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The fields of sensitivity and uncertainty analysis have traditionally
been dominated by statistical techniques when large-scale modeling codes
are being analyzed. These methods are able to estimate sensitivities,
generate response surfaces, and estimate response probability distribu-
tions given the input parameter probability distributions. Because the
statistical methods are computationally costly, they are usually applied
only to problems with relatively small parameter sets. Deterministic
methods, on the other hand, are very efficient and can handle large data
sets, but generally require simpler models because of the considerable
programming effort required for their implementation. The first part
of this paper reports on the development and availability of two systems,
GRESS and ADGEN, that make use of computer calculus compilers to automate
the implementation of deterministic sensitivity analysis capability
into existing computer models. This automation removes the traditional
limitation of deterministic sensitivity methods. This second part of the
paper describes a deterministic uncertainty analysis method (DUA) that
uses derivative Information as a basis to propagate parameter probability
distributions to obtain result probability distributions.



I. INTRODUCTION

Sensitivity and uncertainty analysis are important components of
any system performance assessment. The role of sensitivity analysis
is to provide a quantitative measure of the effect of system parameters
upon key performance indices. Sensitivity analysis also helps limit
the scope of the more complicated problem of quantifying uncertainties.
Uncertainty analyses is performed to support reliability studies, to
produce a cost-benefit analysis in conjunction with cost estimates,
to insure compliance with regulatory criteria, and to help identify
important research and development needs.

Sensitivity analysis of computer-generated results consists of
determining the effect of model data upon the calculated results of
interest. Because computer model aquations can be differentiated
analytically, sensitivities can be precisely defined and calculated
in a deterministic fashion using both direct and adjoint methods.[1-8]
The deterministic approach is particularly suited to large-scale problems
for which direct perturbation of the model data becomes impractical from
a cost standpoint. The main drawback to the deterministic approach has
been the initial manpower investment to add the computational capability
for calculating the necessary derivatives into existing computer models.

For quantification of uncertainties in computer-generated results,
the problem can be expressed more precisely as the propagation of input
uncertainties through models by the laws of probability to obtain output
uncertainties. (The uncertainty associated with whether the computer
model accurately reflects the physical phenomena is a problem of model
validation and is not addressed in this paper.) Uncertainties of compu-
ter results are of primary interest in applications such as repository
performance assessment in which experimental validation is not possible
or practical. Because of the complicated nature of the computational
structure of large computer models, and because of the large number of
input and data parameters associated with such models, to date almost
all uncertainty analysis of computer results has been performed using
a statistical approach.[9-12]

This paper presents a comprehensive approach to sensitivity and
uncertainty analysis of large-scale computer models that is analytic
(deterministic) in principle and that is firmly based on the model
equations. The theory and application of two systems based upon com-
puter calculus, GRESS[13-15] and ADGEN[16,17], are discussed relative
to their role in calculating model derivatives and sensitivities without
a prohibitive Initial manpower investment. Storage and computational
requirements for these two systems are compared for a gradient-enhanced
version of the PRESTO-II[18) computer model. A Deterministic Uncertainty
Analysis (DUA) method[19,20] that retains the characteristics of analyti-
cally computing result uncertainties based upon parameter probability
distributions is then introduced and results from recent studies are
shown.



II. DETERMINISTIC SENSITIVITY ANALYSIS

A brief description of general sensitivity theory is given here as
an aid to understanding the problem of applying this theory to computer
models. The example to be discussed will be that of a general set of
non-linear equations given by

y - F(y,c) f (1)

where y represents the dependent variable being solved for, c represents
the user-specified model data or parameter set, and F defines the model
equations. The particular form chosen in Eq. (1) is one that can be
used generally to represent equations coded in the FORTRAN programming
language. The left side of the equation can represent the stored value
of the variable calculated from the functional formula on the right side.

Since the number of components of the vector j calculated in any
typical large-scale modeling problem is large, it is useful to define a
generic result for such a calculation that is of particular interest to
the model user. Typically many results will be needed for analysis but
in most cases they form a much smaller set than the actual set of y
component values. A typical result will be defined as

R - h(y) . (2)

where R Is a single number Chat is a function of the solution to Eq. (1).
For notational ease, the generic parameter ot£ will be used to denote any
Individual parameter. The total number of parameters in the problem will
be assumed to be M so that the index on ct£ will run from 1 to M.

