SYMMETRIES OF SOME HYPERGEOMETRIC SERIES: IMPLICATIONS FOR 3j- AND 6j-COEFFICIENTS

Authons: J. D. Louck, W. A. Beyer, L. C. Bledenharn, and P. R. Stein

SUDAITTED TO Proceedings of the XV International Conference on Group Theoretical Methods in Physics

IIIS 'I.AIMF:R

 and upminas of authurs expressed herein da not necessurily state of reflect the se of the Inited Staten (iswernment ur any agency thereaf

SYMMETRIES OF SOME HYPERGEOMETRIC SERIES:

IMPLICATIONS FOR 3j- AND 6j-COEFFICIENTS*
J. D. Louck, W. A. Beyer
L. C. Biedenharn and P. R. Stein

Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545

ABSTRACT. The occurrence of generalized hypergeometric series as factors in the Wigner-Clebsch-Gordan (3j) and Racah (6 j) coefficfents is well known. The recently discovered S_{5} symmetry of the Saalschotzian F_{3} series may be used to extend the symmetries of the 6 J -coeffic fents to the much larger group generated by S_{5} and the group of Regge symmetries. (A similar extension may be Carried out for the 3 j -coefficients.) The required extension of the domaln of definition of the 6 j -coefficients and the properties of its symmetry group is developed here.

1. INTRODUCTION

It was shown recently ${ }^{1)}$ that hoth the ${ }_{3} F_{2}$ and Salschïtzian ${ }_{4} F_{3}$ generalized hypergeometric series possess the group S_{5} of permutational symmetries. This is an extension of the trivial groups $S_{3} \times S_{2}$ and $S_{3} \times S_{3}$ symmetries corresponding to the separate permutations of numerator and denominator parameters that occur in the definitions of these series, respectively. These results are reviewed below. In this paper we apply this extended symmetry of the ${ }_{4} \mathrm{~F}_{3}$ series to the Racah (Wigner 6 J) coefficients of the quantal rotation group SU(2). (Similar results for the 3 j -coefficients may also be obtained and will be published separately.)

The definltirn of the action of the group S_{5} on the set of 6 j coefficients requires that the domain of definition of these coefficients (the standard triangle conditions) be extended. A principal result given here is an extenston of the standard domain to an arbitrary point $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}$, which is suitable for the definition of a group action of S_{5}. The symmetry group G of these extended 6j-coefficlents is generated by the group S_{5} and the well-known Regge group \boldsymbol{R}^{2} Work performed under the auspices of the U.S. Department of Energy
of symmetries, which is isomorphic to $S_{4} \times S_{3}$. The group G is characterized more precisely in the sequel.

We review briefly the action of the Regge ${ }^{2)}$ group on the set of 6 j -coefficients, which are conveniently defined in terms of the Bargmann ${ }^{3)}$ array. Next the 6 j -coafficients are expressed in terms of the Salschützian ${ }_{4} F_{3}$ series. This is a key step, since it is this relation in its extended form that admits the successful 'joining' of the two group actions of S_{5} and \mathscr{R} to that of G, which at this point is realized as a group of 7×7 real matrices.
2. BASIC RELATIONS

The generalized hypergeometric series p_{q} of unit argument is defined by

$$
\begin{equation*}
p_{q}\binom{a_{1}, a_{2}, \cdots, a_{p}}{b_{1}, b_{2}, \ldots, b_{q}}=\sum_{k} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{q}\right)_{k} k!}, \tag{1}
\end{equation*}
$$

where $(x)_{k}$ denotes the rising factorial defined by $(x)_{0}=1,(x)_{k}=$ $x(x+1)(x+2) \cdots(x+k-1)$ for $k=1,2, \ldots$. We regard ${ }_{p} F_{q}$ as a function of its nunerator and denominator parameters ($a_{1}, a_{2}, \ldots, a_{p}$) and ($b_{1}, b_{2}, \ldots, b_{q}$). This function is clearly invariant under the group $S_{p} \times S_{q}$ of permutations of these parameters.

Under a suitable change of variables and redefinition of function, Thomae's identity ${ }^{4)}$ and the $S_{3} \times S_{2}$ permutational symmetry of ${ }_{3} F_{2}$ can be united into a single symmetry under S_{5}. These results are summarized by the following relations.

