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INVARIANT IMBEDDING IN TWO
DIMENSIONS

V. FABER, DANIEL L. SETH. and G. MILTON WING, Computer Research and Applica-
tions. Los Alamos National Laboratory, Los Alamos, New Mexico*

INTRODUCTION

J. Corones [1] tas noted that the doubling and addition formulas of invariant imbedding
can be extended conceptually to very general situations. All that is needed is a black box
“‘process’’ with n “‘ports.”” The ith port has vector input /; and vector output J;. (In Fig.
1, such a process is represented as an n -gon, but this is only a visual device.)

Addition formulas result when two or more of these processes are joined together to
form a new process in some regular way. For example, four congruent squares can be jux-
taposed to form a larger square. (This program is carried out in some detail in Sec. 2.) At
each join, the output of one process becomes the input of the other and vice versa. (We
always suppose the join to occur at one or more perts.) Addition formulas result from the
combination of these shared quantities. Corones has thus pointed out that invariant imbed-
ding is not, as is somerimes asserted, an inherently one-dimensional (1-D) method, but
works conceptually in any number of dimensions; some previous work that is conceptually
along these lines, with references to other such works, can be found in Refs. 2-4. The
detatls can, of course, become very complicated. We shall show that the method 15 compu-
tationally teasible for certain two-dimensional (2-1) problems. To conform to the thrust of
these proceedings, we shall usually phrase our discussions in terms of transport theory
rather than speaking of more abstract processes.

¢ This work was pertormed under the suspces of the US Depannent of bnergy
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Figure 1. N - port process.

1 INVARIANT IMBEDDING IN 1-D

1.1 The Addition Formulas

Consider an infinite slab of mateniai of thickness z. Linear transport of particles occurs
in the slab in a manner independent of the x and v coordinates. We suppose no internal
particle sources. The left face of the slab may be considered a ‘‘port,”” as may the right
side. The input of particles at the left face is described by a vector /, which may have as
components encrgies. directions, etc. These are assumed 1o be discrete quantities. The
vector /| will not be allowed to depend on the x and ¥ coordinates. (We are corsidering
the entire left face to be a port). For instance, /|, might be the vector whose coniponents
give the number of particles per unit area entering the left face at six different angles.
Similarly, /5, /|, and ./, are input and output vectors as shown in Fig. 2. (Note that the
ind=xing does not agree with Fig. 1.)

The components of the input and output vectors are sometimes referred to as states (sce
(5]). Although energies and directions are often the physically interesting states, such
descriptors as color, size. and generation number are quite admissible.* Observe that the
symbol /7 is used in Fig. 2 for “input.”” with J for *‘output.”” Also, we do not mes.ion any-
thing about the particles inside the slab, save to emphasize that all processes are linear.

We assoctate with this process a transition matrix

A=A, (1.1

which has the property that its entries (oL f3) give the probability that an mput particle in
state a0 will lead to an output particle in state 3. Thus

* The number of states can become very large eastiv. Suppose nput particles can move i any of eight daections at anv of 17 ener
gies.  Lhere sre then Y0 posnibie states, and the mput (and omput) vecton will have 96 componenis
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Figure 2. Slab of width z.
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Because / and J are vectors, A is not a simple two-by-two matrix. It is customarily writ-
ten in block form:

T, R,
A= R T.| (1.3)
To understand the meaning of the T and R matrices, observe that (1.2) gives
Jy=TJ1,+R.I, . (1.4)
If 15, =0 this yields

‘11=T4]] . (1.53)
Thus T, provides the information about particles transmitted through the slab to the right
when the only input is at the left face.

Again, suppose /| =(). Then

‘/]=R012' (l5b)
Hence R, provides information about particles reflected from the slab to the right when the
only input is at the right tace: 7 and R may similarly be understood.
In many cases of interest the material is isotropic it does not know irs right from 1ts
left.* Then

R=R,=R , T=T, -1 . (1.6)

*Note that the word 110tropic here applies 10 the matenat’s “'sense of directon It has nothing 1o do with the detmls of s allenng
processes.



In some of what follows we assume (1.6) holds. Suppose we now have two slabs of
thicknesses =, and z,. Assume that we know the transition matrices A (z,) and A (z,). Let
us juxtapose the two slabs forming one of thickness z, + z». Can we find the resulting tran-
sition matrices. which we denote by A (7, @ 7,)7

This problem was first addressed by R. Redheffer (see [6]) and the bibliography
therein) but in a somewhat different context. We shall sketch the fundamental derivauon.

