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Preface
The publication of these proceedings completes the plans conceived and originated in early February of

1975. At that time, statisticians from Los Alamos, Oak Ridge, and Pacific Northwest met to discuss the feasi-
bility of identifying what was called the "ERDA Statistical Community" and to discuss means of bringing the
members of that community together to meet one another and to share their experiences in helping to solve the
nation's energy problems.

With the encouragement of ERDA's Division of Physical Research, a three-year plan was undertaken in
which meetings would beheld at national laboratory sites and the responsibilities shared by the three instigating
laboratories. The program committee would be chaired by the host laboratory. (To this committee were added,
subsequently, representatives from Sandia Laboratories and Princeton University.) The proceedings would be
published by one of the nonhost laboratories.

In accordance with the plan, the First ERDA Statistical Symposium was held at Los Alamos. New Mexico,
in 1975. The proceedings were published by Pacific Northwest (BNWL-1986). The Second ERDA Statistical
Symposium was held in 1976 at Oak Ridge, Tennessee, with proceedings published by Los Alamos Scientific
Laboratory (LA-6758-C). The third symposium was held at Richland, Washington, on October 26 28, 1977.
That symposium, of which these are the proceedings, was named the 1977 DOE Statistical Symposium because
ERDA had been dissolved and reorganized into the Department of Energy just four weeks previously.

The Program Committee, chaired by Wesley L. Nicholson, consisted of Donald A. Gardiner. Ronald K.
Lohrding, George P. Steck, and Thomas W. Wotcki. It is a pleasure to express appreciation for the excellent
efforts of the Local Arrangement Committee, Ethel S. Gilbert, Richard L. Hooper, .lames W. Johnston,
Anthony R. Olsen, and Donald Stevens under the able leadership of Pamela G. Doctor, and to acknowledge the
assistance of Charles K. Bayne, Thomas L. Hebble, William E. Lever, and Deborah E. Shepherd in preparing
these proceedings.

Thus the original plans have been successfully implemented and the cycle is complete. The ERDA Statistical
Community, now the DOE Statistical Community, has been rather completely identified, we think. The first
mailing list consisted of just a few names recalled from the tops of our heads; the list now contains more than 300
names. The interaction among the statisticians at the DOE laboratories, the academic community, and
industries engaged in energy-related enterprises has increased to a surprising and gratifying degree. The
organizers and their sponsors should be well pleased.

At the conclusion of the symposium in Richland, the participants met fora critique and to discuss plans, if
any, for the future. They were of the mind that the symposia should continue on an annual basis and that the
organizers should be recruited from a wider base. Sol Rubinstein of Rockwell International volunteered to lead
the Program Committee, and representatives from the national laboratories, universities, and industry volun-
teered to serve. Richard Prairie of Sandia Laboratories offered theauspicesofSandia Laboratoriesas host fora
symposium in 1978, and Nicholson and Gardiner offered to work out a plan for the publication of proceed-
ings.

The contributions of all those who supported and participated in the first three statistical symposia are
greatly appreciated.

Donald A. Gardiner
vii



Welcome

Tommy Ambrose

Pacific Northwest Laboratories
Richland, Washington

INTRODUCTION OF T. AMBROSE— Wes Nicholson

The formal welcome io the 1977 Department of Energ.v Statistical Symposium will be given by Dr. Tommy
Ambrose, the Director of the Pacific Northwest Division of Battelle Memorial Institute. This division of BaUclle
consists of the Pacific Northwest Laboratory in Richland. which Handle operates for the Department of Energy, the
Seattle Research Center and the Human Affairs Research Center, both located adjacent to the University of
Washington campus, and a marine sciences laboratory at Scquim on the northwest coast of Washington State. Dr.
Ambrose represents DOE and the various contractors as he formally welcomes you. His remarks will include a
description of the rather unique situation here resulting from the fact that Battellc operates a dual laboratory in
Richland. being a DOE contractor and a broad-spectrum, nonprofit research organization. It isa pleasure to inlroducc
our laboratory director. Tommy Ambrose.

It is my pleasure to welcome you to Richland and the Tri-Cities on behalf of the Department of
Energy and its contractors. We are particularly pleased to host the 1977 DOE Statistical Symposium for
those who are interested in the nation's energy problems. I understand our audience is made up of people
from other DOE laboratories, the university community, and industry.

For the individuals who are first-time visitors to the Tri-City area, you now know that the State of
Washington is not entirely covered by green trees and lush vegetation. In fact, we are nearly in the center
of the remaining three-quarters of the State. Also, you have no doubt learned that Richland is next to
impossible to reach, and one really must work hard to get here. We thank each of you for the extra effort.

• The Richland operation is made up of a group of contractors who operate the entire complex for
DOE. This arrangement is different from most DOE sites and perhaps warrants an explanation as to how
it came into existence.

In the dim, dark past before ERDA and even before AEC, the U.S. Government contracted with the
Du Pont Company to construct and operate a facility known as the Hanford Works whose purpose was to
produce plutonium for weapons. In 1946, Du Pont turned over the operation of the plant to the General
Electric Company, and the AEC was created. The operation grew to the point in the mid-1950s that eight
reactors were in operation along with a reprocessing plant and a work force of about 8000.

In 1963, Hanford's mission to make plutonium for nuclear weapons was almost completed. The
nation's stockpile of plutonium was sufficient. Richland. the one-payroll town created just 20 years earlier,
was headed for a major reduction in employment. At that point the creative ingenuity of the AEC. its
contractor (General Electric), and community leaders went to work, and a far-sighted program was
developed in 1964 based on the concepts of "segmentation"—dividing the single operating contract for the

IX



total Manlord Project into parts to he pertormed by other industrial organizations. ;nid "dn eradication"
the new Hantord contractors strengthening the economic base ol the community b\ ncu programs and
investments.

1 odav the operating contractors tor DOI: include Handle Memorial Institute. Hoeing Computer
Services. Hunlord Engineering Development Laboratory (We->tinghouse). .1. A. Jones. Rockwell Hanlord
Company. I'nited Nuclear Industries, and Vitro. All eight ol the reactors have been shut down as well as
the reprocessing plant, and the labor lorce now exceeds S000.

Two additional companies that have located in the area because of our strong nuclear technical
base are Exxon Nuclear Company. Inc.. and Washington Public Power Supply Sy>tem. Exxon has
established a light-water fuel fabrication plant and has undertaken research and pilot plant work in
uranium enrichment technology. 1 he Washington Public Power Supply System is a group of public and
private utilities in the process of building several nuclear power plant units in the area.

The symposium is sponsored by the Department ol' Energy as part of its ongoing effort to solve the
nation's energy problems. Participants from DOE and the various contractors are your symposium hosts.
Speaking for DOE and the contractor group, we are pleased with the scope of the statistical program and
are delighted with the caliber of people who arc attending and expressing their keen interest in the nation's
energy problems. Thank you for your participation, and welcome to Richland.
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Harmonic Regression*!

/•'. J. Anxcombe

Yale University
New Haven. Connecticut

ABSTRACT

Ordinary linear regression. b\ the method of least >LJuaic^. is used lo determine a linear relation between gi\en
independent observations ol two or more \ariabje.s. An analogous problem tor tune series is to determine a linear
relation between two or more gnen stationary series. I he linear relation may take the lorm that one series is a linear
filtering ol the other series, phis a stationary
multiple regression in the tune domain, bu
intelligible results, is to estimate the I-omter t
ol a gain function and a phase-shift functioi

I heproeeduresareilltisiraled hyastikh

Ior process, i he cod I icients of the 1 liter can be determined directly by
there are \aiiotjs ditlieulties. An easier procedure, leading to more

,)l the coeflicieMs ot the filter. w hieh can be expressed in terms•anstorm
. b\ a MI

I the intei
1 rom IS60 to 1975 and two annual economic series rcla
York and a scries ol the total dollar \aluc ot general

iipler regression calculation in the frequency domain,
relationship ol an annual series ol output til l.S.copper mines
ing lo the same years, namely a series ol copper prices at New
mports ol merchandise into the 1'nited States.

The calculations of ordinary regression analysis
linear regression by the method of least squares
have been done correctly for a century and a half.
However, there have been changes in the computa-
tional methods used. There is plenty to discuss about
regression- for example, is it appropriate for the
data, and what do the results mean? No doubt the
calculations arc sometimes of little value, but some-
times they are appropriate and lead to new
understanding.

Regression analysis of time series has a much
shorter history. Although there is a good deal of
literature about it. the literature often has the air of
arm-chair meditation by a nonparticipant. My
concern has been to implement principles that are in
the literature, and devise a working procedure.
Various practical difficulties have been encountered
that do not seem to be discussed in the literature.

Docs anyone need to do regression analysis of time
series? Conflicting opinions are heard. Great

amounts of time-series material are being collected
and stored relating to the environment (weather,
pollution), the observations being madedaily or even
more frequently. Many economic series are de-
veloped lor monthly, weekly, or daily activities. 1
have worked with annual series, which are probably
the least satisfactory material for this kind of
study.

Some broad generalities are presented below, and
an example is given. The details are vital, but as they
have been I ully described elsewhere thev are not given
here.'

•Invited address.
^Prepared in connection with research supported by the

Army. Navy. Air l-orce. and NASA under a contract
administered by the Office of Naval Research.

I. The detailed study on which this paper is based is found in the
following: K .1. Anscombc." Time Series: Vale Enro!lmcm."Chap.
10 in Siaii.Miail Computing will] API. (in preparation).



F. J. Anscombc

FORMULATION

We consider regression ol one "dependent" vari-
able on just one "independent" or predictor variable.
(Methods extend, ol course, but not without some
difficulties, to several predictor variables.) All means
will be supposed zero. Then ordinary linear regres-
sion can be formulated. Wearegivenobservationson
pairs ol variables, (.v,. y,) for / = I, 2 in. We
suppose that for all /,

r, = fix, + t, . (1)

where the errors |t,| are considered to be (in some
sense) independent of each otnerand of the predictor
variable j.v,|. The method of least squares can be
equated to the method of maximum likelihood when
we suppose that the \t,} are independent random
variables identically distributed A'(0, o:).

How should regression of tir.ie series be formu-
lated? We are given series {.V; j , [y, \, where / = 1,2
n. We shall not suppose these scries, nor the error
series jt,| when we introduce it, to consist of indepen-
dent elements. We shall instead suppose the series to
be stationary, that is, realizations of some kind of
stationary stochastic process. (In practice the
appearance of stationarily with zero mean is en-
couraged by subtracting a linear or other trend,
usually after taking logarithms.) To correspond to
Eq. (I), one might suggest

.!•; = fix, + e, .

But if the series are related, the relation may be not
simultaneous. One might have

r, = /?.v, i + e, .

for some integer lag/. But then one might as well
postulate

(2)

where / runs over some suitable set of integer values.
Equation (2) seems to be the appropriate formulation
for stationary processes, to correspond to Eq. (I) for
independent processes. The first member of the right
side of Eq. (2) represents a linear filtering of {.v,|.

There are two main approaches to trying to
estimate the parameters {/},} of the filter in Eq. (2).

Time-domain Methods

One can try direct multiple regression of [y, j on f.v, j
and on lagged versions of it. j.v, ,j for various/'. There
is a difficulty about deciding how many lags should
be considered. If |.v,j is strongly autocorrclated.
conditioning will be poor. An accurate representa-
tion of the relation between two stationary stochastic
processes could easily involve a large number of
nonzero coefficients j/3,j.

If our reason for trying to fit a relation like Eq. (2)
is to be able to forecast r, from past values of j.v, j .
possibly a very crude estimate of the [fi,\ will be good
enough. The precision of a forecast is limited by the
variance of the error term. The greater precision that
would be attained if the \fi,\ were known exactly may
be only negligibly greater." Box and Jenkins' have
presented a set of practical procedures for estimating
the structures ol time series well enough for fore-
casting. If our purpose is not forecasting, but
understanding as well as we can the relation between
the series, the Box-Jenkins methods may be less
satisfactory.

It will be argued that some of these difficulties are
mitigated or avoided by frequency-domain methods.
However, we must usually be alert to temporal in-
stability or change in a relation like Eq. (2). and that
will be detected by time-domain methods.

Frequency-domain Methods

The idea is to Fourier-transform Eq. (2) and to
estimate the transform of J/3,|. It will be suggested
that (i) this procedure is easier to carry out than
multiple regression in the time domain and that (ii)
the results are easier to understand. Claim (i) is
derived from the fact that the first member on the
right side of Eq. (2), the filtering of {.v, j . is a convolu-
tion of j/3,) and j.v, j and transforms to the product of
the separate transforms of j/3,J and {.v,}. Thus Eq. (2)
becomes

FT[r,( = <FT{ft|)(FTi.v,|) + FTJt,| .

2. W. S. Cleveland. Time Scries Projection: Theory and
Practice. Ph.D. dissertation. Yale University. New Haven. Conn..
1967.

3. G. E. I'. Box and G. M. Jenkins. Time Series Analysis:
Forecasting and Control, Holdcn-Day. San Francisco. 1970.
1976.



Harmonic Regression

These Fourier transforms are complex-valued
functions of a real variable A representing frequency.
Consider a narrow frequency band (interval for A).
Suppose that in this interval the transforms of |/3,|
were (nearenough) constant. Then in this interval the
relation between FT{r,jand FTJ.v, [ would be exactly
like Eq. (1) between |r,| and {.v,|. with the exception
that the variables and the regression coefficient arc
complex-valued. In real terms. FT(/?,| is conveniently
expressed as an amplitude, the gain function G(A).
and an angle, the phase-shift function <j>(\). Thus if
G(A) and <i(A)could be regarded as constant over the
frequency band, they could be estimated from the
transforms of jr,| and j.v,| by a slight modification of
the usual procedure for the linear regression relation
Eq. (I) expressed in real terms it looks a bit dif-
ferent, but the procedure is really ordinary linear least
squares with two real coefficients to be estimated.
The least-squares procedure is particularly appro-
priate if the error process jt,| is a stationary Gaussian
process whose spectral density is nearly constant over
the band.

However, it has been generally recognized (rels. 4
and 5. and others) that treating </>(A) as constant is not
satisfactory when its derivative is much different
from 0 and that it is better to approximate the
behavior of the transform of \p,\ in the narrow-
frequency band by three real parameters, the average
values of G(A). $(A), and 0'(A) in the band- that is,
treat G(A) as constant and <£(A) as linear in A. Now
the regression procedure is further modified,
becoming in fact nonlinear and requiring an iterative
solution, but still computationally rather easy.

Thus the complete procedure involves examining
the frequency range of A in bands, using a moving
"window," and in each band doing a small computa-
tion to determine three real parameters, representing
average values ofG(A), <£(A), and </>'(>)• Upon putting
the solutions together we see the whole behavior of
G(A) and 0(A). With G(A) and <p(\) estimated, f/3,j
could be inferred by making the inverse Fourier
transform.

Intelligibility

Claim (ii) is that G(A) and <£(A) are what we need, in
order to understand the relation between jv,J and f.v,i,
rather than the{/3,J. If the latter were given, we should
have to Fourier-transform them to see qualitatively
the effect of the filter. Compare this with the usual
commercial description of performance of an ampli-
fier in a sound-reproduction system.

EXAMPLE

As an example of melhod.s. we try interrelating an
annual series of total copper mine output lor the
I'nited States and two economic annual series, one
giving the New York price of copper, the other the
total dollar value of imports ol merchandise into the
United Stales. The copper price series is thought to
reflect the world supply and demand for copper.
Changes in price might be expected to lead to similar
changes in production, possibly a little later. The
imports scries is taken as an indicator of the I'.S.
economy. The copper production series is N235. and
the price series is N24I. in Historical Statistics of the
United States;" the production figures run Irom 1845
to 1970. the prices from 1850 to 1970. The figures
have been taken exactly as published, except that to
smooth a change in price definition in 1968 the
average of two definitions has been used for 1967.
The price figures for 1850 1859 are of uncertain
meaning, and the production figures foi before I860
show a more rapid proportional rate of growth than
for later lime periods. For present pusposes it has
seemed wise to ignore the pre-1860 data. Continua-
tion of the series from 1970 to 1975 has been obtained
from the Statistical Abstract of the United States.
The two series are reproduced in Fig. I. except that
the last two digits of the production entries have been
dropped for ease of reading. The imports scries has
been given in ref, 1 and is not reproduced here; only
the portion from I860 to 1975 is used.

Figure 2 shows a plot against the date of the
logarithm of the production scries, with the linear
regression on date subtracted. Figure 3 is a similar
plot for the price series. A plot for the imports series
has been given in ref. 1.

The three given series each have 116 entries (for
I860 1975). To prepare them for Fourier analysis
they have been prewhitened by these three steps: (i)
take logarithms, (ii) subtract the linear regression on

4. H. Akaike and V. Yamanouchi. "On ihe Statistical Estima-
tion of Frequency Response Function." Ann. lust. Stal. Math. 14:
23 56(1962).

5. VV. S. Cleveland and E. Par/cn. "The Estimation of
Coherence. Frequency Response, and Envelope Delay." Tech-
nometrics 17: 167 72(1975).

6. U.S. Bureau ofthe Census. Historical Statistics of the United
States. Colonial Times to 1970. Bicentennial Edition. U.S.
Government Printing Office. Washington. D.C.. 1975.

7. U.S. Bureau of the Census, Statistical Abstract of the United
Stales, U.S. Government Printing Office, Washington. D.C. 1975
1976.
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18601
1870|
1880|
1890 1

I
19001
19101
19201
19301
1940 1

I
19501
19601
19701

U.S. COPPER PRODUCTION (MIHE OUTPUT, HUNDREDS OF SHORT 70US)

81 8H 106 95 90

141 146 140 174 196

302 358 453 578 725

1299 1421 1725 1647 1771

3031 3010 3298 3490 4063

5441 5574 6245 6178 5742

6123 2331 4823 7389 8031

7051 5289 2381 1906 2374

8781 9581 10801 10908 9725

9093 9283 9254 9264 8355

10802 11652 12284 12132 12468

17197 15220 16650 17180 15970

95
202
829

1903

44U4

7440

8391

3865

7729

9986

13517

14110

100
213
789

2300

4585

10029

8626

6145
6087

11042

14292

112
235
907

2470

4236
9477

8250

34 20

8476

10869

9541

13 0

241
1132

26"i3

4784

9550

9049

5578

8348

979.-,
12046

140
258

1134
2843

5633
6062
9976
7283
7 528

824B
15446

A
3
C
D

E
F
G
H
I

J
H

PRICE OF REFINED COPPER AT NEW YORK (CENTS PER POUND)

18601 22.88 22.25 21.88 33.88 47.00
18701 21.19 24.12 35.56 28.00 22.00
18801 21.50 18.25 18.50 15.88 13.75
18901 15.75 12.88 11.50 10.65 9.43

1900i 16.54 16.40 11.96 13.62 13.11
19101 12.88 12.55 16.48 15.52 13.31
19201 17.50 12.65 13.56 14.61 13.16
19301 13.11 8.24 5.67 7.15 8.53
19401 11.40 11.87 11.87 11.87 11.87

I
19501 21.46 24.37 24.37 28.92 29.82
19601 32.16 30.14 30.82 30.82 32.17
19701 58.07 52.00 51.20 59.50 77.30

39.25 34.25 25.38 23.00 24.25
22.69 21.00 19.00 16.56 18.62
11.10 11.00 11.25 16.80 11.75
10.70 10.92 11.30 12.01 17.75

15.98 19.77 20.86 13.39 13.11
17.47 28.46 29.19 29.19 18.90
14
8

11

37
35
64

.16

.76

.87

.39

.19

.20

13
9
13

41
35

.95

.58

.92

.88

.82

13.05
13.27
21.15

29.99
38.01

14.68
10.10
22.20

26.13
41.17

18
11
19

30
47

.23

.07

.16

.82

.43

G
11

I

J
K
L

Fig. 1. The data.

date, (iii) filter by the two-point filter with weights
(—0.9, 1). The last operation reduces the length of
each series to 115. Then the series have been
circularized (tapered) by linearly splicing the first
seven and the last seven entries, so that the length of
each series becomes 108. The Fourier transform is
made at frequencies (0, 1,2,..., 54), 108 cycles per
year; the transform is expressed as a set of (real)
coefficients of cosine and sine terms, or alternatively
as a set of squared amplitudes and phase angles. The
frequencies are referred to as harmonics, numbered 0
through 54.

The first step to perceiving an interrelation
between any pair of series is to plot the difference of
phase angles at each harmonic against the harmonic
number. Figure 4 shows this for the production and
price series, and Fig. 5 for the production and imports
series. At each harmonic, the product of the
amplitudes is classified by size into one of six

categories and represented by one of the plotting
symbols:

o e D

Each phase difference is plotted with this symbol
twice over in the interval from 0 to 8 right angles. In
looking for trends, the viewer's eye should be guided
by the heavier symbols.

Figure 5 shows a fairly strong relation between
production and imports, especially at the higher
frequencies the phase differences are mostly rather
close to 4 (or 0 or 8) right angles and show no trend
with frequency. A simultaneous positive correlation
between these two series is indicated. Figure 4 shows
a less clear relation between production and price. At
lower frequencies there is some suggestion of trend in
the phase differences, implying that production
follows price, possibly by two years, possibly by four.
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COMMON LOGARITHM OF COPPER PRODUCTION—RESIDUALS FROM FITTED LINE
. t . 3 . 2 . 1 . 0 . 1 . 2 . 3 .U . 5 . 6

18601 O

I O

|O
1865IO

|O
I O
I O
I O

1 8 7 0 [ O
I O
I O
I O
I O

1 8 7 5 1 O
I o

I o
I o

1880| o

I o
I o
I o

18851 O
I O
I O
I O
I o

1890 1 o
I o

o
o

o
o

o
o
o
o

1900| O
J

o
o

o
1905 1 o

o
o

o
o

19101 O
o

o
o

o
19151 O

o
o

Fig. 2. Plot of the copper production series: (a) 1860-1915; (6) 1920-1975.
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I
19201

I

I
19251

I

I
19301

I

I o

19351

I
19401

I
1945 1

I
1950|

I

I
19551

I

19601

19651

19701

I
19751

I-
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Fig. 6. Tabulation of regression calculations in frequency bands.

At higher frequencies the phasedifferences seem very
scattered. Not reproduced is a phase-difference plot
for the price and imports series, suggesting quite a
strong simultaneous correlation at the lower fre-
quencies, and not much at higher frequencies.

Now the regression calculation in frequency bands,
to estimate G(A), <£(A), and 0'(A.), can be performed.
The window chosen is 23 harmonics wide, and sine
weights have been used. The results are tabulated in
Fig. 6. The first column lists the harmonic number of
the central frequency in the band; we have stepped the
central harmonic number from the lowest possible
value, 11, by unit steps to the greatest possible value,
43. (Had there been many more harmonics and a
greater bandwidth, greater steps would have been
convenient.) The next three columns list estimates of
spectral density for, respectively, copper production,
copper price, and imports (prewhitened as explained

above), obtained from the raw line spectra by the 23-
point, sine-weighted moving average. The next four
columns refer to regression of copper production on
copper price. They list average values in the band of
G(A), (f>(K), and $'(A), and (in the fourth of these
columns) multiple R: (the coherency). The behavior
of 4>(k) and of R2 gives a numerical measure of the
trend seen in Fig. 4. The last four columns of Fig. 6
give similar information for regression of copper
production on imports and relate to Fig. 5.
(Simultaneous regression of copper production on
both copper price and imports is not considered at
this point.)

To test a null hypothesis of no association between
series, 5%, 1%, and 0.1% values for R1 for any given
frequency band are estimated (by a crude argument)
at 0.19, 0.27, and 0.36, respectively; these values
probably err in being a little too low. The tabulated
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values are very highly correlated, as one reads down
the column. So for regression of production on price,
it seems reasonable to claim a substantial correlation
at low frequencies, in the bands centered between the
1 Ith and 19th harmonics. For regression of produc-
tion on imports, the correlation is substantial in
bands centered between the 23rd and 43rd
harmonics R~ is close to 0.5 in many of these
bands.

Of our two predictor variables, copper price and
general imports, the latter has on the whole the
greater correlation with copper production. But the
two predictor series have some correlation with each
other. How useful is the price series as a predictor in
conjunction with the imports series? Residual
Fourier transforms of the production series and of
the price series, after regression on the imports series,
can be obtained, and a phase-difference plot can be
made, analogous to Fig. 4 for the original Fourier
transforms. This plot is shown in Fig. 7. The phase
trend seems rather similar to that in Fig. 4 at lower
frequencies and weaker at higher frequencies.

Figure 8 shows a calculation like that in Fig. 6. but
relating to simultaneous regression of production on
both price and imports, instead of to separate regres-
sions. The R2 in the final column is always greater
than either value of Rz (for the same frequency band)
given in Fig. 6. The most striking increase over the R"
for regression on imports only occurs for bands
centered between the 25th and 28th harmonics- for
example, 0.479 instead of 0.332 at the 25th harmonic,
0.511 instead of'0.359atthe26th harmonic. The same
sort of crude argument as before indicates that these
four increases (but none of the others) can be
regarded as significant at the 5% level. The increases,
on the whole, are larger at lower frequencies than at
higher frequencies.

The two phase-shift functions estimated in Fig. 8
can be fairly well approximated at most frequencies
by saying that production is correlated positively
with imports of the same year and negatively with
prices of four years before.

Figures 9 and 10 are time-domain plots intended to
show whether the relations between the series
perceived in the harmonic analysis pervade the whole
series or are special to particular epochs. For both
plots, the original series have been transformed to

logarithms, and a linear trend has been subtracted.
Then for Fig. 9, low frequencies have been suppressed
by taking the second difference of the series, and the
resulting production values are plotted against the
imports values. The correlation coefficient is 0.60.
The decade of each plotted point is shown by the
letters appearing on the right side of Fig. I; a star
means that two or more points have coincided. For
Fig. 10, the spectra have been roughly whitened by
taking the first difference of each series, and then high
frequencies have been suppressed by three simple
two-point averagings. The first four values of the
resulting production series and imports series have
been dropped, as well as the last four values of the
resulting price series, then the production values are
plotted against the linear combination of theimports
values (for the same year) minus 0.8 times the price
values (for four years earlier). The correlation coef-
ficient is 0.53. The decade of the production values is
shown as before.

The pronounced correlation in both Figs. 9 and 10
is due to a few extreme points labeled G or H.
representing the two decades from 1920 to 1939. If all
points for these decades were omitted, the correlation
would become 0.04 for Fig. 9 and -0.08 for Fig. 10.
That is, the correlation would disappear.

DISCUSSION

Harmonic regression is a systematic way of looking
for association between series in all parts of the
frequency range. It is unlikely to reveal anything that
cannot be found by careful visual comparison of plots
such as those in Figs. 2 and 3, at least when only two
or three series are under consideration. (A similar
remark can be made about ordinary regression.)

