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ACOUSTIC VELOCITY MEASUREMENT ACROSS *hE DIAMETEH 
OF A LIQUID METAL COLUMN 

C. A. Colder an<3 , 

f ?j'. i f.rrii Ldwreicp Livempre Laboratnr,-
L iveware, Cal i forn ia 9iS50 

A npmc-J :s described f c tne ^easjrement of tne acoustic veloci ty 

acres1. *"«? diameter z,' a \ ••- diaf. l i cu i d reta! column before 

u ^ t a b t l "ty and breakup o f the coli>™ occurv 

INTRODUCTION 

The d i l a ta t i on and shear wave veloci t ies are usually measured by 

techniques employing piezoelectr ic transducers as in the through-

transmission and pulse-echo methods, ' There are several obvious l i m i ­

tations to th is and similar approaches, f i r s t , f l a t and smooth specimen 

surfaces are required to permit d i rect contact with the transducers. 

Second, the specimen thickness and radius must be such that transducer 

r inging, edge e f fec ts , and successive echoes of the main pulse do not 

overlap so that signal in terpretat ion becomes d i f f i c u l t , f i n a l l y , 

piezoelectric transducers do not survive well in severe environments and 

require re la t i ve l y long measurement times. 

Prcvr-it tti.Uniques for •-•easur'nq sounu velocity in l iqu id ""etals 

h.i,.- ^.fr l i m t e d t , the u v cf transducers which cannot survive in e treme 

tc n iner i t , r» condition--,. Thi>se .-etnods also require re la t i ve ly lonq 

n'L*asjre"-*"-.t t ir.es. Ar optical noncontacting ~e*hod nas been developed 

whicn v.i, t>e used fo^ ^ t r e n e l y short o-per inei tal t i^es ana very high 

U'tn\.-r-c*.j-f"; aufi prt-si jrc*.. Tiiis teenni ,jt> is Cemg mor ro ra ted into an 

i sonan . e-pmsion apparatus in *hicn a 1 tin diati wire sairplc in a high 

pr!>v_,..re jrqon oas env't orient is res is t ivc tv heated ta neU w i t v , a t i iw 

PtT'.o.-; ;if enly a fen mere seconds. Before ins tab i l i t y of the l i a j t d 

cMu" " . x : u r i , themal expansion, entnalpy. and temperature are measured, 

''it.* addit ion i f t i e scund velocity rcea^jrecent permits a more complete 

doU> - - tu i t i on of the :"er~ori-.ysi,:,t' r ' ^per t 'c ' . . i * t i e H ^ j ' d - e t a l . 

These d i f f i c u l t i e s were encountered when t ry ing to f ind a method to 

measure the acoustic veloci ty across the diameter of a 1 mm diam column 

of l iqu id metal under high pressure. This sound veloc i ty measurement is 

needed to provide addit ional thermophysical property data for l iqu id 

(21 metals obtained from an isobaric expansion apparatus. ' In th is 

experiment a specimen about the diameter of acommon paperclip and 25 mm 

long is subjected to rapid resistance heating by current dumped from a 

large capacitor bjnk. Required measurements are recorded a few micro­

seconds fol lowing specimen melt and before i n s t a b i l i t y and breakdown of 

the molten column occurs. The isobaric expansion apparatus allows deter­

mination of pressure, density, enthalpy, temperature and e lect r ica l 

res is t i v i t y co be made simultaneously. These data can be used to determin' 

speciM,: heat an,; the bulk thermal expansion coef f ic ient for the l i q u i d . 

Measurement of sound velocity would allow the addit ional determination of 

the Gmneisen carameter, the speci f ic heat at constant volume, and the 
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adiabatic and isothermal ct inpressiSi l i ty of the l iqu id metal. A 

successful solut ion to the acoustic veloc i ty measurement was developed 

using a noncoru.'ct optical technique consisting of pulsed laser d^ rcs i ' - ^^ 

loading and displacement interferorretry. ft high aower. Q- i^sed ' i t e r 

beam is focusea on one side of the specimen, i n t t i a t i n c a s*.i-ei5 r / ise 

t ravel ing across the diameter.' ' ' The stress pulse a r r i va l on trie 

opposite side of the specimen diameter is recorded using a Michelson 

displacement interferometer. The measured t ransi t time of the stress 

pulse and the dianeter of the metal column leadi d i r e c t l y to the aco:jst>c 

ve loc i ty . 