The basic problem In any sensitivity study is to find the rate of
change in the result R arising from changes in any model parameters. For
the generic parameter aj_, then, the quantity of interest is the numerical
value of dR/daj given analytically by

dR_ _ ah dy_ . (3)
d " dy d

Since the functional dependence of R on y through h(y) is defined
analytically by the model user, only dy/da£ needs to be generated in
order to evaluate Eq. (3). The procedure needed to get dy/da^ is to
differentiate Eq. (1) as follows:

dy _ JJ^L. + _dF_dc_
d ™ dy da£ 3c daj



Rearranging Eq. (4) yields the following set of coupled equations to
solve for dy/do^,

-S) dj 3F dc_ (5)
dai dc dai

or in more compact form,

• «i , i - 1,..•,M t (6)

where I is the identity matrix and A, y[, and *j are given by

A - I - l^ •

71 - dy_ t (8)

and

•i - §1 d£_ (9)
dc

If Eq. (6) were solved directly for j£, the result could be used
in Eq. (3) to evaluate dR/da^. This method of sensitivity analysis is
called the "direct" approach and is a classical methodology that has
received a great deal of attention in the literature.[1,5] Since Eq. (6)
must be solved each time a new ct£ is defined, the direct approach is most
suitable for problems with relatively few input parameters of interest,
for problems in which the solution of Eq. (6) Is very inexpensive com-
pared to the solution of the model itself, or for analytical problems
in which the inverse of A can be explicitly determined.

For large-scale models with a large data base in which the ultimate
objective is still the evaluation of dR/da^ for many <*£, the intermediary
step of solving for dy/da^ and its inherent computational inefficiency
can be avoided. For such problems the "adjoint" approach is far more
applicable. In this methodology, use is made of the fact that Eq. (6)
is linear in y£t and appropriate adjoint equations can therefore be
developed specifically to evaluate Eq. (3).



Defining the matrix adjoint of A as A* and using the usual
definition of this adjoint give the identity,

u
trAv - vtrA*u , (10)

where u and v are arbitrary vectors and A* is defined as

A* - Atr . (11)

Here the tr superscript represents the transpose of the vector or matrix.

If specific vectors for the problem at hand are chosen for u and v,
the problem-specific adjoint equation can be set up as follows:

A*y* - s* , (12)

where

» Atr (r « \ " . (13)
A ~ [I ' dy)

Choosing «* as

s* - (dh/dy)tr , (14)

Eq. (3) cen now be evaluated as follows:

<K^ - y*tr 3F dc_ § ! _ ! M> (15)
d dc d

where y* is now the solution to

(l - §l\tr7* - fdh\tr . (16)
\ dy) \dy/

The simplicity of the adjoint approach lies in the fact that
Eq. (16) needs to be solved only once to get any and all sensitivities
in the problem. This is a result of Eq. (16) being independent of the
definition of <*£. The particular choice of aj is only reflected in the



evaluation of Eq. (15), which involves simple vector products. In
essence, the adjoint approach reduces the computational effort needed
to evaluate dR/da^ from solving many coupled linear equations to the
evaluation of several vector products. For large-scale systems with
many thousands or even millions of parameters, this represents orders
of magnitude in computational efficiency.

It should be noted here that both the direct and adjoint equations
(i.e., Eqs. (6) and (16)) are in any case far easier to solve than the
original model (Eq. (1)). Both Eqs. (6) and (16) are linear while
Eq. (1) is nonlinear. The direct and adjoint approaches, however,
require the results of the original model equations to be available in
order to set up Eqs. (6) and (16), since the A matrix and the vectors s,
and »* depend on y.

In order to solve either the direct or adjoint sensitivity analysis,
then, the model user mtist first generate the matrices dF/dy and dF/dc
from the original nonlinear computer model. For large-scale problems
this generally requires a great deal of painstaking human effort. First,
the model equations must be extracted from the computer coding. They
must then be differentiated with respect to all parameters of interest,
and finally direct or adjoint sets of equations must be set up for com-
putational solution. Successful automation of this procedure greatly
reduces the human effort involved, potentially by orders of magnitude.
The advantage of automation of sensitivity model development is therefore
great indeed. The next two sections discuss two automated systems that
use calculus precompilers to add capability to existing FORTRAN computer
models for solving the direct and adjoint equations procedures.