We have found clear evidence of association
between copper production and general imports, at
higher frequencies, and some suggestion of predictive
value for copper price also, at middle-to-low fre-
quencies. What associations there are seem to be
inherent in the economically turbulent years of the
twenties and thirties. We do not see similar associa-
tions in the other decades. Possibly relations between
these series are changing; possibly the phenomena are
highly nonlinear.
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Fig. 8. Tabulation of further regression calculations in frequency bands.
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Would You Want Your Child to Be a Statistician?*

3. L. Jaech
Exxon Nuclear
Richland, Washington

First, let me welcome you out-of-towners to
Richland. 1 feel that 1 can speak as a native since I
have lived here for almost 25 years, excluding three
years spent in California. When we moved to this
(then) desolate spot in 1953, our intention along with
everyone else who first moved here was to stay for
about a year and then return to civilization. But they
say this place grows on you. 1 can now truthfully say
that if 1 had it to do over again, I don't believe I
would.

You often hear it said about New York, or
Washington, D.C., or even Chicago: "It's a great
place to visit, but I wouldn't want to live there." You
hear a similar thing said about ourTri-City area. "It's
a great place to live, but I wouldn't want to visit
there."

Actually, there are compensations. Take the
scenery, for example. Up in the Horse Heaven Hills,
south of town, it's simply beautiful among the wheat
fields and wide open spaces. And the nicest part
about the whole thing is that you don't even have to
drive out there to see the Horse Heaven Hills. You
just wait for one of our dust storms and watch the
Hills blow right by your living room window. (It
doesn't all go by; a few cubic yards filters in and
settles on the furniture. Visiting our homes after one
of these storms, you get the impression from the
decorating schemes that everyone's favorite color is a
dirty beige.) The chambers of commerce had a
contest to pick a slogan to promote the Tri-Cities
some years ago. The best and most descriptive entry,
although not the winner, was "Wheeze and Sneeze in
the Tri-City Breeze."

There are a lot of misconceptions about life here,
just as I'm sure there must be about living in Los
Alamos or Oak Ridge. Judging from the sensational

headlines that occasionally occur in newspapers
around the country, this is a very dangerous place to
live. Our fellow Americans are concerned about us.
In the aftermath of the minor chemical explosion that
occurred in the outer area several months ago, we got
a phone call from someone in the Midwest asking if
the people of Richland wereable to leave their houses
yet and wander around the streets. A television crew
was sent out in a helicopter to take pictures of the
large crater that supposedly existed. By the time I got
here in the fifties, this was a settled community by
most standards. But an acquaintance of mine in
Portland was surprised to learn that we had running
water and a sewer system. And so it goes.

1 had better get to the main subject of my address.
Would you want your child to be a statistician? 1 ask
this question because as much as we hate to face up to
it, the fact remains that statisticians as a group are
often regarded with suspicion, with distrust, with
wariness, or at least with a vague feeling of
discomfort. In short, we are much maligned. Do you
want your child to go through what you have
endured? Although there are in the world between
20,000 and 30,000 statisticians according to a recent
estimate by Kendall,1 the awareness of what a
statistician is and does, of how he occupies his time, is
often not there. (Parenthetically I might also quote
the following from Kendall's article, "Not all these
people are working statisticians." As a former
manager in an organization that I'll not name, 1 can
attest to that.)

H.iiu)net address.
I. Maurice Kendall, "Statisticians -Prod union and Consump-

tion," Am. Sim. 30(2): 49 53 (1976).
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Before citing evidences that our image as a
profession leaves something to be desired, let me
dwell on some positive aspects. What are the
desirable features of our profession? I'll not speak of
the monetary rewards because, of course, we are
above that sort of thing. None of us here tonight, I
would venture to say, are in any sense of the word
motivated by money.

What, then, are the advantages of being a
statistician? For one thing, the job is, generally
speaking, not hazardous. In my early days at
Hanford, we were required to have monthly safety
meetings, and it was a real struggle to plan an agenda
for these. You can spend just so many hours dwelling
on how to avoid paper cuts. The accidents and near-
accidents that I'm personally aware of were not
covered in these meetings anyway. I recall, for
example, the time my boss in those early days (whom
I won't embarrass by naming, but whose initials are
the same as those of the Civil Aeronautics Board),
was deeply reflecting on a problem and fell over
backwards in his chair—only his built-in padding
saved him from serious injury. Then, on another
occasion, I was standing in the Fred (some call it a
John; I prefer calling it a Fred) when, with no
warning, a violent sneeze racked my body. My head
jerked forward spasmodically and smashed into the
top of the urinal, causing a momentary blackout
followed by intense pain and suffering. My boss
wouldn't let me fill out an accident report, because he
had no suggestions on what actions to take to prevent
a reoccurrence of the accident. Of course, this
particular accident is not peculiar to our profession.
It could happen to anyone with a level of intelligence
required to be a statistician.

To go on with the positive aspects of being a
statistician, there is the inner satisfaction that comes
from tackling a tough problem and carrying it to a
successful completion. I continue to beamazed at the
beauty of mathematics and, in particular, of
mathematical statistics—at how a hopelessly com-
plex formulation often reduces to the essence of
simplicity. This enjoyment is dampened somewhat, I
must admit, when the work is presented with humble
pride to a group of peers and, at the conclusion,
someone rises and says, "I'm surprised that you are
not aware of the paper on this subject in the 1937 issue
of the Journal of Outer Mongolian Anthropologists
where your key result was developed in just two
steps." That tends to deflate, and can be listed as one
of the most emotionally damaging hazards of our
profession.

Then, there is the joy that comes from sharing our
skill and knowledge with others and, in particular,
with school groups in the hope of helping to mold
their lives. I remember the thrill an associate of mine
had some years back when he received a letter of
appreciation from a school group he had addressed. I
forget the details, but the talk dealt with biological
experiments with rats. The letter said, "Dear Dr. N:
Thank you very much for speaking to our class last
Wednesday. Until you came to visit us, wedidn't even
know what a rat looked like."

Having disposed of the rewards of our profession,
let me develop the theme mentioned earlier, that is,
that we as a group have a poor public image.

I offer the following pieces of evidence. How many
times have you heard, when being introduced as a
statistician, something like the following: "So you're
a statistician" (said with an attempt at suppressing
mirth that threatens to tear the person apart). "Tell
me, is it true that if you put yourhead in an oven and
your feet in ice water you'll be comfortable on the
average?" By estimated count, I've heard this, or a
variation thereof, about 869 times since 1973.

Or, as another piece of evidence, you've completed
a round of golf and someone suggests, "Give it to
Harry to add up; he's the statistician." That's bad
enough, but then someone checks your addition to
find you've made a mistake. Although it may shock
some to know that we can't add, we all know that's
the reason we chose to be statisticians in the first
place. We don't have to get the exact answer—just
getting within the confidence interval is close enough.
If I could add, I'd have become an accountant or a
bookkeeper—not a statistician.

It's difficult to have your children respect you when
they don't understand what you do. Here's a typical
conversation between youngsters. "My dad's a
doctor; what does your dad do?" "He works for
Battelle." "But what does he do?" "He works in an
office." "But what kind of work does hedo?""He's a
kind of an engineer, oran accountant, or something."
"My mom says your dad is a statistician; that's not the
same as an engineer oran accountant, is it?" "I think
so, but his work is so secret, I'm not supposed to talk
about it." In case you haven't perceived the
undertones there, your child tends to be ashamed of
you. Perhaps that's stated too strongly; let's just say
he'd rather that you were something else. I won't even
bring up how your spouse may feel about your
profession.

Those among our acquaintances who are truly
interested in learning more about statisticians may
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turn to the dictionary. We read, "Statistician—one
versed in or engaged in compiling statistics."* That
doesn't help a great deal.

This rather negative attitude toward our noble
profession is not restricted to the United States. To
quote from Kendall, "Statisticians are still regarded
as living in a world of their own and possessing very
few human attributes. Nothing is more devastating in
a social gathering than to be introduced to a stranger
as a statistician and to watch the dismay with which
he, or worse still she, wonders what you can possibly
discuss on the ordinary social plane. That is not, I
think, merely the layman's natural distrust of
numerical information. People appear to talk quite
happily to actuaries and accountants or even to
numerical analysts and mathematicians."' I dare not
quote further or I shall be accused of plagiarism. I
refer you to Kendall's article for a delightful 15
minutes of reading.

As a final example to illustrate how statisticians
are, at best, misunderstood, I would guess that many
of you have experienced the situation in which you
are regarded as a miracle worker. This opinion is not
meant to be complimentary, but rather refers to the
belief that the statistician can perform some hocus
pocus statistical ritual that can turn an unacceptable
conclusion based on a set of data into something
acceptable. "Here is a set of data for lot such and such
where the values for eight out of ten samples exceed
the specifications. Will you pleaseanalyzethedata so
that the lot is acceptable?" They would like you to
find some way of throwing out the eight outliers.

1 could go on and on, and I'm sure you in the
audience can cite other evidences to show that our
profession often suffers from poor public under-
standing and, hence, acceptance. We, of course,
recognize our true worth. We can become quite self-
opinionated and are a bit puzzled that others cannot
appreciate us at our true worth. It seems to me that at
this point we have three choices: (1) let the public be
bleeped; (2) attribute our tarnished image to the
impressions created by others practicing our profes-
sion who are not nearly so capable or conscientious as
we are; or (3) examine ourselves individually to see if,
by some stretch of the imagination, we might have
contributed to this poor image.

Some of us like alternative (1); most of us, judging
from what I read on this subject, embrace alternative
(2). The blame lies elsewhere. Perhaps that's why
we've made so little progress in improving our image.
Is it perhaps time to heed the Biblical injunction,
"And why beholdest thou the mote that is in thy
brother's eye, but considerest not the beam that is in

thine own eye?"' Let us spend a few minutes in
examining ourselves to see if maybe, just maybe, we
have done, or have failed to do, certain things such
that part of the blame lies at our own doorstep. (I
know in advance that this will be a fruitless exercise.
You will probably leave here with the same feeling
that churchgoers often have as they leave the church
after a particularly damning sermon and comment to
the minister, "You certainly told them off—that was a
fine sermon.")

I will mention some areas of concern tome, but not
in any particular order of importance. First, consider
the communications problem. It does no one any
good if our findings, important though they may be,
and representing an excellent analysis, are not
communicated in an understandable way. Kendall
maintains that one of the reasons that we are
undervalued is the inability of many of us to get
across our ideas, particularly in writing. I think it
would be most helpful if each of us were to subscribe
to Kendall's philosophy on communications, and I
quote, "If someone fails to understand me I regard
the fault as mine, not his."'

Problems in communications, to be fair, work both
ways. The consultee is not blameless either, but it's
ultimately up to us to make sure that we are
attempting to solve the right problem. In a paper
published 20 years ago, Kimball pointed out that
poor communication can easily lead to committing
an error of the third kind—giving the right answer to
the wrong problem. This is a potentially serious error
because it often goes unrecognized.4

Perhaps I simplify too much, but in a 1966 paper,51
attributed problems in communication to laziness.
When we discuss problems with our clients, do we
take enough time to make sure we understand the
problem—to make sure that we've been given all the
pertinent information and not just that which the
client thinks we need to solve his problem? That is our
responsibility, not his. Also, when we communicate
in writing, do we take the time and trouble to make it
understandable? I suspect that at times we may even
take the opposite tact, that is, be purposely obscure in
order to impress. Admittedly, it is a great temptation

2. Webster's New Collegiate Dictionary, G.&C. Merriam Co.,
Springfield, Mass., 1973.

3. Matthew 7:3, King James Version.
4. A. W. Kimball, "Errors of the Third Kind in Statistical

Consulting,"./. Am. Slat. Assoc. 52: 133-42 (1957).
5. J. L. Jaech, "Problems of Consulting Statisticians—The

Statistician in Industry," 1966 Joint Statistical Meetings in Los
Angeles.
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to include complicated derivations and equations in a
report, but it is a temptation to be avoided, ingeneral.

Before leaving the subject of communication. 1
recall an early incident in my career that impressed
upon me the importance of leaving nothing unsaid in
dealings with the client. I had designed a fractional
factorial experiment fora corrosion engineer and, to
save him the trouble, 1 randomized the order of the
128 (1 believe it was) trials when listing the
experimental combinations to run. I discussed the
proposed experiment with him, gave him the listing,
and said goodbye. The next contact was about a
month later when he came in with the data for me to
analyze. 1 asked him if things went well. "Oh yes, no
problems, except that you gave me the sets of
conditions in such a jumbled up order, I had to
unscramble them before running the e periment."

Turning to a second problem area, we are faced
with the temptation to be too academic, or perhaps
too mathematical. This subject is difficult to deal with
because it is also dangerous to base results on
analyses that are mathematically unsound. Yet, there
is one thing to deal with practical problems on a
sound mathematical basis, keeping in mind that as a
practicing statistician, it is the problem that is
important, and quite another to dwell on the
mathematics, regarding the problem itself as
something to be endured but of no interest.

Those of us assembled here have had all kinds of
formal training in statistics. I myself attended a
school where it was considered a mortal sin for any
mathematics professor to even imply that there might
be something useful in what was being taught. As a
result, when I was turned loose, I knew how to prove
Cochran's theorem, but not how to fit a straight line
through a set of data. I used to keep a copy of
Brownlee's old paperback hidden in my drawer so I
could handle my assignments.61 'm convinced that my
one professor, teaching matrix theory, who was
supposed to tell us how to solve the problems in life
that he had avoided by becoming a professor, had no
idea of the practical importance to statistics of matrix
theory. If he did, he managed to hide it from us.

But I am supposed to fix the blame in ourselves,
and not in others. We, each of us, as supposedly
practical statisticians, cannot afford to expend a
significant portion of our energy on pursuing the
intellectual pleasures of pure mathematics—except
as a hobby. Kendall feels very strongly on this. No
one can accuse Kendall of being nonmathematical.
He writes, and I quote in part, "Nowadays there is a
brand of mathematician who is a danger to our
subject, or at least, to the acceptanceof our subject in

the worlds of science and business... there is a place
in the world, even in the world of experimental
science, for the scientist who is mainly interested in
studying his own mind. Where we have gone too far, I
think, is in allowing him to acquire pecking order
over the scientist who is interested in dissecting and
reducing to order the external world. The intricacies
and austerities of mathematical statistics are such as
to encourage intellectual arrogance on the part of
their practitioners. 1 do not think we should let them
get away with it."'

Turning to another, but related, subject, we
consider the poor reputation we've acquired because
of improper modeling. We all have pet techniques,
which change over the years, and we continually seek
to find problems that fit these techniques. If they
don't fit exactly, no bother; I'll change the assump-
tions to make them fit.

In a paper that I had the occasion to reread lately.
Professor Anscombe, who has honored this Sympo-
sium with his attendance, gets at the core of the
problem and at the solution as well. He writes, "What
is important is that we realize what the problem really
is and solve that problem as well as we can, instead of
inventing a substitute problem that can be solved
exactly, but is irrelevant."'

One challenge to the practicing statistician is that
reality hardly ever corresponds exactly to models on
which available techniques of statistical analyses are
based. On the one hand, this opens up exciting areas
of potential research but, on the other hand, it can
lead to time-wasting activities if we carry the problem
of equating the model to reality to the extreme. How
close a correspondence is needed? What are the
consequences of failures in the assumptions inherent
in the model? These are the questions of importance.

Criticism leveled at our profession in the area of
model building is sometimes justified, and sometimes
not. "You statisticians, you are so unrealistic, you
assume everything is normally distributed." This is
not true, of course, but some of our critics are
convinced of this. We need a new image. By following
Anscombe's advice, we should be able to create this
new image and be regarded as realists in future years.

I must touch on one other point before leaving this
subject, and that is the extent to which we are
personally responsible in our spheres of influence for
misapplications of statistical technique because the

6. K. A. Brownlce, Industrial Experimentation, 4th cd., Her
Majesty's Stationery Office, London. 1949.

7. F. J. Anscombe, "Rectifying Inspection of a Continuous
Output ," / Am. Slat. Assoc. 53: 702-19 (1958).
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models are just not appropriate. Standard techniques
are being applied by others on a routine basis: ttests,
tests (or outliers, calculation of tolerance intervals,
etc. Do you ever check into the structure of the data
to see that these common techniques are properly
applied? Does statistics get a bad reputation,
unbeknownst to you, when ridiculous answers are
occasionally reported because the model simply does
not fit? Too often we hearabout this afterthe fact. As
a case in point,oneauditorauditingourplant took us
to task because certain of our data, for which
tolerance intervals are routinely calculated, were not
normally distributed, according to his application of
the M'test for normality with which he was familiar.
Closer inspection revealed that large relative round-
ing errors were responsible. This negative audit
finding could have been avoided had I maintained
closer contact with the application.

1 touch briefly on another area where we
deservedly have earned a bad reputation on occa-
sion - timeliness of response. If we cannot provide
answers when needed, then we are of little use to our
clients. This is a tough problem area, because 1
suspect that most of us operate under lime con-
straints. It's a real temptation to give priority to the
more interesting problems and neglect the others,
regardless of their importance. Most of us are
hesitant to give advice without careful study of a
problem, but well-thought-out advice after some
action has already been taken is obviously worth less
than timely advice based on available resources. 1
suspect that we all have drawers full of problems that
we fully intend to give more thought to when we have
time. Ifwewaittocompleteaprojectuntil we're 100%
satisfied with all aspects of it, very little would be
completed.

We are in the computer age, and this introduces a
whole new set of problems. In balance, of course,
computers have been a great boon to our professions.
I recall in my early weeks at Hanford when a
programmer and I struggled to invert three 8 by 8
matrices. It was easier to use the inverted Doolittle
method on my mechanical Marchant calculator than
to get the right answer out of that existing generation
or computers.

However, the computer age also creates problems
for us. I am not anti-computer by any means,
although I am probably the only statistician in the
country who doesn't know how to program (I and
Carl Bennett). Yet, we have to face up to the dangers
inherent in the misuse of computers. I identify two
such dangers. First, the existence of so many package
routines often replaces the thought process and can

lead, if we are not careful, to the problems of poor
correspondence between the model and reality.
Secondly, and here is a real danger in my opinion, we
lose the "feel" of the data through over-reliance on
the computer. I recall a very expensive corrosion
experiment with which I was peripherally associated
some years ago in which the effect of iron on
corrosion rate was reported to be dominant, and the
strong quadratic nature of the effect puzzled the lead
experimenter. He called me in to see if I concurred
with the computer analysis. The problem was quickly
detected. One observation was way out of line, having
been incorrectly keypunched, and thisdominated the
results. Hopefully, we've become more sophisticated
in routine processing and analysis of data in the
intervening years, but we dare not completely lose
contact with the raw data. I might emphasize, in view
of our topic, that the statistical analysis had been
blamed for this puzzling result. Was the blame
deserved?

While on the subject of computers, I am also
troubled at the overuse of computer simulation in
solving problems. Granted that simulation is often
needed, it is used on occasion in my opinion to solve
problems that can easily be handled in less expensive
and more exact ways. We are still able to think; let's
not let the computer get all the credit.

I touch on another subject for which there is no
solution, but which, unfortunately, contributes to
our tarnished reputation. I refer to the fact that
statisticians don't always agree with one another. Our
opponents capitalize on this. "You statisticians! You
can't even agree among yourselves; why should I
accept what you say?" You and I realize, of course,
that that is the beauty of statistics over mathematics. I
am more comfortable in a situation in which the
"right" answer is mostly a matter of opinion.

As an example, I have a good friend, whom I shall
not name, but who is known to many of you. We have
had public disagreement concerned with biases and
systematic errors in nuclear materials safeguards
applications for a number of years now, much to the
glee of those individuals who want nothing to do with
statistics. This disagreement doesn't particularly
bother us. There is little chance, in my opinion, that
these disagreements will ever be resolved. On the one
hand, my friend is too stubborn to admit he's wrong.
I, on the other hand, am not wrong, so we are at an
impasse.

1 think we must get the message across to our
clients that disagreements among members of the
statistical profession are to be expected. May I again
quote Kendall. "The statistician... is rarely sure



Your Child—a Statistician 23

about anything. Ours is a logic of uncertainty. We
make almost all our statements in terms of doubt, of
expectation, of chances in favor. And rightly so.
because thai is what life is like. But businessmen do
not care for uncertainty in the advice they receive or
the statements which they are given. The function of
the statistician, as they see it. is to give them accurate
information. They will do their own doubting."'

1 am reminded of a phone conversation I had many
years ago, which is pertinent because of the analogy.
"Hello, is this Mr. Jaech?" "Yes it is.""This is Bill at
the analytical lab. I wastold to talk toyouaboutyour
request that we make duplicate analyses on such and
such samples. I'm opposed to this practice." The
conversation continued as I tried patiently to explain
the reasons for the request, in my usual diplomatic
way. This sound reasoning failed to convince him.
Finally, in exasperation, and sensing that I wasabove
my conversee on the organizational totem pole
(which placed him pretty low), 1 in essence directed
him to do the duplicate analyses. "Well, okay, I'll
make both analyses, but I warn you, you're going to
get two different answers." The point is that if two
analytical results don't agree, why should we expect
two statisticians to agree? I admit that this analogy is
somewhat far-fetched, but 1 wanted to work in that
telephone conversation somehow.

I have left a very important area until the end of my
list of reasons why weas a group are often maligned. 1
refer to our lack of interest in the quality of the data
base, to our tendency to want to get on with the
problem and apply our methodology without being
overly concerned about how good are thedata. Some
say that this is not the responsibility of the
statistician, and in some sense, 1 suppose I agree.
However, when we deliver what turns out to be poor
advice, or give faulty conclusions because we've not
dug into the data, we're the ones who tend to be
discredited.

My message is. always be suspicious of the data
base! Questioning the data base quality can be time
consuming, can be boring, and can, initially at least,
raise the hackles of the client if he feels the need to be
defensive about his data. (One hesitates to deal with a
client who has raised hackles; given the choice, one
would rather find a way to warm the cockles of his
heart since it's much more pleasant to deal with a
client with warm heart cockles than with raised
hackles.)

In referring to checking ihe quality of the data
base, I am not speaking merely of performing such

actions as running outlier tests or testing for
normality, or of things of this nature. More often
than not, some kinds of data are deficient in having
been "cleaned up" or "massaged" too much by the
client before you see them, and outlier tests are
superfluous. Rather than performing these tests
(although they certainly have their place). 1 refer to
the whole process of checking the data for internal
consistency, of questioning how the individual
numbers might be related, or making sure you
understand how the numbers were derived, of not
accepting data as God's truth just because they are in
the form of computer printout. (If anything, this
triggers my suspicions rather than sets them at rest.)
Some random examples may help to cla.ify the point
I'm trying to make.

1 recall an incident that happened many years ago
in which a colleague of mine was given what appeared
to be a beautiful set of data which formed a nice
smooth curve when plotted. The client wanted a
curve fit through the data. Several models were tried,
each one getting more complicated, bulallhough one
could get close, there was always obvious nonran-
domness in the residuals, indicating an inadequate
model choice. Finally, in desperation, the statistician
met with the client to discuss the results and express
his puzzlement at why. with such a beautiful set of
data, no reasonable model seemed to give a good fit.
The client's frown progressively deepened as he
searched within himself to find an explanation.
"Well, perhaps if we look at the raw data we'll get a
clue." In a distressed voice, my colleague responded,
"1 thought that was the raw data." "Oh. no. I used a
French curve to eyeball fit the data and gave you
some points off thecurve."Conclusion number one is
be suspicious also of beautiful data exhibiting little
random scatter.

As a second example, don't always accept obvious
"facts" stated by the client. A set of data was given me
some months ago in which concern was expressed
over the large unexplained lot-to-lot variation in the
oxygcn-to-metal ratio of uranium pellets. 1 ques-
tioned whether this actually was lot-to-lot variation
or rather might be, in part at least, reflecting day-to-
day analytical variation in the lab. It was agreed that
a small experiment would be run to explore this
possibility, and in fact, almost all of the variation
turned out to be attributed to analytical difficulties.
This discovery led to a totally different set of actions
from what had originally been suggested. It is also
further evidence of the truth of the famous corollary,
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"Measurement errors are always at least an order of
magnitude larger than claimed by the person
responsible for the measurement."

At times, initial results of an analysis will point a
finger of suspicion at the data. In a 1962 JASA
article, 'The Case of the Indians and the Teen-Age
Widows,"* keypunch errors in some of the 1950
census cards were uncovered as a result of what the
authors called a "statistical detective story." They
questioned the fact that there were more 14-year-oid
widowers than there were at ages 15, 16, etc; that
there were similarly more 14-year-old divorcees; and
that the number of young Indians seemed excessive.
Aftei a thorough investigation, circumstantial
evidence pointed to the probable causes of these
peculiar results.

My last example concerns an event of 18 years ago.
1 was traveling in a car toward Seattle with a friend
and my six-year-old son. To keep him occupied (the
son), 1 had him keep a tally of the last digit of license
plates, wanting to show him that all ten digits would
tend to appear the same number of times. We had
agreed to stop collecting data upon entering the city
of Yakima. Just after we passed the city limit sign, he
saw one more car. with the digit 4. Although he had

set down the pad of paper, he picked it up to mark in
the 4, "because I'm short on4s."The point is that the
tendency to bias data begins ai a very early age.

We've covered a number of reasons why our
profession suffers from a poor public image and, by
implication at least, have indicated some things that
we as individuals can do about it. This has taken a
good deal of your time and mine. It would have been
far simpler, and also just as meaningful in my mind, if
not more so, had J only had 3 minutes to fill rather
than 30 or whatever. Then my message would have
been simply, but completely: In order to achieve
respectability in our profession, we must, each of us,
live by a code of ethics. Granted, we do not have a
formal code of e hies but if we, as individuals, do not
know what it means to follow a code of ethics in
carrying out our responsibilities, then we're in worse
shape than I thought.

In closing, may 1 offer this bit of advice. We may as
well learn to laugh at ourselves; everybody else does.

8. AnsleyJ.Coale.and Frederick F. Stephan.'TheCaseof the
Indians and the Tecn-Age Widows."././)/;!. Sun. Assoc. 57:338-47
(1962).
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Exploratory Data Analysis and Classical Statistics: Their Abilities to Shed
Light on Energy Issues*
Lawrence S. Mayer
Princeton University
Princeton, New Jersey

ABSTRACT

Exploratory data analysis and classical statistics arc compared in terms of their potency for the analysis of major
energy issues. First, the positions of the two approaches in the contemporary philosophy of science arc considered. The
relevance of these positions to the major energy issues isdeveloped. Then a set of guidelines for the use of exploratory
data analysis on energy data is presented. Finally, the exploratory and classical approaches a re compared b\ using each
to estimate the price elasticity of residential natural gas. The analyses suggest those areas in which each approach is
most useful.

INTRODUCTION

For even the casual observer of our nation's energy
situation, it should be clear that many of the difficult
decisions which must be made in planning the course
of our nation's energy future require accurate
information about key energy parameters. For
example, a reasonable choice of whether or not to
implement a conservation program in the com-
mercial sector requires a knowledge of the degree to
which the program in question will impactdemand as
well as a knowledge of the hardships that the program
might force upon the targets of its provisions.
Because little is known about the potential impact of
such programs, debates such as the one about the
potency of the marketplace vs public law as the major
conservation mechanism in the commercial sector
tend to be nothing but expressions of prior political
positions. Similarly, decisions regarding the optimal
rate of utilization ol our domestic reserves of crude
oil obviously require reasonably accurate estimates
of the size of such reserves as well as estimates of the
response of the discovery-recovery mechanism to
variables such as price and changing life styles. As
evidence of the absence of such accuracy, the
extremes of current published estimates of domestic
crude oil reserves have a ratio of 18 to 1.