Thomae's identity:

$$
\begin{equation*}
{ }_{3} F_{2}\binom{a, b, c}{d, e}=\frac{\Gamma\left(a^{\prime}\right) \Gamma(d) \Gamma(e)}{i(a) \Gamma\left(d^{\prime}\right) \Gamma(e)} 3^{F} 2\binom{a^{\prime}, b^{\prime}, c^{\prime}}{d^{\prime}, e^{\prime}} \text {. } \tag{2a}
\end{equation*}
$$

Where $\underset{a}{ }=(a, b, c, d, e)$ and $a^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}\right)$ are related by the column matrix multiplication

$$
\underline{a}^{\prime}=\mathrm{ta} \cdot \mathrm{t}=\left[\begin{array}{ccccc}
-1 & -1 & -1 & 1 & 1 \tag{2b}\\
-1 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 1 & 1 \\
-1 & 0 & -1 & 1 & 1
\end{array}\right] \text {. }
$$

change of variables: $\underline{x}=(x, y, z, u, v)$

$$
\underline{a}=A_{1} \underline{x}, A_{1}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \tag{3}\\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 & 2
\end{array}\right]
$$

new function:

$$
F(x, y, z, u, v)={ }_{3} F_{2}\left|\begin{array}{l}
x+u+v, y+u+v, x+u+v \tag{4a}\\
x+y+z+2 u+v, x+y+z+u+2 v
\end{array}\right| / 0 .
$$

where the denominator D is defined by

$$
\begin{equation*}
0=\Gamma(x+y+z+2 u+v) \Gamma(x+y+z+u+2 v) \Gamma(x+y+z) . \tag{4c}
\end{equation*}
$$

The symmetry of $F(x)$ is given by

$$
\begin{equation*}
F(p \underline{x})=F(\underline{x}), \quad p \in S_{5}, \underline{x} \in \mathbb{R}^{5} \tag{5}
\end{equation*}
$$

Simflarly, by a change of va: lables and redefinition of function, Bailey's ${ }^{4)}$ identity and the $S_{3} \times S_{3}$ permutational symmetry of the Sadischützian $4_{4} \mathrm{~F}_{3}$ series can be united into a single symmetry under $\dot{s}_{5}{ }^{1}$):

Bailey's identity:

$$
\begin{equation*}
4_{3}\binom{a, b, c,-n}{d, e, f}=\frac{\left(d^{\prime}\right)_{n}\left(e^{\prime}\right)_{n}\left(f^{\prime}\right)_{n}}{(d)_{n}(e)_{n}(f)_{n}} 4^{F_{3}}\binom{a^{\prime}, b^{\prime}, c^{\prime},-n}{d^{\prime}, e^{\prime}, f}, \tag{6a}
\end{equation*}
$$

where $f=(a, b, c, d, e, f)$ and $\underline{a}^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$ are related by

$$
\mathbf{a}^{\prime}=\mathrm{ma}, \quad \mathrm{~m}=\left[\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & 0 & 1 \tag{6b}\\
0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 1 & 1 \\
-1 & -1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

With Salschütz condition

$$
\begin{equation*}
a+b+c-d-e-f-n+1=0 \tag{6c}
\end{equation*}
$$

Here n is a nonnegative integer.

$$
\text { change of variables: } \underset{\sim}{x}=(x, y, z, \lambda, v, w)
$$

$$
\underset{a}{a}=A_{2} \underline{x}, A_{2}=\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \tag{7}\\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \text {. }
$$

new function

$$
\begin{align*}
& P_{n}(\underline{x})=\left(x_{1}+x_{2}+x_{3}+x_{4}\right)_{n}\left(x_{1}+x_{2}+x_{3}+x_{5}\right)_{n}\left(x_{4}+x_{5}\right)_{n} \\
&\left.\cdot(\cdot n)^{n} \cdot 4_{4} F_{3} \left\lvert\, \begin{array}{l}
x_{1}+x_{2}, \quad x_{2}+x_{3}, \quad x_{3}+x_{1}, \quad-n \\
x_{1}+x_{2}+x_{3}+x_{4}, \\
x_{1}+x_{2}+x_{3}+x_{5}, \\
x_{4}+x_{5}
\end{array}\right.\right) \\
&=(-1)^{n} \sum_{k=0}^{n}\binom{n}{k}\left(x_{1}+x_{2}+x_{3}+x_{4}+k\right)_{n-k}\left(x_{1}+x_{2}+x_{3}+x_{5}+k\right)_{n-k}\left(x_{4}+x_{5}\right)_{n-k} \tag{8}\\
& \cdot\left(x_{1}+x_{2}\right)_{k}\left(x_{2}+x_{3}\right)_{k}\left(x_{3}+x_{1}\right)_{k} .
\end{align*}
$$

