
LA-UR -86-3771
LA-UR--86-3771

DE87 0C2921

Los Alamos Nallonal Laboratory IS owml.d bylhe Umverwfyof Caltfornm for tho Umteo StWos Department of Energy under contracl W-7405 -ENG-36

TITLE; A UNIX INTERFACE TO SUPERCOMPUTERS

AUTHOR(S): Oliver A. McBryan*

Submitted TO: Proceedings of ARO Meeting on

Workstations and Supercomputing
Newark, Delaware
May 1985

*C-3 Collabt~rator from Courant Inqtittlte of Mattlem.at~r:ll

3cLcnces, New York University, New York, NY 10012.

By acceptance of lh)s artIcl@ the pu!XInhot !ocogn!l@s thal m. U S Govornmant ralmns ● nofi.xclu~w~, royally .lroo Ilconso 10publtm or reproduce

the Jubllthod form of lhM conttlhutmn or 10 allow othrnm to do so, Ior U S OOvWIImOn! rmrpcmal

The 1.0$ Alnmoe Nat!onfil Labornlorv reouests thtt the publlghor !dnnufy tf!lb mt!cle os work oorformod under the auspices of the U 5 O+~atlment 01 Er?efgv

——

LOSAhlinlos
lyyJ[~

Los Alamos National Laboratory
Los A!amos,New Mexico 87545

Ulsll{l’)u I ‘U’i !il ,11: l!i)(,’;+lt,hl k: II NLINIIII[) \
,ly.~

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A UNIX Interface to Supercomputers’

Oliver A. h4cBryan2*3

Los A!amos Natimmll.aboratory,4
Los Alarr.os, NM 37s4s.

ABSTRACT

We describe a convenient interface between UNIX-basedwork-stations or mini-

computers, and supercomputerssuch as the CRAY series machines. Using this inter-

face, tlw user can issue commands entirely on the UNIX systen with remote compila-

tion, loading and execution pe‘mned on the superc~mputer. ‘he interface is net a

remote Iogin interface. Rather the domain of various UNIX utilities such as com-

pilers, archivers and loaders am extended to include the CRAY, ‘!he user need know

essentially nothing about the CRAY operating system, commands or filename restric-

tions. Standard UNIX utilities will perform CRAY operations transparently. UNIX

command names and arguments are mapped to correspondingCRAY equivalents, suit-

able options are selected as nre&d+ UNIX directory tree filenames are coerced to

allowable CRAY names and all source and output files an automatically martsferred

between the machines,

The primary purposeof the software is to allow tie programmer to benefit from

the intermtwe features of UNIX systems including screen editors, software mainte-

nance utilities such as M and SCCS amd in general to avail of the large set of

UNIX text manipulation features, The interface was desi8ned particularly to support

development of very large multi-file programs, possibly consisting of hundreds of files

and hundreds of thousandsof lines of code, All CRAY source is kept on the wok.

station. We have found that using the softwtwe, the complete prqram development

phase for a large CRAY application may be performed entirely on a workstation,

1, Presented 10 the ARC) meeting on Worhhtions md Supercom~lng, Newti, Delewue, May 198S

2, Suppomd In put by DOE WKIWCI DE. AC02.76ER03077

3. Supported In part by NSF giant DMS.KJ12229

4. Pcmun.nt mldrcm: Courm Inshtute of Mathemeual !kIcnces, New York Umvermy, New York, NY. ltX)12.

A UNIX Interface to Supercomputers’

Oliver A. McBryan2’3

Los AlamosNational Laboratory,4
Los Ahrnos, ~ 87S45.

1. Introduction

We have developed UNIX-based software which provides a ~J NIX workstation or

minicomputer user with transparent access to a CRAY or other supercomputer,

Effectively, we extend the domain of certain UNIX utilities to the supercomputer. It is

assumed that there is a direct connection between the w~liks~tion and the supercom-

puter, The connection should be high-speed for reawnable efficiency since remote

source file transfers are involved. Facilities supp~rted include remote compilation,

linking and execution, along with data retrieval

The goal of the software described hcr~ IS to allow the user to develop new pro-

grams entirely in a UNIX work-station crtvironment, Once fully developed, the pro-

grams are generally run directly on the CRAY, although remote execution is also

available.