N0NC0HTAC7 TESTING USING LASERS 

The absorption of radiation f n n a high energy, Q-pulsed laser in a 

th in surface layer of a target material can produce a re la t ive ly large 

stress Pulse which propagates into the material . The rapid vaporization 

,-f the target surface skin produres a strong transient pressjre bui lc DZ 

against the tarcet surface due to recoi l from the DlOwoff of tne plasma. 

The plasna blowoff in turn drives a compressive stress pulse into the 

s o l i d . Moderate size lasers producing several Joules of energy have 

induced stress pulses wi th amplitudes approaching the y i e l d stress o f 

many metals and durations on the order of 100-200 nanoseconds. The 

l a t t e r is equivalent tc a pul>e length of about 1 mm in post metals. 

Completely floncor.tact test ing is made possible by using a Michelson 

displacement interferometer to se.-";e the stress wave a r r i va ls at the 

specimen surface . This surface hecon-.?s, the moving mirror of tfie in te r ­

ferometer. A single frequency. CW laser is focused to a point on the 

la tera l surface of the rod. The interference of the ref lected signal 

beam with the reference oeani fro"i a f ined mirror produces a series of 
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l igh t and dark fr inges. Sl ight novement of the Surface causes fr inge 

mo^e^ent to occur which can be accurately monitored wi th a photomulti-

p l ie r tufe (FHT) and ai-socfated instrumentation. A displacement of \ / 2 

where is tne laser wavelength, produces a f r inge sh i f t of sne cycle. 

For anjryon-ion laser operating at 3.5145 „m, a displacement of only 

0.-5'2 „m, w i l l resul t in a f r inge movement of one cycle. In the 

present appl icat ion times of a r r i va l of transient displacements, rather 

tnan the displacemc t amplitudes, are required. Therefore, displacements 

producing a f rac t ion cf a f r inge cycle movement can be easily detected. 

A typical arrangement c o r noncontact test ing is shown in Fig. 1 . The 

energy from a Q-pulsed laser is deposited on the surface of the specimen, 

dr iv ing a stress Dulse into i t . The photodiode t r iggers a d ig i ta l deloy 

uni t which t r iggers the scope sweep after a preset delay time. The fa r 

surface of the specimen acts as the moving mirror of the Michel son In ter ­

ferometer shown. The transient displacement is converted to a voltage 

output by the PMT and the output recorded on a fast response oscil loscope. 

TIME laURVAL MEASUREMENT CONSIDERATIONS 

The t rans i t time of a stress pulse through 1 mm of l iqu id metal is 

only a few hundred nanoseconds. Therefore, inherent delays 1n the scope 

t r igger ing and ver t ica l input, t r ans i t time through the PMT, e lec t r ica l 

and optica) path travel time, aW effect ive s tar t time of the stress 

pulse can have a s igni f icant e f fec t on the measured t rans i t time. For 

example, the t r igger c i r cu i t and ver t ica l ampl i f ier of the scope used 

in th is study had nleCtr 'cal delay times of 40 ns and 80 n$, respectively 

and the PMT had a t rans i t _» of 30 ns. The timing was calibrated by 

placing a th in plate of high pur i t y oxygen free copper of known d i l a t a ­

tions) veloc i ty in place of the specimen of Fig. 1 and adding a second 
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slideglass beamsplitter at the *ii gt j energy input tc provide a marter 

f iouci . i l superposed on the photomultipl ier signal output from the 

interferometer. This procedure provided data on the stress i n i t i a t i o n 

t ine and el i in in i ; ;£d a l l t i - i inq considerat ion except the difference in 

opt ical path lengths. Results *ere recorded using a high frequency re­

sponse oscil loscope. The detai ls af trie timing ca l ib ra t ion l l f l <.t,QW, 

m Fig. 2. The opt ical pdtn frCm the f i r s t beam s p l i t t e r to the PH 

tube was .46 m shorter than the a i r oath via the interferometer, so the 

Nd-G lase- pulse appeared 1.5 is early on the oscil loscope record shown. 

