<UR -86-377
LA-UR -86-3771 LA-UR--86-3771
DE87 002921

Los Alamos National Laboratory 18 operated by the University of Califorria for the Unitea States Department of Energy under contract W-7405-ENG-36

[
SE3E§3gses
Qo5 < g‘?-;"’
3285 -ﬂ'g;"
MSS'ONQQ‘ 50
Sngg'g-~§g§
B E o
TITLE: A UNIX INTERFACE TO SUPERCOMPUTERS 2o fgszaafg
9&;°~g§*za
P - "2 E 2 ay
SE32.858 537
5828¥ ;2288
g 8™ 8= -
530.2:'5 £59
ESE RSN
"‘%5-9.8:':_’?’, g_'ﬁ
S5glgdcazzs
kgc S mo- 2
3 o T30 H
os :'gaﬁggmg
o "R IE
AUTHOR(S): Oliver A. McBryan* 2 g &g&z s 338 o
=558 ifge0n
ze-a § 8. ¢ ¢
18885057
25, QT EFETE S m >
23035883 &
23383, 2% 2
52320828 &
857585 88 x
2R ;5,5: g
SUBMITTED TO: Proceedings of ARO Meeting on 228 gg,gg‘gz
Workstations and Supercomputing 2"35‘555333
Newark, Delaware A TR
May 1985 %;?}:;35&%
- FE TR .
g83 g8 ‘
5 =3 03w s = '
e L])
2553858
A - 8-58.".48.
9~<—‘§W=39ﬂm
TEipdgbag

*C-3 Collabirator from Courant Institute of Mathematical
Sclences, New York University, New York, NY 10012,

By acceptance of this article the publisher recognites that the U S Government rataing g nonexclusive, royaity-free license to publish or reproduce
the publisned form of this contribution or 1o allow others to do 8o, for US Governmaent purpuses

The Los Alamos Nationsi LAboratory requests that the publisher identily this article as work pertormed under the auspices of the U $ Departmant o’ Energy

AAS?ER
LOS Al2MNOS LeshimosNatonalLaboratory

FORAM NO 836 A4
ST NO 2629 /00 . A v
DISTRIGU g SE b v W UNLNIETED \\- k

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

.‘-‘:-‘!“r'

A UNIX Interface to Supercomputers'

Oliver A. McBryan®?

Los Alamos National I.aboratory,*
Los Alan.os, NM 37545.

ABSTRACT

We describe a convenient interface between UNIX-based work-stations or mini-
computers, and supercomputers such as the CRAY series machines. Using this inter-
face, the user can issue commands entirely on the UNIX system, with remote compila-
tion, loading and execution pe>rmed on the superccmputer. The interface is nct a
remote login interface. Rather the domain of various UNIX utilities such as com-
pilers, archivers and loaders are cxtended to include the CRAY. The user need know
essentially nothing about the CRAY operating system, commands or filename restric-
tions, Standard UNIX utilities will perform CRAY operations transparently. UNIX
command names and arguments are mapped to corresponding CRAY equivalents, suit-
able options are selected as needed, UNIX directory tree filenames are coerced to
allowable CRAY names and all source and output files ars automatically ‘ransferred

between the machines.

The primary purpose of the so‘tware is to allow the programiner to benefic from
the interactive features of UNIX systems including screen ediwors, software mainte-
nance utilities such as make and SCCS and in general to avail of the large set of
UNIX text manipulation features. The interface was designed particularly t» support
development of very large mult-file programs, possibly consisting of hundreds of files
and hundreds of thousands of lines of code. All CRAY source is kept on the work-
station. We have found that using the software, the complete program development
phase for a large CRAY application may be performed entirely on a work-station,

Presented to the ARO meeting on Work-stations and Supercomputing, Newark, Delewars, May 1985,

Supported in pant by DOE conatract DE-ACO2-76ER03077
Supported in part by NSF grant DMS-83-12229
Permanent address: Courant Institute of Mathematical Sciences, New York University, New York, N.Y. 10012,

A UNIX Interface to Supercomputers!

Oliver A. McBryan*?

Los Alamos National Laboratory,*
Los Alamos, NM 87545.

1. Introduction

We have developed UNIX-based software which provides a UNIX workstation or
minicomputer user with transparent access to a CRAY or other supercomputer.
Effectively, we extend the domain of certain UNIX utilities to the supercomputer. It is
assumed that there is a direct connection between the wekstation and the supercom-
puter. The connection should be high-speed for reasunable efficiency since remote
source file transfers are involved. Facilities supported include remote compilation,

linking and execution, along with data retrieval.

