximation is much less obvious on simple physical grounds. In Sec. 3.2, we

shall outline one way of getting started. It is by no meuns the only way.

3.2 Details for a “Small” Z Calculation

We begin with a specific transport problem in mind.

matio[l so that genemlizations are fairly obvious, tilbeit

ment~ll square Z of side }/, is oriented with respect to x

Scattering is supposed isouopic so that the classictil

macroscopic cross sect; on unity,

VA

(h12.h)

This will provide enough infor-

perhaps unpleasant. The funda-

and y axes as shown in Fig. 11.

transpofi equation is, ilssuming

h

r 1

(h/2, h/2)

((), h/?} R (h, h/2)



au Al
— (.T.sp,?l)+Tl-+ VW,.J’!P,V)

p ax ().V

Here

where f3 is the angle the particle

pie we discretize 9 so that

(3.1)1

(’J_--i ,CJ.,~!.t,}’,:: ,y>,ig’ ,? (s = constam
-1

p=cose, rl=sin6, (3.2)

direction makes with respect to the x -axis. In this exam-

ej ‘(2O - 1)+ l): , ~=l,2,3?4 .

(In the terminology of nuclear engineering, this is an S ~ approximation. See [8].)

Now we consider X M the fundamental cell in a finite difference scheme using a five-

point stencil as indicated in Fig. 11. The discretized version of (3.1) becomes

(3.3)

=; iti($)+) , j=l>2,3,4 ,
k=l -

the simplest quxhature formula approximates the integral in (3.1).

To determine the known quantities an~ the ul~knowns in (3.3), we examine Fig. 12.

Clearly some of the ~’s are inputs (known) wid some are outputs (unknowns). The f’unc-

}1 /1
tlon values @ (y, ~ ) appear to bc tlncalc~lublc. To overcome this we :]se a kind of ccntml

- ..
~iiffcrencc whcmc often rcfcrrcd to by nucicfir experts as the ‘ ‘dii~moncf dilfcrcncc. ”

Numerical analysts refer to it as the Crank-Nicholson method. We set

and

/1 }1 Lyf’( +)) +yl’ (: .)1))\p-,.,- ;)= ,

(3.4il)



and also

(?l.5a)

(3m5b)

We hsve eight equations and sixteen ~’s. However,

that eight of the ~’s are known inputs. It is convenient

the form

MS=NS .

a glwwe at Figs. 12a tind b reveal

to write (3.5) and its amdogues in

( J.6)

where M and N are eight-by-eight marnces, and (he u and \I Me Input and output vectors.

respectively. Specifically, we have

‘ +-,())V(

1$((),$
i\/((), ,. )

<

(~,7il)



u =

J
i“h. h i“b. h

Figure 12a. Incident flux.

(3.7b)

riflurn l?b, [xit flux



Also,

where the enrnes are two-by-two block mm-ices:

(3.i3)

(3.9a)

P ;[+y=— (3.9b)

Y [)Cll
‘-~ 11 (3.9C)

(The somewhat strange choice of the components of 1’ has berm made so that M is diago-

nally dominant for small h ). Also

1= –. - -1{ I
‘h 1 h ‘J

where

(3.10)

(3.11)

To find \’ wc must determine hf-l,’V. Write using (3,8)

Ml=$21+hP [3.12)

mm

(3.13)

(11sutliccs 10 rcluin (rely lhc lcml in h bccuusc [hc wl~fJlc dii”l”crcncc :lllpl[~xllll;lli[)ll Is v:llitl

only lo this order,) Now wrl[c [.1.10) M



“’!0!’!.!1
+hQ=A+hQ .

Thus

(3.14)

(3.15)

The matrix M-’N is just the transition mcmix A ~ (see Sec. 2.2), and the entries are the

blocks T, S. R, etc., properly mwtged. Obseme thw if h is neglectea. u’e get simply

(3.16)

and the block in the ( i, 1) position is thus zero. A glance at Fig. ;2 shows that indeed there

can be no Uansrhsion to an opposite side without u cc.llision, md (first) collisions arc

accounted for by the texms m h. Thus M-’N as given ‘.~y(3.15) is the first collision

approximation to the inverse of the mmsport operator (3.1).

Thus wc have the analogue of what was done in {5], f.lbserve also that the (1,2) block

is just 6 ,and that it is an S block. Here no collision ]s needed f:w GuLpu:.