The average value for the velocity of sound at room temperature for copper 

was taken to be A740 m/sc-c for compressional waves in an i n f i n i t e medium.'' 5 ' 

Tie copper plate was O.Q] r r th ick, so the expected t ansi t t i r e was 192 ns. 

' l e re fc r , ; , the apparent :i-.e of start of the stress pulse an ;ne record i^ 

obtained ^ measv>rSng b*tw w/z ns ' r o ^ the breakout of tne interferometer 

s igna l , as indicated by the arrows. Thus, the ef fect ive :i:-e of stress 

wav,-> i n i t u i i o n is at about the *:al f-ampl itutfe point of the beiinning of the 

W-G !,.,(••- t i - j l j t , -Similar rese ts were obtained from tests on thin sheets 

or aUimi.'Lj-, 5 tc- f l . and beryl ! ijrrc. The nominal sweep rate Shown was 50 ns/di-

The result ' , appear to be repeatable to within - -5 ns. 

I t was necessary to make a compr^.tse in choosing the szot s i re used 

for the er.crgy deposition on the 1 IT- diameter specimen rod. A very 

precisely 'ceased sp.it results in a snarp sign.*' a r r i v a l , out the peak, 

displacement amplitude is gred-.:> reduced because erer^y f rcn the Nd-G 

laser is e.pended in d r i l l m ; .i h 0 l c in the specimen. A broadly focused 

beam on tr-, other hand leads tc J strong displacement s i tma l , but signal 

a r r i va l if.3Ji.es d is to r ted . ?tu- nest compromise for 1 rr J ia-et^r sables 

appears t : he a spot sue of - " , ; m diameter. 
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The interferometer was adjusted 10 that the two arms had nearly equal 

path length and !.<• n in tens i ty . Thi^ results in larf je, high contrast 

frinaes at the photomultipler tube. The disDlacement signal sens i t i v i t y 

depends upon the posit ion of the fr inge pattern at the precise instant of 

the test. I f i t is close '.o a maximum or minimum, the sens i t i v i ty is low. 

This problem can be eliminated by using a quadrature system with the second. 

signal shi f ted 90" so one detector w i l l always respond at high sens i t i v i t y . 

E_X PERIDENTAL PROCEOURE 

To test the proposed technique an aluninun moc'.-up of the inner port ion 

of the isabaric expansion pressure ce l l was fabricated. This held the 

sapphire pressure windows ana one of the sample-holding anvils complete 

with electrodes and cy l indr ica l current return cap used in the actual system. 

The hardware is shown in Fig,, j . 

A top view of the mock-up pressure ce l l containing the I mt diam 

specimen is sho.m in Fig. 4 wi th the associated opt ical setup. The energy 

from a high-power, Q-switched Nd-G laser (8J, 30 ns) is directed through a 

col l im i t ing aperature {1J, <j sapphire pressure w ; '-: '?), and then is 

focused by lens (3) on a spot (0.2 mm diameter} on the surface of the 

1 mm diam cy l indr ica l sample (4) . A stress pulse is generated in the 

sample by surface pressure produced from plasma blowoff. 

The stress pulse propagates to ^he diametr ical ly opposite surface 

which acts as the moving mirror of the Mlchelson interferometer. Light 

froi" an argon ion liiser is directed through lens (5 ) , the sapphire window (2), 

aoerature (6) and focused on the sample (4) . " igure 5 shows a close up view 

of tnp st'L'cinen and holder. The interferometric bean -?nters from the r ight 

side ana the high energy beam from the l e f t . The seTf-il1yminatii ig plasma 

blowOfT appears jus t to the l e f t of the specimen. The laser beam re f lec t ion 
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from the specimen is combined with a reference fteam from the other leg of 

the intc-ferometer. The sudden fr ir .se sh i f t prrduced in the interferometer 

wnen the stress pulse arrives is observed with a pulsed photomult i j j i ier 

tube. The t i r e of energy deposition is determined from a f iducia l generated 

as descrioed in the timing cal ibrat ion (F ig. 2). The t rans i t time for the 

pulse is determined by displaying the signals on a fast oscil loscope. The 

samples diameter during the t ransi t time can be accirately determined from 

a streak camera record so that the prapagation veloci ty can be calculated. 