The primary obsetwation tha; led to development of this software was that 95% of

our CRAY program aevelopr ~snt time was involved with routine editing, debugging

and compilation activities Most of these activities are best performed on a work-

station. For example, p ~werful software maintenance utilities such as make and SCCS

are not available on the CRAY, and can greatly speed the program development effort,

especially for larg~. multi-file programs, As a direct application, we can now use make

1. Prewnhd 10 ltM AR J meeting on Work-umions and Superamputing, Newark, Dclewwe, MBy IWM
2, Supponed h pti Jy DOE cmmct DE-AC02.76ERON17”(3, Supported in parl by NSF gmnt DMS-M-12229

4. i’cnv~nctll addr,sa: Cl,uianl [BXIIIUIO O(MaIIImAIIml ,Sclcnces, New York Univermlty, Ncw York, NY IUOI 24

-2-

to maintain large programs on the CRAY.

There are many additional advantages to distributed program development, The

workstation user can avail of full interactivir.~, to an extent not available on supercom-

puters. In particular one typically finds faste,- response cm work-stations to interrupt-

driven facilities such as editors. Various powerful software tools, including screen, edi-

tors, high-level languages and transformational t.itilities are available on work-stations

Furthermore by off-loading interactive activity, ti}e supercomputer is freed for batch

processing, which is where it performs best. In nuny cases the work-station may also

be used effective y for graphical post-processing of data returned from the supercom-

puter,

Section 2 provides an overview of the facilities supported by the interface

so!’tware. Section 3 describes in detail the filename coercion facilities that arc used to

map the UNIX filename space into the more restrictive filename space of the super-

con muter. Sections 4, 5 and 6 describe the mapping of basic compilation utilities to

their CRAY equival rots. Finally section 7 discusses extc(\sion of the domain of the

nuke utility to include the supercomputer.

2. Scop~?and Facilities

We will discuss the UNIX interfl,ce in terms of CRAY computers mnning the

CTSS operating system, although wc have implemented a similar interface to the COS

operating system, The general mechanism is clearly extendible to other supercomput-

ers, The network connection between the sqxrcomputer and the work-station is also a

filctor - we discuss here the use of facilities of the Los Alamos [ntegrated Computing

Network, However the network facilities required arc so simple that a similar system

could likely be built on top of any reasonable network, In fuct, the existence of a file

transfer protocol would suffice, using softwtire we huve described in a reln:ed paper, 1

-3-

The fundamental approach we have taken is to implement only the most fre-

quently used CRAY utilities as UNIX utilities. Shell command files are created that

implement the desired CRAY commands as UNIX utilities, taking standard UNIX

arguments, options and filenames. These command files map the UNIX commands

into their corresponding CRAY equivalents, supply the appropriate options to the

CRAY command, arrange that any file arguments are transferred to the CRAY, and

when everything is in place, execute the correct CRAY command on the remote

machine. After command execution, any output or error messages are returned to the

work-station and are directed to the user’s standard output.

An important aspect of the steps described above is the transfer of files. File for-

mats usually need to be modified on each side before and after transfer. More

significantly, the supercomputer and work-station will generally use different file name

spaces. To provide maximum generality we provide for filename coercion between the

systems, The filename coerciorl facilities are the same among the various basic utili-

ties. Furthermore uniform conventions are adopted for file location, All source files

(including assembler) are kept on the UNIX machine while all object, library and exe-

cutable are kept on the CRAY, Readable output files such as assembler source or

compiler listings are returned with an appropriate name to the UNIX machine. In

cases where files are returned, the inverse of the filename coercion function is applied

providing a reasonable UNIX expansion, We discuss all of these issues in more detail

below.

In our case the most important target utilities are the CRAY Fortran compiler

CFT, the CRAY C compiler CC, the CRAY assembler CAL, the CRAY loader LDR,

and the CRAY Librarian BUILD, The corresponding UNIX utilities are the j77, cc, ur

and Id programs. Thus we discuss these cases in most detail. Higher level UNIX util-

ities such as muke gererally issue commands to low level utilities such as ‘hose

described above. By developing UNIX compatible utilities that call the corresponding

-4-

CRAY utilities we therefore effectively extend the domain of make to the CRAY.

While the functionality of basic non-interactive utilities !end to map rather well

across systems, it frequently happens that a CRAY utility may require an option that

has no corresponding UNIX equivalent (see below for examples). In these cases an

extra UNIX option is added to the standard UNIX utility argument list. The result is

that even a naive user can compile and link CRAY programs without ever logging into

the CRAY or reading any CRAY manual, using the same commands or makefiles he

would use on a UNIX machine. Occasional an extra option or two may be required

in order to support some special CRAY feature, but these do not appear in normal

usage.