Explicit expressions for the elements of A ~ = M-lP1 ctin clearly be calculated. ICdoes

not seem woxth while to list them here.

3.3 Some Computatiorml Experiences

The approaches oullined in this section have hecn camicd out in cktuil for the example

described in the previous section iIs WCIIas one for which ~xw.icles were ullowed m move

in only the compass directions, N, Z, S, \V. Most of our discussion will be for [he first

Cmc.

Most striking is the fxt ~hut even the ini[ial square X i;lw~lvcs vcctc)rs of Icnglh 8 und

mmiccs conmining 64 clcnlcn[s. On each doubling, dIC lcng[h O! IIIC t~lnncr incrcnscs hv ii

f~cnm of 2, and of the size of the hmcr in~~iiscs by :1 tixwr O( 4. C’omputcr memory rCS-

Irmions nrc a Cleilr ltlrCill. 1 It)wcvcr, seven dout)~ings WCrC C:ltic(j (111[ (~rl lhc (’RAY-1

wilh no str:lin using only inlcrn; ll mcm[)q’, ‘lllC t~)[:ll iill’d! rquirfxt Wiis ,Ihou[ 10 wctmds.

Imcrcslingly enough, ill C:lctl Slil~C, 111(1s( (JI Itlc c~mll)ulcr [illlc W;IS rcq~]lrc(i I“t)r!hc 1:1s[

(kwl]ling. I Iencc, the .\ixth stil~c t(x~k ilt~](ll tmc SCLYNM1 ;Inci [Ilc SC VCIIIh ltx)k ili~)llt nine

scuds. “Ilc Illnd;unenrnl squwc X ww ~.h(}scn wilh iI= I() “ (l<cc;lll [Ilc il[lil is ;1Illeilll

I“:CC p:lltl, ) “11111S ltlC doutllings Immgh[ IIICxqu:lrc 1[1:1hit t)vrr I)[IC;lIIII ii qll;lr[cr mc:ln tree



paths on a side. Direct comparison with other methods proved difficult. but results

appeared reasonable.

An additional doubling was carried out in the N, E, S, \V case in about the same

artwunt of time. Observe that the first doubling in this cxu p,oduces a sy>tem as large as

that with which we start in the previous example.

In al! instances standard matrix routines were employed. No efforts were made to

optimize programs. and only the readily available machine memory was utilized.

4 REMARKS, SUMMARY, AND CONCLUSIONS-THE FUTURE

We have described in some detail how the conceptual program cf Corones can be car-

ried out in a particular 2-D geometry and have described some calculations to demonstrate

that the approach is feasible. it may be argued, of course, that a square only one or two

mean free paths on a side is not likely to be of great interest.

However, highly efficient programming, plus the use of auxiliary memory, could

doubtless have allowed sevel al more doublings without excessive expenditure of time.

More important, the advent of the parallel processor probably changes the time and

memory considerations greatly. The structure of the equations developed mnkes parallel

processing seem ideal for invariant imbedding.

Assuming all this comes about, of what use might the method be? First, quite irregular

regions can be approximated by unions of squares, even if the lengths of their sides are

related by multiples of two. Cl-ice the basic transition matrices have been calcuktted and

recorded, the joining problems are fairly straightforward,

At a simple level. consider three rectangles of different materials forming a wmdwich.

Suppose the middle rectangle can be made of any of several materials with the aim of con-

structing the most effective shield. ‘his problem, even now, is virtually within grasp.

Instead of computing each shield separately, one would only have to call up the appropriate

A matrices and “join.”

A geometry that 1s extremely diiticul: (or impossible) to hitnale with all standard com-

puttitiontil transport methods except Monte Carlo is illustrated in Fig. 13. Obviously, the

imbedding method could be employed quite easily.

What iibout 3-D’? That. at present, ~ioes not look too promi!; ing. Simple operti(ioil

counts suggest thi~t inviirl:lnt imbc[itiing mi~~ not he competitive with CltissiCiil numcricd

iiJ)proilChCS. 13Ut [hilt pessimistic view is bil$’Cd 011 kviccs SIIllililr to ttlC l?llC WC tl:lVC I) Ul-

Iincd (not (m future c(mlputinp muchincs ), I;urthcr rCSCiMCtl is stron~:ly suggc:;tc(i.



ElVacuum

Figure 13. Medium with imbedded vacuum region.
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