To obtain knowledge about key energy parameters
such as current energy utilization rates and patterns,
size of reserves, energy embodied in products, the
impact of person/machine interactions on demand,
response of demand to changes in price or culture,
and the potential impact of various conservation
programs, federal and state policy makers need to
draw on the talents of people versed in the subjects of
data gathering, data storage and management, data
exploration, and data analysis. I contend that both
classical statistics and exploratory data analysis are
tools which are of considerable importance in trying
to unravel our energy past in order to assess our
energy present and plan our energy future. 1 will
argue that classical statistics is being under-utilized
by the policy-making process while exploratory
methods are almost totally ignored. Furthermore, in
those few studies in which classical inferential
procedures are used, the problems often would be
more amenable to analysis by the informal approach

T h e author acknowledges the support of the National Science
Foundation. Grant No. 72-035I6-A04; the Energy Research and
Development Agency, Grant No. E( 11-1)2789: and the Office of
Energy Programs, Department of Commerce. Contract No.
6-35599.
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of exploratory data analysis. J will describe several
important characteristics of empirical research in the
energy policy area and then proceed tooutline what I
consider to be the proper role for formal and informal
statistical methods to play in this area.

My feelings about theappropriate role for statistics
in the analysis of energy problems have arisen, in
part, as a function of three of my research
efforts—efforts which have spanned the past several
years. First is my involvement as one principalinves-
tigator on an interdisciplinary multiyear study of
residential energy demand, a study which focused on
analysis of the components of demand in a planned
residential community in central New Jersey.1 My
involvement and the involvement of other statisti-
cians led to a study of the effects of the onset of the
energy crisis on residential demand,2 studies of the
effects of changes in price on the demand for natural
gas and electricity,''4 development of a simple two-
parameter model of the demand for natural gas as a
function of an indicator of the coldness of a month,5 a
statistical analysis of the effects of physical modifica-
tions to the dwelling on demand for energy.'' and
several more technical collaborative modeling efforts
involving statisticians, physicists, and engineers. This
involvement convinced me that a careful data analyst
armed with both classical statistics and exploratory
methods and blessed with a little good data can make
a significant contribution to understanding issues
such as the consumer reaction to changes in price,
issues which are central to our understanding of our
energy environment.

The second effort has been an 18-month evaluation
of econometric models for forecasting our energy
future.7 This effort has convinced me of the limita-
tions of classical statistical methodology as a tool for
developing basic understanding of energy-related
behavior in areas which lack both well-developed
empirical theory and reliable, valid data. I am
particularly skeptical of using classical statistical
methods to make longitudinal inferences from non-
experimental cross-sectional data, a common energy
econometric practice.

The third effort has been an attempt to provide a
philosophical base for the use of exploratory data
analysis as an alternative to classical statistics." My
approach involves the construction of a set of "meta-
theorems" which act as informal guides to deciding
whether exploratory methods are appropriate fbrthe
analysis of the problem under investigation and, if
they are appropriate, act as informal guides r.o the
selection of a particular exploratory technique'. The
emphasis of this work has been to argue that oncfe cast

into a sound framework in terms of philosophy of
science, exploratory methods are easily viewed as a
supplement to classical methods within the repertoire
of the competent data analyst. The only competition
that should arise between the use of classical methods
and exploratory methods in policy analysis in general
and in energy policy analysis in particular should
arise because policy problems are often so poorly
defined that the statistician has no way to decide
which of the approaches is more appropriate. If the
problem of interest is well defined, then the choice
between informal and formal methods of inference is
a rather easy one, and consequently, exploratory data
analysis and classical statistics are complementary
and not competing tools.

These efforts have led me to formulate a firm
position regarding the optimal interaction between
data, statistics, and energy policy.

CHARACTERISTICS OF THE ENERGY
POLICY AREA

Several characteristics of the .-^ergy policy area
make it a suitable arena for the use of statistical
methods in general and for the use of both explora-
tory data methods and classical statistical methods in
particular. First, the area is important for the future
of our society and thus is worthy of the statistician's

1. R. Socolow. Tin' Twin Rivers Program on Etvrgy Conserva-
tion in Housing: A Summary for Policymakers. Report 51. Center
lor Environmental Studies. Princeton University. Princeton. N..I..
1977.

2. I.. S. Mayer. "Estimating the Effects of the Ousel of the
Energy Crisis on Residential Energy Demand." Energy and
Resources (to be published).

^. I.. S. Mayer and C. Horowitz. "The Relationship Between the
Price and Demand for Natural Gas: A Partially Controlled
Study." Energy Res. 1: 193-222 (1977).

4. 1.. S. Mayer and C. Horowitz, "The Effects of Price on the
Residential Demand for Electricity: A Statistician's Estimate"
(unpublished manuscript).

5. I.. S. Mayer. "Modeling Residential Demand for Natural Gas
as a Function ofthe Coldness of the Month," Energy ami Buildings
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6. T. H. Woteki. The Princeton Onmihus Experiment: Stnne
Effects of Retrofits on Space Healing Requirements. Report 43.
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Department of Commerce. 1977. [A condensed version appears in
Proceedings of the International Conference on Energy Manage-
ment. October, 1977, Tucson, Arizona. Pcrgamon. New York (to
be published).]
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Statistics: A Data Analyst's Perspective" (in preparation).
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attention. Unlike areas of more academic interest, the
energy area involves the making (or postponing) of
difficult decisions regarding our energy future.
Because the growth of energy utilization cannot, and
will not, follow historical patterns, the question of
how to reduce the growth in demand is paramount.
To whatever degree the statistician can help unravel
the patterns of current end-use statistics, test the
potential of conservation programs, test the potential
of new supply technologies, and monitor the
performance of implemented conservation or supply
programs, he she can make a significant input into
our future.

Second, the energy area involves considerable
underlying physical theory and the policy maker
must make sure that programsareconsistent with the
physical realities of energy processes. For example,
the notion that "if enough economic incentives are
given, the supply of domestic oil reserves will ex-
pand indefinitely" appears to be part of the energy
economic folklore; it is a claim that is totally
ignorant of the physical realities of energy supply.
If the laws of economics contradict the laws of
physics, 1 choose to have faith in the latter. I
believe that the statistician is. or should be, trained
to deal with the complex interaction between
physical laws, data, and public policy problems.
The complications introduced by physical laws
make the energy area ripe for analysis by statisti-
cians who are well versed in the fundamentals of
physics and chemistry and yet are oriented toward
policy problems.

Third, the energy area is plagued by severe data
problems. Often the data needed to test a given
theory, such as a theory of consumer demand, is
partially missing and partially so unreliable that it
might as well be missing. To whatever degree the
statistician is capable of analyzing "weak" data and
encouraging the collection of better data, the energy
area appears an excellent domain for his/her
efforts.

Fourth, energy policy analysis often involves
subtle interactions between variables which at first
glance appear either unrelated or related in a way
different from their empirical relationship. Often
policy initiatives which have direct positive benefits
locally may exacerbate the overall energy picture.
For example, a program which directly encourages
residential consumers to reduce their thermostat
settings may indirectly encourage consumers to use
their stoves for supplemental heating of the kitchen.
The overall effect of such a program might be to
increase the residential demand for energy. Clearly

statisticians trained to dissect data to obtain esti-
mates of the nature of such interactions would be
most helpful in such areas. Consideration of these
interactions brings us to the final characteristic of the
energy policy area: the need for large-scale experi-
mentation with conservation strategies. Unlike areas
such as health policy in which experiments usually
involve serious moral and ethical problems, almost
all strategies for reducing energy demand, such as the
provision of tax incentives for home insulation or the
provision of peak-load pricing structures for com-
mercial consumers, can be tested without serious
moral or ethical complications. The statistician
should be involved in the design and analysis of such
experiments. The design of such experiments is
complicated by legal and regulatory practices and by
the fact that the effect produced by a successful policy
program is often small relative to the effects of
uncontrolled determinants of demand. For example,
it would take a carefully designed experiment usinga
controlled sample to demonstrate the effects of a few
percent rise in energy prices on residential demand,
because energy demand is heavily influenced by
uncontrolled variables such as structural defects of
the dwellings and variations in outside temperature.
The furnace responds to temperature more than it
does to price.

THE APPROPRIATE ROLE OF
CLASSICAL STATISTICS

Delineation of the proper role for classical sta-
tistics to play in the formulation and analysis of
energy policy begins most easily with criticism of the
current use of such methods in energy analysis. The
majority of formal statistical analyses found in the
energy area are contained within the body of litera-
ture which develops either econometric models of a
single energy variable such as the residential demand
for a single fuel or econometric models of the entire
energy/economic system. The level of sophistication
of the statistical procedures found in such models
varies enormously, as does the degree to which the
principles of classical statistics are correctly applied. I
will not deal with these issues. The goal of these
models is to forecast one or more energy variables
into the future; even where the principles of statistics
are correctly applied, I am highly suspicious of these
forecasting devices since they give little evidence of
their accuracy and model validation is ignored. I see
little reason why, in the absence of scientific scrutiny,
the policy maker should treat forecasts based on
formal statistical models as any more accurate than
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the predictions of seers. In addition to the validation
issue, I have doubts about the wisdom of using formal
statistical inference in the development of energy-
forecasting models. My doubts stem from the
following problems:

First, the empirical theory regarding the behavior
of energy actors is usually so weak that the necessary
scientific framework within which statistical infer-
ence makes sense is rendered inoperative. (Often in an
econometric model the residential consumer is
assumed to shop for a fuel type the way he or she
shops for a pair of shoes in the market, an assumption
which is given no empirical support and virtually no
theoretic support.)

Second, if the estimates of the variance of
parameters in the models and estimates of the
variance of the forecasts generated were reported
they would render the parameters and forecasts to be
"ball park" estimates and virtually useless from the
policy perspective. For example, the success of an
energy program such as the gasoline tax proposed in
the 1977 National Energy Plan requires the elasticity
of demand to be in such a narrow range that the
question of whether or not the elasticity falls in this
range would easily be seen to be beyond the resolu-
tion power of classical inferential procedures
provided the variances of estimates were reported.

Third, even if the forecasts could be made more
accurate, classical inference places inordinate con-
centration on the concept of explained variance.
Often from the policy perspective an important
component of the variance of a particular energy
variable is too small to be significant in the statistical
sense. Suppose one is trying to assess whether
customers of a particular utility will reduce their
demand in response to a few cents increase in the
price of electricity. The variance due to the price
change is going to be small; for this variance to be
detected, very large samples and accurate models of
demand are needed. Without such models the effects
of small changes in price are important but are easily
lost in the variation contained in the response of
demand to physical factors such as outside tempera-
ture and length of daylight period. Simple classical
methods such as analysis of covariance usually do not
provide adequate controls for the effects of such
variables on demand, because they leave too much
error variation uncontrolled.

The fourth problem with the current use of
classical statistics is that the units of analysis and the
time frame found in such analyses are often not the
ones of interest to policy makers. It is common
practice, for example, to use the formal theory of

linear models with cross-sectional data at the state
level to fit a model of the relationship between energy
prices and residential demand. The model is then
used to forecast the response of individual consumers
to a change in the price of fuel delivered to their
household. While such articles may be statistically
sophisticated, the logical foundation of this type of
inference is at best questionable.

The final problem is one of emphasis. Due to the
lack of empirical theory in the energy area, one of the
goals of any data analysis should be to assess the form
of an effect or relationship and not to be satisfied to
test for statistical significance. It is not particularly
instructive to know that a community responded to
the onset of the energy crisis by reducing its demand
for energy unless we know the form of the response.
Did the high consumers respond more, or less, than
the low consumers? Are there any indications that
people responded more in the cold months than in the
marginal or summer months'? Is the form and degree
of the response related to simple design charac-
teristics of the dwelling'? Does the response appear to
be a response to changes in price? Withoutanswersto
these questions, the fact that consumers responded to
the crisis is a piece of information which may be of
academic interest but is not of policy relevance.
Knowing that a nonzero effect exists may soothe the
academic mind, but the policy analyst needs to know
the form of the effect as well as its magnitude.
Classical statistics is partially unsuited for the
assessment of such form due to its emphasis on
estimation and testing.

I feel that the strongest role that classical statistics
can play in the formulation and analysis of energy
policy is in the design and analysis of large-scale
experiments for testing the potency of various
strategies for increasing energy supply and strategies
for reducing energy demand. For example, if utility
companies are to be forced to change their rate
structures to ones with marginally increasing prices
or to change their billing practices so that the
consumer receives accurate and complete statistics
regarding his demand, then there ought to be full-
scale experiments which demonstrate the value of
such changes. Similarly, the claims of the emerging
industry which markets energy-conserving materials
and equipment should be tested statistically "in the
field." Classical statistics should be involved in the
design, conduction, and analysis of such experi-
ments. These experiments need to be designed to
eliminate confounding sources of variation; classical
statistics could then be used to give accurate estimates
of the effects of various "treatments" on demand as
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well as to give probabilistic statements about the
probability that such treatments have an effect.

The second role that classical statistics can play in
the energy-policy area is in the development of statis-
tical models of the thermal performance of various
pieces of energy equipment. For example, classical
modeling techniques are probably well suited for
generating first-order approximations to the thermal
response of the dwelling to changes in the outside
temperature. Such models could be used to assess the
impact of a community retrofit program on the total
energy demand for the community. The methodology
would require (1) using simple experimentation to
estimate the effect of the program on the parameters
in the statistical model and (2) using estimates of the
degree of saturation of the program to estimate the
total impact on demand. Most current models of the
thermal performance of the residential structure are
complicated computer models which rely on engi-
neering principles and have never been validated by
field data. Such models are usually too detailed,
cumbersome, and possibly inaccurate to be used to
monitor a conservation program in the field.

The third role for classical statistics is in the
development of simple microlevel models of the
process which can be used to make optimal energy
decisions. For example, many industrial decision
makers face the choice of whether or not to replace
natural-gas-consuming pieces of equipment by coal-
fired equipment. Although it is clear that the decision
depends on the relative price and availability of the
two fuels in the future, it is not clear how projections
of price and availability are best used by the decision
maker. Similarly, a state legislator might want to
utilize a simple decision model in determining
whether to alter the process by which local building
codes are developed. Again, empirically based clas-
sical statistical analyses are well suited for such tasks.
We believe that classical statistics is well suited for
these tasks because the nature of the problem forces
the decision maker to adopt a relatively strong
empirical theory.

THE APPROPRIATE ROLE OF
EXPLORATORY DATA ANALYSIS

I do not see exploratory data analysis as a replace-
ment for classical statistics in the analysis of energy-
policy problems. The output of classical statistics
includes probabilistic statements, statements which
allow the policy person to attach an uncertainty to
his/her claims. The realities of the policy process are
such that the policy maker is probably better off using

such statements than using more informal inferential
statements provided he; she has reason to believe that
the formal statements are reasonably accurate.
Probabilistic claims appear to "sit well" with legis-
lators and citizens. The accuracy of such statements
depends on the validity of the inferential framework
within which they are generated, and in turn, the
validity of the inferential framework depends on the
validity of the empirical theory adopted. Thus, we
suggest that the policy maker lean toward the use of
classical statistics provided the statistical theory
underlying an analysis is understandable and palat-
able. Unfortunately, in most areas of energy policy so
little is known about the behavior of energy actors
that we are hard pressed to suggest even plausible
behavioral theories. Although some economists tell
us that we can understand both the individual and
aggregate energy consumer by having faith in neo-
classical economic principles, the economist gives us
little reason to believe this claim.

I piopose that exploratory data analysis is the
optimal tool to use in developing an understanding of
energy phenomena in problem areas where "under-
standing" involves the generation as opposed to the
testing of empirical theory. Furthermore, 1 propose
that there is such a scantiness of empirically scru-
tinized theories in the energy policy arena that
exploratory data analysis is ideally suited foranalysis
of most energy data.

Although it can be argued that much of the data
gathered in the energy area is not worthy of any
analysis, it is important to note that the need for
reliable, valid data is probably much less for use of
the exploratory analysis method than for use of
classical statistics. An exploratory data analyst can
peruse even bad data to try to assess general patterns
and trends. Because the exploratory analyst makes
fewer formal statements about data than does the
classical analyst, these statements tend to be much
less influenced by missing data or the presence of bad
observations.

Two recent efforts''4 illustrate some of the advan-
tages of using exploratory methods in the analysis of
energy data. In the first analysis, the typical consumer
in the community understudy responded to the onset
of the crisis by significantly rtducing his/her demand
for both natural gas and electricity. Close exploration
of the data reveals that both of these responses vary as
a function of the month and weather. Furthermore,
there is little evidence that the reduction in demand is
in response to changes in price, the major increases in
price occurring months after the major decreases in
demand. The analysis was repeated using the
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standard econometric approach and religious appli-
cation of the principles of classical statistics. The
second analysis gave strong evidence to the conclu-
sion that consumers responded to changes in price
and gave no indication of the differential response as
a function of the month. We prefer the exploratory
analysis because its claims are based on far simpler
assumptions than are the econometric claims and its
methods are very straightforward.

In a related effort5 we have developed a simple
indicator of the coldness of the month and then
modeled monthly demand for natural gas for the gas-
heated units under study as a nonlinear function of
the two parameters in the indicator. The first param-
eter is a reference temperature which estimates the
interior temperature of the dwelling plus the free-heat
contribution of the appliances, occupants, and sun.
The second parameter is a slope parameter which
estimates the response of the space heating system to
a 1° change in the exterior temperature. Using robust
methods, the model was fit to monthly demand for
each dwelling for all the months since the onset of the
Arab oil embargo. The model predicts monthly
demand very well yielding an average product cor-
relation of over 0.98. We also fit this model to
monthly demand for each dwelling for all months
prior to the embargo. We then examined the two
models to see whether the response of the consumers
to the onset of the energy crisis would be reflected in
the parameters of the model. If most observers of the
energy world are correct, then consumers responded
to the onset of the crisis by reducing their thermostat
settings a lew degrees over the entire heating season.
Such a change would be reflected bya lower reference
temperature in the post-embargo model than in the
pre-embargo model with equal slopes and correla-
tions. Our analysis showj that the response to the
crisis almost uniformly reduced the slope parameter

and did not affect the distribution of reference
temperatures or the quality of fit. At first glance this
result seemsto indicate that the consumers responded
to the crisis by altering the thermal characteristics of
the dwelling, perhaps by adding insulation to theattk.
or by installing storm windows. However, our
experience in the community as well as our explor-
atory analysis of detailed hourly data from 28 of the
dwellings indicate that such modifications did not
occur. We thus conjecture that the change in the slope
parameter reflects the fact that consumers only
responded to the crisis by lowering their thermostats
in the very cold months, a behavior which is reflected
in the slope parameter. This conjecture has important
policy implications. First, it suggests that, contrary to
economic theory, consumers respond directly to the
total cost of energy and only indirectly to its price.
Secondly, it suggests that the mechanisms which
affect demand in the severe part of the winter may not
affect demand in the milder months. Although
demand for energy is relatively small in these mild
months, it may bean important policy goal to reduce
such demand since the reduction in space heating in
these months probably does not cause thediscomfort
it does in the coldest months. These hypotheses,
which are generated by exploratory analysis, should
be the objects of further statistical study. I suggest
that proper testing of these hypotheses will require
large-scale experimentation involving the use of
classical statistics.

Energy analysis would benefit from the use of
exploratory methods to uncover the empirical
regularities in complex data, regularities which are
then put to scientific scrutiny using classical statis-
tical designs and analysis. Under this scenario both
approaches can contribute significantly to under-
standing our energy environment and planning our
energy future.
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ABSTRACT

When a two-dimensional map contains points that appear to be scattered somewhat at random, a question that
often arises is whether groups of points that appear to cluster are merely exhibiting ordinary behavior, which one can
expect with any random distribution of points, or whether the clustersare too pronounced to beattributable to chance
alone. A method for detecting clusters along a straight line is applied to the two-dimensional map of 2UBi anomalies
observed as part of the National Uranium Resource Evaluation Program in the Lubbock. Texas, region. Some exact
probabilities associated with this method are computed and compared with two approximate methods. The two
methods for approximating probabilities work well in the cases examined and can be used when it is not feasible to
obtain the exact probabilities.

INTRODUCTION

Whenever several points (occurrences) are located
on a two-dimensional map, a natural question that
sometimes arises is whether the points tend to cluster
together in some parts of the map or whether such
apparent clustering is merely the result of the chance
clustering one can expect under a random distribu-
tion of the points. Examples include the location of
rocket bomb hits on London in World War II, craters
on the moon, or high radiation readings in an aerial
reconnaissance search over a certain area. The latter
application prompted this study.

The method for determining clusters is quite
simple. A rectangular window of some predeter-
mined size, much smaller than the entire area of the
map, is moved across the map. Whenever the number
of points within the window equals or exceeds some
predetermined number k, the entire area covered by
the window is considered a cluster area, and that
region on the map is shaded in or otherwise marked.
The size of the window is determined from practical
considerations, for example, the smallest area that
has some real interest to the investigator. The value

for k is related more to probablity considerations and
is the primary subject of this paper. The entire
method is merely an application to a two-dimen-
sional map of a procedure that has been v/idely used
in one-dimensional situations.

Let us first examine the one-dimensional situation.
Suppose events in the time period (0, /), or along a
line (0, /), occur according to a Poisson process with
parameter K/r. That is, the times between successive
events are independent exponentially distributed
random variables with mean r/k. We define a cluster
to be the occurrence of k or more events within a time
period of length r, for some predetermined values of k
and f. Let Pk(K r, t) = Pk be the probability that no
clusters occur in the interval (0, t). Then choosing k so
that Pk is large, say 0.95, furnishes a most powerful

•The work reported in this paper was performed under the
auspices of the Energy Research and Development Administra-
tion, Contract No. W-7405-ENG. 36. Grand Junction. Colorado
Office.
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procedure for detecting certain types of cluster-
causing phenomena.'

Applications of this model abound in the
literature. In the spare parts problem,2 items fail
according to a Poisson process and are immediately
replaced by one of k available spare parts. The failed
item is repaired in time /•. The probability that there is
always a spare (or repaired) part available when
needed in the time period (0, /) is represented by / W
In human physiology one theory holds that an
impulse is sent from the eye to the brain if k or more
photons strike the same area in less than a fixed
period of time r.3 In physics the impurities along a
line in a crystal are distributed as in a Poisson
process, and a certain phenomenon occurs when k or
more impurities are found in an interval of length r.4

In the two-dimensional application a single pass
consists of moving the window horizontally the com-
plete width of the map. The number k is selected so
that the probability Pk associated with one pass is
close to one. If the map represents a two-dimensional
Poisson process, the number of points within the
moving window at any time has the same distribution
as the number of points in a moving interval in the
one-dimensional case. If the map results from a
system of parallel one-dimensional Poisson processes
as in aerial reconnaissance, then the window may
include several lines at one time as it moves parallel to
them and the number of points in the window at one
time again behaves as in a one-dimensional Poisson
process.

Although k is selected from the /Vcomputed on the
basis of one single pass, the same value of A' is used for
repeated passes as the window is moved slightly in a
vertical direction prior to each pass. Admittedly, this
increases the chances of signaling false clusters, but
the clusters formed in this way will tend to identify
entire areas of interest on the map, which is highly
desirable in most applications.

The notation used in the remainder of this paper is
defined as follows:

A = the expected number of points in the window
at any one time;

/ = the total number of window widths
necessary to traverse the map once;

k = the minimum number of points in the
window at any one time that defines a
cluster;

Pk = the probability that there are always fewer
than k points in the window as it traverses
the map once.

In the following section, the exact expression for Pk
is given and some computed values are given. In later
sections, an empirical approximation for Pk is intro-
duced, and an approximation for Pk using computer
simulation is described. The application of this
method to data from the National Uranium Resource
Evaluation Program (NURE) is described last.

THE EXACT VALUE OF Pk

An exact expression for the probability Pt of
having no clusters is given by Naus' as

Pk e Z VdetUl .

where A and / are as defined earlier and

S = {«,},ii such that all n, < k ,

(1)

n = rit',

det|-| = determinant of an /X /matrix ,
H

ce = k(j~~ 0 ~ 2 «„ + /?,-, for i<j,

ca ~ k(j —')•*" 2£ He , for i^ j ,

— = 0 , if cv < 0 or if f j- > « .

This formula is quite cumbersome to calculate,
since there are k' terms in the summation and
theoretically each term involves the determinant of
an / X / matrix.
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For the special case of k = 2, an alternative
method of derivation'' yields the form

;

V (2)

where pk is the cumulative Poisson probability;
that is,

Pk = (4)

A simple equation for Pi also exists,' but we have
not seen it. An exact expression for Pk, given in
ref. 8, is not correct because of an error in the
derivation. Still the formula is useful; it is
discussed later.

For purposes of making comparisons the exact
probabilities were computed for most combina-
tions of k from 2 to 10 and for values of / from 3
to 6. Larger values of / were not considered
because of the amount of computer time required.
In each case, numerous A values were considered
so that Pk ranged from near 1.0 to small values
not usually of interest. A typical set of values is
presented in Table 1 and compared with the sets
of approximations obtained from methods de-
scribed in the next two sections. The approxima-
tion methods appear to work quite well, but more
discussion of this point is deferred until later in
the paper.

Table 1. Exact values of Pi for / = 6 as compared
with two approximate calculations

Exact l'~
Approximate

formula
Simulation

approximation

0.83
1.00
1.17
1.33
1.50
1.67

1.83

2.(X)
2.17
2.33
2.50

0.999
0.998
0.994
0.988
0.978

0.963
0.940
0.911
0.873
0.827
0.773

0.999
0.998
0.995
0.989
0.979

0.964

0.942
0.913
0.876
0.829

0.773

0.999
0.998
0.994
0.988
0.977
0.962

0.944
0.910
0.880
0.829
0.771

The values of /y , which are relatively easy to
compute, were compared with the exact values of
Pk\ the agreement varied from roughly ±0.005 for
Pk > 0.9, and ±0.01 for 0.9 > Pk >0.8, to ±0.05 for Pk

near 0.2. The approximation is worse for larger A',
say k = 10, but does not seem to get worse as /
gets large, when exact values are costly.

The approximation, Eq. (3), is the weighted
average of two other approximate formulas F\ and
Fi,

(5)

where F\ is the erroneous result derived in ref. 8
and Fi is obtained as follows. The probability of
obtaining a total of / points along the path of the
window in one complete pass is exp{—A/j(A./)';/!,
and the probability of a given point having fewer
than A' — I neighbors to its right is approximately
given by the Poisson probability pk i. By treating
all of the events as independent (which they aren't)
the approximation

(6)

is obtained, which converts easily into the form for
F; defined by Eqs. (3) and (5). The particular
weights used in Eq. (5) were selected because they
worked for k = 2, / = 10. Further investigation
indicated that results were satisfactory for all of
the values of k and / investigated in this study, as
reported earlier.