3. Filename Coercion

CRAY CTSS filenames may contain at most 8 characters, whereas UNIX

filenames may have essentially arbitrary length, including a directory pam Similar res-

trictions are found orI many other supercomputer operating systems. Each UNIX

filename to be compiled should be alphanumeric apart from a directory prefix and a

suffix consisting of c, ,f,s,,0or ,u. We refer to the filename with the directory

prefix and the suffix removed as the file base name, The directory prefix will be

stripped, but remembered, before sending files to the CRAY. Similarly charactem

beyond 7 in the base name are stripped, the period is deleted from the suffix but the

remaining suffix character is maintained, Consequently the CRAY file name always

ends in the same suffix character as the UNIX filename, As examples, /tur/me/shori.:

maps into the CRAY name shortc, while Iu.ri’lrnellongname,c would become lwgnamc.

Onc exception to this rule is that library archive base mimes urv truncated to 8 charac-

ters and no suffix is added, This is because typically ceflain system-supplied CRAY

libraries will be required. and will normidly not hiivc names ending in <J, “1’husthe

-5-

UNIX archive file /usr/rw/mygoodfib.a would be represented on the CRAY as the

library file mygoodli.

In cases such as listing, preprcxessor output or assembler files which are gen-

erat@ on the CRAY, files are returned with an inverse coercion rule appiied. Such

files will be placed in the current working directory with the full basename and an

appropriate suffix of ./, .e or .s respectively.

In addition to filename coercion, cextain other transformations may be required in

exchanging files between the CRAY and work-station. For example, on the Los

Alamos network a uniform s~andard text file format, (stext), is supported to provide

portability between machines. However on each individual machine it is necessary to

convert files from stext form to the native text iorm for that machine, ntcrt, before pro-

cessing by editors, ~omp;lers or other utilities on the machine. System programs stext

and nrexr are supplied to convert a native text file on any machine to standard text for-

mat and to covv~rt a standard text Ile to native text format, respectively. Our

software automatically performs these format transformations when exchanging text

files between machines of differing architectures. All text files will always be con-

verted into native text form on the machine they reside on.

There is a difference in the treatment of source and object filenames which are

provided as arguments to supported utilities, Source, including assembler, filenzne

arguments to utilities (suffixes ,c, ,f or .s) cause the corresponding UNIX files to be

sent to the CRAY with filena.ms coercion as above, as well as appropriate text format

transformation between native text modes. Object or library filename arguments

(suf!ix~s o or XI)are interpreted differently, Each .O or .a file argument is interpreted

as denoting a previously compiled file or a previously built library on the CRAY. The

corresponding CRAY object or library filename is obtained using the rules descfibed

above. The rationale here is that there seems little point in movitig such object film

back to the workstation. They are regarded as conceptually residing on the work-

-6-

station, however, in that utilities behave in the same way they would if the files had

been stored there. In fact the compile utilities ccc, c~rand car descrik! below create

dummy object or archive files on the work-station correspordirtg to each file compiled.

These dummy files carry the names one wouid expect on a UNIX system, i.e. filename

coercion is not applied, and their main purpose is to provide 8 m,ap of the current com-

pilation state on the CR.AY, including information aboti~ the c~act compilation time 01

each CRAY file.

4. The CCC command

The UNIX version of the CRAY C compile command is called ccc to distinguish

it from the standard UNIX C compi Ier cc. However ccc takes the same standard argu-

ments that the cc command takes, along \vith some CRAY specific ones, The calling

sequence is:

ccc [-c] [-o name] [-E] [-0] [- Dstring] . [- Ustring] ,. [-[string] ..

[-it] [-1] [-V] [-p priority] [-r] ftlel jile2 ..

The -c option specifies compile only, without loading,

The -o option assigns the following name to the compiled program,

The --E option runs the C preprocessor on each C file leaving the output in the

current directory with suffix e.

The -0 option is ignored,

The -/dir option specihcs a seuch directory for include files,

The -Dstring and -Vstring optiori. ‘~plement preprocessor defines and undefincs

as in the UNIX C compiler,

-7-

The -pc option specities

The default is to execute

The -1 option places full

that the C pre-processor is to be executed on the CRAY.

the pre-processor on the work-station.

listing files in the current directory with suffix .f.

The -V option specifies that all C sources files are to be compiled specially with

the varargs mechanism.

The -p option specifies that CRA\- compilation or loading is to be performed at

the specified priority level.

The -r option causes the compiled program

put transferred to the UNIX standard output.

to be run on the CRAY and the out-

The last five options, -it, -f, --V, -p and -r are not standard LJJOX facilities.