The !.mmetry of the polynomial $\boldsymbol{S}_{\mathrm{n}}$ is given by

$$
\begin{equation*}
\mathcal{F}_{n}(p \underline{x})=\mathscr{S}_{n}(\underline{x}), p \in S_{5}, \underline{x} \in \mathbb{R}^{5} . \tag{9}
\end{equation*}
$$

Relations (5) and (9) are the ones required for extending the symmetries of the 3 j - and 6 j -coefficients, respectively. For this the relation of these coefficients to the ${ }_{3} F_{2}$ anci ${ }_{4} F_{3}$ series are needed. These results are well known (see Biedenharn and Louck ${ }^{5}$) for references to the literature and for a discussion of the subtleties involved). We consider here only the 6 j -coefficiencs, since many results for the 3 j coefficient can then be obtalned from the well-known limit of the 6 j coefficients into the 3 -coefficients. ${ }^{5)}$ These results will be given el sewhere.

Let us recall the definition of the 6 j -coefficient as given by Eargmann ${ }^{5}$). First consider the domain of definition. A Eargmann array B is a 4×3 array of nonnegative integers $\left(b_{i j}\right), 1=1,2,3,4 ; j=1,2,3$,

$$
B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \tag{10}\\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33} \\
b_{41} & b_{42} & b_{43}
\end{array}\right] \text {, such that each } 2 \times 2 \text { minor }\left[\begin{array}{ll}
b_{1}^{\prime} & b_{12}^{\prime} \\
b_{21}^{1} & b_{22}^{\prime}
\end{array}\right]
$$

obeys $b_{11}+b_{22}=b_{12}+b_{21}^{1} \quad$ Two standard parametrizations of the array B are given by

$$
\left(\begin{array}{lll}
a+b-c & a+f-e & b+f-d \tag{11}\\
a+e-f & a+c-b & c+e-d \\
b+d-f & d+c-e & b+c-a \\
d+e-c & d+f-b & e+f-a
\end{array}\right) ;\left(\begin{array}{lll}
\beta_{1}-\alpha_{1} & \beta_{2}-\alpha_{1} & \beta_{2}-\alpha_{1} \\
\beta_{1}-\alpha_{2} & \beta_{2}-\alpha_{2} & \beta_{3}-\alpha_{2} \\
\beta_{1}-\alpha_{3} & \beta_{2}-\alpha_{3} & \beta_{3}-\alpha_{3} \\
\beta_{1}-\alpha_{4} & \beta_{2}-\alpha_{4} & \beta_{3}-x_{4}
\end{array}\right), \sum x_{1}=\Sigma \beta_{j} .
$$

The parameters (a, b, c, d, e, f) are the usual geometric ones correspond. to the 6 angular momenta that constitute the four triangles (a, b, c),
$(a, e, f),\left(b, d, t i,(c, d, e)\right.$ of a tetrahedron. The parameters $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right.$, $x_{4} ; 3_{1}, 3_{2}, 3_{3}$) are quantities associated with the row sums $R_{i}=\sum_{j} b_{i j}$ and column sums $C_{j}=\sum_{j} b_{i j}: \alpha_{i}=\left(S-R_{i}\right) / 3, B_{j}=\left(S+C_{j}\right) / 4,5=\sum R_{i}$.

The Racah function R is a function defined on the set 3 of all Bargmann arrays with values in the closed interval $[-1,1]$; that is, $B \xrightarrow{R}[-1,1]$, each B ع. . The explicit definition is given by

$$
\begin{equation*}
R(B)=\left[\frac{\pi b_{i j}:}{\pi\left(\alpha_{i}+1\right)!}\right]^{1 / 2} \sum_{k} \frac{(-1)^{k}(k+1)!}{\left.{ }_{i}^{\left(k-\alpha_{i}\right.}\right) \cdot \Pi\left(\beta_{j}-k\right)!} . \tag{12}
\end{equation*}
$$

The standard 6 J -coefficient is obtained from this expression by $\left\{\begin{array}{l}a b c \\ \text { def }\end{array}\right\}=$ $R(B)$ with B in terms of the parameters (a, b, c, d, e, f).