AN EMPIRICAL APPROXIMATION OF Pk

The empirical approximation of Pk is given
by

- - exp{ -A/ ( I -pk-i)\, (3)

6. Ronald L. Iman. Personal communication. 1976.
7. M. V. Mcnon. "Clusters in a Poisson Process" [abstract].

Ami. Math. Sim. 35: 1395 (1964).
8. James M. Goodwin and Erich W.Gicse.'"l<eliahilitvofSparc

Part Support for a Complex System with Repair." Oper. Re\. 13:
413-23(1965).
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APPROXIMATION OF Pk

BY COMPUTER SIMULATION

For our purposes the most satisfactory method
of obtaining a reasonable estimate of l\ is by
computer simulation. For / = 10, a reasonable
value in our application, it is impractical to obta;n
the exact values of A. A, and I\. The approxima-
tion given by Eq. (3) appears to be satisfactory for
the cases examined, but without exact values to
compare it with, one has no way of knowing for sure
how well Eq. (3) will work for other values of /and k.
So a computer simulation program was written and
run. The program takes /and A as inputs, and in a few
seconds furnishes the outputs P2, Pi P,,, for any
designated integer /;/ (we used in = 20) so that the
choice of k can be made. Briefly, the method is as
follows.

Uniform (0. 1) random variables 6'i. IA, are
generated using a standard computer random
number generator and are transformed to exponen-
tial random numbers with mean I A using X, =
—(I A) In U,. Enough values of X are obtained so
their sum barely exceeds /. If the moving sum of k
consecutive A"s is less than 1 anywhere along the
sequence of A"s. not counting the last X, thenacluster
has occurred. Otherwise, no cluster has occurred.
This process is repeated 10,000 times to see how many
of the 10.000 repetitions result in no clusters, and this
proportion is used to estimate Pk. Obviously.it is easy
to keep track of several values of A- at the same time.

Table 2. A comparison of the approximate formula [Eq. (3)]
and the simulation approximation (S. A.) for

/ = 10 and k = 4, 5, and 6

A

O.I
0.2
0.3
0.4
0.5
0.6
0.7
(I.X
0.9

1.0
1.1
1.2
1.3
1.4

1.5

A

S. A.

1.000
0.99X
0.991

0.975
0.94X
0.909
0.854
0.791

0.712
0.6.10
O.53X
0.445
0.383
0.313
0.242

= 4

l!q. (3)

1.000
0.99X
0.992
0.976
0.949
0.90X
O.S52
0.78.1

0.702
0.614
0.523
0.4.12
0.346
0.268
0.200

A

S. A.

1.000
1 .(MX)
0.999

0.997
0.994
0.9X4
0.971
0.952

0.930
0.8X6
0.847
0.792
0.741
0.670
0.602

= 5

liq. (31

1.000
1.000
0.999

0.998
0.99.1
0.986
0.972
0.952

0.924
0.8X8
0.842
0.78X
0.726
0.657
0.584

A

S. A .

I.(HH)
1.000
1.000

0.999
1 .(MX)
0.99X
0.996
0.991
0.986

0.975
0.965
0.943
0.926
0.892
0.856

= 6

Eq. (31

1.000
I.(XX)
I.O(M)

1.000
0.999
0.99X
0.996
0.992
0.986

0.976
0.963
0.944
0.920
0.891

0.855

In all cases where exact values of l\ were obtained,
as described earlier, an approximation by simulation
was also made. The simulated value was within0.003
of the true value more than two-thirds of the time, as
one would expect. With this assurance that the
method works well, simulated values were obtained
for values of/up to lOand forA up to 9. The approxi-
mation defined by Eq. (3) agreed reasonably well with
the simulation value in almost all cases, as indicated
in Table 2. The cases with the greatest disagreement!)
were those where l\ was small, and those cases are
generally not of interest.

The standard deviation of such an estimate is less
than 0.005. and much less if Pk is close to 0 or 1.

AN APPLICATION TO NURE DATA

As part ol the NURE project.airplanes have flown
east-west patterns over a region near l.ubbock.
Texas, recording radioactivity attributable to l4Bi
(ref. 9). The presence of "14Bi in abnormally high
quantities may indicate potential for uranium
mineralization. A certain amount of IJBi is present
almost every where, and occasional high counts may
occur even though the concentration is low. simply
due to chance. Clusters of such high readings arc of
interest however, particularly if such clusters arc
unlikely to occur by chance.

The aerial reconnaissance data were analyzed by
the Los Alamos Scientific Laboratory, and outliers,
or anomalies, were located. Figure 1 shows 77 such
anomalies in the Lubbock region. These anomalies
are located on 23 "map lines," cast-west flight lines,
flown by radiometric reconnaissance airplanes. A
window of width 0.2 degrees longitude (representing
about 6 milcs)and of height sufficient to include three
map lines (representing about 8.5 miles) was moved
horizontally across the map 21 times, for the 21
different groups of three adjacent map lines. Each
time the window included five points (anomalies),
that area was marked with dots. When the window
contained six points, that area was shaded with
diagonal lines and when the window contained
seven or more points, the area was marked with cross-
hatching. These results are also shown in Pigurc I.

The probability Pk of obtaining no clusters in a
single pass of the window was not obtained (or/= 10

9. (icodata Inlmmtiomil. Inc.. Aerial Ratlhmieiric ami Mag-
iwiic Survey t>f Luhhuvk ami I'lainvicw Xatinnal Tttptwrafthic
Maps. NW Texas, vol I. prepared for the U.S. Energy Research
and Development Administration. Grand Junction. Colorado,
office under contract number AT(O5-I)-I654, 1975.
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Fig. 1. Clusters of 2l4Bi anomalies.

and A- = 5, 6, and 7 as in this example. So the
simulation program described earlier was used to
estimate these probabilities. The parameter A was
estimated from the data using

where
x = number of points on the map,
y = number of lines in the window,
2 = total number of map lines.

Thus,

- (77H3)__

The results where ?<, = 0.886, K = 0.975 and P- =
0.995 with standard deviations of 0.0032. 0.0016 and
0.0007 respectively. The estimates using Eq. (3) were
in reasonable agreement, beingO.888,0.976 and 0.996
respectively; all were within one standard deviation
of the simulation results.

The results of identifying clusters in this way are
interesting. Certain geographical areas stand out
clearly as areas deserving further investigation using
ground survey techniques.
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ABSTRACT

This paper presents computer graphics which arc useful lor displaying and analyzing data. Many classical and
se\eral newly developed graphical techniques in statistical data analysis are presented lor small univariate and
multivariate data sets. These include histograms, empirical density functions, pie charts, contour plots, a discriminant
analysis display, cluster analysis. ChernalT "faces." and Andrews' sine curves.

Recent advances in data collection technology and computer data base management systems have made it
imperative to utilize computer graphics lor large data sets. Several innovative graphical techniques are presented to
handle this situation.

Spatial relationships among the data (particularly geographic data) arc difficult to conceptualize. Severa!
cartographic techniques are presented which enhance the understanding of these spatial relationships within the data.

INTRODUCTION

The Energy Systems and Statistics Group at the
Los Alamos Scientific Laboratory (LASL) is in-
volved in several projects with energy-related data.
Some of these projects have small univariate or
multivariate data sets, while others have large data
sets that require data management systems for
efficient data manipulation. A statistically oriented
graphics package is presently under development;
numerous modules have been completed. The
purpose of this package is to provide graphical
techniques for the initial examination of the data.
This paper uses data from several projects to
demonstrate some of these techniques.

In the following sections, we discuss graphical
methods useful for a preliminary analysis of small
data sets, graphical techniques which are appropriate
for large data sets, and finally, spatial relationships in
geographic data sets. Throughout this paper, ex-
amples of computer graphics are used to illustrate the
techniques. (The 35-mm color slides of computer-
generated graphics shown at the conference are
reproduced in black and white for this paper.)

PRELIMINARY DATA ANALYSIS OF
SMALL UNIVARIATE AND MULTIVARIATE
DATA SETS

Computer graphics for a preliminary raw data
analysis may include histograms, empirical distribu-
tion function plots, and probability plots. The data
used in this section were collected on 17 variables for
each of the 50 states plus the District of Columbia.
The variables and their means and standard devia-
tions are listed in Table 1. Of particular interest is the
average household Btu consumption per capita
(HHBTU). The histogram in Fig. 1 shows that the
assumption of normality may be questionable. Two
graphical tests of normality are shown in Figs. 2
and 3. One test uses Lilliefors' test statistic; the other
uses a test statistic developed by Lohrding. In the
former, the normality assumption is tested by placing

*\Vork performed under the auspices of the Energy Research
and Development Administration, Contract No. W-7405-
Eng. 36.

tReport LA-UR-77-2456. Los Alamos Scientific Laboratory.
Los Alamos, New Mexico.
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Table 1. Sample statistics for 17 measurements collected on SO slates

Variable Definition of variable Mean
Standard
deviation

1. HHBTU

2. DEGD

3. MAXT
4. PCAIR
5. POP
6. 1-RZR
7. ONEP
8. PCURB
9. COML

10. MEDIN
11. L0W1N
12. SINGLE
13. NKWHS
14. OLDHS
15. AVHIN
16. LAT
17. LONG

Household Btu per capita (10 )

Heating degree day loads
2(65 - Y) _

365

(10 K) where Y =
average daily temperature if 1' =£ 65° V

65° I-if >'>65°F

Normal July maNimum temperature ("I')
Percent of households with air conditioning
1971 population (106)
Percent of population with freezers
Single individuals per housing unit
Percent urban population
Percent commercial sector, commercial/(rcsidential & commercial)
Median income (103)
Percent of family incomes below government poverty levels
Percent of single family houses
Percent of houses built since 1960
Percent of houses built before 1950
Average income per capita (103)
Latitude of center of the state
Longitude of center of the state

87.33

5.00

21.30

2.23

86.41
33.73

4.04
32.90

218.63
66.47
36.71

9.17
11.67
71.72
25.91
53.42

3.96
39.48
93.59

5.96
18.44
4.36

10.94
271.30

15.11
3.31
1.45
5.18

11.19
7.92

12.34
0.63
6.44

19.50

20-0 30-0 4O-0 50-0 60-0 70-0 BO-0 90-0 100-0 tlO-0 120-0 130-0

MAXIMUM = 1-2940*10 MEAN = 8-7331*10'
oWM,lamos MINIMUM = 198*10

I \, "L"' SAMPLE SIZE = 51 STANDARD DEVIATION = 2-1307*10'

Fig. 1. Histogram of household Btu (HHBTU)—all states and Washington, D.C.
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20-0 30-0 40-0 50-0 60-0 70-0 BO-0 90-0 100-0 110-0 120-0 190-0
OBSERVATIONS

Fig. 2. Lilliefors'95% confidence bounds on the empirical distribution function of HHBTU for all states and Washington, D.C.

20-0 50-0 40-0 50-0 60-0 70-0 80-0 90-0 100-0 110-0 120-0 130-0
OBSERVATIONS

Fig. 3. Lohrding's 95% confidence bounds on the empirical distribution function of HHBTU for all states and Washington, D.C.

(1 - a) 100% confidence bounds on the empirical
distribution function (edf)- The normal cumulative
distribution function (cdf) with mean and variance
estimated by the sample mean and sample variance is
plotted. If the cdf falls outside the bounds placed on
the edf, the assumption of normality is rejected at the
a level of significance. In the latter, the normality
assumption is tested by placing (1 — or) 100%
confidence bounds on the normal cdf with mean and
variance estimated by the sample mean and sample
variance. If the edf falls outside the bounds placed on

the cdf, the assumption of normality is rejected at the
a level of significance. In neither test is normality
rejected at the 95% level of significance. A normal
probability plot and a lognormal probability plot,
two additional graphical techiques which may give
further insight to the structure of the data, are given
in Figs. 4 and 5.

To describe the joint relationship of HHBTU to 26
other variables (including transformations of some of
the variables), a linear multiple stepwise regression
procedure is used. Seventy-five percent of the van-
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20-0 30-0 40*0 50-0 60-0 70*0 80*0 90*0 100*0 110-0 120-0 130-0
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Fig. 4. Normal probability plot of HHBTU for all states and Washington, D.C.

0-8333 -

! j 0«M7
I—
U 0-5000
U
£ 0-3333 •

0-K67

10' 10'
OBSERVATIONS

10'

Fig. 5. Lognormal probability plot of HHBTU for all states and Washington, D.C.

ance is accounted for by the variables degree days
(DEGD) and percent urban population (PCURB).
The equation of the fitted linear multiple regression
model is

22.155 + 8.657*2,, + 0.328A8),,

where

f= 1,2, . . . ,51 ,

Y, = HHBTU for the ith state (z axis),

Ay = DEGD for the ith state (x axis),

Xu = PCURB for the ith State (y axis) .

Figure 6 shows a three-dimensional graphical repre-
sentation where the fitted plane and the data points
are plotted. Lines are drawn from the data points to
thesurfaee to give some indication of the deviations.
In a nonlihear regression analysis, the equation of the
fitted model is

Yi = 33,835 - 77.607 + 1374.90
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Fig. 6. 3-D representation of a linear multiple regression
HHBTU model.

Fig. 7. 3-D representation of a nonlinear multiple regression
HHBTU model.

where

/ = 1 , 2 , . . . , 5 1 ,

Y, = HHBTU for the rth state (z axis) ,

Xu = DEGD for the ;th state (x axis),

Xij = MAXT (maximum temperature) for the ith
state (y axis) .

The fit of the data to the surface is shown in Fig. 7.
The two extreme points are Alaska and Hawaii.

Several techniques are available for displaying
multivariate data. We first discuss a gray-level coded
correlation matrix which displays the pair-wise cor-
relations between variables. The gray-level scale
ranges from positive to zero to negative correlations.
Frequently, such a display may be useful in directing
attention to interesting variable relationships. In
Fig. 8, note that HHBTU is positively correlated with
DEGD, LAT, OLDHS, MEDIN, and AVEIN; neg-
atively correlated with MAXT, PCAIR, LQWIN,
SINGLE, and NEWHS; and not correlated with
POP, FRZR, ONEP, PCURB, COML, and
LONG.

Another technique called Andrews' sine curves
uses the standardized data as coefficients of a func-
tion involving sines and cosines of / in the range
(— TT, TT). A function involving the 17 variables was
plotted for each of the 50 states plus the District of
Columbia to visually cluster simila'r states. Relatively
tight bands suggest clusters. When the original'data

are used, it is very difficult to separate clusters, as
shown in Fig. 9. However, a plot of the factor coef-
ficients from a principal components analysis in
Fig. 10 shows three possible clusters of states.

Figure 11 shows the so-called Chernoff faces for
the 50 states plus the District of Columbia. Here, a
facial characteristic is associated with a variable as
indicated in Table 2. For example, wide noses
correspond to large single populations and long noses
correspond to large populations. The faces for New
York and California are striking because of this
feature. Similarly, Alaska has a wide face because of
the large HHBTU consumption per capita, whereas
Hawaii has a thin face.

The dendogram, a tree-like graph of nonover-
lapping hierarchical partitions, is another visual
technique used in cluster analysis. A computer
program containing eight clustering techniques
(nearest neighbor, furthest neighbor, simple average,
group average, median, centroid, Lance and
Williams' flexible strategy, and Ward's method) is
used. Initially, the data are standardized; both clas-
sical and robust standardization techniques are used.
When the data are standardized by the sample mean
and sample standard deviation, no noticeable
peculiarities in the data structure are present.
However, when the data are standardized by the
trimmed mean and trimmed standard deviation, four
states (New York, California, Alaska and Hawaii) are
distinct from the main cluster regardless of the
algorithm used.
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Fig. 8. Gray-level coded correlation matrix of HHBTU data.

Fig. 9. Andrews' sine curves of HHBTU data.

? FL, IL, OH, PA, TX

Fig. 10. Andrews' sine curves of the factor coefficients from a principal components analysis.
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Fig. II. Cherooff faces of HHBTU data for all
states and Washington, D.C.
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Table 2. Variables associated with
specific facial characteristic for
Chernoff faces representing all

50 states and the District of Columbia

Facia] characteristic

1. Face width
2. Brow length
3. Face height
4. Eye separation
5. Pupil position
6. Nose length
7. Nose width
8. Ear diameter
9. Ear level

10. Mouth length
11. Eye slant
12. Mouth curvature
13. Mouth level
14. Eye level
15. Brow height
16. Eye eccentricity
17. Eyebrow angle

Variable

HHBTU
SINGLE
MAXT
LAT
AVEIN
POP
ONEP
PCURB
COML
DEGD
MEDIN
PCAIR
FRZR
LOWIN
OLDHS
LONG
NEWHS

LARGE DATA SETS

In data analysis many of the ensuing problems can
be attributed to the data itself—perhaps inaccurate,
missing, too little, and recently too much. These large
data sets not only create a tremendous storage
problem, but challenge computer graphics for
effective display techniques.

The analyses considered here deal with National
Uranium Resource Evaluation (NURE) data. The

objective of this nationwide airborne and stream
sediment reconnaissance survey is to classify regions
with respect to their potential mineralization. For
example, in the stream sediment survey, LASL
analyzes the data from five states: Wyoming,
Colorado, Montana, New Mexico, and Alaska. In
the second year of a five-year study, LASLdata bases
already contain seven million words.

The probability distributions of certain random
variables such as thallium signals over a given
geological formation of a flight line are thought to
indicate uranium concentration. A technique for
computing an empirical density function (edf) used to
estimate a probability density function has beun
developed. As many as 100 of these densities, each
representing a map line or transect, can be displayed
simultaneously as shown in Fig. 12. Since some of the
edrs may be visually obscured by other edf's, the 3-D
plots have been compressed into a 2-Dgrid plane in a
lightness-darkness plot shown in Fig. 13.

Figure 14 is a scattergram of bismuth vs thallium
for all geological formations on one map line in the
Lubbock-Plainview area in Texas. The data in the
lower left-hand corner represent recent geological
formations and most of the formations follow a linear
trend except for the data on the right-hand side of the
plot where thallium becomes constant with bismuth
increasing. These data belong to two older forma-
tions with known uranium mineralization. Figure 15
shows data for one geologic formation. Scattergrams
such as this one are useful in identifying clusters
representing misclassified geological formations
data.

MfiF LINES

TL - QBL

Fig. 12. 3-D plot of empirical density functions.
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TL - OAL HORIZONTAL AXIS - C P S
VERTICAL AXIS - MAP LINES

Fig. 13. Lightness-darkness plot.

0-0 40-0 MM) 120-0 WO-0 200-0 2404

Fig. 14. Scattergram of bismuth vs thallium for all geologic formations, Lubbock-Plainview area.
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Fig. 15. Scattergram of bismuth vs thallium for one mapline, Lubbock-Plainview area.

Figure 16 shows a linear discriminant analysis
displayed as a gray-level matrix useful in delineating
between favorable and unfavorable regions of
uranium mineralization. Each square represents 100
records (i.e., 100 sec of gamma-ray signals on a map
line) in the Lubbock area. The 23 rows represent 23
map lines. There are eight gray levels which are
linearly spaced from light to dark over the interval
[0, 1]. The lighter shades represent low probability of
favorable uranium mineralization while darker
shades represent high probability of favorable
uranium mineralization.

Contour maps of the Lubbock-Plainview area also
indicate regions where the probability of finding
uranium is high. An example is shown in Fig. 17.

CARTOGRAPHIC DATA SETS

Maps are very useful in displaying and communi-
cating information contained in data with spatial/
geographic relationships. The figures shown are
applications of cartographic techniques and have
been extracted from various on-going projects.

Figure 18 summarizes U.S. offshore oil and gas
lease data from October 1954 through November
1976. The number of leases, the leasing years, the
acreage and the producing acres through 1974 are
given for individual states and regions as well as totals
for all the leases. Of the total 1,940,000 producing
acres, Louisiana has 1,824,000 acres and Texas has
103,000 acres.

Figures 19-21 are for a study of the impacts of
electric power generation in the West. The location of
existing and proposed power plants by type for the
Western and Rocky Mountain regions are shown in
Fig. 19. The letters represent the type of plant, that is,
coal, oil, gas, and nuclear. The size of the letters
indicate three levels of power generation: small,
500-999 MWe; medium, 1000-1999 MWe; and large,

LUBBOCK QUADRANGLE
VERTICAL AXIS - MAP LINES H - 21'

HORIZONTAL AXIS - LONGITUDE < 102 - !0C<

Fig. 16. Linear discriminant analysis display.
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Fig. 17. Contour map of bismuth-thallium ratio.
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Fig. 18. Offshore oil and gas lease map.
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2000' MWe. The Los Angeles and San Francisco
areas have a number of oil-fired plants, and these
areas are simply shaded. Figures 20 and 21 are maps
to study pollution dispersion patterns. Figure 20
shows SO; concentration in southwest Wyoming for
1985 with pollution contours drawn every 0.25
Hg m . Figure2l shows change in length of lifedue to
pollution in days per person. Similar graphical
displays were done for exposure to suspended par-
ticulates, additional restricted activity days due to

pollution and annual morbidity costs per person and
per town.

Figures 22 24 are from solar feasibility studies.
The first map shows heating degree days which is the
average of the high and low temperatures subtracted
from a 65°F base temperature for the 48 contiguous
states. Simply, the colder the climate, the higher the
number of heating degree days. Contrast Florida
with 214 and Maine with 7511. The second map
shows 1977 residential gas prices in dollars per
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WSCC POWER PLANTS

Fig. 19. Map of power planls in the West.

thousand cubic feet by state. Gas is generally cheaper
in the southern, central, and Rocky Mountain
regions. Note that Maine has higher prices than
nearby Vermont and New Hampshire. Figure 24
shows the pattern of economic feasibility for
domestic hot water under incentives provided by the
National Energy Plan of April 1977 and the House
Modification of that plan.

Figures 25-32 are maps displaying energy-related
data from the regional studies program. Figure 25
shows the five coal export-import regions, and
Fig. 26 is a flow map for the export of Rocky
Mountain coal. The circle represents the within
region total, and the thickness of the arrows
represents relative amounts of export to the other
four regions. Bar charts and pie charts are useful in
displaying energy totals for regions or states.
Production, consumption, export, and negative
export (import) figures are displayed in Figs. 29
and 30 using shaded bars. Figure 29 uses varying
sized circles to indicate production levels by region.

J1U BRIDOER . 2000 UW
101270 t o n s / y e a r SO,

NAUGHT0N . 1540 MW
35820 t o n s / y e a r SO,

(Emissions from E1S - )

POLLUTION CONTOURS
EVERY . 25 /n/m'

vYOMING

UTAH

Total Exposed Population
4T5,615 people

Average Change in Life Length
due to One Year Exposure

0 .19 days per person >'o

DAYS P E R P E R S O N
- Lea than 0 .1
• 0 1 to 0 . 5
a 0 . 5 to 1.0
• More than 1. 0

•I °

Fig. 20. SOj concentration in southwest Wyoming, 1985. Fig. 21. Change in length of life.

Fig. 22. Heating degree days.
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1.17-1.74 1.75-2.24 2.25-2.99 3.00-3.99 4.00-4.49

Fig. 23. 1977 residential gas prices, dollars per mcf.

w/o incentives w / House incentives w / NEP incentives

Fig. 24. Solar feasibility—domestic hot water. Alternative system electric resistance: 10-year life cycle costing.

= Region Illl Region ^Region ^Region s*Region
= I Illl II ^111 ^ IV W V

Fig. 25. Five coal export-import regions.
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Fig. 26. Flow map of regional coal.

PRODUCTION H CONSUMPTION • EXPORTS
Fig. 27. 1975 regional energy totals.

^PRODUCTION 1CONSUMPTION

Fig. 28. Rocky Mountain coal.
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Fig. 29. 1975 regional energy production.

COAL FIELDS
OF THE

ROCKY MOUNTAIN REGION

Fig. 30. County air quality maintenance area data map—Rocky
Mountain states.

| LIGNITE

|SUflflITlWIM)U5

• BITUMINOUS

Fig. 31. Coal fields of the Rocky Mountain region.

Sections of a circle are shaded differently to indicate
coal; oil and natural gas: hydro, nuclear, and other;
and uranium production. Figure 30 shows county air
quality maintenance urea data for the Rocky
Mountain region. An interactive composite gco-
informiition mapping system known as GMAPS

provides map data on such items as wilderness areas,
ecosystem trends, locations of natural resources, etc.,
lor selected regions in the United States. Figure 31
shows types of coal fields, and Fig. 32 is a composite
of coal fields with oil shale basins in the Rocky
Mountain region.



Computer Graphics 53

|C0 f i L riEXOS

| OIL SMflLE BR5IN5

ICCfiL riELDS • OIL 5HWLC BflSlNS

Fig. 32. Coal fields and oil shale basins.

SUMMARY

The computer-generated graphic products de-
scribed in this paper represent a variety of techniques
tor displaying and analyzing small univariatc and
multivariate data sets, large data sets, and car-
tographic data sets. Computer graphics are useful
tools for communicating information efficiently and
effectively.
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Estimation of a Model for Electric Utility Demand
in the Presence of Missing Observations*

P. M. Robinson
Harvard University
Cambridge, Massachusetts

ABSTRACT

Thi' estimation of models for demand of coal and oil by electric utilities is complicated by the presence of many
zero observations, which seem to preclude the use ol standard methods, such as regression. Also, the time series
characteristics of the data render inappropriate the estimates of "limited dependent variables" models, recently
proposed by cconometricians. Thus we suggest estimates of open-loop time scries models, involving autoregrcsshe
structure in the dependent variable or the residual. The maximum likelihood and related methods we consider may
prove computationally loo onerous, .so somewhat simpler types of estimate arc pro posed also. Applications to the da la
are described.

INTRODUCTION

This paper was motivated by some monthly time series of demand for, and price of, coal and oil to electric
utilities in the United States. Series were available for each of the 50 states plus the District of Columbia, foreach
of the nine census regions, and for the nation. Coal and oil were classified by percentage of sulfur content. The
time period covered was January 1974 to August 1976 although some series contained later observations, up to
December 1976.

One is interested in modeling these data and using the model for forecasting. On the one hand a multiple
equation econometric model might be constructed. This equation might treat current and lagged values of
demand as the dependent variables; current and lagged values of price, along with other variables (such as scrub
cost, Environmental Protection Agency standards, etc.), might be treated as the predetermined variables.
Alternatively, the price series might be included among the dependent variables. Another approach would
involve models of a much simpler form, involving only one or two variables. For example, one might attempt to
model demand in terms of its own past history, possibly by means of an autoregressive moving average model.
Such "closed loop" models, containing no predetermined variables, are easier to use in forecasting than the
"open-loop" econometric models just described, for the latter require forecasts of the predetermined variables to
forecast the dependent variables. Moreover, recent evidence suggests that the closed-loop models, despite their
simplicity, tend to provide the better forecasts.