The goal of the software described hers 15 to allow the user to cevelop new pro-
grams entirely in a UNIX work-station ervironment. Once fully developed, the pro-
grams are generally run directly on the CRAY, althoughk remote execution is also

available.

The primary observation tha. led to development of this software was that 95% of
our CRAY program developr.¢nt time was involved with routine editing, debugging
and compilation activities Most of these activities are best performed on a work-
station. For example, p»werful software maintenance utilities such as make and SCCS
are not available on tae CRAY, and can greatly speed the program development etfort,

especially for larg. multi-file programs. As a direct application, we can now use make

1. Presented to the AR meeting on Work-stations and Supercomputing, Newark, Deleware, May 1985,
2. Supported in pant oy DOE contract DE-ACO2-76ER03077 3. Supported in part by NSF grent DMS-83-12229
4. Permancat addrass: Couiant [nstitute of Mathematical Sciences, New York Univeruty, New York, N.Y. 10012,

2.

to maintain large programs on the CRAY.

There are many additional advantages to distributed program development. The
workstation user can avail of full interactivit,’, to an extent not available on supercom-
puters. In particular one typically finds faste- response on work-stations to interrupt-
driven facilities such as editors. Various powerful software tools, including screen edi-
tors, high-level languages and transformational utilities are available on work-stations.
Furthermore by off-loading interactive activity, tae supercomputer is freed for batch
processing, which is where it performs best. In many cases the work-station may also
be used effectively for graphical posi-processing of data returned from the supercom-

puter.

Section 2 provides an overview of the facilites supported by the interface
software. Section 3 describes in detail the filename coercion facilities that are used to
map the UNIX filename space into the more restrictive filename space of the super-
comnuter. Sections 4, 5 and 6 describe the mapping of basic compilation utilities to
their CRAY equiva':nts. Finally section 7 discusses exteasion of the domain of the

make utility to include the supercomputer.

2. Scope and Facilities

We will discuss the UNIX inter{lice in terms of CRAY computers running the
CTSS operating system, although we have implemented a similar interface to the COS
operating system. The general mechanism is clearly extendible to other supercomput-
ers. The network connection between the s'percomputer and the work-station is also a
factor - we discuss here the use of facilities of the Los Alamos Integrated Computing
Network. However the network facilities required are so simple that a similar system
could likely be built on top of any reasonable network. In fact, the existence of a file

transfer protocol would suffice, using software we have described in a related paper.!

- 3.

The fundamental approach we have taken is to implement only the most ire-
quently used CRAY utilities as UNIX utilities. Shell command files are created that
implement the desired CRAY commands as UNIX utilities, taking standard UNIX
arguments, options and filenames. These command files map the UNIX commands
into their corresponding CRAY equivalents, supply the appropriate options to the
CRAY command, arrange that any file arguments are transferred to the CRAY, and
when everything is in place, execute the correct CRAY command on the remote
machine. After command execution, any output or srror messages are returned to the

work-station and are directed to the user’s standard output.

An important aspect of the steps described above is the transfer of files. File for-
mats usually need to be modified on each side before and after transfer. More
significantly, the supercomputer and work-station will generally use different file name
spaces. To provide maximum generality we provide for filename coercion between the
systems. The filename coercion facilities are the same among the various basic utili-
ties. Furthermore uniform conventions are adopted for file location. All source files
(including assembler) are kept on the UNIX machine while all object, library and exe-
cutables are kept on the CRAY. Readable output files such as assembler source or
compiler listings are returned with an appropriate name to the UNIX machine. In
cases where files are returned, the inverse of the filename coercion function is applied

providing a reasonable UNIX expansion. We discuss all of these issues in more detail

below.

In our case the most important target utilities are the CRAY Fortran compiler
CFT, the CRAY C compiler CC, the CRAY assembler CAL, the CRAY loader LDR,
and the CRAY Librarian BUILD. The corresponding UNIX utilities are the f77, cc, ar
and /d programs. Thus we discuss these cases in most detail. Higher level UNIX util-
ities such as make gererally issue commands to low level utilities such as 'hose

described above. By developing UNIX compatible utilities that call the corresponding

-4 -

CRAY utlities we therefore effectively extend the domain of make to the CRAY.