Refer to Fig. 3. Obviously we wish, for example, to consider the output vector /, from
the slab of thickness :, as an input vector K, for the slab of thickness z,. This requires a
certain compatability amongst the input and output vectors. The details are best left to the
reader. Also, we must require that when we form the slabs, J, does indeed become Ky,
etc. No particles are created or absorbed. This is a fundamental continuity assumption
physically appropriate to transport phenomena (and many other processes).

For notational convenience. write

Az) = TR0 =12 (1.7)
COS R T T ‘
J
We seek the mamix
'C . r‘
Az, +125)=C = Cll ciz} (1.8)
such that
(1, /,] |
[LJ =C Kz' : (1.9)
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Figure 3. Two slabs to be "joined.”



From Fig. 3 we have (see (1.2) and (1.3))
Jy =T (DI +R (D
Jy=R (DI +T (DI,

(1.10)
Li=T (2K, +R.(DK,
Ly=R_(DK,+T_(2K- .
The continuity requirement implies
J,=K, ., I-=L,. (1.1D)

Elininating J,./,. K|, L, from (1.10) and (1.11) finally gives (observe that the unsub-
scripted / denotes the identity)

J2=T_(D[RDU =R (DR_(N'R (DT K,
+ [T_(DR (X! -=R_ (DR _(2))"T‘(1) +R_(D]I,

Ly =T (DU_R,(DR_Q)'R,(DT2)
+R,(DIKL+ [T (U =R (HR_2N'T(DIT, .

(1.12)

We now easily identify the e!ements of C (Eq. (1.8)), which we write as R.(z, + ;) and
T.( | +za). Reverting to the R and T notation yields

Ci =T (zy+22)=T (200 —R_(z)R (2))"'T(z))
Cra=R,(z,+2) =T, (20 =R_@DR. (2R _(2)T_(z)+ R (z9) 13)
Cay=R_(z,+22)=T_(2DR(zU ~R_(z DR (27T (z)) + R (z})
Coa=T_(z;+2)=T_DIR DI =R_GDR (2R (= NT (2 +T (2] .
Equation (1.13) is often wnitten in the form
A(zy+2))=Az)* Alzy) . (1.14)

where the *‘*product’’ is obtained by forming the elements of A (2, + z;) by use of (1.13).
Cleurly, the inverse of the particular matwix (/ — R _(z )R ,(z1)) rnust exist. In the transport

theory of neutrons. the existence or non-cxistence of this inverse is closely connected with
the problem of physical cnticality of the system.

1.2 The Doubling Formulas

Finally, if the medium is isotropic (see Eg (1.6) and if -y =2, ==z, we find

TRzy=Tel —Rz(: N I'I'(':)
(1.15)
R =T -RY:=n "RETGY+RG) .



These so-called ‘‘doubling™’ formulas obviously make 1i possible 1o calculate the R and T
functions for ‘‘thick’ slabs starting only with knowledge of a single ‘‘thin’" slab. Equa-
tions (1.15) were apparently first noted by the astrophysicist van der Hulst [7].

Thcse tormulas were very effectively used by G. Hughes et al. [5] who made extensive
calcu'anions involving direction dependent neutron transport. The continuous angle depen-
dence was firsi discreuzed by careful ‘‘binning,”’ a process conceptually easy but non-
trivial in practice. As many as 256 bins were considered. The initial slab was taken
sufficiently thin to make it possible to employ the single scattering transport approxima-
tion. Excellent results were cbtained.

1.3 The *-Product

The properties of the *-product invite investigation, and a considerable amount of work
has been done. The operation is associative and has the identity

. _ |10
Idcn—[OI] ) (1.16)

Under certain conditions there is an inverse. To pursue the properties of the *-product in
detail would take us far afield.

2 INVARIANT IMBEDDING IN TWO DIMENSIONS

2.1 Discussion of the Problem

We have implied that invanant imbedding in more than 1-D is conceptuaily possible.
but gives promise of being quite complicated. In this section we shall face some of those
complications. Transport in 2-D appears to be a somewhat unrealistic process. To see that
it 1s actuallv meaningful we simply consider an infinitely long cvlinder and confine our
investigations to a cross section of the cylinder. (This is the analogue of what was done
with the infinite slab in Sec. 13. To keep matters as simple as possible, we consider that
cross section to be a square, or, at worst, a rectangle. Later, we shall note that more com-
plicated regions, which can be approximated by unions of squares, can be handled.