Whichever of these approaches is adopted, there are difficult decisions about model specification to be
made. However, if the resulting model is one of several standard forms, a number of estimation procedures,
many of which are available in computer packages, can be used. Unfortunately, the data in question do not lend

•This research was supported by NSF Grant SOC75-13436. The author is grateful to Data Resources Incorporated of Lexington.
Massachusetts, for providing the data and to M. C. Ferrara for preparing it for use. The computations were carried out on the Massachusetts
Institute of Technology's IBM 370/168 computer.
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themselves to a model of "standard form," because observed demand is sometimes zero, possibly because ol
differences between spot and contract prices. To see what problems this causes, consider the simple regression
model

r,* = £ br-,, + .v, . /= I. 2
/=l

where y* is the dependent variable (e.g., demand), the z,, arc predetermined (e.g., price), .v, is an unobserved
residual, and the /;, are unobserved parameters, which one wishes to estimate. In the standard regression theory.
A-, is a normal random variable, so in theory y,* is capable of taking negative values even if the z« are not. The
fact that observed demand cannot be negative does not really disqualify it from being r,*, because if Z.%i b,zi,
lends to be large and positive. Prob(_r,* < 0) will be small. However, if r,* is sometimes or often exactly zero, it
seems that it should not be modeled as a continuous random variable. Rather, some positive probability weight
should be assigned to the event Prob(r,* = 0). while allowingyt to vary continuously over 'he positive real line.

One way of solving the problem is to introduce an underlying variable r, such that

'/
r, = £ / ' ' -» + *'. ' = 1 - 2 ( I )

/=i

where

,r,*=.r, . if.r, > 0 . (2)

r,* = 0 . ii'.r, s£(). (3)

Thus we say that _r, has been "censored."The set-up, Eqs. (1) (3), is often known as a "To bit "model:' r, is called a
"limited dependent variable." The statistical methodology of such models is now quite well developed." and
Amcmiya' has extended Eqs. (I) (3) to multivariate regressions and simultaneous equations models, wherein r,*
is a vector. The estimates suggested require more complicated computations than does standard multiple
regression, but they are usually quite feasible on modern-day computers, at least when r, is scalar.

Unfortunately, this work seems only of limited relevance to our data because it is motivated to deal mainly
with cross-sectional data—in particular, large microdata sets on families or firms. For such data the assumption
that the .v, are uncorrelated over / is usually reasonable. This assumption seems essential for the estimates
suggested by Tobin. Amemiya. and others to have desirable properties. However, in applying Eqs. (1) (3) to our
time scries, we would take / to represent time. The assumption that .v, is uncorrelated over time is no more
reasonable than the assumption that the observed variables arc correlated over time, unless the -„ manage to
account for all the serial correlation in y,. Because a model can seldom be perfectly specified, there are usually
predetermined variables that should have been included in Eq. (I) but weren't. These go to make up .v,, so il the\
arc serially correlated, we would expect the same of .v,. A typical model lor .v, in Eq. (I) would be the
autoregression

(4)

1. .1. Tubin, "EMimation of Relationships lor Limited Dependent Variables." ICmminwiriea 26: 24 3ft 11958).
2. I. Amemiya. "Regression Analysis When the Dependent Variable is Truncated Normal." limnumcirivu 41: 997- 1016 (1973).
1. T. Amemiya. "Mullivuriulc Regression and Simultaneous Equation Models When iht Dependent Variables arc Truncated Normal."

linsmmieiricu 43: 999-1012 (1974). j|
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where the e, are serially independent with zero mean'and

/'
1 - j a,sJ ¥= 0 , |.v| =£ 1 . (5)

/-I

A closely related modification of Eq. (1) would be the dynamic model

p <i

.iv = 2] "J-V<-J + £ h'z" + e' • <6)
./=l i=\

where we again assume Eq. (5). ChernJ considers a model of this form for the demand for electricity. Note that
Eqs. (1) and (4) can also be written in a similar way to Eq. (6):

/ ' 1 / <l

}': = £ al>'<-l + 21 h'[Z" ~ 21 aJZ

7=1 1=1 \ j=\

The right-hand sides of Eqs. (6) and (7) contain variables that are themselves subject to censoring, so the theory in
Tobin1 and Amemiya" does not apply.

Because they do not use information on the dependence of the variables over time, estimates based on the
incorrect assumption that x, is serially independent will not be asymptotically efficient. Moreover, it appears that
they may not be consistent. When there is no censoring, ordinary least-squares (LS) estimates, although
inefficient, are usually consistent, because the limit as 7*— °° of the quadratic objective function will still be at the
true parameter point. But in the case of censored data, the likelihoods assumed in Tobin1 and Amemiya:are
products of multivariate normal density functions and univariate normal probability integrals. It is not at all
clear that the value maximizing this function asymptotically will be identical to the one maximizing the "true"
likelihood, which as we see below, involves one or more multivariate normal integrals.

In the next three sections, we propose parameter estimates for models such as Eqs. (6) and (7). (In principle,
it would be possible to extend our work to multivariate models of the type mentioned earlier, although the
complications are then even greater than the ones we encounter here.) The last section is an application to our
data set.

MAXIMUM LIKELIHOOD ESTIMATES

Let i;* be recorded for t= I, ..., T. Let r be the set of these / values for which Eq. (2) occurs, and let r be
the set of / values for which Eq. (3) occurs.

Denote by <!',/(z; m, S), the distribution function (d.f.)of the ^/-dimensional normal distribution, with mean
vector m and covariance matrix S. Let y, be generated by

p

.)•/ = 21 ajXi j + "'' ' (8)
./-I

in which w = (it'i, u-;)f has d.f. ct>r(w; f, a2lr), where

f = [ / • . ( « , . . . . / r ( 0 ) ] '

4. W. S. Chcrn. "Estimating Industrial Demand for Electricity: Methodology and Empirical Evidence." pp. 103-20 in Energy:
Maihcmutics and Moileh, ed. by K. S. Roberts. SIAM. Philadelphia. 1976.
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and h is the T-rowed unit matrix. The/(0) are known functions of rand of predetermined variables (reference to
which is suppressed) and a vector of unknown parameters 6, of which ai, . . . , ap, but not a \ are a subset. For
example,

f,{B) = £
/-I

as in Eq. (6), or

(9)

1 / p

M9) = Z b\z" ~ L "J** (10)

as in Eq. (7). Our work applies aiso to cases where/(0) is constant over /, so that we have a closed-loop model,
possibly with nonzero mean, of the type already discussed.

The d.f. of y = (ri, . . . . yr)\ conditional on the predetermined variables and with y\-P — •.. = j'n = 0, is

where

P =

1 0

- a . 1

0 -aP

The likelihood is then

0

-a, 1

( I I )

(12)
r,-<0,/er

This equation can be written as the product of the joint probability density of the T\ (say) y,, t e r, and the joint
d.f. of the Ti= T— T[,y,SitO, r e r, conditional on the y,, 1 G r. Evaluation of Eq. (12), or of an iterative step in
the solution of the first-order conditions for a maximum, thus seems to require numerical evaluation of a
multiple integral of dimension Ti.

Actually the autoregressive structure of Eq. (8) may lead to a substantial simplifying of these computations.
From Eq. (11), it follows that P'P has a "band" form, with the (/,y')th element zero for |/ — j \ >p. In other words
the partial autocorrelations of observations more than p units apart are zero. Wecker5 has considered prediction
and estimation for closed-loop autoregressions in which censored observations are spaced more than p units
apart. To be somewhat more general, suppose there is a block ofp consecutive observations vv i , . . . , .v/,+P, which
are uncensored. It follows that the d.f. of the >•,, / £ ? , conditional on the y,, r e r , can be factored into two
multivariate normal d.f.'s for the y,, / 6 r , / ^ A , and for the y,, t ET,t>h +p. If there are other blocks of at least
p consecutive uncensored observations, then the d.f. can be further decomposed. Thus, ultimately Eq. (12)
contains the product of « d.f.'s, of dimension Ti\,..., T2,,; computationally it ismuch easier to handle these than

5. W. E. Wecker, "Pred iction Methods for Censored Time Series," pp. 627-32 in Proceedings of the Business and Economic Statistics
Section, American Statistical Association, American Statistical Association, Washington, D.C., 1974.
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it is a single one of dimension Tu + ...+ 7%,,= Ti. (Dun6 gives apparently accurate and efficient formulas for
computing multivariate normal probabilities of dimension less than or equal to six.)

In principal the maximum likelihood (ML) estimators can be found by one of a number of numerical
algorithms. The Newton-Raphson procedure has the reputation of converging rapidly; if it is initiated with a
consistent estimate, it produces an asymptotically efficient one in a single step. Unfortunately, we can see no
simple way of getting an initial consistent estimate. Moreover, Newton-Raphson requires first and second
derivations of Eq. (12). These are difficult to obtain and complicated to program.

An alternative approach seems rather well-suited to the problem at hand. This is an algorithm for ML
estimation recently studied in depth by Dempster, Laird, and Rubin7 and called by them the"EM algorithm."
Each iteration of the EM algorithm contains two steps: in the E (expectation) step we find expectations of the
sufficient statistics pertaining to the "complete" data n , . . . , Vr, conditional on Eqs. (8) and (9) and the
parameter estimates obtained on the preceding M step; in the M (maximization) step we insert these expectations
into the likelihood for _n, . . . , yr, and maximize it, to obtain new estimates.

The EM algorithm seems useful here because the M step is very easy to carry out when/X0) has the form of
either Eq. (9) or (10). If we observed >•, yTt the log likelihood would be

- (T~P) log a2 - - ^ £ I v, - £ ajy,-j - f,(0)] , (13)
la [ J

(ignoring an asymptotically negligible term). Maximizing Eq. (13) with respect to 0 is equivalent to minimizing

1 T \ p 1"
Sr(d)=—- £ \y,-ltaiyl.j-fl(B)\ , (14)

1 <=/>+! L ./=l J

and maximization of Eq. (13) with respect to a2 is achieved when a1 = mingSr(0). When/(0) is given by Eq. (9),
therefore, the a, and 6, are estimated simply by linear LS regression of.non the_v,->andr,,. In Eq. (10), things are
only slightly more complicated. As an alternative to minimizing Eq. (13) by nonlinear LS, one could find
approximate estimates as follows. First estimate the b; consistently by linear LS regression of y, on the z,, [see
Eq. (2)]. Denoting these estimates Si, one then estimates the a, in an asymptotically efficient fashion by linear LS
regression of the

V

y, - £ biZ,,
i=\

on the

P __ •-

1 = 1

This is often called the Cochrane-Orcutt procedure.

6. J. E. Dutt. "Numerical Aspects of Multivariate Normal Probabilities in Econometric Models,".4nn. Econ. Sot: Meas. 5: 547-61
(1976). [Appendix available from author.]

7. A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," J. R. Siai.
SCH: Ser. B39: 1-38 (1977).
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form
The LS estimates described in the preceding paragraph depend in simple ways on sufficient statistics of the

T

2]
t=p+l

T

2] (15)

Unfortunately the conditional expectations of the sufficient statistics involving the y, required for the E step are
likely to be complicated. They involve first and (if there are some intervals of p or less units between censorings)
second moments of the truncated multivariate normal distribution. The distribution in question is the 7V
dimensional distribution of the y,, t G r conditional on the y,, I S r, although as earlier described, this may
sometimes be factored, in which case the expectations can be taken with respect to distributions of smaller
dimensions. Even so, we have to compute Ty first moments, and xjiTy(Ty+\) second moments, from
distributions of dimension Ty, for ally = I, . . . , n. Each moment involves a multiple integral of dimension Ty,
along with integrals of smaller dimension, and the formulas for second moments are particularly complicated.
As a result, we shall now explore alternatives to the E step.

AN ALTERNATIVE ESTIMATOR

Instead of finding conditional expectations of the sufficient statistics, Eq. (15), we could instead find
conditional expectations of the y,,te¥, themselves, and use these in Eq.( 14). Thus the computations described in
the previous section would be limited to finding///'.?/ conditional moments. However, unless censorings are
infrequent (which is not the case with much of our demand data), this procedure may still lead to evaluation of
integrals of high dimension. We propose to reduce the dimensions involved by conditioning on only part of the
available information. Therefore, ultimate convergence to the ML estimate cannot be expected; it is to be hoped
that the resulting iterations will converge, and to a value closely approximating the ML.

The method described below depends on the existence of at least one block of p consecutive uncensored
observations. As with the ML method, the more such blocks the data contain, the easier the compulations will
be. Denote such a block y,-P, ..., )u-u t > p , t < T+ 1.

We wish first to predict a censored value .i'y+/,, h =5 0. It is convenient to represent Eq. (8) as a first-order
vector-difference equation. Define

Thus

Then

y>

Eq.

»

we

=

y,

y,->

y<-p+i

(8) can be written

= Ay,-i + w, .

can recursively generate

a,

I

0

0

0

1

... ap

... 0

I 0

, w, =

0

0

(16)

0 < / s£ h . (17)
k=0
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Denote by af the (»,/)th element of Ak. Then from Eq. (17).

(18)
/=!

i = £ a n
A=0

(19)

We propose to estimate y,*i< by its expectation, conditional on y,-j, 1 <y < p. and on the events yt.i < 0,
0 ^ / ^ A (assuming, for simplicity, that all these latter y,*i are censored); namely.

Jv* = ^Ov

w, =

; < p , y,.i < 0, 0 < / < h) =
7=1

'v,-y , 0

(20)

(21)

s'nce the events y,*i C 0 and

P

are identical, from Eq. (18). To find the distribution of the ui, write

u =

Wo

Uh

,D =

1

f,(6)

Since the w, are NID(/,(0), a2), it follows from Eq. (19) that u ~ N(Df,, o2DD'). Thus Eq. (21) and thence
Eq. (20) may be deduced from formula (3) of Tallis,8 for the mean of a truncated multivariate normal
distribution. (Tallis' formula is expressed in terms of the correlation matrix, not the covariance matrix.)

The computation of y,*i, requires evaluation of an (/;+ l)-variate normal probability, along with A-variate
normal integrals. If there is a long run of censored observations, the prediction of the later ones will therefore
be expensive. It is therefore suggested that one predict these by working back from the subsequent block ofp
consecutive uncensored observations, if such there be. This method will also enable us to predict any censored
observations before the first block ofp uncensored values.

8. Ci. M. Tallis. "The Moment Cicncnitinj; Function of the Truncated Multinomial Distribution."./. It Sun. Sue. Ser. UZi: 223-29
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To see how this may be done, write Eq. (16) as

y,-i = A'1 (y, - w,) .

0 1

_L -fl-
ap a,, a,,

Then to predict y,-p-i,-u A 3= 0, from r,-i. . . . . y,-,,, we first generate

/
y-h^ — A f \t~\ — y A^'^^Wi-L-i 0 ^ / ^ A

Let al,;kl be the (/, y)th element of A'k. Then from Eq. (22),

/'

7=1

(22)

v,

Now consider

0 , 0 < / < h)

P

y=i
v/> £ 4 " H V J . 0 ^ / < A ) . (23)

7=1

Define

V =

Vo

- V A .

Because the u>, are NID(/>(0), tj2), we have

v ~

Thus we can again compute Eq. (23) by again using Tallis' formula (3).8

Note that by using both the forward and backward predictions in concert, to fill in a gap of 7o censored
observations, the multidimensional integrals involved are of order at most [7o+ %]. (The IMSL library includes
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a package for computing bivariate normal probabilities.) Moreover, most of the computations, such as the
recursive generation of the Ak, A~k, and the formation of D and E, are straightforward to program. Only the
eventual formation of the moment quantities is complicated.

A SIMPLE ESTIMATOR

The prediction method proposed in the previous section, while simpler than that proposed earlier, still does
not lend itself to routine calculation and may be expensive ifcensoringsare not sparse. Thus we suggest ageneral
predictor that leads to simple calculations, involving only the univariate normal integral.

It is suggested by the usual one-step predictor of y, when there is no censoring:

fv = E a, f,-,+/,(«) ,
7=1

where the y,j, j ^ 1, are either observed or predictors themselves. To modify this scheme to our circumstances,
first replace Eq. (8) by

iv = I a , P , , + w, . (24)
/ - i

Suppose y, is censored, so y, ^ 0. Then from Eq. (24), we define yt as

r, = E(y, | .r,-,, I < / < p, y, =S 0) = £ ajy,-j +f,(0) - a , (25)

wherein tf> and <t> are the standard normal density and d.f., respectively, and

a, = ~[ L tijy,-j + / , (0)1 / a .

Since * can be computed by a simple transformation of the error function, which is one of the FORTRAN
functions, the computations will be simple to program, and inexpensive. This will be so even if there are long
blocks of censored observations, so long as one has p values to start with. Notice that when (/ — 1, . . . , /—p)er,
Eq. (25) is identical to Eq. (20), for h = 0.

APPLICATION

To illustrate the alternatives to ML in the previous two sections, the simple model

y, = ay,-i + b\ + biz, + e, (26)

was estimated on some of the data described in the Introduction. We took^'r= log (1 + £>,), 2,=log P,, where D,
is "demand for" and P, is "price of" oil with sulfur content between 2.01% and 3.00%. (Di is measured in
thousands of barrels and P, is measured in dollars per barrel. ) Thus j ' , 5=0 because D,^Q,andy,=0 if and only if
Di = 0. The regional time series selected was that for the West North Central region. One would expect this model
to be much too crude to explain reality, and ideally one would wish to construct a model which used the
relationships between the various demand series, and information on additional predetermined variables, and
involved additional lagged y,. However, our concern is primarily to assess differences in the results of the
estimation procedures, and these are likely to be easier to detect in the context of a simple model such as Eq. (26).
Chern4 also estimates a first-order dynamic model for demand for electricity.

The 32-observation time series {y*} contained seven zero values; these were numbers 11, 13,14,15,29, 30,
and 32. To use the procedures described in "An Alternative Estimator," we must first classify the latter
observations into three groups. Group I (11, 13, 29, and 32) can be predicted using information on the
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immediately preceding demand. Group II (15 and 30) can be predicted using information on the immediately
following demand. Group III (14) can be predicted using the demand of two periods back, because 13 is also
zero. The prediction of Groups I and II will involve univariate integrals, and the prediction of 14 involves a
bivariate one. ML estimates, on the other hand, necessitate computing a trivariate integral.

The computational formulas for the various predictions are as follows.

Group I

We must find

which, as we may immediately infer from Eq. (25), is given by

f, = ay,-, + b\ + biz, - a ' ,
#(<*,)

where a, = — (a.iVi + b\ + biz,)la.

Group II

In this case we need

y,-2 = E(y,-2 | .I'M , J'r-2 ^ 0) .

From Eq. (23), this is

)',-: = £(vo Vd ̂ : — , vo ~ N
a \ a )

b\ + b2it-\ a'

a a

Thus

_ .1*/ \~ h\ ~~ biZt-\ _ o <P(fii)
} I , _ _ ^ ^ ^ t

where 0, = {y,-1 - b, - b2z,-,)/o.

Group III

Here we need to find

jvi = £(.ivi | .iv i , .!•/ sJ 0 . .ivi < 0)

= a'y,\ + Mi ,

lit — E(ui | 2/d ^ —ay,-\ , 2/1 ^ —a:.ivi) ,

where

a
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Putting

/fir, i + /'i + / 'v , \ fu-Y, , + «(/;, + h:z,) + (/), + b-z,,,)}
7 - . S, = — ; :

V a / | o v l + «" J

Then I'rom lormuki (3) ol Tallis."

ui = «(/»i + h.-Zi) + (/>] + / ' . c , . | )

»!«</)(7,)<l»(7,« - 6,y I + a' ) + y I + fi' </>((i,.)'l>(6,a - 7,v I + u )\I a v 1 + «'
a \ 1 + ef I

I he standardized bivariate normal d.f. in the denominator can be computed b\ means of the I MSI. libran
program .VIDBXOR.

The "Simple" Predictor

I-'roin Fq. (25) we have

r, "-- av, i + />, + b.'Z, ~ <;— .

An iterative procedure of the type described in "Maximum Likelihood Estimates" was used, alternating
between computing I.S estimates and predictions. The estimator of o" computed on each step using the current
data and estimates was

" - T .TE (.r, " ay, \ - h\ - h.-Zi)' •
' i

We commenced each iterative sequence by computing the LS estimates for the data _r;*. / = 1 32. that is.
taking "zero" values to be /.cm. In practice better staring values would be negative. However, we wished to
compare our results with the naive approach ot doing LS regression on y*.

In Table I we give the estimates and standard errors using/,*, the "alternative"predictors, and the "simple"
predictor. Convergence to lour decimal places was obtained alter nine interative steps in both cases. The most
noticeable aspect ol the results was the difference between the estimates (particularly />) using r,* and those
estimates using the alternative and simple predictors. (We also fitted a model with y,= l),,z: - I',, but in this case
the estimates ot" « showed the greater variability.)

The predictors ol the censored values are given in Table 2. The main differences here are in the r ;, and v-,,,
values, where predicting from the future and past give very different results.

Table 1. Parameter estimates
Table 2. Predicted values of censored y,

I,

I-,* 0.4224(0.0286) -1.5788(0.459!) 1.5626 •
Alicmalivc 0.5442(0.0276) -5.0370(0.5955) 1.9766 Alternative 1.301 0.923 1.569 2.715 0.792 3.154 1.096
Simple 0.5274(0.0275) -4.5197 (0.5280) 1.7696 Simple 1.107 0.772 1.286 1.360 0.665 1.056 0.93!
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ABSTRACT

An experimcnl was designed to assess the effects of retrofits on the heat balance in a sample of occupied houses. In
particular, the theoretically expected vs empirically determined effects on heat loss of installingadditional insulation in
allies were examined, as were the implications for policy analysis. The statistical analyses icaturcd use of robust
methods applied to large sets of primary data collected in the field.

INTRODUCTION

In this paper we briefly outline the need for sys-
tematic evaluation of changes in energy policies as
they occur. Paying special attention to the residential
sector, we point out the value of field experiments
and the need for certain types of data in this sector.
We conclude with a brief review of a field experi-
ment, which was conducted to serve as a guide for
future experimentation.

ENERGY CONSUMPTION AND
PUBLIC POLICY: THE NEED FOR
SYSTEMATIC ASSESSMENT

Many people agree that the depletion of our con-
ventional energy resources and the general uncer-
tainty about our energy future is putting a strain on
our environment and social institutions and that we
are faced with critical decisions about the future.
However, there is not so much agreement on how to
deal with this energy crisis. Several approaches have
been suggested, each having its proponents and op-
ponents: (1) develop nuclear power; (2) develop solar
power; (3) develop other sources—geothermal, tidal,
hydro, shale oil, coal gasification; (4) deregulate to
spur exploration; and (5) switch to more abundant
fuels, such as coal.

All of the above suggestions are in the nature of
supply strategies or policies. Alternatively we may
consider various consumption or conservation poli-
cies and strategies:

Economic—(1) realistic pricing and deregulation to
control consumption, (2) rate structure reforms to
encourage load shifting, and (3) tax incentives'dis-
incentives to encourage conservation.

Behavioral—(1) alert consumers to the need for
conservation, (2) inform consumers as to how they
can conserve, and (3) provide consumers the
opportunity to conserve energy and encourage
them to do so.

Physical—(1) install retrofits—thereby altering the
current stock of energy-consuming devices, (2)
replace old devices with new, more efficient
devices, (3) encourage cogeneration wherever
possible, and (4) encourage approaches that match
production of energy to end uses.
Whichever policies are adopted, the need to assess

the effects of policy decisions is apparent. With

*This work was supported in part by the National Science
Foundation (RANN) under Gram No. SIA035I6A04 and the
Energy Research and Development Administralion (now the De-
partment of Energy) under Grant No. EC-77-02-4288.
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respect to conservation policies this need calls for
improved or, in most cases, new data on energy
consumption. The nation's energy consumption is the
result of millions of individualdecisionsabout energy
use against the background of its social and institu-
tional structures; therefore, to determine the effects
of a new policy, we will need to know how the policy
affects the individual decisions that determine aggre-
gate consumption. But data on energy use are scarce
and inherently hard to come by: decisions about use
are decentralized, records are usually not kept, and
energy costs may be only a small part of the total cost
of an activity. Thus, although data presently exist to
describe energy use at the aggregate level, there is very
little data available at the level of the individual,
either residential or industrial consumer, and no sys-
tematic effort is being made to monitor the effects of
policy decisions on individuals' energy uses.

One potentially effective means of obtaining such
microlevel data is the field experiment. Field experi-
mentation affords three advantages when assessing
the effects of policy decisions:

1. Field experimentation allows the relative effec-
tiveness of alternative policies to be assessed on a
scale that makes failure of the policies to achieve
desired effects tolerable.

2. Partially controlled field experiments are a step
toward providing precise estimates of the effects of
policies; they permit a systematic assessment of
the factors that help determine the results of new
policies.

3. Field experimentation allows the policymaker to
experience some of the problems that are bound to
occur when a new policy is implemented.

The advantages of field experimentation outlined
above are taken for granted as first principles by
statisticians but not necessarily by policymakers,
especially if the expense, difficulty of execution, and
ethical problems attendant to field experiments are
considered. Thus the single most important task for
statisticians interested in becoming involved in
problems related to energy consumption and public
policy may be that of consciousness raising. We must
alert policymakers to the need for data adequate to
the critical decisions at hand and the singular value of
data and experiences gained as part of a field experi-
ment.

THE RESIDENTIAL SECTOR

Approximately one-third of the nation's energy
consumption is attributable to fuel and electricity use
in the residential sector. Of that one-third, slightly
less than half is used forpcrsonal transportation, and
about one-third is used for space conditioning. Both
aspects of residential energy use provide scope for
contributions by statisticians, especially with respect
to planning field experiments and surveys and col-
lecting, evaluating, and analyzing data bearing on
policy questions. In determining how energy is used
for space conditioning, for example, we need data to
describe and model (I) the physical characteristics of
the nation's housing stock; (2) the type, age, and typi-
cal rate of use of various heating devices and other
appliances; (3) the demographic and socioeconomic
characteristics of users; (4) the relationship between
the energy used in space conditioning structures, the
physical characteristics of the structures, and the
behavior of the occupants; and (5) the expected
return on investments in specific retrofits on a struc-
ture-by-structure basis. Also, we need measuring
devices and instruments that can collect this data.

All of the tasks implied above will require a great
deal of effort if they are done. We believe they must be
done if the effects of conservation policies on the con-
sumption patterns of residential consumers and
aggregate energy consumption in the residential
sector, the ultimate target, are to be systematically
and accurately determined. We also believe that stat-
isticians should take the initiative in pointing out the
need for systematic evaluation of energy policies and
that they should not hesitate to claim their rightful
role in helping to determine the effects of such
policies.

THE TWIN RIVERS PROJECT

Since 1972, members of Princeton University's
Center for Environmental Studies have been investi-
gating various aspects of energy consumption in the
residential sector. We have been involved in a series
of experiments at the planned housing development
of Twin Rivers in East Windsor, New Jersey. About
12,000 people live in approximately 3000 houses in
Twin Rivers. Our group has monitored the construc-
tion at the site, interviewed many of those responsible
for energy-related decisions in the planning and con-
struction phase, formally surveyed and informally
interacted with the residents, obtained a complete
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record of monthly gas and electric utility meter
readings, built an onsite weather station, placed data
acquisition instruments in more than 25 townhouses,
and rented and occupied another of these town-
houses, turning it into a field laboratory. Both the
National Science Foundation (RANN) and the
Energy Research and Development Administration
(now Department of Energy) have supported our
efforts.