III. CRESS

An Automated System for Solving the Direct Sensitivity Problem

For large-scale computer models, the equations are usually very
complex and tied closely to and embedded in complex model logic and
data-handling routines. In addition, for nonlinear problems, the
numerical solution procedure often precludes an easy separation of the
modeling equations from other parts of the model coding structure. For
these reasons, a general system was developed to automate the application
of computer calculus in existing codes. The system first developed for
solving the direct sensitivity problem was the GRadient-Enhanced Software
System (GRESS). Details of the GRESS system are given in Refs. 13,14,
and 15, and the underlying ideas are briefly summarized herein.

The basic principle of GRESS is to read the model source program
and search for model equations. These are identified uniquely by the
appearance in the FORTRAN source program of the "-" symbol. Since all
FORTRAN "equations11 so identified occur in the form of Eq. (1) (i.e.,
with a single dependent variable on the left side of such an expression),
GRESS can search for and analyze each equation in terms of Its functional



dependence on y and c. The basic computer calculus operations of GRESS
are then used to compute the successive elements of dF/dc and dF/dy as
each expression is encountered. The differentiation is carried out
analytically using calculus software for all permissible FORTRAN func-
tions and operators and the results are computed and stored numerically
using the local (current) values of the independent and dependent vari-
ables. GRESS takes advantage of the fact that in solving Eq. (5), the
matrix (I - dF/dy) is lower triangular and the y vector can be computed
by forward substitution. The Important point is that the components of
y are solved successively as each equation is differentiated and that
the (I - dF/dy) matrix does not have to be stored. (The adjoint problem
requires the storage of this matrix, as will be discussed in the next
section).

GRESS only recognizes real-variable store operations as valid equa-
tions (i.e., the left side variable in a FORTRAN equation must be real),
since continuous derivatives are to be calculated. Also, the left hand
side of an equation is treated as a separate component of y each time it
is executed (including each execution in a DO LOOP). The calculation of
dF/dy and dF/dc in effect means that GRESS can be used to calculate the
derivative of any real variable in the model with respect to any other
real variable in the model. All derivatives are available for both
internal and/or external use. For example, the derivatives dR/da^ are
used in the DUA method to be described later.

The application of GRESS to an existing FORTRAN model consists of
a automated precompilatlon in which the automated code translation neces-
sary to compute derivatives is performed using computer calculus. This
step consists primarily of a rearrangement of the program data structure
and a substitution of calls to GRESS interpretive software in place of
all arithmetic lines of coding. All arithmetic operations of the origi-
nal model are precompiled into a pseudomachine code (the GRESS P-code)
for use during program execution. The two output files of this step are
the enhanced model and the binary P-code file. These two files and a set
of GRESS software subroutines supporting the enhanced model are compiled
and run as a normal FORTRAN program to produce both the reference model
results and gradient information. The gradients and reference results
are used to calculate the sensitivities.

GRESS has undergone extensive verification during its development.
To date, five major computer models of interest to the National High-
Level Waste Program have been enhanced using GRESS, with direct compari-
son of GRESS-calculated derivatives to perturbation-derived derivatives
being made for each enhanced model.[21-25]



IV. ADGEN

An Automated System for Solving the Adjoint Sensitivity Problem

The adjoint problem Is defined by Eqs. (12-16). As previously
mentioned, the calculation of the adjoint solution vector y* from
Eq. (16) is not a function of the selection of input parameter «*£ and
thus need only be performed once to determine the derivatives of a
response of interest with respect to any parameter of interest. The
matrix dF/dc must also be determined but it too is independent of the
parameter of interest. The only parameter dependent operation required
to calculate the derivative dR/d&i is the simple matrix multiplication
operation (y*tr)(dF/dc)(dc/da^) in which the vector dc/da^ is a function
of a£. A system to automate the calculation of derivatives based upon
the solution of the adjoint equations has been developed.[17] The system
is named ADGEN (ADjoint GENerator) and uses the GRESS precompiler to
calculate all required derivatives of the dF/dy and dF/dc matrices.