Letting P_{n} denote the group of $n \times n$ permutation matrices, the Regge group \mathcal{Z} may be realized as the matrix group of ordered pairs defined by $\mathcal{F}=\left\{\left(p_{4}, p_{3}\right) \mid p_{4} \in P_{4}, p_{3} \in P_{3}\right\}$. The action of $\left(p_{4}, p_{3}\right)=r$ $\varepsilon 及$ on the Bargmann array $B \in \mathcal{B}$ is defined by $B \xrightarrow{r} B^{\prime}=r \bullet B a P_{4} B p_{3}$, where t denotes transposition. Since row and column sums are invariant under permutations of rows and columns of B, the Racah function $R(B)$ is invariant under the action of the 144 element group 3 ; that is,

$$
\begin{equation*}
R(r \bullet B)=R(B), r \varepsilon 天, B \in \mathscr{B} \text {. } \tag{13}
\end{equation*}
$$

3. EXTENSION OF THE RACAH FUNCTION

We define the function $\gamma(x), x \in R$, by*

$$
\gamma(x)= \begin{cases}\Gamma(x+1) / \sqrt{\pi}, & x \geqslant-1 / 2 \tag{14}\\ \sqrt{11} / \Gamma(-x), & x \leqslant-1 / 2 .\end{cases}
$$

This function is continuous and positive for all $x \in \mathbb{R}$. Using $\gamma(x)$, we now define the extended Racan function $W_{n}: \mathbb{R}^{5} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
W_{n}(\underline{x})=\left[\frac{\pi_{j} r\left(x_{i}+x_{j}-1\right)}{n!\prod_{i} r\left(-x_{i}+x+n-1\right)}\right]^{1 / 2} \cdot \sum_{n}(x), x=\sum_{j=1}^{5} x_{j}, \tag{15}
\end{equation*}
$$

where (\underline{x}) is the polynomial defined by (8). The function $W_{n}(\underline{x})$ clearly satisfies

$$
\begin{equation*}
W_{n}(p x)-W_{n}(x), \quad p \varepsilon S_{5}, x \in \mathbb{R}^{5} \text {, } \tag{16}
\end{equation*}
$$

since the 10 numerator γ-factors and the 5 denominator γ-factors are permuted amung themselves under interchanges of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$.
*Originally we defined a discontinuous $y(x)$ by omitting $\sqrt{11}$ and with $x ; 0$ and $x: 0$. H. Bacry suggested this be modified to (14).

We next describe how the $6 j$-coefficients are obtained from the function $W_{n}(\underline{x})$. First, we introduce the nonstandard parametrization (x, y, z, u, v) of the Bargmann array B defined by

$$
B=\left(\begin{array}{ccc}
n & x+y+z+u+n-1 & x+y+z+v+n-1 \tag{17}\\
-y-z & x+u-1 & x+v-1 \\
-z-x & y+u-1 & y+v-1 \\
-x-y & z+u-1 & z+v-1
\end{array}\right) \text {. }
$$

Using these parameters to define the function R_{n} by $R_{n}(x, y, z, u, v)=R(B)$, where B is given by (17) and $R(B)$ by (12), it is straightforward, but nontrivial, to prove that

$$
\begin{equation*}
R_{n}(x, y, z, u, v)=(-1)^{\phi} \pi^{-\frac{1}{2}} W_{n}(x, y, z, u, v), \quad \phi=u+v . \tag{18}
\end{equation*}
$$

Thus, the 6 j -coefficients are recovered, up to $\pi^{\frac{1}{4}}$ and a phase factor, from $W_{n}(\underline{x})$ by restricting the point $\underline{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \& \mathbb{R}^{5}$ to the domain of (x, y, z, u, v) as determined by the Bargmann array.
4. GROUP OF THE EXTENDED 6j-COEFFICIENTS

Each element r e㺼effects the transformation $B \xrightarrow{r} B^{\prime}$, which, in turn, uniquely determines a 7×7 matrix transformation $\underset{\underline{z}}{\underline{r}} z^{\prime}=m(r) z$ of the variables $\underline{\underline{z}}=(\underline{\xi}, n, l), \underline{z}^{\prime}=\left(\underline{\xi}, n^{\prime}, l\right)$, where $\underline{\underline{\xi}}=(x, y, z, u, v)$, $\xi^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}, u^{\prime}, v^{\prime}\right)$. The variables $(\underline{\xi}, n)$ and ($\left.\xi^{\prime}, n^{\prime}\right)$ are the parametrization (17) of B and B^{\prime}. The 1 in z and z^{\prime} takes into account that $(\underline{\xi}, n)$ and $\left(\underline{\xi}^{\prime}, n^{\prime}\right)$ are related by a linear transformation plus a translativn. Thus, we obtain the matrix group $M=\{m(r) \mid r \in \mathcal{B}\}$ isomoruhic to \mathcal{F}. For economy of notation, it is convenient to define the action of M on $\underline{\xi}$ by $m \circ \underline{\xi}=\underline{\xi}^{\prime}=\Pi(\mathrm{mz})=\Pi\left(\underline{\underline{z}}{ }^{\prime}\right), m \varepsilon M$, where Π is the projection of the first five compunents of $z^{\prime}=m z$ (column matrices).