They provide access to desirable CRAY C features. In particular the CRAY C comp-

iler requires a special argument -V if a source file containing a subroutine with a

variable number of arguments is to be compiled. It is Aso useful to see the CRAY

compiler listing - if the -1 option is supplied th m for each compiled source file, a

corresponding CRAY listing file will be r~:timed to the UNIX machine with the same

filename, but suffix ./,

Filenames ending in ,c, J .s, ,0 or ,a are assumed to be C source, Fortran source,

CAL assembler, previously compiled CRAY object files or CRAY library archives of

object files respectively. Each source file is converted to standard text format, moved

to the remote machine, converted to native text and compiled. Thus

/usrlme/longname.c is moved to longnatnc on the CRAY and is compiled to produce

longnamo, If a listing file is requested it is returned as fongname,l to UNIX, After

each file is compiled, a corttsponding dummy file with suffix .O is created

current directory to record the compilation status and time of compila~ion

CRAY, In the above example a dummy file longname.o would be created

work-station,

in the

on the

on the

-8-

One issue not discussed so far is the use of the C pre-processor. Since the pre-

processor is simply a text transformer, itmay obviously be executed either on the

work-stition or on the CRAY. The –PC option is provided to allow the user to choose

either possibility. The choice made affects primarily the outcome of the C include

facility. Depending on which route is taken, file inclusion will be performed either on

the CWiY or on the work-station, It is more consistent with our general goals if file

inclusion is performed on the work-station - include files are after all text files. How-

ever if this is done, certain precautions u required. For example, there me system

include files such as cstdio.~ which are used by many programs, but are very

system-dependent. It would be incorrect to include a work-station version of such a

file in source code targeted for the CRAY. Consequently a seperate directory of

CRAY system include files must be maintained on the work-station, and searched by

the pre-processor before it searches the standard system directory. This is easily

accomplished in practice using the –1 include directory option.

One further pre-processing step is automatically inserted by the ccc command,

and is provided for two reasons. A disadvantage of the distributed compilation dis-

cussed here is that there is delay involved while waiting for files to be transferred to

the CRAY. It is therefore very desirable to minimize the length of source files.

Secondly, the CRAY C compiler has difficulty with long lines in source files, We

handle both of these issues by subjecting each source file to a filter called shorten

before sending it. This step is performed after pre-processing, if that was requested on

the work-station, The shorten filter replaces consecutive white-space characters found

outside of quotes by a single space, and then folds every line after 79 characters, tak-

ing care not to split strings.

If loading is not suppressed by the -c option, then both the newly compiled files

and the previously compiled files, represented by any .O file arguments, are loaded

together along with requested libraries. The resulting executable image is called name

-9-

if the -o name option was used, or a.out otfierwise. Any unrecognized command line

arguments are assumed to be options for the CRAY loader. This dllows various spe-

cial facilities to be accessed, for example a dynamic army may be specified in this way

to facilitate programs that perform internal storage allocation.

If the –r option was specified on the compile line, the compiled program is run

and its output returned to the standard output of the UNIX work-station.

5. The CFI’ Command

The CFT command allows Fortran source tiles to be compiled on a CRAY. The

usage is similar to that for the ccc command, but with fewer options supported:

cft [-c] [-0 name] [-1] [-r] jilel .fjile2.f jiler.o

The –c option specifies compilation only.

The -o option assigns the following name to the program.

The -f option places full listing files in filei.1.

The -r option causes the program to be run on the CRAY after loading.

File name coercion, and text file format transformations, are performed in the

same way as for the CCC command. Thus each Fortran source file (suffix .fl is con-

verted to standard text, moved to the remote machine, converted to native text and

compiled. The filename file,f will produce a CRAY source file called filef, and a

binary file called fi.lee, The listing file, if requested, is returned to the current directory

as file,l. After each file is compiled, a corresponding dummy file with suffix .O is

created in the current directory on the work-station to recuid the compilation status and

time of compilation on the CRAY, Each object file argument (suffix ,0) to c$t is inter-

preted as dencting a previously compiled object file on the CRAY.

-1o-

If loading is not suppressed by the -c option, then bo[h the newly compileci files

and previously compiled files are loaded together and the executable image is named

filelx, (derived nom the first filename argument), or ‘name’ if the -o option was use~.

Any remaining command-line arguments are passed to the CRAY loader as arguments.

6. The CAR Command

The Ci~R command accesses the CRAY Librarian, BUILD, using the standard

argument syntax of the UNIX ar archive program.

car option libname jiiel o jilc2 .O ..