While the functionality of basic non-interactive utilities tend to map rather well
across systems, it frequently happens that a CRAY utility may require an option that
has no corresponding UNIX equivalent (see below for examples). In these cases an
extra UNIX option is added to the standard UNIX utility argument list. The result is
that even a naive user can compile and link CRAY programs without ever logging into
the CRAY or reading any CRAY manual, using the same commands or makefiles he
would use on a UNIX machine. Occasionaly an extra option or two may be required
in order to support some special CRAY feature, but these do not appear in normal

usage.

3. Filename Coercion

CRAY CTSS filenames may contain at most 8 characters, whereas UNIX
filenames may have essentially arbitrary length, including a directory part. Similar res-
trictions are found on many other supercomputer operating systems. Each UNIX
filename to be compiled should be alphanumeric apart from a directory prefix and a
suffix consisting of .c, f, .5, .0 or .a. We refer to the filename with the directory
prefix and the suffix removed as the file base name. The directory prefix will be
stripped, but remembered, before sending files to the CRAY. Similarly characters
beyond 7 in the base name are stripped, the period is deleted from the suffix but the
remaining suffix character is maintained. Consequently the CRAY file name always
ends in the same suffix character as the UNIX filename. As examples, /usr/mel/shor:.c
maps into the CRAY name shortc, while /usii'mellongname.c would become longname.
One exception to this rule is that library archive base names are truncated to 8 charac-
ters and no suffix is added. This is because typically certain system-supplied CRAY

libraries will be required. and will normally not have names ending in «. Thus the

-5 -

UNIX archive file /usr/me/mygoodlib.a would be represented on the CRAY as the
library file mygoodii.

In cases such as listing, preprocessor output or assembler files which are gen-
erated on the CRAY, files are returned with an inverse coercion rule applied. Such
files will be placed in the current working directory with the full basename and an

appropriate suffix of ./, .e or .s respectively.

In addition to filename coercion, certain other transformations may be required in
exchanging files between the CRAY and work-station. For example, on the Los
Alamos network a uniform srandard text file format, (stext), is supported to provide
portability between machines. However on each individual machine it is necessary to
convert files from stext form to the native text form for that machine, ntext, before pro-
cessing by editors, sompilers or other utilities on the machine. System programs stext
and ntext are supplicd to convert a native text file on any machine to standard text for-
mat and to convert a standard text ile to native text format, respectively. Our
software automatically performs these format transformations when exchanging text
files between machines of differing architectures. All text files will always be con-

verted into nativc text form on the machine they reside on.

There is a difference in the treatment of source and object filenames which are
provided as arguments to supported utilities. Source, including assembler, filenzme
arguments to utilities (suffixes .c, f or .s) cause the corresponding UNIX files to be
sent to the CRAY with filename coercion as above, as well as appropriate text format
transformation between native text modes. Object or library filename arguments
(suftixes .0 or .a) are interpreted differently. Each .o or .a file argument is interpreted
as denoting a previously compiled file or a previously built library on the CRAY. The
corresponding CRAY object or library filename is obtained using the rules described
above. The rationale here is that there seems little point in movirg such object files

back to the workstation. They are regarded as conceptually residing on the work-

-6 -

station, however, in that utilities behave in the same way they would if the files had
been stored there. In fact the compile utilities ccc, cft and car descrihed below create
dummy object or archive files on the work-station correspor:iling to each file compiled.
These dummy files carry the names one wouid expect on a UNIX system, i.e. filename
coercion is not applied, and their main purpose is to provide a map of the curreni com-
pilation state on the CRAY, including information about ihe ¢aact compilation time of

each CRAY file.

4. The CCC command

The UNIX version of the CRAY C compile command is called ccc to distinguish
it from the standard UNIX C compiler cc. However ccc takes the same standard argu-
ments that the cc command takes, along with some CRAY specific ones. The c.lling

sequence is:

ccc [-c] [-0 name] [-E] [-O] [-Dstring] .. [-Ustring] .. [-Istring] ..

[-ic] [-1] [-V] [-p priority] [-r] filel file2 ..

The —c option specifies compile only, without loading.
The —o option assigns the following name to the compiled program.

The --E option runs the C preprocessor on each C file leaving the output in the

current directory with suffix .e.
The —O option is ignored.
The —/dir option specifies a search directory for include files.

The -Dstring and ~Ustring optior., ‘mplement preprocessor defines and undefines

as in the UNIX C compiler.

-7-

The —pc option specifies that the C pre-processor is to be executed on the CRAY.

The default is to execute the pre-processor on the work-station.
The —/ option places full listing files in the current directory with suffix ...

The -V option specifies that all C sources files are to be compiled specially with

the varargs mechanism.