Recall that GRESS solves Eq. (5), taking advantage of the fact that
the matrix (I - dF/dy) is lower triangular and the solution by forward
substitution requires only that the vector dy/da be stored. However,
to solve the adjoint problem, all derivatives that constitute the n x n
matrix (I - dF/dc)tr must be stored, where n - total number of equations,
counting each time an equation is solved in a DO LOOP as a separate equa-
tion; the left hand side of each equation in a DO LOOP is treated as a
separate element of y. Although only the non-zero elements are saved,
the storage of the matrix (I - dF/dc)tr may require a substantial amount
of storage capability. The storage difficulties are counterbalanced by
features of Eqs. (15) and (16) that make the ADGEN calculation of y* both
practical and cost efficient. Note that the matrix (I - dF/dc)tr is
upper triangular and that the column vector (dh/dy)tr is a simple user-
defined vector (for most cases a vector with a single non-zero entry
of unity). Thus Eq. (16) is easily solved by back substitution and the
values of y can be successively stored in the space allocated for Che
(dh/dy)tr vector. The calculation of dR/da^ from Eq. (15) must be
performed for each a± but this requires only trivial matrix multiplica-
tions and very little computer cost.

The ADGEN system calculates the normal model results as well as
the derivatives making up the dF/dy and dF/dc matrices. Again, the major
difference from the direct approach using GRESS is that the ADGEN system
requires that the matrix (I - dF/dc)tr be stored and includes a post-
processor solver routine to calculate the adjoint solution.

V. SAMPLE APPLICATION OF GRESS AND ADGEN

The distinguishing feature is solving Eq. (5) using GRESS is that
only the elements of a single row of dF/dy and dF/daj [-(dF/dc)(dc/daj)]
need be saved in computer memory at any one time. This advantage is
very fruitful if one wishes to solve for the derivatives of many LHS



elements (responses) with respect to a data element a^. The disadvantage
is that to calculate derivatives with respect to other data elements,
Eq. (5) must be solved for each additional aj_ of interest. The computa-
tional burden is approximately proportional to the number of oj. In our
experience to date, the computational time for calculating derivatives
with respect to m chosen elements of c, denoted by Tm is

Tm a TREF(A) + 01m)

where TREF 1 S t*le execution time of the reference model before derivative
enhancement and p$ and f}\ are constants falling between 1.0 to 20.0 and
0.1 to 1.4 respectively.

Another problem sometimes occurring in practice is that the elements
of dy/dx£ must be stored in memory as Eq. (5) is solved for each row.
Therefore the number of a^ with respect to which derivatives are calcu-
lated in a single execution of the enhanced model may be limited by
system memory resources.

As mentioned in Section IV, solution of the adjoint equations,
Eqs. (15 and 16), using the ADGEN system reduces the computation effort
for calculating derivatives of a single response with respect to many
parameters compared to repeatedly solving Eq. (5) for each ct£, as is done
in GRESS. The solution to Eq. (16) is straightforward due to the upper
triangular structure of (I - 3f/3y)tr, but requires storage of the non-
zero elements of (I - 3f/3y)tr. ADGEN circumvents the necessity to store
this matrix in memory by using an efficient scheme for solving Eq.s (IS
and 16) based upon retrieval of portions of (I - 3f/3y)tr from off-line
storage and segmenting the calculation of derivatives.

The relative computational and storage requirements of the direct
and adjoint approaches using GRESS and ADGEN are compared for the deriva-
tive enhancement of the PRESTO-II computer model.[18] PRESTO-II is
intended to serve as a non site-specific screening model for evaluating
possible health effects due to shallow-land disposal of radioactive
waste. The model has approximately 6,900 lines of coding.

The sample problem results shown below are for the Barnwell sample
problem included in Ref. 18. This problem calculates a time-dependent
radiation dose to man from transport of 42 radionuclides over a one
thousand year time span. Table 1 summarizes the execution times and
storage requirements for the reference and the derivation-enhanced
versions of PRESTO-II.