Continuing our emphasis on particle transport, we intuitively see at once that particle
direction is going to be the most difficult matter to handle. Energy, particle size or kind, or
other types of states usually offer much less complication. We shall theretore consider par-
ticle directions as the only states.

Consider the case of a square. A particle impinging on one side of the square can result
in outputs on the adjacent sides as well as on the opposite side. Clearly, more than the sim-
ple K and T functions are needed. As another complication, we note that location of the
point of entry on the square side is probably going (o play a role, a difficulty avoided in the
slab geometry by our assumption that there was no (x,v ) dependence.

From the 1-D analysis, we see that it is probably reasonable to start with a very small
tundamental square in the hope of getting, in some wav, results for this “element,”” The



addition and doubling formulas (Egs. (1.13), (1.15)) suggest that we may then be able to
“add’ (juxtapose) these elements to obtain '‘thin’’ rectangles and then “*add’’ these rec-

tangles to eventually ‘‘double’’ the original element. This 1s the essence of the program
we shall descnbe.

2.2 Notation and Operators

We shall not at this point describe how to obtain results for the fundamental square ele-
ment &. That matter wiil be taken up in Sec. 3. We suppose all that information is avail-
able. For convenience we assume the square I is isowropic. It does not distinguish its top
from its sides or bottom. More accurately, it is insensitive to 90° rotations.

Figure 4 schematically shows X with input vectors denoted by « and outputs by v.
When four Z elements are joined-hence a doubling~-the picture looks like Fig. 5. Here the
heavv arrows labeled V' denote overall outputs resulting from the inputs u to each of the
four fundamental squares &;. Figure 6 indicates the situation after five doublings. In none
of these diagrams is any quantitative relationship among the 1 's and V'’s implied.

Let us now introduce the necessary reflection and transmission operators. Figu 7

indicates an input vector i on the left side of the square £. This results in four output vec-
tors.

r_i_
< -

T U, T
v
Figure 5. Four fundamental squares “joined”

together resuiting in a 2hx2h square
with known flux values.
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Figure 6. Resuit after five doublings (32hx32h, 25hx2%h).

one from the left face, one from the nght, and one from euach of the two sides. The last are
new. There are no analogues in 1-D. We denote the required operators by R, T, S, S. If
we call the output vectors V¢, Vy, Vg, Vy, as shown in Fig. 8 (note that the indexing
corresponds to the customary way of labeling wind direction), and similarly write u = uy,
we have (assuming momentarily that Us = Ug = Uy =0)

VS = SUW
Wy = SUy '
Ve =RUy

i

—

. e r

N

Figure 7. Possible exit vector operators R, S, S, and T
assoclated with an incident vector u.
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Figure 8. Incident and exit vectors Uy, Ue, Us, Uw and
Vn, Ve, Vs, Vw. respectively.

Now recall the fact that £ is isotropic. We see at once that

S =8, (2.2)

where * indicates adjoint (transpose in this real case). Also we see that if the input is only
from the south, the same operators (permuted) apply. Thus, finally,

VWi (17 s Rs¥|Un
Vel _|sxT S R||UE (2.3)
Vol TIRS*T S| |Us| - -
VWJ S RS*T Uy |

The four-by-four matrix operator (recall the elements themselves are matrices) is the pre-
cise analogue of the transition matrix A of Sec. 1.1.

2.3 Addition

We now wish to adjoin two of the fundamental squares £. We do so as shown :in Fig.
9. Using the continuity assumption introduced in Sec. 1.1 we see
V1 = Up,
(2.4)
Ug1=Vea
The R. T.S.S* are the same for the individual squares £, and £,. We now need to find
the transition matrix A , relating the input vector



Un, sy Uy vy
I R | 1
Uw. | Vw. Uw. Ve,
————— P———————
1 2
S ——— P—————
Ve, Uy, Vi, Us,
Vi, Us, Vi U,

to the output vector

Vg
Vwi
\ P

Obviously, Eg. (2.3) vields “our equations for each square, a total of eight. Two of these
may be eliminated by use of (2.4). After a very considerable amount of algebra we find

V=AgU . (2.7)

where
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T+ 30— RY-URS Nl K)T'Se
LRl SR (M 1 +5(I-RY)'HS"

ST+ Til - RYURS T - /R)7's

R+ S - )RS

DIV (e
S*{1 - RH)-1se

R+ S0~ 37 VRS

T5l - R%,7°s S+ I{I-R)'RS*

SI - Y)Y 'T

TU - R®®)™'T :
: S( - R)°'T

S$*+S( - R)'RT

I+ 5(1- R*)"'RS’