The —p option specifies that CRAY compilation or loading is to be performed at
the specified priority level.

The —r option causes the compiled program to be run on the CRAY and the out-

put transferrec. to the UNIX ¢tandard output.

The last five options, —ic, =, -V, —p and —r are not standard UWNIX facilities.
They provide access to desirable CRAY C features. In particular the CRAY C com-
piler requires a special argument ~V if a source file containing a subroutine with a
variable number of arguments is to be compiled. It is also useful to see the CRAY
compiler listing - if the ~/ option is supplied th:n for each compiled source file, a
corresponding CRAY listing file will be returned to the UNIX machine with the same

filename, but suffix ./

Filenames ending in .c, f, .5, .0 or .a are assumed to be C source, Fortran source,
CAL assembler, previously compiled CRAY object files or CRAY library archives of
object files respeciively. Each source file is converted to standard text format, moved
to the remote machine, converted to native text and compiled. Thus
lusrimellongname.c is moved to longnamc on the CRAY and is compiled to produce
longnamo. If a listing file is requested it is returned as longname.l to UNIX. After
each file is compiled, a corresponding dummy file with suffix .0 is created in the
current directory to record the compilation status and time of compilaiion on the
CRAY. In the above example a dummy file longname.o would be created on the

work-station,

-8 -

One issue not discussed so far is the use of the C pre-processor. Since the pre-
processor is simply a text transformer, it may obviously be executed either on the
work-station or on the CRAY. The —pc option is provided to allow the user to choose
either possibility. The choice made affects primarily the outcome of the C include
facility. Depending on which route is taken, file inclusion will be performed either on
the CRAY or con the work-station. It is more consistent with our general goals if file
inclusion is performed on the work-station - include files are after all text files. How-
ever if this is done, certain precautions are required. For example, there are system
include files such as <stdio.h> which are used by many programs, but are very
system-dependent. It would be incorrect to include a work-station version of such a
file in source code targeted for the CRAY. Consequently a seperate directory of
CRAY system include files must be maintained on the work-station, and searched by
the pre-processor before it searches the standard system directory. This is easily

accomplished in practice using the =/ include directory ontion.

One further pre-processing step is automatically inserted by the ccc command,
and is provided for two reasons. A disadvantage of the distributcd compilation dis-
cussed here is that there is delay involved while waiting for files to be transferred to
the CRAY. It is therefore very desirable to minimize the length of source files.
Secondly, the CRAY C compiler has difficulty with long lines in source files. We
handle both of these issues by subjecting each source file to a filter called shorten
before sending it. This step is performed after pre-processing, if that was requested on
the work-station. The shorten filter replaces consecutive white-space characters found
outside of quotes by a single space, and then folds every line after 79 characters, tak-

ing care not to split strings.

If loading is not suppressed by the —c option, then both the newly compiled files
and the previously compiled files, represented by any .o file arguments, are loaded

together along with requested libraries. The resulting executable image is called name

-9

if the —o name option was used, or a.out otherwise. Any unrecognized command line
arguments are assumed to be options for the CRAY loader. This allows various spe-
cial facilities to be accessed, for example a dynamic array may be specified in this way
to facilitate programs that perform internal storage allocation.

If the —r option was specified on the compile line, the compiled program is run

and its output returned to the standard output of the UNIX work-station.

5. The CFT Command

The CFT command allows Fortran source tiles to be compiled on a CRAY. The

usage is similar to that for the ccc command, but with fewer options supported:
cft [-c] [-0 name] [-l] [-r] flelf file2f filero .

The —c option specifies compilation only.

The —o option assigns the following name to the program.

The -/ option places full listing files in filei.l.

The -r option causes the program to be run on the CRAY after loading.

File name coercion, and text file format transformations, are performed in the
same way as for the CCC command. Thus each Fortran source file (suffix .f) is con-
verted to standard text, moved to the remote machine, converted to native text and
compiled. The filename file.f will produce a CRAY source file called filef, and a
binary file called fileo. The listing fiie, if requested, is returned to the current directory
as filel. After each file is compiled, a corresponding dummy file with suffix .0 is
created in the current directory on the work-station to record the compilation status and
time of compilation on the CRAY. Each object file argument (suffix .0) to ¢ft is inter-

preted as dencting a previously compiled object file on the CRAY.

- 10 -

If loading is not suppressed by the —c option, then both the newly compiled files
and previously compiled files are loaded together and the executable image is named
filelx, (derived from the first filename argument), or 'name’ if the —o option was use!.