The number of parameters (data) and responses for this problem both
number in the thousands. So calculation of derivatives of all responses
(thousands) with respect to two data values using GRESS requires an
increase in execution time from 44 seconds (Reference FRESTO-II) to 1,560
seconds (GRESS-enhanced PRESTO-II), a factor of 35.5. Conversely, calcu-
lation of derivatives of a single response with respect to all the data
(thousands of parameters) requires 2,279 seconds (using ADGEN) for the



first response. This time is that required to create the adjoint matrix
(1,560 seconds) and to calculate derivatives (299 seconds). For each
additional response of interest, 299 seconds are required to calculate
derivatives of the response to all the data. The 2,279 seconds and 299
seconds represent factors of 51.8 and 6.8, respectively, over the refer-
ence model run time. These factors clearly indicate that the adjoint
approach using ADGEN is very cost effective compared to estimating
derivatives by parameter perturbations. For evaluating the sensitivi-
ties of a large subset of the data base, ADGEN is orders of magnitude
more cost effective than direct parameter perturbations.

Table 1. Comparison of execution times and storage requirements
for derivative-enhancement of the PRESTO-II computer model by

the CRESS direct approach and the ADGEN adjoint approach

PRESTO-II Reference Model

Compilation Time, s 48
Link Time, s 3
Run Time, s 44

PRESTO-II, Derivative Enhancement

Precompilation Time, s 29
Compilation Time, s 49
Link Time, s 4

ADGEN:
ADGEN:
GRESS:
GRESS:

Create (I - 3f/3y)tr

Adjoint Solution
2 parameters6

8 parameters"

Run Time
(s)

1,980
299b

1,560
1,816

Direct Storage
Access
(Mbytes)

143.5a

0
0

aThis matrix is created only once and can be used for calculating
derivatives of one or more responses with respect to all the data or
any subset thereof using the adjoint approach.

bThis is the time required to solve for the derivative of a single
response with respect to all the data.
Calculation of derivatives of all responses with respect to two input
parameters.
^Calculation of derivatives of all responses with respect to eight input
parameters.
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Note however, that the direct access storage requirements using the
ADGEN system can be quite large, evidenced by the 143.5 megabytes needed
to score the sdjoint matrix for the PRESTO-II sample problem.

The availability of both the GRESS and ADGEN systems allow the
analyst to compute model derivatives and sensitivities for a wide range
of applications. GRESS is more suited for small data bases and for
restricted direct access storage availability. ADGEN Is more suited for
calculating sensitivities to a large number of parameters. ADGEN becomes
much more cost effective than direct parameter increases; GRESS nay or
may not be more cost effective than parameter perturbation depending upon
the actual model being enhanced. In either case, the first derivative
and sensitivities are analytically exact and can be printed and/or saved
by simple user instructions in addition to normal model results.

VI. DETERMINISTIC UNCERTAINTY ANALYSIS

The analytical propagation of input uncertainties through a calcu-
lational model is unfeasible, if not impossible, for all but the most
simple models. The difficulty lies in mapping probability density
functions from an M-dimensional space of input parameters to the singly
dimensioned output distribution function. To circumvent this problem,
the most common approach is to randomly sample the input distributions
and then calculate the model output of interest, constructing a proba-
bility distribution of the output by rerunning the model for each sample
set of input parameters. The input probability distributions and any
parameter correlations are handled, in a statistical sense, in the sampl-
ing procedure.[11,12] But hopefully the sampling procedure will lead to
an output distribution that is representative of that which would result
from the actual propagation of input probability distributions. As the
number of sampling sets increases, the difference between the calculated
and "true" output distribution diminishes. The problems occur in prac-
tice when the number of runs of the computer model needed to assure a
large enough statistical sample becomes too expensive.

Another approach is to discretize the input probabilities into his-
tograms and evaluate the model output of interest for all possibilities
of parameter combinations to form a probability tree.[26] All parameter
correlations are incorporated into the probability tree structure. This
method does not rely on random sampling and probabilities are easily
propagated in probability trees by simple multiplication. The histogram
probability distributions are not actually propagated, but rather mean
or endpoint parameter values are used. This method is quite feasible for
models with a small number of parameters or even for a large number of
Input parameters if the model is simple (inexpensive). Again the problem
arises when the computer model has numerous input parameters and/or is
expensive to run.