S(i - RY)'S
S*(I - RY)-\se

R+ S'(7~ R)'RS

© S4S°(I-RY)'RT :
DR+ TU - R RT

S(1 - R)™'s”

T+ S(I- R")-'RS
T+ S°(] - R?)-'RS*

S*(1 - RY)-'S

S+ S0 - i)kt
S* (I - [*)~'F

S+ S - )R ;

SI-RY-'T
: T(E - RH'T )

R+ T(l - /% 'RT

S*+T(I - R 'RS (I - R)'S

(2.8)



Clearly, A 4 is an analogue of A (z| + z,). Rewrite (2.8)
[An Ay Ay Ay
Awl Aan Aﬂ'[ Aﬂ4
R 28
X7 As A A Ayl (29
lAu Ay Ay Ay

where the 4;; are the block matrices indicated by the dotted lines in (2.8). Also set

Uy = g:: Ugp=Wgy . Us = Z;? . Uw = (Uy)y)
- (2.10)
Vy = Lt/,:;]  VE=(Vg) , Vg = [5;?] Vi =(Vyy)
Equation (2.7) can be rewritten
A U=V | (2.11)
For example,
Vi =AnUy + 412U +A3Us +A Uy (2.12)

rrom this equation we see that A | is a T -like matiix, A |, is S -like, A |5 is R -like, and-A 4
is again S -like. Making this identificarion for the other A;; and noting that some certain
blocks in A ;4 occur more than once, we get

[7:1 Sl Rl Sz
Ry S, T, §| o
Sa R2 S, T2

Ag=

We now have results Jor a rectangle &, The operator can be repeated to obtain A 54, the

transition matrix for a rectangle twice as long, but of the same width. Instead we wish to
*‘build’’ a square 2Z, the double of L.

2.4 Doubling

We double the original square elernent by juxtaposing two rectangles. as indicated in

Fig. 10. The reasoning is straightforward but the algebra is messy. We simply write the
final result.



By

B

; l'; >a e l;"-“ij-lR|51

Tai- REI 'Sl e il - Rirl"lsi

Sl - Kyt
In ey SL- 1) 'Ry,

Lo sl - 0 Ry 3,

\-'Il' - Rfl I-S'.

Il - RS,

Ry S0 -0G) "1 Sy

S - K)'S

sal - Ri by,

.’(; r ?-‘-_l’ - R}]‘IR|S|

R+ 1i(l - K 'Ry Iy

Sal - K 'L

DS+ S(-R) R

Tl - K) 'T;

S +S1-RB) 'R

Si(I- R 'Ty

S24 Wl - RI)'R, S,
S:0 - RY)'s,
It + 5i(1 - RI)'R, S,

Sl - RH)'s,

Ty(l - K3) 1S,

Ryt Sl MY)'h s,
Sl - KH-'S,

Si4 Il - B) "1y 5,

Su(l - 1) Vs,

Ty + Sill - B3)'itys) J

(2.14)
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Figure 10. Joining two rectangiles.

In Eq. (2.14)

Uny Viva
Ug, Vey
Ug- Vil
- - . "’
A2£ US2 VSI , (2.15)
Uw) Vi
Uw VWU

oragain in block notation

Un Vi
Uy V.
S = Lo (2.
A 2% U_g VS R (2.16)
Uw | [Viw

where the U/ 's and Vs wiath tildes take their meanings from (2.15) and are not the same as
vectors defined by (2.10). The operator A v may be written

Tysy ’ys,
\ S‘ ',"v S N I\,‘\ , 17
’ “:" l\" .\4‘) Il S’ (A“ )
.L‘\" s M ST
The clements of A,y take their meanings trom (2,10 and e not o be contused with those
m (213,



We mzy now treat 2T as the fundamental square, and, by iterating, find A ,.¢. Clearly,

the matrices (and the input and output vectors) increase in order at each step. We shall say
more about this and its consequences shortly.

3 MORE ABOUT THE FUNDAMENTAL ELEMENT S

3.1 General Comments

In Sec. 2, we have observed that to start the doubling process, it is necessary to begin
with a fundamental square X for which the transition matrix is completely known. It was
implied that £ would probably be ‘‘small.”” This is not really necessary if, by one device
or another, we have all of the needed R, T, and S information. However, in Sec. 1, we
observed that for the calculations made in [5], a thia slab initiated the process, and for it the
single scattering approximation sufficed. This suggests the probable usefulness of a small
Z. but the approximation is much less obvious on simple physical grounds. In Sec. 3.2, we
shall outline one way of getting started. It is by no means the only way.