Any remaining command-line arguments are passed to the CRAY loader as arguments.

6. The CAR Command

The CAR command accesses the CRAY Librarian, BUILD, using the standard

argument syntax of the UNIX ar archive program.

car option libname filel o file2.o .

Here option is one of ¢, r, t or x denoting respectively create a new archive, replace
files in a library, list the table of contents of a library or extract all files from a library.
Filename coercion follows'the rules given earlier in section 3. Thus both the archive
name libname and the object filenames filei.o are subjected to directory and name trun-
cation. All of the resulting object files are assumed to exist on the CRAY and the
resulting archive file is also left on the CRAY. After the archive file is created or
updated on the CRAY a corresponding dummy file with suffix .a is created in the
current directory on the work-station to record the archive status and time of 2ichiving

on the CRAY.

7. Using MAKE on the CRAY

The real payoff for the development of the facilities described in the previous
sections cotnes when they are coupled with the UNIX make program. Make is a util-

ity used to maintain software projects. It deals with the mechanics of assembling large

211 -

programs from many inter-related source files. The user specifies how to build the
program by supplying an appropriate set of commands in a makefile. Make reads the
makefile, checks to see what commands remain to be executed to build the required
object, and performs these. An important point is that make attempts to perform the
minimal amount of work necessary to build a program. This is accomplished by using
a set of built in dependency rules. For exa.., make realizes that an object file file.o
is obtained from a source file file.c or filef. If make is reauired to create an object file
file.o as part of building a program, it first checks to see if a corresponding source file
file.c or filef is available. If so, it compares the date of last modification of the source
code file and the last version of the object file (if there is one). If the source code was
modified since the object iile, or if no object file is present, *en make automatically
calls the appropriate conipiler command on the source file; otherwise no action is per-
formed by make for that object file. For further information about make see the UNIX
operating system user manuals.? For the discussion here we notc one other feature of
make: the built in rules for creating object files from dependencies are easily modified.

For example, the rule for creating file.o from file.c looks like:
3(CC) $3(CFLAGS) filec

Here CC and CCFLAGS are make macro variables that define the compiler command
and compiler options to be used in compiling file.c, whiie $(-) denotes macro var‘zble
evaluation. Both are given default values by make: CC =cc and CFLAGS = -c
respectively. Similarly, the default rules for cor 'ling Fortran programs involve
macro variables F77 and FFLAGS, which have def. alt values of f77 and —c, while the

rules for creating a library use a default variable AR with default value ar.

Suppose that we have a large multi-file, and possibly multi-directory, program
maintained for compilation by make. Normally the program will be developed and
debugged on the work-station. A version for the supercomputer may be maintained

from the same source files by using conditional compilation. In this context the C

-12 -

pre-precessor makes an excellent pre-processor for both Fortran and C. We have used
it to maintain portable source code for more than 10 machines within a single software

version.

Once the work-station version of the program is ready, a supercomputer compila-
tion may be made from the same directory and makefile by simply redefining the make
variables CC, F77 and AR to the values ccc, cft and car respectively. If necessary, the
variables CFLAGS and FFLAGS may be set to record any special options required
such as listing files or to request the -V option for variable-number-of-argument rou-
tines in C. Conditional compilation may also be effected at this point by adding the
appropriate conditional compilation flags to CFLAGS. Make then takes over, issuing
all needed instructions for the complete compilation and linking of the program on the
CRAY, including handling all of the issues of file transfer and name coercion. While
object and library files are not kept on the work-station, the dummy versions of such
files are created by the compilers as discussed previously and record faithfully the

correct last time of compilation of the corresponding files on the CRAY.

One major inconvenience is that under CTSS and other supercomputer operating
systems frequently a user’s files are deleted within 24 hours of logging out. As a
result it is generally necessary to save all files on the CRAY to a mass storage system
before logging off. This is in fact easily automated using a save entry in the work-
station makefile, which simply looks at the current list of .» and .a files on the work-
station, and sends commands to the CRAY to save those files as well as the
corresponding source files. At the next work-station session a restore entry in the
makefile may be activated to return the CRAY files from storage to the CRAY. How-
ever none of these steps involves any actions to the work-station files. The times
recorded will still be those for the original CRAY compilation, avoiding the necessity

for any unnecessary recompilation.

-13.

References

1. O. McBryan, ‘“‘Using Supercomputers as Attached Processors,’”” Los Alamos

National Laboratory Preprint, Sept 1986.

2. The UNIX Users’s Manual Reference Guide, USENIX Association. 1984.