Our basic observational units have been two-story,
three-bedroom, attached townhouses and theiroccu-
pants. The townhouses were conventionally built
with masonry walls and wood framing for floors and
roofs. They sold for approximately 530,000 when
built in 1971, and they enclose about I500ft: of living
space. Typically, about 15 ft! of natural gas per
Farenheit degree day are required to heat a Twin
Rivers townhouse. Thus, over a six-month, 5000-
degree-day winter, the total requirement is 75,000 ft1

of gas. which at S0.25 per hundred cubic feet results in
a heating bill of about $190 for the year. Electricity is
used at an average rate of about 1500 kWhr per
month from May to September resulting in an aver-
age monthly electricity bill of $60 during this period.
Most families in Twin Rivers have roots in New York
City. Their Twin Rivers townhouses represent their
first home ownership experience. About half the resi-
dents are Jewish, 96% are white, and most heads of
households are white-collar workers in New York.
Twin Rivers is about 50 miles from New York and 15
miles from Princeton.

Our goals in working at Twin Rivers have been to

1. establish that field experiments can be carried out
and provide a basis in experience for further work;

2. examine the role of the resident in conserving
energy, the physical characteristics of a dwelling
which determine energy consumption, and the
relationship between resident and dwelling;

3. develop exportable diagnostic tools, both physical
and data analytic, for evaluating conservation
strategies and policies; and

4. identify some effective retrofits.

We believe we have been very successful in pursuit
of these goals, especially in establishing that generally
useful field experiments can be carried out. Our intro-
duction to this section of the report summarizes how
far we have gone toward achieving this particular
goal. Our achievements with respect to our other
goals are documented in the reports cited in the
bibliography. Some highlights of these reports are

• Twin Rivers residents reacted to the onset of the
1973-1974 oil embargo by reducing their space
heating energy use by 15% (Mayer, 1976).

• Simple two-parameter models provide useful
descriptions of the variation in monthly and hour-
to-hour consumption of energy used to heat Twin
Rivers dwellings. The two parameters are the
conductivity of the shell of the dwelling and the
temperature at which the furnace first comes on.
The models are related so that microlevel measure-
ments can be related to estimates of monthly
consumption (Mayer, 1976; Woteki, 1976).

• Residents will reduce their consumption when
provided with feedback information on their
consumption in relationship to their peers and to
weather conditions (Seligman and Darley, 1976;
1976).

• Simple experiments employing portable electric
area heaters can bedonetodeterminetheefficiency
of any residential furnace (Sondereggcr, 1977).

• Simple models analogous to electric circuit models
with two resistances should prove very useful in
diagnosing how much heat is lost by conduction
from the living space of a house to its attic. Such a
model would be useful in diagnosing the need for
and effects of installing additional attic insulation
in a wide variety of housing types (Beyea, Dutl, and
Woteki, 1977; Woteki, Dun, and Beyea, 1977).
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Heat Shock Threshold Estimation for Fish Eggs and Larvae
in Power Plant Cooling Systems*

Allan H. Marcus
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ABSTRACT

Although mortality and hatching success data arc often analyzed by bioassay methods (e.g.. probits or logits), it is
suspected that actual thresholds exist for the adaptive response of a biological system to multiple environmental
stresses. These thresholds can be estimated using a general linear model. The optimal estimation ol the response
thresholds is a nonlinear least-squares problem, however, and the derivatives of the residual sum of squares surface will
have cusps. Approximate confidence regions for thresholds are readily calculated. The separate effects of temperature
shock and cumulative temperature dose in electric power plant cooling systems are shown for hatching success of
striped bass eggs and for mortality of the larvae of the American shad.

INTRODUCTION AND DISCUSSION
OF RESULTS

The Chesapeake Bay is the most productive
marine estuary in the world. There is intense
competition for use of its waters for shipping,
recreational and commercial fishing, and power
plant cooling (among others). The requirements,
however, for efficient operation and economical
design of electricity generating plants (whose
condenser cooling waters should be discharged at a
sufficiently high temperature to control biological
fouling of condenser screens without adding biocides
such as chlorine and ozone) may be directly opposed
to maximal production of finfish and shellfish. Eggs
and larvae of these animals may be drawn into the
power plant cooling system and, as they pass through
the heat exchange system, be subjected to an abrupt
increase in temperature that overwhelms their
adaptive capabilities (i.e., heat shock). They may
then spend an extended period of time in the heated ;
waters of the discharge where, even if they have not;]
succumbed to heat shock, the cumulative exposure ;

to temperatures exceeding their acclimation limit jj
will result in increased larval mortality and in i
decreased hatching success of eggs. !

There is sufficient evidence to believe that there
arc, indeed, actual physiological thresholds for heat
stresses to aquatic and other organisms.1 It is thus
reasonable to look for distinct threshold temperature
values for heat shock and cumulative exposure, as
they represent distinct short-term and long-term
phenomena. In any case, the specification of
temperature limits for cooling water discharges are
often given separately. A case in point is the water
discharge permit of Calvert Cliffs Nuclear Power
Plant owned and operated by the Baltimore Gas and
Electric Company. This very efficient steam electric
power generating plant has a once-through cooling
system. The original operating permit required a
maximum temperature increase (DELT) across the
condenser of 10° F (5.6°C) and a maximal
temperature in the discharge canal of 90°F(32.2°C).

•This work supported by the Maryland Power Plant Siting
Program.

I. V. H. Hutchison, "Factors Influencing Thermal Tolerances
of Individual Organisms." pp. 10 26 in Proceedings of Thermal
Ixology. 11, ed. by G. W. Esch and R. W. McFarlanc. A.E.C.
Report CONF-750425, U.S. Government Printing Office.
Washington. D.C.. 1976.
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I he normal summer surface water temperature is
KO 1 but may be as high as 83 I- for 100 hr per
year, so the maximal discharge lemperature could be
as higli as 93 I- (33.9 C). The plant has been
operated experimentally at 1JEI..T = 124- (6.7'C)
for 3l6(/i) studies, and higher values up to
1HI 1 - 14 I- (7.8 0) have been considered/' We
believe these values are likely to be typical design
values for future power plants.

Numerous temperature stress studies have been
carried out at the Chesapeake Biological Laboratory
of the University of Maryland.' We will discuss some
results lor the mortality of larvae of the striped bass
(Mtirone .uixaiilix) and for the hatching success of
eggs of the American shad {Alosa sapitiissima). The
eggs or larvae are first acclimated 'o a BASE
temperature, then subjected to an instantaneous
temperature increase (DELT). which is maintained
lor TIME minutes. Here. BASE was 18°C for shad
eggs and 24 C for bass larvae. DELT ranged from
10 C to 14.5 C, and TIME varied from 5 to60 min.

Table 1. Experimental runs for all fi&h eggs and larvae"

I cttcr I

O1-// 40 60 80
Time (mini

Fig. t. Total percentage mortality for nine experiments using
SO eggs each from striped bass 1. For an explanation of letter
codes, see Table I. Source: T. S. Y. Koo. C. F. Smith.
M. L. Johnston. G. E. Balog. Jr., and H. L. Mathers. Effects
of Heat Shocks on Fish Eggs ami Larvae. Report CEES
No. 76-II2-CBL, Chesapeake Biological Laboratory, University
of Maryland. July 1976, adapted from Appendix I. '!
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About 450 cygs Irntn each tish uetc tertili/cd at a base tempera-
ture, then diudcd into the nine groups lifted above uuh about 5(1
tcrlili/ed egys in each experimental g>roup !oi each fish

Source I S V koo. < r Smith. M 1 Johnston, d 1
lialoj;. I, . and II I Mathers. /.,/,,(> „/ ll,al .S7n«Ai on li\h f.w*
ami Ijinat: Report C H S No '6-112-CHI. Chesapeake Biological
laboratory I imcrsiU ol M.mland. JuK Isl^d. adapted Iroin
Appendi\ I

The waters were then allowed to cool naturally to
BASE, as shown in Fig. 1.

About 450 eggs from each fish were divided into
nine groups of 50 each. The nine experimental runs
included a control run and the eight combinations
listed in Table I. Larvae from striped bass 6 were
2 days. 4 hr old: her larvae had the yolk-sac partially
absorbed and the eyes pigmented. Larvae from
striped bass 7 were only 2 days old. and although the
yolk-sac was partially absorbed, the eyes were not
pigmented. Because the BASE temperature was high
(24°C), we believed that thesedata were particularly
relevant to the conditions of power plant dis-
charge.

We also evaluated eggs of four American shad at
age 24 hr (late gastrula stage) to study the variation
among individuals of the same species at the same
developmental stage. For each of these shad, 450
eggs were allocated among nine treatments as above.
The BASE here was 18°C. Eggs in the tail-free
embryo stage (age 41 hr) at BASE 17°C showed
practically no mortality, while those in the early
gastrula stage at BASE 24°C showed almost 100%
mortality.

Striped bass are a particularly important environ-
mental indicator species for citizens of Maryland.
The status of the striped bass population plays a role
in their gastronomic and recreational preferences

2. Decision or Hearing Officer, NPDES Permit =MDOO2399.
Jan. 15. 1977. In the matter of Calvert Cliffs Nuclear Power
Plant, Baltimore Gas and Electric Company, Request for
Adjudication.
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that is scarcely captured by calculation of the
economic benetit.s ol commercial and sport fishing
lor this species. While neither bass nor shad are
spawned near the Calvert Cliffs plant, we have for
the sake of definitencss evaluated the Culvert Cliffs
discharge limits for bass larvae and shad eggs.

The basic data are percent mortality of larvae (e.g..
lig. 2) or percent hatching success of eggs. These
data were arc sine transformed to achieve stable
variance and then were treated by the methods
described in the next section. Contiden.ce contours
ior larval mortality arc sketched in Fig. 3. Note that
for striped bass 6. the thresholds for the experi-
mental condenser cleaning trials of 1976 12'F
(6.7 C) for heat shock and a maximum discharge
canal temperature of 95C F (35- C) do not lie below
the 99fV lower confidence bound for heat damage,
although they do lie below the 95f7 lower confidence
bound for heat damage. There is thus a remote
possibility that these extreme conditions could start
to damage some striped bass larvae. However, the
striped bass 7 larvae lie well below the detectable
thresholds of mortality.

The assumed exposure. TIME = 1 min. is an
extremely short time for heat dose. Longer TIME

Start End
DELT Run DELT Run

0
100

10

Hours After DELT Run

20 30 4 0

50 -

/ /Mi

M2 '? '

/

i

Control

-&$

* ,°«-KI

/
Striped Bass Larvae
Experiment 1
May 16, 1975
Base Temp. 20.5 C

Fig. 2. Example of typical agreement between experimental
time-excess temperature history, £>,, and its hypothetical
analogue. Source: T. S. V. Koo. C. K Smith. M. I.. Johnson.
0. E. Balog. Jr.. and H. I.. Mathers, Effects of Heal Shocks
on Fish ft'tf.v anil Larvae, Report CEES No. 76-112-CUl..
Chesapeake Biological Laboratory. University ot Maryland.
July 1976. Fig. 8.

© !

©

.L:1074 NPDES

Fig. 3. Outer confidence contours at levels of 95 and 99% for

temperature shock thresholds, T H E T A ( I ) , and heat dose

thresholds, THETA(2) , for striped bass 6. \K.i M,, ,W,. ..,> . .

condition'. '>pccilial in the 1974 NI 'Dl S I 'ennil ami the 1976

worst-caM.1 operatini: ainditM)n. I L'\pL'nmcntal pumts

contours arc being evaluated by a computer program
not yet fully validated: these results will be reported
in detail later. Longer TIMES will not change the
center or approximate shape of the contours but
will compress them somewhat in the heat dose
threshold. THETA(2). direction.

For the shad egg hatching success data we
evaluated the hypothesis that the threshold for heat
shock fell below 14^" (7.8r'C) and the threshold for
test temperature dose effect fell below 90°F (32.2°C)
with an assumed exposure TIME = I min.
Application of a formal F lest of significance is
reported in Table 2. For shad 1, the thresholds are
very probably below these values (P = 0.4); for
shad 2 (P = 0.026) and shad 4 (P = 0.01), there is a
small possibility that their actual damage thresholds
are below these values; for shad 3 (P = 0.0006), there
is practically no chance that her damage thresholds
are below these values. We thus conclude that limits
of 14° F (7.8°C) for DELT and 90°F (32.2°C) in the
discharge canal will allow damage to the egg hatching
success of some American shad. The population
effects on the Chesapeake Bay fishery can then be
evaluated (in principle) by an ecological model.
Contours similar to those for striped bass will be
presented elsewhere.

The present model assumes the existence of
thresholds. Unlike chemical carcinogens or ionizing
radiation, there is evidence that physiological
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Table 2. Test of hypothesis ihat THETA(I) = 7.8"C,
rHETA(2) = 32.2°C, for TIME = I min

1 ish

Sh.ul 1
Sh.nl 2
Sh.nl *
Sh.nl -1

)rsi«s ol Ifmliun

/ wiluc

1 23
X.92

1 1 Xi

2. 4

Siuinlii'.inii:

0.4

0.026
() (J00f>
0.1)1

thresholds lor temperature are real and represent
limiting conditions of physiological homeostatie
adjustment. ( he question of thresholds is contro-
versial, however, in that this assumption often leads
to more conservative assessments of damage and
higher allowable levels of environmental insult than
other methods. For example, we could estimate the
proportion ol bass larvae dying, or shad eggs
hatching, using probit or logistic regression methods,
and express the uncertainties of the analysis using a
confidence interval for that proportion. Our
threshold estimation procedure could thus be
described as a "horizontal window"method, and the
probit or logit method is a "vertical window"
method. Clearly, both methods are of use in deriving
temperature limits lor cooling water discharge with
laboratory bioussays.

METHODS

Introduction

The effects of temperature stress on aquatic
organisms may depend on at least two threshold-type
phenomena. In a typical bioassay experiment,
organisms (e.g., larvae, lor which mortality is
measured, or eggs, for which hatching success is
measured) arc exposed to an instantaneous tempera-
ture increase DELI ( C) over a long-standing base
temperature BASE ( C). This temperature increase
to lest temperature

TF.ST = DE1.T + BASE (I)

is maintained for TIME minutes. The first effect is
that of heat shock or more properly, temperature
shock:

no effect

adverse effect

if DELT<THETA(!) .

if DELT>THETA(1).

I he second effect is a dosage vttect \\ hieh depends on
I EST temperature:

no effect if I ES 1 1 HE1 A(2> .

adverse effect U 1 ESI . - T H E 1 A ( 2 ) .

It is b\ no means obvious that THE I A(l) -*• BASE :

I IIE1 A(2). although this could be tested.
I his problem can be viewed as a multivanate

"hockey stick" regression.' Suppose that .V ex-
periments are carried out at levels DEI 1(1).
TIME(l). BASI-:. SO that

TEST (I) - BASE - DEI. 1(1) (2)

T h e re sponse is the n u m b e r of "successes . " S( I), ou t

of K(l) o rgan i sms . W e can define possible re-

sponses :

! ' (]) = S( l ) K ( l ) .

A R C S I N ( l ) = u r c s i n ( | S ( 1 ) [ K ( l ) - r | ] | ~ )

+ a r e s i n ( | [ S ( l ) + l ] [ K ( l ) + 1 ] j ' ' ) . (3)

l . O G l T ( J ) = l n ( [ S < I ) + 0 .5 ] [ K ( l ) + I

0 .5] [ K ( l ) + 1 ] ) .

L-et Y(l) be s o m e o n e of these. (Hasse lb lad used

l . O G I M D ] . O u r mode l is

Y(l) = A(0) i- A ( l ) [ D E I . ' I ( I ) M i l l A ( l ) j

A ( 2 ) T l M i : ( l ) [ I E S I ( l ) T I I M A ( 2 ) J T e r ro r

= SL M [ B E I A( . l ) . \ ( l . .1)] T e r r o r . (4)

wheri

/i - 4 .

BE I A(0) = A(0) . ,\(l. 0) = I . (5)

3. V. IliivuHhliid. .1. I*. C'rciMHi. and W. C. Nc!.s»n. KryiTsunn
I \iiiZ llmkcy Slii-k l-uin-riom. K c p n r l HI 'A-WH) I - 7 6 - 0 2 - 1 . l . S .

r-iniionmcnliil I'rmcclion Agcncj. Wusliingmn. D.C. June
1976.
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BETA(I) = A

X(i. I ) - l ) t - l .KI)l( l ) .

BI£TA<3) = A(I)THETA(I).

X(l.3) = I'd) .

(6)

(7)

BETA(2) - A(2) .

X<1. 2) =• IT1ME(I)J[IEST(1)]V(I). (S)

BETA(4) = - A(2)THETA(2) .

X(l. 4) = TIMEd)V(l) . (9)

0 if DELT(1)<THETA(1) .

if DELT(I)3*THETA(1),

0 if TEST(I) < THETA(2) .

(10)

where

Z =

1 if TEST(I)^THETA(2),

0 if Z < 0 .

Z if Z ^ 0 .

(11)

This is a key point. Note that the "predictor"
variables X(l, J) depend on the currently believed
values of THETA(J). The ordinary least-squares
estimate of the regression vector BETA is B,

B = C ' X X X Y .

where

C = X ' x X .

(12)

(13)

X = [X(J, J)] , I = 1 N, J = 0 p ,

Y = [ Y ( I ) ] , I = 1, . . . , N ,

B = [B(J)]. J = 0 p.

The predicted vector is YHAT = XB. The residuals
are given by a vector RESID = Y - XB. The sums
of squares are

SSY = SUM[Y(I) - YBAR]2 , (14)

SSRESID = SUM[RESID(1)]
i i

= SUM [ Y ( D - YHAT(I) ] :

i i

= ( Y - X B ) ' ( Y - XH) . (15)

Goodness of fit is measured by

RSQR = 1 - (SSRESID SSY) (16)

and is tested by

F = (.V- I ~/;)SSY - SSRES1D) [</>)SSRESlD] ;

that is.

F = (A' - I - />)RSQR {p)(\ - RSQR) .

The "best" values ofTHETA(I) and THETA(2) may
not be found. As has been noted, the function
SSRESID will jump every time THETA(l) crosses
DELT(I) and every time THETA(2) crosses another
TEST(I). Between these values. SSRESID is a
quadratic function of THETA. A derivative-free
nonlinear regression program such as the BMD.PAR
program to be released shortly may be of use here.

Confidence Contours

It may be preferable to present the results of
analysis by a confidence region or contour for the
thresholds. To test a null hypothesis about

THETA'=[THETA(1),THETA(2)], (17)

we note that this is equivalent to

B(1)THETA(1)+ B(3) = 0 ,

B(2)THETA(2) + B(4) = 0 ,

so that the null hypothesis will now read

H X BETA = 0 ,
{2*p*l> ( / " I ' l l

where the matrix H is

0 THETA(l) 0 I 0

0 0 THETA(2)XTIME 0 TIME
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Define the lest statistic

I = HB.

so for the usual model in which the Y(l) are
independent with variance SIGMA" it has mean
value and covariancc matrix

IE(T) = H(BETA) .

VAR(T) = E(TT')

= (HC 'H') '(SIGMA-').

This produces statistics

F(THETA)
= (A•'- I - p )B 'H ' (HC 'H ' ) 'HB (2SSRES).

I'(THETA)
= Prob[F(2. A' - p) > F(THETA)] .

Note that the value oi'THETA enters into both Band
C since the values U, V depend on THETA. The
function SSRES1D does not now have to be
minimized, merely contoured for fixed values
covering a range of THETA.

Optimal Estimates: Explicit Solution

As Hasselblad. Creason. and Nelson observed,' it
is only necessary to calculate SSRES1D a total of
(2A' — 1) limes to obtain the least-squares estimate
of THETA in the single-threshold case, because
the optimal THETA must lie either between two
adjacent values of X(l) or coincident with a value
of X(I). An explicit solution is thus possible for
one. two, or any number of thresholds, because
in addition to the "normal" equations resulting
from minimizing SSRES1D in Eq. (15) [subject to
the linear constraint in Eq. (19)], we also have the
requirement that the regression plane is continuously
joined at the threshold values. Their solution1 for
the single threshold case can then be applied
repeatedly so long as there is at least one value of Y
which allows us to discriminate between the two
(or more) threshold effects. These equations are
given explicitly in the Appendix.

The present method extends in a fairly obvious
way the well-known univariate two-phase regression
problem.4'' In our case there are two (or more)
distinct but not necessarily independent thresholds
for multiple predictor variables. Hinkley has

established theasymptotic normality of the estimated
intercept THETA bui also has shown that the
asymptotic approximation is poor for small
samples/" The joint asymptotic distribution of
THETA(I). THETA(2) estimates should then be
bivariate normal, but the possibility of obtaining
useful small-sample results suitable for these data
appears remote.

APPENDIX: LEAST-SQUARES ESTIMATES
FOR DOUBLE THRESHOLD MODEL

Indices

K= 1.2 .

L = I M or L = M + 1 N .

M = I N .

Variables

X(l. I) = DELT(I) .

ordered so that

DELT(I)^ DELT(I+ I ) . (A-l)

X(2. 1) = T1ME(I)[DELT(I) + BASE] . (A-2)

Statistics

SY(L. M) = SUM Y( l ) . (A-3)

SX(K. L. M) = SUM X(K. I ) . (A-4)

SSX(K. L. M) = SUM X(K. I): , (A-5)

SYX(K, L, M) = SUM Y(I)X(K, I) . (A-6)
1=L

4. D. V. Hinkley. "Inference About the Intersection in
Two-Phase Regression," Biometrika 56: 495- 504 (1969).

5. David V. Hinkley. "Inference About the Change-Point in a
Sequence of Random Variables," Biometrika 57: 1-17 (1970).

6. David V. Hinkley. "Inference in Two-Phase Regression."
J. Am. Sial. Assoc. 66: 736 43 (1971).
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Deviations

SDEV(K. I.. M) = (M - L)SSX(K. L. M)

- SX(K. L. M) : . (A-7)

SDEU(K. L. .V!) = (M - L)SYX(K. I-. M)

- SY(L. M)SX(K. I- M). (A-8)

SDEW(K. L. M) = SX(K. 1.. M)SYX(K. I.. M)

- SSX(K. L. M)SY(L. M) . (A-9)

l-'irsi Case: I. < M

II X(l. L) < THETA(1)< X(l. L + 1) .

A(0) = SY(I. I.) L . (A-IO)

THETA(I) = [A(O)SDEU(I. I. + I. M)

+ SDEW(I. 1. + I, M)]

-SDEV(I . L + I. M) . (A-l l)

AO) = [SY(L + I. M) - (M - L)A(O)]

* [SX( I , L + 1. M)

- ( M - L)THETA(I)]. (A-12)

Having estimated THETA(I). we will now
estimate THETA(2) using partial residuals lhat arc
based on the estimated THETA(l). Replace Y(l) in
Eqs. (A-3). (A-6). and (A-7) through (A-12) by

Y*(l) = Y(l) - A(0) - A( I )X(1. I) : (A-13)

thus.

A*(0) = SY*(I. M) M . (A-14)

THETA(2) = [A*(0)SI)El*<2. M + I. N)

+ SDEW*(2. M + I. \ ) j

-HSDEV*(2. M + I. N) . (A-15)

A(2) = [SY*M + I. N) - ( \ - M)A*(0)]

+ [SX(2. .VI + I. N)

- ( X - M)THETA(2)] . (A-16)

If THETA(I) = X(l. L).

A(O) = -SDEW(1. 1. + 1. M)

4-SDEV(L. I. + 1. M) . (A-17)

A(l) = [SY(L + I. M) - (M - L)A(O)J

* SX(I, l .= 1, M). (A-18)

Second Case: L > M

In equations (A-IO) through (A-16) replace K = I
bv K = 2.



Statistical Analysis of Reactor Core Operating Limits

Rubin Goldstein and Raymond Krisciokaitis Krisst
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ABSTRACT

Monitoring and protection systems are included in a modern pressurized water reactor (l*\\ R) to observe the
nuclear ami thermal cliuntctcrislicsof the reactor core. These s\ stems either alert the operator as core operating limits
are approached or initiate;! reactor trip bet ore luel design limits are exceeded, I'o prevent damage to the nuclear luel.
Combustion l-.ngineering <C*-1~.) specifics fuel design limits on the departure from nucleate boiling ratio (OSBR)and
the peak linear hc;tl rate (1M.HR) or local power density C'aleulationaJ approximations, uncertainties in the design
parameters, measurement inaccuracies, and calibration and processing errors all have an eltect on the on-line inlerred
values ol DNHR and PI.UK.

lo demonstrate the potential gams in available thermal margin b\ using a statistical approach, a stochastic
simulation ol the hasie input varia hies to the Core Protection Calculator in theC-1: reactor protection system is carried
out. I he results obtained from the output distribution for the ONHR uncertainty are compared with corresponding
multiplicative estimates ("worst case conditions"). For a typical set ol operating conditions, it IN spcciliaill)
demonstrated that the margin to the limit on DNHR is increased b\ approximate^ 10.5';.

Computational elticiencv is improved by incorporating concepts ol experimental design in the stochastic
simulation. In particular, signilieant variance reduction ol the estimator ol the mean is achieved bv using Latin
Hvpereube Sampling, as compared to simple random sampling.

I he root-sum-squure expression v*ith sensitivity eoettieiems is investigated as an estimate ol the vamnce ol a
composite parameter. I-'or the calculalional range at interest, it is found to give a reasonable approximation tn the
relative standard deviation ol the output parameter (ONBR).

INTRODUCTION

In a modern pressurized water reactor (1'WR),
instrumentation and control systcmsare provided for
the surveillance ol both reactor systems and variables
o\er their anticipated ranges of normal operation, for
moderate frequency events (Ml-Es) and for accident
conditions as appropriaic to ensure adequate safely.
The protection system is designed so that specified
acceptable fuel design limits (SAFDLs) are not
exceeded as a result of a MFE. by automatically
initiating the operation of appropriate systems,
including the reactivity control systems. The protec-
tion system is also designed lo sense accident
conditions and to initiate the operation of systems
and components important to safety. An MFE
corresponds to those conditions of normal operation
that are expected to occur one or more times during
the life of a nuclear steam supply system (NSSS).

The linear power density and the ihermal-
hydraulic conditions of the reactor core are physical
characteristics which are important to evaluate in
order to prevent damage to the fuel. Restrictions on
these characteristics are placed by Combustion
Engineering (C-E) on their PWRs by specifying fuel
design limits on peak linear heat rate (Pl.HR) and
departure from nucleate boiling ratio (DNBR). The
PLHR in the limiting fuel pin shall not be greater
than the value corresponding to the centerline fuel
melting temperature, and the DNBR limit is specified
at a value such that the probability of a departure
from nucleate boiling event is acceptably small.

The design bases for a C-E F'WR require that
sufficient thermal margin be maintained under condi-
tions of normal operation to preclude the violation of
specified fuel design limits in case of an MFE. When
considering such events, initial process conditionsare
assumed to be within the limits designated in the
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plain specifications. Salety analyses must demon-
strate that aniciputed transients initiated within
process limits at any time during the core lite will not
violate the minimum DNHR and the PLHR limit.

I wo surveillance functions are performed in a
reactor. The first function is called protection, which
is primarily to determine the operational status of the
reactor core and provide a trip input to the reactor
trip system whenever the DNBR or the PLHR
reaches a calculated set point. These trips are de-
signed to prevent fuel damage during an MFE and
normally play no role in the prevention of postulated
accidents, although they do provide the initial
response to mitigate the consequences ol some de-
sign basis accidents.