3.2 Details for a *‘Small’* Z Calcuiation

We begin with a specific transport problem in mind. This will provide enough infor-
mation so that generalizations are fairly obvious, albeit perhaps unpleasant. The funda-
mental square X, of side 4, is oriented with respect to x and v axes as shown in Fig. 11.
Scattering is supposed isotropic so that the classical transport equation is, assuming
MACTOSCOPIC Cross sect’on unity,

{h/2, h
h -

(h/2, h/2)
(0. h/2) x {h, h/2)

th/2, O

bigure 11 Stencil tor ditterance schema applied



ve ﬂ’— (x.yuM +n —8}1 +y(x,v,1n,n)
ox dy

1 3.1
- ‘(; VLY, " T, ¢ =constant
-
Here
L=cosB® , n=sinf , (3.2)

where 0 is the angle the particle direction makes with respect to the x-axis. In this exam-
ple we discretize 8 so that

=Q2( -1+ 1)% L j=1234 .

(In the terminology of nuclear engineering, this is an S, approximation. See [8].)

Now we consider X as the fundamental cell in a finite difference scheme using a five-
point stencil as indicated in Fig. 11. The discretized version of (3.1) becomes

h h h
Hy (W (3 = WO, ) + My v (5 h)

h o+

W (20 +y <— 'f) (3.3)

)
_E:\:Wk(.}l _h_) i =1234
2 2V e

the simplest quadiature formula approximates the integral in (3.1).

To determine the known quantities anu the usknowns in (3.3), we examine Fig. 12
Clearly some of the y's are inputs (known) anud some are outputs (unknowns). The func-

h h . ‘
ton values \u’(-’—.7) appear to be ancalculable. To overceme this we use a kind of central
difference scheme often referred to by nucicar experts as the ‘“‘diamond difference.™”
Numenical analysts refer to it as the Crank-Nicholson method. We scet

\J/’(ll' _/_’) (w!(() -/L)+\u/(h ——)) (3.4a)

and

ho i/ | / /
Wt s O 0yl (o) (3.4b)

-~ - P - -

In the solution of the ransport equation, this approximation is known to be of accuracy
Y
O (he),

We may now write (3.3) in a semewhat different fonm. For speciticity we select 9 = 6,
After some algebra we tind, using the equations (3.3),



\F’: 1 h
= y'h=
h (Wth 2

and also

\/5. 1 h
e W (h, ?)

-yl

1 h e b
A 2,1-3 it (3.52)
.4
=5 T o O+t 2y
-v' &0
]
+ = (y'h, -—>+\v 0.5 (3.5b)
4
=§ Z (¥ (0, —-)+\u"(h,—f—)) .

Clearly, six further equations can be obtained by choosing 6 = 6,.0,,0,.

We have eight equations and sixteen y's. However, a glance at Figs. 12a and b reveal
that eight of the W's are known inputs. It is convenient to write (3.5) and its analogues in

the form

MS =NS

(3.6)

where M and N are eight-by-eight matrices, and the « and v are input and output vectors.

respectively. Specifically, we have

‘/

7

/

Y )
1 "
vy (/I ‘5-)
4, h
\V (h ,E-)
\M‘(—’i,m

v fi 0)

W Yo, ﬁ)

\V“((), c )

-

[ A )
vi(h =)

(3.7



U= -0 (3.7b)

2
2., h
“th,—
ye( 2)
Y n Vava. n
2%, YA w2
V"& N I % N2
¥na. o Vin. o
Figure 12a. Incident flux.
Vhn. L2PN
WA Vi w2
¥d e Vo hia

Al .
Vi o ¥na o

Figuroa 12b. Exit flux.