The energy density deposited by the Nd-G laser must be res t r ic ted so that 

the weak shock wave generated w i l l have a velocity c*ose to the longitud­

inal sound speed. 

A variety of so l id metals were tested in the mock-up system including 

tungsten, tantalum, copper, iron and lead. The pr incipal operational 

differences were due to the di f ferent r e f l e c t i v i t i e s and surface conditions 

of the samples. Adequate interferor.etr ic fringes for reasonably good 

signal-to-noise data were obtained far ^ach solid metal. The accurate 

location of the high-energy deposition spot d i rect ly opposite the spot 

, c«ed by the interferometer was found to be very important. The 

st 'ess pulse amplitude is rapidly reduced i f th is alignment is not good 

and tho diataneo traveled by the stress pulse become* d i f fe ren t from the 

specimen diameter. 

LIQUID LCAD TEST 

To check out the method for acoustic velocity measurement in l i qu id 

metals, lead specimens were cnosen for test ing due to the re la t i ve ly low 

energy required to obtain r>elt. Experiments were f i r s t conducted on 

so l id lead rods and subsequently on lead rods l iouef ied by the high current 
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pulse from a 20'W capacitor bank discharge. The stress t ransi t time 

^measurement was TOde a few microseconds fol lowing melt. Typical specimen 

voltagti and current h istor ies are shown in Fig. 6. The i n i t i a t i o n o f 

specimen melt begins about 8 ijs df ter dumrfng the capacitor bank aero; . 

the specimen. Melt is completed about 1.5 us l a te r and the capacitor 

bank is shorted at 12 us. At 5 us af ter bank crowbar, the acoustic 

veloci ty measurement is made. This time was chosen to be su f f i c i en t l y 

"« iq for the l i q u i d column, to ccrca to thema\ equi l ib r ium but before 

• ' . .stabi l i ty and breakup occur. 

Scope data traces are shown in Fig. 7 for so l id and l iqu id lead tests. 

As in the timing ca l ib ra t ion , the f iducia l is simply a reference marker for 

the occurance of the high-energy laser pulse. The measured acoustic 

veloci ty across the 1 mm diam of the sol id specimen was found to be 

2.38 mm/^s, s i ight lyhigher than an average value of 2.21 mm/ps taken from 

Ref. 5. As would be expec:ed, there was a considerable drop in veloci ty 

for the l iqu id lead test. The measured l iquid- lead acoustic veloci ty of 
(6) 1.80 mm/js agreed very well wi th a published value at melt of 1.78 mm/Li5. 

Some surface motion was noted to occur before the arr iva l of the 

stress pulse in a l l the l iqu id- lead tes ts . This was probably due to 

small perturbations induced by the rapid melting of the specimen. In 

several tests the disturbance was severe enough to obscure the clear 

ar r iva l of the stress pulse. This problem may be al leviated by waiting 

longer af ter crowbar to make the acoustic, .e loc i t y measuiement. 



CONCLUSIO'.S 

The noncontact method described using laser energy deposition and 

displacement intprferometry provides a unique rne-i.r/ for the measurement 

or acoustic veloc i ty in 1 i* uid metals. This ..rpro^Ln yie lds information 

not obtainable by conventional,techniques. The capabi l i ty is being 

permanently ins ta l led as an integral part of an isobaric expansion ex-

periment apparatus. This addition w f l f provide a more complete deter­

mination of the thermophysical properties of l iqu id metals. 
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F ig. 1 . Typical noncontact test setup using 
high energy and CW lasers. 
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F1g. 2, S t ress - in i t i a t i on time ca l ib ra t ion . 



F1g. 3. Photograph of Isobaric expansion test hardware. Specimen and 
anvil on right are inse*"ted into current return cap in center and 
combined unit 1s placed Into aluminum mockup of pressure cell 
on left . 



Fig. 4. Top view of isobaric expansion pressure ce l l and 
opt ical arrangement fo r acoustic veloci ty measurement. 