The second function is termed monitoring. For '
protective systems to function as intended in the
design, it is necessary that NSSS parameters be main-
tained within established operating limits (OLs). For
example, inferred DNBR and PLHR valuesarecom-
pared to their respective OLs. The Ol.s. in turn, arc
taken as initial conditions for various transient
events. Analyses from these initial conditions arc
used to establish that acceptable consequences of the
event occur. Monitoring systems arealso provided to.
advise the operator of current margins to operating
limits.

In the C-E PWR. these two key protection func-
tions are performed by Core Protection Calculators
(CPCs).1 Monitoring is performed by the operator
with the assistance of a Core Operating Limit
Supervisory System (COLSS)." The CPCs are four
redundant digital computers which acquire data from
plant process sensors and control element assembly
(CEA) position sensors and perform the required cal-
culations. Each CPC provides trip inputs to the reac-
tor trip system when the trip set points are exceeded.
COLSS is a software system provided in the plant
monitoring computer to assist the operator in main-
taining normal operation within the process limits
assumed for the CPC system protective functions.

An example is the operating limit on the maximum
PLHR during normal operation of the reactor core.
The OL is generally the maximum PLHR that can be
allowed prior to the postulated initiation of a loss-of-
coolant accident (LOCA) so that analysis of the
latter will still show acceptable peak clad tempera-
tures and other consequences.

The monitoring and protection systems observe
the nuclear and thermal characteristics of the reactor
core and have the mission either to alert the operator
as core operating limits are approached or to
initiate trip before fuel design limits are exceeded.

The digital protection system provides on-line rou-
tines for synthesis of the power distribution in the
core and evaluation ol the DNHR using measured
inputs from (I) ex-core nuclear flux monitors. (2)
CEA position indicators, and (3) oth'.-r sensor data,
such as core inlet temperature, primary system
pressure, and coolant pump speed. The COLSS sys-
tem employs available in-core detector signals to
synthesize ;i hot pin power distribution for the reac-
tor core. Inputs to both the reactor core monitoring
(COLSS) and protection (CPC) systems consist of
both analog and digital signals. The analog signals,
consisting of sensor signals, are converted to digital
signals by means of an analog-to-digital converter.

The calculations performed by COLSS and the
CPCs are carried out at the plant. The on-line
algorithms are a simplified version of the ofi-linc
design procedures. The simplification provides the
reduced running time required for on-line processing
but results in some loss in accuracy relative to the
design procedures. The calculated thermal margin
results are compensated for this loss in accuracy
through the use of penalty factors, whose magnitudes
are sufficient to result in conservative thermal margin
calculations relative to more rigorous calculations
used in the design.
•a. In addition to modeling inaccuracies and analog-
to-digital conversions errors, there are a variety of
uncertainties arising from various sources which are
associated with the inferred DNBR and PLHR
thermal output parameters. For example, they may
arise from measurement inaccuracies, calibrations
errors, stochastic events, or signal processing errors.
The calculational. measurement, and processing un-
certainties must be factored into any thermal margin
assessment of reactor operation.

A common practice lias been to combine these un-
certainties, be they random or systematic, in a
multiplicative fashion, to produce an overall con-
servative result. It is clear, however, that this
approach produces a new result which is overly
conservative and that it is possible to demonstrate
significant gains in available thermal margin from the
application of statistical techniques.

1. Combustion Engineering. Inc.. CPC. Assessment <>/ the
Acrtirm-y of PH'Jl Safely System Actuation as Performed hv the
Core Protection Calculators. Report CENPD-170. Windsor.
Conn., .luh 1975.

2. C'ombu.slion Engineering. Ine.. COLSS. Assessment of the
Accuracy of PWR Operating Limits as Determined hv the Core
Operating Limit Supervisory System. Report CENPD-169.
Windsor. Conn.. July 1975.



78 R. Goldstein and R. K.. Krisst

To ensure that the design objectives of reactor trips
for high local power density and low DNBR are
achieved, the trip set points must account for uncer-
tainties associated with modeling and calculational
approximations, in addition to those due to sensor
measurement and calibration errors. By treating
these uncertainties statistically, it is possible to pro-
duce an overall uncertainty factor that is less restric-
tive than the multiplicative factor when evaluating
the trip set points but still conservative in the deter-
mination of the thermal margins. A reduction in the
net uncertainty is what will provide the future gain in
available thermal margin, which can be used to im-
prove the performance capabilities of an NSSS.

THERMAL HYDRAULICS
AND NEUTRONICS

For currently operating C-E plants, the thermal
margin design code is COS MO,'which is an open hot
channel code. The CPCs currently use a simplified
fast-running version of this code, called CPCTH. The
latter uses a closed-channel model that does not
cxplieity take into consideration the divergent cross-
flow between the hot channel and the neighboring
channels. To account for this in the CPC input, an
adjustment is made to the mass velocity input to the
applicable alogrithm, such that when all other system
conditions are the same, the DNBR predicted by the
closed-channel calculation (CPCTH) is equal to the
minimum DNBR predicted by COSMO.

The CPCs compute thermal-hydraulic conditions
in the hot channel using a snapshot of both directly
monitored and calculated input values. The pro-
cedure used to assess the core minimum DNBR
involves the synthesis of a hot pin and hot channel
power distribution, which is used in conjunction with
values of primary system process parameters to
calculate the DNBR. The DNBR calculation is done
at steady-state conditions and is corrected for
changes between calculations using dynamic updates.
The steady-state calculation uses COSMO with the
W-3 correlation or TORC with the CE-1 correlation
for the calculation of DNBR. A DNBR limit of 1.3 is
used for plants whose thermal design basis was the
W-3 correlation, while a corresponding value of 1.19
is used in the case oft he CE-1 DNB correlation. The
DNBR is the ratio of the critical heat flux to the
actual heat flux in the reactor core.

The CPCs compute the hot channel minimum
DNBR and the limiting void fraction JJJjjng the
following inputs to the CPCTH algorithm:

1. core power,
2. coolant temperature at the core inlet.

3. primary system pressure.
4. core average coolant mass velocity.
5. integrated radial peaking factor, and
6. normalized hot pin axial power distribution.

The CPCTH code also includes tables of correction
factors which areapplied to the input to force the out-
put to have adequate agreement with the results Irom
the design code COSMO.

The calculational uncertainty associated with the
CPC synthesized local power density is determined
with reference to design calculations. A large number
of power distributions are generated with three-
dimensional core simulators. Ex-core detector re-
sponses for a variety of static and transient core
power distributions are simulated. For each case, the
CEA positions assumed in generating the power
distributions of interest, together with the simulated
detector signals, are then processed by a FORTRAN
version of the CPC algorithms to produce a value of
the maximum peaking factor. The CPC synthesized
peaking factor (to which the PLHR is proportional)
is compared with the corresponding value produced
by the simulator to yield an estimate of the calcula-
tional accuracy.

UNCERTAINTY ANALYSIS

The objective of the analysis is to obtain the statis-
tical distribution of important output variables, such
as DNBR and PLHR, which are functions of many
input variables. To accomplish this goal, the system-
atic errors have to be separated from the random
processes. The latter are then treated by statistical
models which appropriately describe the input
variable uncertainties. Ultimately, the probability of
exceeding a tolerance limit is used as the means of
determining the available thermal margin.

The random inputs are treated as variates whose
means are taken as the nominal design values and
whose variances and probability densities are either
known or assumed. Theaim of the uncertainty analy-
sis is to determine the composite probability density
function (pdf) of the output variable and use it to pre-
dict the variability of the system output.

Because the thermal-hydraulic and neutronics
codes used in predicting thermal margins and reactor
power performance are quite complex, it is conve-
nient to compute the output (response) for arbitrary

3. Combustion Engineering. Inc., TORC, Comparer Code for
Determining the Thermal Margin of a Reactor Core. Report
CENTD-I6I. Windsor.Conn., July 1975.[COSMOisd«cribed in
this document.]
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sets of input values. The response surface of the
output is generated using randomly selected inputs.
Since the on-line codes used by C-E for monitoring
and protection are fast running (e.g., CPCTH takes
approximately 4 ms per case on the CDC 7600), it is
possible to use them directly to generate the response
surface.

Appropriate sampling techniques must be adopted
to ensure that the response surface corresponding to
an important output variable is adequately covered.
An experimental design is chosen to permit an effi-
cient empirical exploration of the response surface,
one which uses as few computer runs as is practical to
calculate the output as a function of the input.

Although moment generating techniques and
other analytical shortcuts can be used to simplify
certain aspects of the problem, a direct use of Monte
Carlo or stochastic simulation experiments is par-
ticularly convenient in that the output distributions
and other results may be interpreted with minimum
ambiguity.

Crude Monte Carlo (CMC) or simple random
sampling is a straightforward technique of sampling a
set of input values according to the cumulative
distribution function (cdf) of the uncertainly density
of the input variable. This is carried out with the aid
of a pseudo random number generator. The re-
sponse is computed lor each set of input values, and
by repeating the process many times, the distribution
of the output is obtained. Any desired precision in the
result can be obtained by conducting sufficient trials.

For a given number of trials, stratified sampling
techniques offer an improved means of covering the

response surface. They are less likely than simple
random sampling to miss statistical fluctuations in
the output distribution. Factorial Stratified Sam-
pling (FSS) and latin Hypercube Sampling (LHS)
arc two techniques that have improved response
calculations at reduced computer cost.4 If / is the
number of statistically independent input variables
and k is the number of levels or intervals associated
with each input, the classical factorial design involves
n = k' computer runs. In the sequence of computer
runs, a systematic selection of the nominal high and
low values of each input variable is made. The FSS
corresponding to the k' factorial design can involve
the same number of computer runs, but each interval
of the input variable is sampled according to its
appropriate pdf. The principal difference between a
fractional factorial design and FSS is that in the
latter, intervals are sampled to produce different
values of the input variables for each computer run.
In LHS the same number of intervals for each input
variable as the number of computer runs is used. In
this case, however, the sampling is carried out so that
each interval for each input variable appears exactly
once in the total design.

At C-E. the code JA1ALAI has been developed to
perform the stochastic simulation and the uncer-
tainty analysis. Figure 1 contains a block diagram of
the code. The inputs can assume any of the standard

4. M. I). McKay et al.. Report mi t/w Application of Sittii\iical
ii'ihiliiiiu's tit tlw Analysis a/ Computer Cotics. Report
l.A-M!Rl:Ci-652ft-VIS. l.os Alamos Scicntilic l.aboraton.. I .us
Alamos. N. Mcx.. October I97(>.
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discrete or continuous distributions (uniform. Gaus-
sian, Poisson. binomial, etc.) lor their uncertainty
descriptions. The international Mathematical and
Statistical Library' (IMSI.) has been attached
recently to .IA1ALAI so that all of the distributions,
routines, and tests in the IMS!, are available for use
in the analysis. The inputs are sampled by means of
the random number generator RANF (0. 1) and the
cumulative distribution function of the random
variable. Three optional sampling schemes CMC.
f-SS, and I.HS can be used in the experimental
design.

The set ol inputs is led into the code of interest
(black box) and the response is calculated. The
output distribution is plotted on a histogram and
sample statistics (mean, variance, etc.) arc calculated.
Various distributional tests (chi-squared goodness of
lil and D'and W tests for normality), as well as other
hypothesis and statistical tests, can be performed on
the response. In "Special Statistics" the variance of
the estimators is used to compare the efficiency of the
sampling schemes in determining the output
uiriables of interest.

A successful simulation depends to a large extent
on how well an assumed pdf represents a physical
input variable. A basic input variable, such as cold-
leg temperature, can. itself, be dependent on many
factors, l-or example, variations can result from

1. process noise or prompl-lluid-temperature
fluctuations due to temperature eddies and other
time-dependent effects;

2. dependence on the particular values of other basic
input variables, such as pressure, temperature,
and flow;

3. sensor- and measurement-related uncertainties
(Systematic errors, e.g.. those due to radiation
damage or aging of insulation, are not included in
the pdf construction and have to be taken into
account outside the stochastic simulation.): and

4. signal processing uncertainties due to electrical
noise pick-up, internal hum. and analog-to-digital
conversion.

The composite pdf for the cold-leg temperature can
be obtained from a stochastic simulation of its com-
ponent parts. If there is a dependence on other input
variables, then cither conditional probabilities have
to be used, or an effective temperature distribution
has to be constructed. A similar procedure is used for
the treatment of the other input variables.

I-igu re 2 contains a fu net iona I diagram of the Cl'C.
The left-hand side of the diagram indicates the basic-
input variables and the right-hand side denotes the
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trip set points for DNBR and PLHR (or local power
density, in this case). In between are the required
neutronic and thermal-hydraulic calculations of
power distributions and heat (luxes. Once the
distributions of the basic inputs in Fig. 2 are specified,
the stochastic simulation of the CPC can proceed and
the margins to the set points can be determined.

STATISTICAL RESULTS

To demonstrate the potential gains in available
thermal margin by using a statistical approach
relative to a conservative multiplicative approach,
consider the CPC depicted in Fig. 2. The basic six
inputs, primary pressure. CEA positions, ex-core
detector readings, speeds of the coolant pumps, hot-
leg temperature, and cold-leg temperature, arc
subjected to independent random variations. Thcpdf
used foi each of the inputs, together with the
corresponding mean and standard deviation, is given
in Table I.

Table I. Probability distributions, means, and standard
deviations for the basic input variables used in the uncertainty

analysis of the CPC calculation of DNBR

Input \ariablc Distribution

Cold-leg temperature Gaussian
Hot-leg temperature Gaussian
Primary pressure Gaussian
l£x-coie detectors (three) Gaussian

Pump speed (four pumps) Uniform
CEA position Uniform

553.5-1-
614.0,1-
2250 psi
0.3171
0.4195
0.3006
1.0000
Unrnddcd

Standard
deviation

0.48' I-
0.52 1-
6.5 psi
0.0045
0.0060
0.0043
0.0058
1.79 in.

The static DNBR is calculated for the given set of
steady-state conditions indicated by the mean values
of input variables. The variations are then stochasti-
cally simulated to yield the output distribution for
minimum static DNBR. For simple random sam-
pling (CMC) based on a sample size of 1000, the re-
sult is given in Fig. 3. The output distribution for the
uncertainty in the static DNBR is Gaussian in ap-
pearance and passes the standard normality tests. As
indicated in Fig. 3, this sample size of 1000 yields
estimates of 1,635 and 0,0564. respectively, for the
mean and standard deviation of the minimum static
DNBR.

Essentially equivalent results were obtained using
LHS sampling. In this case, the range of each variable
was partitioned into 100 intervals of equal proba-

bility content and only 100 computer runs were made.
This indicates a factor of 10 in computer time can be
saved with the use of LHS relative to CMC. which is
consistent with an investigation that was made on the
following simple algorithm:

Y = .V, + .V; + .V< .

Each variatc. .v,. was assumed to be normal and
independent. The three optional samplingschemcs in
.IAIALAI were applied in the stochastic simulation
of the distribution of Y. The total sample size was
4000, which meant 40 replications of a stratified
sample with 100 levels for LHS. Significant variance
reduction was achieved in using LHS relative to
CMC. The precision, as measured by the variance of
the estimator of the mean, improved by a factor of
over 200. The FSS scheme produced intermediate
gains relative to CMC. but not nearly as good as the
LHS did.

The absolute estimate, 1.635, for the mean DNBR
should not be regarded as significant, because penalty
factors already exist in the current version of the CPC
code. These penalties are deterministic in nature and
account for both calculational and systematic errors,
as well as for instrumentation uncertainties. There-
fore, this code version is being used for demonstra-
tional convenience, but an examination of these
penalty factors will eventually be undertaken.

The results obtained from the stochastic simula-
tion of the basic input variables can be used to
demonstrate significant gains in DNBR margin.
Using the sample mean and standard deviation of the
output distribution, a lower tolerance limit, /, for the
simulation can be calculated for the minimum static
DNBR:

( = -v - ks .

At the 95% confidence level, the k factor for a sample
size of 1000. which provides a lower limit that is
exceeded by at least 95% of a normal population, is
1.727.'1 The corresponding lower tolerance limit,
therefore, is

him = 1.635 - 1.727(0.0564) = 1.538 .

6. D. H. Owen. Factors for Ono-SkU'il Tolerance Limits ami for
Variables Sampling Plum, Sandia Corporation Monograph SCR-

607. Albuquerque. N. Mex.. March 1963.



82 R. Goldstein and R. K. Krisst

STD DEV
MEAN
SMPLSIZE

0.0564
1.635
1000

Fig. 3. DNBRST—Minimum static DNBR.

The statistical analysis of the input uncertainty dis-
tributions thus yields a lower limit, such that at a 95%
confidence level, there is at least a 95% probability
that the minimum static DNBR will exceed 1.538.

On the other hand, if the conservative approach of
evaluating the change in DNBR due to a two-
standard-deviation change in each of the inputs is
adopted and if the total change in DNBR is taken as
the cumulative sum of the individual-change magni-
tudes, then the lower limit is reduced to 1.367. This
reduction is equivalent essentially to multiplying
individual penalty factors together, also known as a
"worst-case combination."

For example, the percent change in DNBR per
percent change in the hot-leg temperature (if/,) is
evaluated to be 27.7. Using this sensitivity coefficient
in conjunction with a percent change of 0.169 in hot-
leg temperature (corresponding to a two-standard-
deviation change in the hot-leg temperature relative
to its mean), this component contributes 27.7(0.169)
= 4.69% to thechange in DNBR. Summing all similar
effects with their corresponding sensitivities yields a
total change in DNBR of 16.4%. This is equivalent to
the percent reduction of the DNBR from the original
1.635 to the conservative lower limit of 1.367.

To allow for the uncertainties in these basic inputs,
the trip set points in the CPC are multiplied by
penalty factors. The conservative estimate of the
overall penalty factor to be used in the DNBR
calculation is 1.164 (i.e., 1 + 16.4%). The statistical
estimate of the penalty factor is 1.059. which
corresponds to a (.1.635 - 1.538)100 1.635 = 5.9%
change in DNBR. The statistical approach, therefore,
provides a 10.5% gain in margin to the DNBR limit.
This improvement in the core operating limit to the
specified. acceptable fuel design provides a direct
increase in the power margin available for reactor
operation.

It is interesting to note that the relative standard
deviation of the output distribution for the minimum
static DNBR, SOD, is close to the value calculated
from a root-sum-square expression with sensitivity
coefficients. A first-order Taylor's series expansion
yields

Sao' = S Sj'Sor ,

where covariance and higher-order terms have been
neglected. The sensitivity coefficients, si, are
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evaluated for each of the input variables. Hor
example.

.s, = AD A7",, = 27.7

is the relative change in DXBR with respect to the
relative change in the hot-leg temperature. The
relative standard deviations. 6a,, are the ratios of the
standard deviations to the means of the input vari-
ables /.

I'sing the appropriate sensitivity coefficients and
relative standard deviations of the inputs, the root-
sum-square value is da,, - 3.39''j. The corresponding
value from the stochastic simulation (see Kig. 3) is
100(0.0564) 1.635 = 3.45fl<\ The closeness of these
two results is probably due to co variances and higher-
order effects being negligibly small in the parameter
space where the calculations arc being performed. In
this kind of situation, the simple Taylor's expression
can give comparatively good estimates of the relative
standard deviation of the composite parameter.

CONCLUSIONS

A statistical treatment of uncertainties can produce
significant gains in thermal margin relative to cur-
rently used multiplicative approaches, and the power
performance capability of a reactor can be improved
by virtue ol these gains.

A stochastic simulation of the basic input variables
to the Core Protection Calculator in the C-E reactor
protection system was carried out. and the results ob-

tained from the response distribution were com-
pared with conservative estimates ol the DN'BR un-
certainty. Specifically, it was demonstrated that the
margin to the limit on DNBK was increased by ap-
proximately 10.5*7 fora typical set of reactor operat-
ing conditions.

The analyis emphasized uncertainties in tempera-
ture, pressure and flow, and in CT.A position and ex-
core detector readings Uncertainties in the design
parameters, calculutional methods, modeling, and
fabrication were not included. A proper statistical
treatment of these additional aspects should produce
further gains in thermal margin.

Computational efficiency was improved by in-
corporating concepts ol' experimental design. In
particular, significant variance reduction of the esti-
mator of the mean was achieved by using I.HS.when
it was compared to simple random sampling.

The root-sum-square estimate of the variance of a
composite parameter was investigated, l-'or the caleu-
lational range of interest, it was found that it pro-
vided a reasonable approximation to the relative
standard deviation of the output parameter (l)NBR).

These methods and procedures are similarly being
applied to the monitoring system CO1.SS, with
equivalent margin gains indicated and expected.
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ABSTRACT

The purpose of the Federal prototype oil-shale leasing program is to initiate a carefully controlled,
environmentally sensitive effort to determine the economical, technical, and environmental feasibility of developing
the billions of barrels of oil locked in the kerogen-rich marlstone of the Green River Formation located in the
northeastern part of Utah and northwestern part of Colorado. These goals depend on the complete and accurate
assessment of related environmental impacts, and the design and evaluation of mitigating technology. A major
problem is the development of a statistically sound monitoring program that will permit early prediction of
significant impacts.

INTRODUCTION

In 1973, the U.S. Department of the Interior leased
four 5000-acre tracts for commercial oil-shale
development under the Prototype Oil Shale
Program. This program was designed to test the
feasibility of producing shale oil commercially
and to determine the associated environmental
costs and impacts accompanying commercial
operation. To date, operators of the lease tracts
have completed collection of two years of
intensive baseline environmental data covering
both biotic and abiotic parameters. The lessees
have also submitted a detailed development plan
describing procedures for bringing each tract to
commercial production. The cost of this effort
has exceeded $25 million. Plans for the Colorado
tracts have been approved but actions on the Utah
tracts are currently in litigation.

Presented herein are some of the problems
encountered in developing effective environ-
mental monitoring and data management pro-

grams. Solution of these problems is critical to
the design of currently developing monitoring
programs to determine the degree of stress and
impact occurring on biotic and abiotic aspects
of the tracts during commercial development.
This problem is complicated by the need to
compare baseline data that were gathered in a
multiplicity of formats in the past with data to
be collected during development monitoring.

ENVIRONMENTAL SETTING

Physiography

Federal oil-shale lease tracts C-a and C-b are in
the Piceance basin of northwestern Colorado;
tracts U-a and U-b are in the adjoining Uinta
basin of eastern Utah (Fig. 1). Both basins are
geologic structural features that have been eroded
into arid upland plateaus, intricately dissected
by intermittent streams. Broad, flat, soil-covered
divides give way sharply, over float and outcrop-

87
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U I N T A MTNS.

Fig. 1. Location of prototype oil-shale lease tracts C-a, C-b, U-a, and U-b.

strewn slopes, to narrow alluvium-filled drainage
bottoms that terminate in distinct alluvial fans
along the principal trunk streams. Relief typically
ranges from a few hundred feet to 600 ft.

Both the Uinta and Piceance basins terminate
to ihe south in cliffs along the Colorado River,
cut by narrow canyons that have incised the
several thousand feet of sedimentary rocks of
the Upper Cretaceous Mesaverde Group and the
Wasatch, Green River, and Uinta formations of
Eocene age. The Green River and Uinta
formations contain kerogen-rich marlstone.'
which is a potential source of billions of barrels
of shale oil. The north limits of the basins are
defined roughly by the White River in Colorado
and the Uinta Mountains in Utah. The eastern

edge of the Piceance basin is marked by the
Grand Hogback, while the western edge of the
Uinta basin, for economic (oil-shale) con-
siderations, is generally delineated by the Green
River. The two basins are separated along
the Colorado-Utah border by the deeply eroded
Douglas Creek arch.

Climate

Climatic conditions of the Piceance and Uinta
basins are semiarid. The influence of the Cascade

I. John B. Weeks. George H. Leavcsley, Frank A. Welder, and
George J. Saulnier, Jr.. Simulated Effects of Oil-Shale
Development on the Hydrology of Piceance Basin, Colorado, U.S.
Geol. Survey Prof. Paper 908. 1974.
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and Sierra Nevada mountains to the west and
the Rocky Mountains to the east creates conditions
characterized by abundant sunshine, hot summers,
cold winters, low relative humidity, light precipi-
tation, and large diurnal temperature variations.
Temperatures range from 40°C in the summer
to —40°C in the winter, with a mean annual
temperature of 7CC. Very strong vertical tempera-
ture differences of more than 46°C have been
observed during winter between the valley bottoms
and the surrounding plateaus. The frost-free season
varies from 120 days in the basins to about 50 days
in the bordering mountains.' Annual precipitation
ranges from less than 12 in. in the basins to as
much as 25 in. above 8000 ft on the surrounding
highlands.1 Snowfall accounts for about 409c of
this precipitation, and the remainder is from rainfall
during the summer when intense thunderstorms
Ircquent the area. Sixty percent of the days are
either cloud-free or only partly cloudy: winds are
generally southwesterly and average 7 mph. Air
quality in the basins is generally excellent, and acute
perception ol distant objects is commonly limited
only by terrain. Photographic measurement of visual
range has been as much as 100 miles.

GEOLOGY

The Piceance and Uinta basins are broad,
asymmetric, northwest-trending structural basins
filled with deposits of sandstone, siltstone. and
marlstone laid down mainly in shallow, warm,
alkaline lakes teeming with algal and fish life. The
lakes inundated the contiguous corners of Utah.
Wyoming, and Colorado 70 to 40 million years ago.
The deposits have since been uplifted and gently
folded into broad physiographic basins. Stratigra-
phy within the basins is uniquely uniform, disrupted
generally along the basin margins by widely
separated, near-vertical, northwest-trending graben
faults with as much as 200 ft of throw. The broad
structure is cut by basinwide joint and fracture
systems of little displacement.

A vertical slice through this basin section (Fig. 2)
reveals strata dipping gently toward the basin
centers. On top is a shallow mantle of moderately
alkaline alluvium and colluvium generally light-
colored, flaggy, and loamy. This "topsoil" ranges
from a few inches thick on the drainage divides
to several tens of feet thick in the valley bottoms.
Immediately under the soil mantle are several
hundred to a few thousand feel of massive.

yellowish-brown to light-gray sandstone and
siltstone of the Uinta Formation. Of principal
interest to the oil-shale industry is the underlying
(1500 ft or more) kerogen-rich, dark-gray marlstone
of the upper part of the Green River Formation from
which oil can be extracted by heat.

HYDROLOGY

The Piceance and Uinta basins are drained by
creeks tributary to the Colorado River or to the
White River, a major tributary to the Colorado
River. Annual discharge from the White River
basin averages 510,000 acre-It: about 16.000 acre-It
from the Piceance basin and a much lesser amount
from the Uinta basin. Most of the runoff occurs
in late spring and early summer from melting
snowpack. Summer thunderstorms can also generate
violent, but short-term runoff. Approximately
120,000 acre-it is used within the basins lor irri-
gation; an additional 500 aere-ft is diverted for
domestic use in nearbv communities.

BIOLOGY

The distribution of flora and fauna of both the
Piceance and L'inta basins, which is typical ol the
intermountain region, is particularly apparent at
higher elevations on the rims that border the basins
on the south and in the highlands of the Douglas
Creek arch that separates the basins.