Also,

5r 1
o o o
M=41§ =000
h|qg 0270
o 9 0 21
(3.3)
B0YO
+{0B Oy
YOBO
0yoR
where the entries are two-by-two block matrices:
~_ 110
I = [0 J (3.9a)
1 ~
B==1+y (3.9b)
c (11

(The somewhat strange choice of the components of 1V has been made so that M is diago-

nally dominant for small £). Also

(8 5* )
LRy
5
N=|h E _g , (3.10)
YR
) o
5y Y 7 B
wiere
_foo
e [ﬁ()] . (3.1D

To tind VV we must determine A ~'N. Writz using (3.8)

M =21 + hP (3.12)
Thus
1
M_ g lpy
h v2 V2
(3.13)

] h )
== |l -—= Pl +0h") .
vz[ V2 ]

(It suffices to retain only the term in &t because the whole difference approximation s valid

only to this order.) Now write (1. 1() as



0 5 0 &
Nho |80 3 0

10 & 0 8
'3
S 0 8% 0 (3.18)
+hQ =A+hQ |
Thus
- 1 h
M™IN === - ==P)A+HhD)+0(k?
\/i( B YA+ hD)Y+ UK
(3.15)
A Q PA 2
= +hlX -T2 400D .
v v O

The matrix M ~'N is just the transition manix A t (see Sec. 2.2), and the entries are the
blocks T, §. R, etc., properly arranged. Observe that if & is neglected. we get simply

MmN~ L (3.16)

- W2
and the block in the (i,1) position is thus zero. A glance at Fig. 2 shows that indeed there
can be no transruission to an opposite side without a cullision, und (first) collisions are
accouated for by the terms 1n A. Thus M~!N as given y :3.15) is the first collision
approximation to the inverse of the mansport operator (3.1).

Thus we have the analogue of what was done in [5]. Observe also that the (1,2) block
is just  and that itis an § tlock. Here no collision is needed for cutpus.

Explicit expressions for the elements of A~ = M~!'NM can clearly be caiculated. It does
not seem worth while to list them here.

3.3 Some Computational Experiences

The approaches outlined :in this section have been carried out in detail for the example
described in the previous section as well as one for which par.icles were allowed to move

in only the compass directions. N, E, S, WW. Most of our discussion will be for the first
case.

Most striking is the fact that even the initial square T involves vectors of length 8 and
matrices containing 64 elements. On each doubling, the length of the former incrcases by a
factor of 2, and of the size of the latter increases by a fictor of 4. Computer memory res-
trictions arc a clear threar. However, seven doublings were carried out on the CRAY-1
with no strain using only internal memory. The wtal ime required was about 10 seconds.
Interestngly enough, at each stage, most of the computer time was required for the last
doubling. Hence, the sixth stage took about one second and the seventa 1ok about nine
scconds. ‘The fundamenral square X was chosen with 1 = 10 © (Recall the unit is @ mean
fzee path.) Thus the doublings brought the square 1o a bit over one and a quarter mean free



paths on a side. Direct comparison with other methods proved difficuit, but results
appeared reasonable.

An additional doubling was carried out in the N, E, S, W case in about the same
ameount of time. Observe that the first doubling in this casc p.oduces a sysiem as large as
that with which we start in the previous example.

In all instances standard matrix routines were emploved. No etforts were made to
optimize programs, and only the readily available machine memory was utilized.

4 REMARKS, SUMMARY, AND CONCLUSIONS-THE FUTURE

We have described in some detail how the conceptual program cf Corones can be car-
ried out in a particular 2-D geometry and have described some calculations to demonstrate
that the approach is feasible. it may be argued. of course, that a square only one or two
mean free paths on a side is not likely to be of great interest.

However, highly efficient programming, plus the use of auxiliary memory, could
doubtless have allowed several more doublings without excessive expenditure of time.
Mecre imporiant, the advent of the parallel processor prouably changes the time and
memory considerat.ons greatly. The structure ot the equations developed mnkes parallel
processing seemn ideal for invariant imbedding.

Assuming all this comes about, of what use might the method be? First, quite irregular
regions can be approximated by unions of squares, even if the lengths of their sides are
related by multiples of two. Once the basic transition matrices have been calculated and
recorded, the joining problems are fairly straightforward.

At a simple level, consider three rectangles of different materials forming a sandwich,
Suppose the middle rectangle can be made of any of several materials with the aim of con-
structing the most effective shield. This problem, even now, is virtually within grasp.
Instead of computing each shield separately, one would only have to call up the appropriate
A marrices and *‘join.”’

A geometry that i1s extremely diiticult (or impossible) to handle with all standard com-
putational transport methods except Monte Carlo is illustrated in Fig. 13. Obviously, the
imbedding method could be emploved quite easily.

What about 3-D? That, at present, does not look too promising. Simple operaticn
counts suggest that invariant imbedding may not be competitive with classical numerical
approaches. But that pessimistic view is based on devices sinular to the one we have out-
lined (not on tfuture computing machines). Further research is strongly suggested.



Vacuum

Figure 13. Medium with imbedded vacuum region.
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