Here option is one of c, r, t or x denoting respectively create a new archive, repkzce

files in a library, list the table of contents of a library or extract all files from a library.

Filename coercion follows” the rules given earlier in section 3, Thus both the archive

name libname and the object filenames filei.o are subjected to directory and name trurl-

cation. All of the resulting object files are assumed to exist on the CRAY and the

resulting archive file is also left on the CRA”Y. After the archive file is created or

updated on the CRAY a corresponding dummy file with suffix a is created m the

current directory on the work-station to record the archive status anti time 01’ achiving

on the CRAY.

7. Using MAKE on the CRAY

The real payoff for the development of the facilities described in the previous

sections co~nes when they are coupled with the UNIX make program. Make is a util-

ity used to maintain software projects, It deals with the mechanics of assembling large

-11-

programs from many inter-related source files. The user specifies how to bui!d the

program by supplying an appropriate set of commands in a makejile. Make reads the

makefife, checks to see what commands remain to be executed to build the required

object, and performs these. An important point is that make attempts to perform the

minimal amount of work necessary to build a program. This is accomplished by using

a set of built in dependency rules. For ex~i .r wzke realizes that an object file file.o

is obtained from a source file file.c or Jfe.f. If ~ke is req.ired to create an object file

fife.o as part of building a progrm, it first checks to see if a corresponding source file

file,c or file$ is available. If so, it compares the date of last modification of the source

code file and the last version of the object file (if then is one). If the source code was

modified since the object file, or if no object file is present, ‘hen make automatically

calls the appropriate compiler command nn the source file; otherwise no action is per-

formed by make for that object file, For further information about make see the UNIX

o-rating system user rnanuals.2 For the discussion here we note one other feature of

make: the built in rules for creating object files from dependencies are easily modified.

For example, the rule for creating file.o from file.c looks like:

$(CC) $(CFLJIGS) ji!ec

Here CC and CCFLAGS are make macro variables that define the compiler command

and compiler options to be usecl in compiling file,c, while $(.) denotes macro vti~ble

evaluation, Both are given default values by make: CC = cc and CFLAGS = -c

respectively. Similarly, the default rules for cor ~iing Fortrdn programs involve

macro variables F77 and FFLAGS, wt,ich have clef.,ult values of j77 and -c, while the

rules for creating a Iibrmy use a default variable AR with default value ar,

Suppose that we have a large multi-file, and possibly multi-directory, program

maintained for compilation by make, Norman) the program will be developed and

debugged on the work-station A version for the supercomputer may be maintained

from the same source files by using conditional compilation, In this context the C

-12-

pre-pr=essor m&es mexcellcnt pre-prwessor for both Fotimmd C. We have used

it to maintain portable source code for more than 10 machines within a single software

version.

once the work-station version of the program is ready, a supercGmputer compila-

tion may be made from the same directory and makefile by simply redefining the make

variables CC, F77 and AR to the values ccc, c~rand car respectively. If necessary, the

variables CFLAGS and FFLAGS may be set to record any special options required

such as listing files or to request the -V option for variable-number-of-argument rou-

tiiles in C, Conditional compilation may also be effected at this point by adding the

appropriate conditional compilation flags to CFLAGS. Make then takes over, issuing

all needed instructions’ for the complete compilation and linking of the program on the

CRAY, including handling all of the issues of file transfer and name coercion. While

object and library files are not kept on the work-station, the dummy versions of such

files are created by the compilers as discussed previously and record faithfully the

correct last time of compilation of the corresponding files on the CRAY,

One major inconvenience is that under CTSS and other supercomputer operating

systems frequently a user’s files are deleted within 24 hours of logging out. As a

result it is generally necessary to save all files on the CRAY to a mass storage system

before logging off, This is in fact easily automated using a save entry in the work-

station makefile, which simply looks at the current list of to and .a tiles on the work-

station, and sends commands to the CRAY to save those files as well as the

corresponding source files. At the next work-station session a restore entry in the

makefile may be activated to return the CRAY files from storage to the CRAY, How-

ever none of these steps involves any actions to the work-station files, The times

recorded will still be those for the original CRAY compilation, avoiding the necessity

for any unnecessary recompilation,

-13-

References

1. 0. McBryan, “Using Supercomputers as Attached Processors,” Los Alamos

National Laboratory Preprint, Sept 1986,

2. The UNIX Users’s Manual Reference Guide, USENIX Association. 1984.