The Regge symmetry $R(B)=R(P \cdot B)=R\left(3^{\prime}\right)$ given by (13) is now expressed first as $R_{n}(m \circ \xi)=R_{n}(\xi)$ [see the definition of R_{n} following (17)], and then by (18) as

$$
\begin{equation*}
W_{n}(m \circ \underline{\xi})=W_{n}(\underline{\xi}), \quad n \stackrel{m}{\longrightarrow} n^{\prime} . \tag{19}
\end{equation*}
$$

The phase factor $(-1)^{\Phi}$ in (18) is invariant under Regge transformations, since $u+v=R_{1}+C_{1}-4 n+2$. In all there are 12 possible functions $W_{n \prime}$ in (19) corresponding to the 12 entries in B, any one of which can be brought to the upper left corner. Relation (19) is Just a re-expression of the Regge symmetries in terms of (ξ, n) and $\left(\xi^{\prime}, n^{\prime}\right)$. This form is, however,
adapted to the S_{5} symmetry of $W_{n}(\underline{x}), \underline{x} \in \mathbb{R}^{5}$.
Let $P_{5,1,1}=P_{5} \oplus 1 \oplus 1$ (matrix direct sum). Replacing $\underline{\underline{\xi}}$ in (19)
by $p \circ \underline{\xi}, p=P_{5,1,1}$, we obtain $W_{n}(m \circ(p \circ \underline{\xi}))=W_{n}(p \circ \underline{\xi})=W_{n}(\underline{\xi})$, and since $m \circ(p \circ \underline{\xi})=(\mathrm{mp}) \circ \underline{\xi}$, we find

$$
\begin{equation*}
W_{n}(g \circ \underline{\xi})=W_{n}(\underline{\xi}), g \varepsilon G, B \text { parametrized by }(\underline{\xi}, n) \text {, } \tag{20}
\end{equation*}
$$

where G is the group generated by the 144 element group M (isomorphic to $S_{4} \times S_{3}$) and the 120 element gruap $P_{5,1,1}$ (isomorphic to S_{5}). In (20) the nonnegative integer n^{\prime} is related to n by $n \xrightarrow{m} n^{\prime}$, where m is uniquely given by $g=m p, m \in M, p \in P_{5,1,1}$ for each $g \in G$. Relation (20) is our main result. It extends the symnetries of the Racah coefficients to the group G by extending the domain of these coefficients.

The group G is conveniently given as a union of double cosets:

$$
\begin{equation*}
G=\bigcup_{i=1}^{16} H c_{i} H, H=P_{5,1,1},|G|=2^{9} \cdot 3^{2.5}=23,040 . \tag{21}
\end{equation*}
$$

The double coset representatives c_{1} are known explicitly, but space does not allow their presentation here. The order $|G|$ of G is found from a well-known formula for the number of elements in a double coset. The elements in each matrix c_{f}, hence each $g \in G$, consist only of the numbers $0, \pm 1, \pm 1 / 2$. It is also useful to note that G contains transformations such as $d \mapsto-d-1$ (intercharge x and u) that preserve the angular momentum eigenvalue $d(d+1)$.

Other papers giving partial results on the significance of Bailey's identity for symmetries of 6 J -coefficients are those of Rao et al. ${ }^{6)}$ and Venkatesh ${ }^{7}$.

REFERENCES

1. Beyer, W. A. , Louck, J. D., and Stein, P. R., J. Math. Phys. (to appear).
2. Regge, T., Nuovo Cimento 11 , 116-117 (1959).
3. Bargmann, V., Rev. Mod. Phys. 34, 829-8.45 (1962).
4. Balley, W. N., Generalized Hypergeometric Series, Cambridge University Press, 1935.
5. Biedenharn, L. C. and Louck, J. D., Angular Momentum in Quantum Physics (Encyclopedia of Math. \& Its Appl., ed., G.-C. Rota), Vol. 8; The Racah-Wigner Algebra in Quantum Theory, ibid., Vol. 9, AddisonWesley, Reading, MA, 1981.
6. Rao, S. K. Santhanam, T. S., and Venkatesh, K., J. Math. Phys. 16, 1528-1530 (1975).
7. Venkatesh, K., J. Math. Phys. 19, 1973-1974 (1978).