A third approach is the response surface method in which the com-
puter model is replaced with a simple analytical expression.[27] The
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expression is constructed by fitting the computed values of the model
output to the corresponding input parameters, or more generally, to
chosen functions of the input parameters. Traditionally statistical
techniques are used to choose the set of computer model runs to be made
for this fitting. The uncertainty in the response is then determined
by a second, more extensive statistical sampling and evaluation of
the response surface. The advantage of replacing the model with the
response surface is the drastically reduced computational time to
compute the expression result compared to running the computer model.
The disadvantage is the introduction of error in the calculated output
by replacement of the model with a simpLs expression.

The Deterministic Uncertainty Analysis (DUA) method[19] combines
the characteristics of the response surface method and probability trees.
Statistical sampling is not required and probabilities are propagated
analytically within discretized numerical meshes that encompass the
parameter space. The approach underlying the deterministic calculation
of uncertainties in the DUA method relies upon (1) a replacement of the
computer model with an analytical function relating the responses of
interest to the parameters of interest and (2) discretizing the parameter
space and calculating the expected value of the response within each
discrete parameter space "mesh." The parameters of interest are chosen
to be those that are "uncertain," meaning that they have known or assumed
probability distributions. The parameters of interest may often include
the entire set of data used by the computer model.

The DUA method replaces the computer model with a response surface
by relating the response of interest as calculated by the computer model
to the parameter values by techniques that incorporate knowledge of the
partial derivatives of the response with respect to the parameters of
interest. The simplest form of a response surface is one formed by
linear extrapolation from reference space points to each mesh of the
discretized parameter space. Within each mesh the response surface
is linear with respect to the parameters, and the calculation of the
expected value oZ the response within the mesh, given parameter proba-
bility functions, is straightforward. An extrapolation scheme that
makes use of the sensitivities is outlined in Ref. 19.

Sensitivity analysis plays an important role in the formation
of the response surface by eliminating those parameters that have a
negligible effect on the result of interest based on their sensitivities
and uncertainty ranges. Also, the derivative information from the refer-
ence model runs can be used to identify the occurrence of parameters that
occur exclusively in a given combination. Such identification reduces
the parameter space by replacement of the individual parameters with the
particular combination. For example, if the derivative of the response
with respect to each of two parameters is the same at each reference
space point sampled, the two parameters most likely appear in the model
as a sum of each other, and a single parameter representing the sum of
the two can be used in the formation of the response surface in place of
the two individual parameters.
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The propagation of parameter probability distributions from the
multidimensional parameter space to the singly dimensioned result space
is determined by the governing system of equations and the input variable
probability density functions (pdf's). In theory, this propagation can
be performed analytically by convolution of the integral of the parame-
ter space into a discrete number of integrals of the singly-dimensioned
response space, in which each integral is over a monotonically changing
function representing the result. However, because the identification of
the convolution integrals, in particular the limits of the integrals, is
virtually impossible for all but the simplest problems, and because the
model equations are nonlinear and complexly intertwined in general, the
propagation of probability distributions through computer models cannot
be treated analytically in the strictest sense.

The propagation of parameter probability distributions in the DUA
approach is performed by discretizing the M-dimensional parameter space
(H — number of parameters) into L meshes, each mesh denoted by mj. The
probability of mesh mj occurring within the entire parameter space,
p(mj), is calculated as well as the expected value of the response func-
tion within the mesh, E(Rj), where Rj represents the response function
within aj. The probability p(mj) is assigned to E(Rj) to obtain the
probability of E(Rj) within the discrete space of expected values. The
pairs of p(mj) and E(R^) are reordered such that E(R^) < E(R2> < ...
E(RL) and as such constitute the probability density function of the
response R over the parameter space. The cumulative distribution
function (CDF) of R, C(R), is the running sum of the reordered p(mj)
paired with the corresponding value of E(R^). In the limit is L • «,
C(R) approaches the true cumulative distribution function of R as
calculated using the response function.

Let the functional form of the response within mj be given by

Ri - gi(c) (17)

where gj(c) is the response surface function within mj resulting either
from a fitting procedure or from a linear expansion from one or more
reference space points. The vector c is the M-dimensional parameter
vector given by c - {a^, a2,....an'tr- Given the joint probability
function of c as P(c) - P(o^, ot2,...a^), the probability that c c mj is
given by

P(m») - P(c C m^) - f P(c)dc , (18)

and the expected value of the response R within mj, E(R^), is
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g(c)P(c)dc/p(mi) . (19)

The values of p(oijf) and E(R^) as calculated by Eqs. (18) and (19) are
used Co construct the probability density function and cumulative distri-
butions function of the response R.

VII. SAMPLE PROBLEM APPLICATIONS OF DUA

The DUA method is demonstrated for two sample problems and the
results are compared to a traditional statistical approach. The first
sample problem is from Ref. 28, which exemplifies the use of uncertainty
analysis in the study of water flow through a bore hole. The sample
problem consists of three coupled equations with eight input parameters
and three dependent variables. The analysis focuses on one of the three
dependent variables, the flow rate, as the response of interest, and
statistical techniques are used to calculate the cumulative distribution
of the flow rate given probability distributions for the eight input
parameters.

Reference 27 describes a statistical uncertainty analysis approach
for this problem based upon the Latin Hypercube Sampling (LHS) procedure
using 'a SO design-point matrix. The DUA method was also applied to this
sample problem, the details of which are given in Ref. 19. As a bench-
mark against which a comparison of the DUA method and the statistical
results from Ref. 27 could be compared, the sample problem model was
executed 2304 times in order to approximate the "true" CDF of the flow
rate for this problem. A comparison of this benchmark 2304-point CDF
to the statistical 50-point CDF from Ref. 28 is shown in Fig. 1. The
CDF based upon the 50 point LHS design matrix is a fairly accurate
representation of the true CDF of Q. DUA method results were obtained
by forming a response surface by extrapolation from two reference model
runs and propagating parameter pdf's over a discrete mesh consisting of
2304 meshes. As shown in Fig. 2., the CDF of the flow rate calculated
determlnlstically based on the DUA method closely matches the "true"
CDF with only two executions of the derivative-enhanced model.

The second sample problem calculates the temperature and brine flow
rates in a repository arising from the decay heat produced from buried
high-level nuclear waste. In this study (Ref. 20), GRESS was used to
enhance the BRINETEMP[29] computer model for calculation of derivatives
and sensitivities needed for uncertainty analysis by the DUA method. The
CDF of the brine flow rate and the temperature at a specific location of
interest were determined given the pdf's of twelve input parameters. The
resulting CDF's from the DUA method were compared to the CDF's from a
statistical approach based on a 200-point LHS design matrix. The result-
ing curves are shown in Figs. 3 and 4. The DUA method used 10 runs of
the enhanced BRINETEMP model in determining the CDF of the temperature at
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1000 years after burial and 16 for the flow rate. These compare to 200
runs of the reference BRINETEMP model for the LHS statistical analysis.
The CDF curves compare closely for the DUA and statistical methods, but
the DUA method requires far fewer model runs.

VIII. CONCLUSIONS

A comprehensive, deterministic approach to sensitivity and
uncertainty analysis of large-scale computer models is now available.
The GRESS and ADGEN systems for automating the calculation of model
derivatives and sensitivities have been developed, verified, and applied
to several large-scale computer models. The availability of these two
systems greatly reduces the man-effort required to add sensitivity
capability to existing FORTRAN models.

A deterministic approach to uncertainty analysis (DUA) has been
developed, and the availability of derivative information is a key com-
ponent. The feasibility and advantages of the DUA method is demonstrated
by its application to two sample problems. The sample problems show that
simple linear extrapolation from a small set of parameter space points
produces CDF's of the responses of interest that closely match that pro-
duced by statistical analysis using a far greater number of model execu-
tions. Although the reduction in model runs for DUA as compared to a
statistical approach is offset by the additional cost of calculating
derivatives, the Section V timing studies demonstrate that the avail-
ability of the GRESS and ADGEN systems for adding derivative-taking
capability to existing models makes the DUA approach both practical and
computationally advantages for most applications. The strong analytical
foundations of propagating probabilities determlnistically is another
desirable feature of the DUA approach.
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