Subalpine and montane forests are common at
about 8000 ft. At intermediate elevations, mountain
shrub and pinyon-juniper dominate. At lower
elevations in both basins, sagebrush, desert shrub,
greasewood. meadow, and riparian species pre-
dominate. In the higher and wetter portions of
the Piceance basin, predominant sagebrush is
interspersed with pinyon-juniper and mountain
shrub. Desert and salt-desert shrub in the Uinta
basin are normally interspersed with greascwood
along the drainages.

The Piceance basin is world famous for its large
migratory herd of mule deer. Wild (feral) horses
roam both basins, while domestic livestock pro-
duction is one of the main endeavors of rural
communities.

Many medium-to-small wildlife species, including
birds, utilize the region for migration, nesting, and
winter habitat. Fish are not abundant in the area's
rivers, but several threatened and/or endangered
species inhabit the Colorado, White, and Green
River drainages.
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Fig. 2. Generalized stratigraphic column of Eocene Formations in the Piceance basin. Source: G ulf Oil Corporation and Standard Oil
Company. Riu Blanco Oil Shale Pro/eel- -Terrestrial Ecology Baseline Studies, Annual Report for Trait C-a, March 1976.
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DEVELOPMENT

Present plans call for development of the two
Colorado tracts by modified in-situ retorting
processes, and for development of the two Utah
tracts by room-and-pillar mining with above-ground
retorting. At this writing (October 1977), the Utah
leases have been temporarily constrained from
development by the Federal District Court because
of legal questions of land ownership and existence
of conflicting overlying mining claims.

The modified in-situ process involves under-
ground mining and underground retorting to
produce shale oil (Figs. 3 and 4). Approximately 20%
of the oil shale within a given retort is directly
mined, and the remainder is converted to rubble in
place to create a bulked-full retort. In this manner
the permeability needed for flow-through of the
injected gases required to maintain combustion and
for removal of the products formed is achieved. The
rate of retorting is controlled by regulating the
volume, pressure, and oxygen content of the injected
air and diluting steam or recycled gases and by
varying the back pressure on the gas outlet shaft.

To initiate combustion, burners are placed on top
of the rubble. Air is either pulled through from the
top by exhaust blowers or fed by the use of air
compressors. When reaction temperature (932°F) is
reached, the burners are turned off. Steam or other
gases are then introduced along with air to maintain
burning at a desired temperature and to control the
rate of flame-front advance (Fig. 5).

Product oil and water are condensed on the cooler
unretorted shale at the bottom of the retort chamber
and pumped to the surface. Off-gases are exhausted
through blowers to a scrubber system above ground
where the gas is contacted with a circulating water
stream to remove entrained dust and oil particles.
The scrubbed gas is purified by removing the oil
and water by compression and the sulfur com-
pounds by a Stretford or similar process. Purified gas
is then used to fuel low-Btu/lb boilers for steam
production and possibly gas turbine electric power
generators.

BASELINE AND DEVELOPMENT
MONITORING

Many of the statistical problems in developing
and operating the production monitoring program
can be anticipated from review of the data gathered
during the baseline monitoring program. The lease
required the lessees to conduct a two-year baseline
program before beginning any construction. While

the two-year baseline program was intended to
establish "baseline conditions" in the natural
environment from which significant perturbations
could be measured, it has become evident that
treatment-control designs are necessary to separate
development effects from random natural changes.
This necessity is especially valid for dynamic
parameters such as faunal populations. The premise
during baseline data collection was to ensure
sufficiently complete and accurate parameter evalu-
ation so that valid statistical comparison could be
made with data gathered during development.

Conducting a baseline program where many
disciplines (air quality, meteorology, hydrology,
geology, biology, etc.) must be interrelated proved
to be a major and expensive undertaking.

The environmental stipulations of the oil-shale
lease state: "The lessee shall conduct the monitoring
program to provide a record of changes from
conditions existing prior to development operations,
as established by the collection of baseline data."2

Conditions for approval of the lease-required
detailed development plan also state: "The environ-
mental monitoring plan shall be revised as needed,
based on the analysis of the final baseline
report—submitted for review and approval by the
Mining Supervisor prior to commencement of
commercial development."3 The lessees, in con-
junction with the Area Oil Shale Office, are
attempting to develop an effective environmental
monitoring program based on interpretation of
baseline data. One approach being used for design
of the development monitoring program is a series of
matrices. This procedure compares individual
engineering actions against specific biotic and abiotic
parameters in consideration of four main criteria:
(1) magnitude, direction, and duration of impact;
(2) importance (ecological, political, and economic)
of the parameter impact; (3) measurability of the
impact; and (4) cost effectiveness of the measure-
ment effort required. Comparisons are ranked from
high to low based on baseline data analyses and
on existing literature and professional judgment.
Table 1 illustrates a representative part of one
matrix.

2. U.S. Bureau of Land Management. Oil Shale Lease, TractC-
a. Serial No. C-20046, 1975.

3. Peter A. Rutledge. Area Oil Shale Supervisor, written
communication, August 1977 and September 1977.
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Fig. 5. Schematic diagram of a Modified in-situ retort and related air and production mine levels. Source: Ashland Colorado, Inc., and
Occidential Oil Shale. Inc.. Mining Plan for Ancillary Development, Ralph M. Parsons Co., Parsons-Jurden Division, June 1977.

Table I. A representative part of the commercial stage "cause-effect" matrix performed
for the Rio Blanco Oil Shale Project for oil-shale development on tract C-a

Affected factor: vegetation •
Construction

Mine
Surface Underground Support Conveyor

retorts facilities belts
Impoundments Roads Compressors

Disposal Cumulative
pile construction

Productivity
Range condition
Community composition
Distribution

Trace metal content

Cover density
Browse condition

1/2

1/2

1/2

1/2

1/1
1/2
1/2

2/2
1/2
2/2
2/2

1/1
2/2
2/2

1/1

1/1

1/1

1/1
1/1
1/1
1/1

1/2
1/2
1/2
1/2
1/2
t/l
1/2

1/2
1/2

1/2

1/2

1/2
1/2
1/2

1/2
1/2

1/2

1/2

I/I
1/2

1/2

1/2
1/2

1/2

1/2

1/1
1/2

1/2

1/2

1/2

1/2

1/2

1/1
1/2
1/2

3/3

2/3
3/3

3/3

1/1
3/3

3/3

5/3

2/3

3/3

3/4

1/1
4/5

3/3

Construction rankings were defined as follows:

Importance

1. None, not applicable
2. Slightly important
3. Moderately important
4. Very important
5. Extremely important

Severity and magnitude

1. None, not applicable
2. Slightly severe, small
3. Moderately severe, medium
4. Very severe, large
5. Extremely severe, quite large

Source: Gulf Oil Corporation and Standard Oil Company, Rio Blanco Oil Shale Project - Revised Detailed Development Plan for
Tract C-a, vol. 3, May 1977.
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SUMMARY OUTLINE

The above approach resulted in the identifi-
cation of some specific parameters having statistical
problems which are outlined below:

I. Biotic
A. Flora

1. Vegetation type distribution
a. Methology Color infrared; photos re-

peated annually.
b. Baseline data and analysis- To precede

development.
c. Statistical tests None proposed to

date.
d. Problems Should changes be mea-

sured by visual comparison of
photos: what constitutes a signi-
ficant change: and what statis-
tical methods arc applicable?

e. Possible solutions Not yet de-
veloped.

2. Range productivity and utilization
a. Methodology- Tract C-a will use dou-

ble-sampling method (estimate
and clipped plots) on ten
plots on ten transects on three vege-
tation types annually. Plot is 9.6 ft::
two of each ten plots are caged from
April to September. Plant types are
separated by species and weighed:
correction factors are applied to the
green weight estimates.

b. Baseline data and analysis- C-a base-
line data for forage production, which
combined all herbage weights for each
vegetation type, are shown in Table 2.

c. Statistical tests H,,: no significant
difference in vegetative productivity for

Table 2. Standing-crop estimates for major shrub species in each of the intensive study plots. I976fl

Shrub species

Amelanchicr sp.
April

September

Artemisia trideiuato
A;/ril

September

Ceratoides lanata
April
September

Cercocarpus montanus
April

September

Clirysothanwus nattseosus
Apiil
September

Juniperus osteospcrma

April
September

Pimis edulis
April

September

Purshia tridcntala
April

September

Total
April

September

1

111 i

121 i

1541 i

1653'

211 i

I86i

116:
186 i

25 i
1 9 ±

46 t
54 t

288 i

430i

2338i

2702.

24

34

352

325

59

53

20
40

3
3

9
9

68

8»

535
552

2

7 3 :
8 0 s

214s

229 i

49 i

56 i

287i
462i

90 t
6 7 .

70 i
84 i

8 « i

132 ±

871 i

!110i

: 16

: 23

. 49

: 45

14

12

51
98

12

11

14

14

21

27

177

230

41
44

2026

2429

11
17

4

3

12.

15:

2094 i

2508 i

Plot number

3

t 9

i 13

1375

= 749

+ 2
1 4

! 1
• 1

• 3
> 3

: 390

: 770

9015

15926

34
33

29
46

1
?

9079

16007

4

i 1871

s 3559

t 5
t 6

. 5
i 10

i 0.2
i 0.3

± 1881

= 3575

101
110

54

65

85 :

96

4 :
7 :

9 •

6 :

40 s
4 7 .

33 i
50 i

326i

381 t

5

. 22

i 3 1

= 10

= 20

i 24

! 21

! 1
• 2

1

: 1

: 8

8

8

10

74

93

118

128

419

502

43
69

T>

17

20
24 •

1 .

3 :

624 i

74.1 <

6

i 25

i 36

s 77

t 155

i 8
i 15

! 3

t 3

! 4
: 4

: 0.5

'• 1

: 117

i 214

Plus and minus values arc equal to the standard error of the mean. Values in kilograms per hectare; 1 hectare = 2.471 acres.
Source: Ashland Oa. Inc.. and Occidental Oil Shale. Inc.. Oil Shale Tract C-b-Environmenml Baseline Program Final Report

{November 1974 through October 19761, vol. 4. 1976.
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lorage use within a vegetation type
before or during initial development.
Analysis by a nalysis of variance (AOV).
Accuracy to be such that sample means
will be within ±259£ of population mean
9(Hf of the time.

d. Problems During initial development
significant differences in forage use
cannot be determined because of the
many unknown or uncontrollable vari-
ables affecting animal use of the various
habitats.

e. Possible solutions- Design the anal-
ysis to determine adequate sample size
and presence of significantly different
strata among plant production areas.

3. Browse condition and utilization
a. Methodology Browse condition and

utilization are estimated by the Cole
Method" on randomly selected transects
consisting of 25 individual shrubs. Tran-
sects are established in each vegetation
type.

b. Baseline data and analysis Examples
of data summaries from the C-a base-
line are shown in Table 3.

c. Statistical tests— H,,: no significant
difference in browse utilization within
a given vegetation type before or
during development. Analysis pro-
posed is an AOV. Accuracy sought is
±25Cf of the mean 909? of the time.

d. Problems Determining statistical
tests mest useful for comparing effect
of a disturbance on form and age-class
percentage.

e. Possible solutions Generally same as
for productivity. Browse condition
classes may be compared by chi
square.

4. G. P. Cole. Range Survey Guiih: t ' .S . National Park Service.

Washington. D.C.. 1963.

Table 3. Condition of seven principal browse species sampled in two predominant vegetation types

during April 1976 for the Rio Blanco Oil Shale Project"

Species

Service-
berry

Sage-

brush

Pinyon
pine

Rabbit

brush

Bhter
brush

Mountain

mahogany

Juniper

Vegetation

type

MB
PJ

MB

PJ

MB
PJ

MB

PJ

MB

PJ

MB

PJ

MB

PJ

No. of

plants

sampled

643

2112

352

328

17
259

1 ")

94

45
153

58
62

ND
225

Average
percent
utilized

11.1
69.1

4.9
7.2

6.8
12.4

9.3
6.2

+0.9
73.8

47.1
52.4

ND
6.0

Average
percent

available

98.4
99.8

100
100

94
67-8

100
100

100
100

99.4
93.3

ND
49.6

1

76
IS

100
93

88
42

95
97

22
3

38
13

ND
29

Form class percenta

2

11
31

ND
7

ND
6

5
3

44
40

34
48

ND
0.9

3

2

48

ND
ND

ND
1

ND
ND

24
56

21
31

ND
ND

4

11
I

ND
ND

il
37

ND
ND

')
\D

3
5

ND
65

5

1
ND

ND
ND

ND
8

ND
ND

ND
ND

3
3

ND
2

ges*

6

ND
0.4

ND
ND

ND
3

ND
ND

ND
ND

ND
ND

ND
ND

7

ND
ND

ND
ND

ND
ND

ND
ND

ND
ND

ND
ND

ND
2

Seedling

ND
ND

0.2
0.J

ND
4

ND
ND

ND
ND

ND
ND

ND
1

Age

Young

1
6

4
j •>

21
211

ND
8

ND
0.6

7
ND

ND
12

class

Mature

95
88

93
69

76
72

100
83

100
93

90
98

ND
77

Decadent

4
6

2

IS

ND

ND
8

ND
6

2
2

ND
10

"MB. Mixed brush; PI. Pinyon-juniper; ND. no data.
I-orm classes: 1. All available: little or no hedging.

2. All available: moderately hedged.
3. All available; severely hedged.
4. Partially available; little or no hedging.

5. Partially available: moderately hedged.
6. Partially available: severely hedged.
7. Unavailable.

Source: Gulf Oil Corporation and Standard Oil Company. Rio Blanco Oil Shale Project - Revised Detailed Development Plan for
Tract C-a, vol. 2. May 1977.
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4. Revegetation of disposal sites—Her-
baceous standing crop
a. Methodology—Double-sampling meth-

od of Wilm, Costello, and Klipple5 will
be used on each site to estimate and
correct standing crop production on
fifty 1-nr plots (one of each ten plots
is randomly selected for clipping,
drying, and weighing). Results will be
given in kilograms per hectare (0.89256
lb/'acre).

b. Baseline data and analysis—Lessees
have ten years to demonstrate their
capability of restoring disturbed sites
to "like conditions" as determined
during the baseline period. Current
studies provide an example of field plot
design (Fig. 6) and parameter method-
ology (Table 4).

c. Statistical tests—H<>: no change in
standing crop among years atany given
site; no difference in standing crop in
given year between sites; and no
difference in standing crop among
years between sites. To determine
significance of changes in standing
crop among years, sites, and year-site
interactions, AOV will be used.

d. Problems- Enough sites need to be
selected on various macrosites to
determine effects of slope, aspect,
elevation, etc. No follow-up testing
procedures are proposed if the null
hypotheses are rejected.

5. H. G. Wilm. Da\id F-. Costello. and Ci. I.. Klipple. •'Fsti-
mating Forage Yield by the Double-Sampling Method.
Am. Soc. Agnm. J. 36: 194 203 (1944).

-99 mc le r l -

• ?3melcM-

PROCESSED SHALE NO PROCESSED SHAtE

TOTAL AREA = 0 . 9 7 5 HECTARE

Fig. 6. Generalized layout for revegetation plot (Ri) on oil shale tract C-a, Rio Blanco County, Colorado (initiated in 1976).
Applications of three mulch treatments (Ti. T;, Ti) were applied tjfi two conditions fora total of six treatments. These '.icatments were
replicated six times. Source: Gulf Oil Corporation and Standard Oil Company. Rio Blanco Oil Shale Project- Revised Detailed
Development Plan for Trad C-a, vol. 2, May 1977.
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Table 4. Plant response parameters measured in rev«getation experiments on oD-shale tract C-a,
Rio Blanco County, Colorado, 1976-1977

Parameter Time of measurement Taxa involved

Number of emerged seedlings
per plot

Number of surviving seedlings

Above-ground biomass (dry weight)

Percent cover

First spring following fall planting
(i.e., beginning of first growing
season)

End of first growing season

End of third growing season

End of each growing season

Each planted species

Each planted species

Total seeded species, total alien
species, and individual seeded
species contributing bulk of
biomass

Each species

Source: Gulf Oil Corporation and Standard Oil Company, Rio Blanco 03 Shale Project - Revised Detailed Development
Plan for Tract C-a, vol. 2, May 1977.

e. Possible solutions—Show complete
AOV design with all components of
variance delineated. Set testing level to
at least ±25% of the mean at the 0.10
alpha level. Stratify sampling sites into
similar physiographic units.

B. Fauna
1. Mule deer density

a. Methodology—Pellet-group counts for
deer on C-a will be made semi-annually
on 25 plots (100 ft2) in at least 60
randomly selected quarter-section sam-
pling units for each of four blocks
(9 sq miles). Sampling for spring and
fall deer use will be done for five
consecutive years.

b. Baseline data and analysis—Pellet-
group data for the C-a tract and vicin-
ity disclosed large differences in use
between the summer and winter pe-
riods and also large standard errors
(Table 5).

c. Statistical tests—Ho: mule deer density
estimates for the C-a study area are not
significantly different from the sur-
rounding area (DOW game manage-
ment unit 22) on a per-unit basis. Ho:
mule deer numbers and distribution
within the C-a study area are not
significantly different before or during
oil-shale development activities. Analy-
sis will be an AOV, using initial studies
to establish the sample size required to
provide mule deer density estimates

from pellet-group data to within 10%
of the mean 90% of the time.

d. Problems—The baseline data analysis
showed a wide variation in pellet
groups found on different study units.
Pellet groups are not randomly dis-
tributed over space, which complicates
testing procedures.

e. Possible solutions—If AOV does not
prove suitable because of nonrandom
distribution of pellet groups, some type
of npnparametric analysis may be
usable to detect differences due to
development.

2. Feral horse abundance
a. Methodology—Feral horses on and

within 3 miles of the tract boundary
are counted annually from flights along
designated transects. Aerial census data
are supplemented by opportunistic
ground observations.

b. Baseline data and analysis—Data col-
lected from aerial surveys disclosed a
wide variability in numbers of horses
observed among flight dates and
between adults and juveniles. During
late fall and winter, separation into
distinct age classes was difficult
(Table 6).

c. Statistical tests—None proposed.
d. Problems—Counts vary widely among

transects and between sampling dates.
No valid statistical procedures are
apparent.



Oil-Shale Development 99

Table 5. Mule deer pellet groups accumulated over winter and summer,
from 1974 through 1975, on transects located on tract C-a

for the Rio Blanco Oil Shale Project

Transect
number

1
5
6
7

1
2
3
4
5
6
7
8
9

10
11
12
13

Pellet groups
recorded

4
14
11
7

0
4
2
1
0
0
0
3
1
6
5
2
0

Pellet groups
per acre

Winter

69.7
243.9
191.7

122

Summer

0
69.7
34.8
17.4

0
0
0

52.3
17.4

104.5
87.1
34.8

0

Period of
accumulation

(days)

209
211
208
209

125
123
125
125
125
125
125
123
127
125
125
128
129

Pellet-group

index"

0.33
1.16
0.92
0.58

0
0.57
0.28

0.4
0
0
0

0.43
0.14
0.81
0.70
0.27

0

"Pellet-group index equals the pellet groups/acre divided by the period of accumulation.

Winter Summer

x (mean) = 9.0. x = 1.85.
n (number of units) =4 . n - 13
SD (standard deviation) = 4.40. SD = 2.08.
Sx (standard deviation of mean) = 2.2. Sx = 0.58.
90% confidence interval = 9 + (2.353 X 2.2) 90% confidence interval = 1.85 + (1.782 X

= 9 + 5.2. 0.58) = 1.85 +1.03.

Source: Gulf Oil Corporation and Standard Oil Company, Rio Blanco Oil Shale Project -
Terrestrial Ecology Baseline Studies, Annual Report for Tract C-a, March 1976.

Table 6. Number of feral horses observed during ax aerial
surveys conducted for Rio Blanco Oil Shale Project

from November 1974 through August 1975

Date

Nov. 8, 1974
Dec. 30, 1974
March 4, 1975
April 14, 1975
June 26, 1975
Aug. 18, 1975

Total

108
86
41
74
93
63

Number observed

Adult

24
8

16
69
69
55

Juvenile

15
2
4
5

24
8

Unidentified

69
76
21

0
0
0

Source.' Gulf Oil Corporation and Standard Oil Company, Rio Blanco Oil
Shale Project - Terrestrial Ecology Baseline Studies, Annual Report for Tract
C-a, March 1976.
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e. Potential solutions None apparent.

Snu.ll mammal abundance
a. Methodology l.i\e trapping on C"-a

will be done with baited Sherman
traps, set out in five trap groups
consisting of two lines of ten traps per
sampling area. Approximately ten pit-
traps will be established in each
mammal sampling area. An index ol
abundance will be calculated from
numbers of small mammals trapped
per 100 trap days.

b. Haselinc data and analysis Shannon-
Weiner Disersity Indices (IT) are
shown in fable 7 for seven vegetation
l\pes on Tract C-a for nine sam-
pling periods (October 1974 through
September 1976).

c. Statistical tests H,,: small mammal
population levels are not significantly
changed by habitat modification or
re\egetalion. Analysis of variance will
be determined on an index of abun-
dance. Regression analysis is also
under consideration.

d. Problems The index of abundance
may be \alid only for those most
abundant species. Small mammal popu-
lations are very dynamic and within
treatment variance may be very large.

For small mammal studies, it is difficult
to determine reasonable precision and
accuracy and how much replication in
time and space is adequate.

4. Breeding-songbird densities
a. Methodology 1 he study area will be

mapped and di\ided into 2.47-acre
subuniis. Study units will be replicated
in control and treated areas.

b. Baseline data and analysis No data
weie collected on breeding-bird acti\ ity
dunng the two-year baseline monitor-
ing because the Fimlcn Strip census
technique was used.

c. Statistical tests H,,: breeding-song-
bird densities are not significantly
changed by habitat modification re-
\egetation. An AOV will be used to
compare control and treated areas.
Territory si/e and reproducti\e effort
of breeding birds vvill be assessed
qualitatively.

d. Problems Sampling intensity must be
determined lor ihc number of subunits
and replicates before the final design
can be done.

e. Potential solutions Possibly an accu-
racy and precision of ±25'V of the mean
90'"( of the time will be a reasonable
and achievable objective. Possibly the

Table 7. Sliannon-Weiner diversity indices (N') for atl small mammal
grids during nine sampling periods, from October 1974 through September 1976,

for the Rio Blanco Oil Shale Project

Vegetation

Bottomland meadow

Upland sagebrush

Rabbitbrush
Pinyon-junipcr

mixed brush

Mixed brush

Pinyon-juniper
sagebrush

Bald

1974

Oct.

0.349

0.687

0.745

0.980

0.665

0.673

0.349

Dec.

0.803

0.000

0.440

0.000

0.693

0.000

0.000

May

0.908

0.967

0.894

1.001

0.642

0.935

0.500

Sampling period

1975

July

0.500

1.047

0.619

1.038

0.683

1.133

0.S20

Sept.

0.000

0.718

0.455
0.971

0.655

0.295

0.000

Dec.

0.000

0.693

0.000

0.000

0.000

0.451

0.000

May

0.000

0.401

0.625

0.860

0.540

0.730

0.000

(976

July

0.892

1.185

0.678

1.141

0.942

1.189

0.510

Sept.

1.114

0.986

0.692

0.871

0.469

1.143

0.826

Source: Gulf Oil Corporation and Standard Oil Company. Rio Blanco Oil Shale Project -
Final Environmental Baseline Report for Tract C-a and Vicinity, vol. 2, May 1977.
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test tan be used lor com-
parison of territory si/e and repro-
ductive dynamics.

1-ish populations
a. Methodology Kstimates will be made

o! fish population si/e. length, weight,
age. condition, and reproductive con-
dition. Capture will be by elearo-
lishing on selected stations on Piceanee
Creek.

b. Baseline data and analysis Data col-
lected on fish in the vicinitv of tract C-b

disclosed a consideiable ditierence
among sampling stations and sampling
periods in both lish numbers and
species ('Iable S).

c. Statistical tests II,.: no ditierence
occurs between lish populations during
the baseline period :md during de-
\elopment owing to mine operations.
1 esls proposed are chi-square. AOV.
and correlation. Specitic details ha\e
not been pio\ ided.

d. Problems Detailed statistical testing
procedures arc still to be designed.

Table 8. Numbers and species of fish captured, marked, and recaptured at Piceanee basin stations
from September 1974 through July 1975"

Station

P I

P-2

P-3

P-4

P-5

P-6

P-7

W-3

L.S.L.

13rook trout

C M R

Rainbow
trout

Hrown trout Mountain
sucker

riannclmouth
sucker

Speckled
dace

C M R C M R C M R M R

I ot.tls

M R

ND ND ND

ND ND ND

ND ND

ND ND

N'D ND

September 1974

ND ND ND ND ND ND 103 59 ND ND ND ND 28 27 ND 131

XI)
ND
ND

ND ND ND

ND ND
I 1

ND
ND

ND ND ND ND ND ND
ND ND ND ND ND ND
ND ND ND ND ND ND
1 I ND ND ND ND
ND ND ND ND ND ND
ND ND ND ND ND ND
ND ND ND ND ND ND

24 19 ND ND ND ND ND ND Nb 24
4 4 ND ND ND ND ND ND ND 4
1 ND ND ND ND ND ND ND ND 1
3 3 ND ND ND ND ND ND ND 4
18 16 ND ND ND ND (, 5 ND 24
2 2 ND ND ND ND X 8 ND 10
1 I ND ND ND ND ] 1 ND 3

ND ND 787S 54 ND ND ND ND ND ND ND ND ND ND ND ND ND ND

Totals 79 55 ND 1 1 ND ND ND ND 156 104 ND ND ND ND 43 41

November 1974

Totals IB 17 1 ND ND ND 1 1 ND 114 111 3 1 1 ND

January 1975

I ND ND ND ND ND 89 ND ND ND ND ND

March 1975

1 1 ND ND ND ND 36 6 ND 6 6 ND

May 1975

ND ND ND ND ND ND 6 1 ND ND ND ND

July 1975

Totals 23 19 2 1 1 ND ND ND ND 75 8 1 ND ND ND 52 ND N!} 151

Grand 306 106 6 4 3 ND 1 1 ND 476 230 4 7 7 ND 143 45 ND 937
totals

S(, -ND

19 ND

4 ND

ND ND

4 ND

21 XI)

10 ND

3 ND

54 ND

Totals 79 ND ND

Totals 88 3 3

Totals 19 12 0

ND 279 2U1 ND

4 ND 143 134 4

17 ND ND 1X6 ND ND

17 ND ND 148 16 3

5 ND ND 30 13 ND

28 3

392 10

C, captured; M. marked; R. recaptured; ND, no data.

Source: Ashland Oil, Inc., and Shell Oil Company, Oil Shale Tract C-b - Detailed Development Plan and Related Materials, vol. 2,
February 1976.
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Establishing a reasonable accuracy
precision level lor fish sampling in
small streams is desirable.

e. Potential solutions A detailed statis-
tical design is required before develop-
ment monitoring is implemented.

6. Benthos and periphyton dynamics
a. Methodology—The Surber sampler

will be used to sample benthos. Species
diversity and abundance will be com-
pared for long-term fluctuations and
seasonal changes. Periphyton will be
collected from artificial substrates to
determine productivity and species
diversity.

b. Baseline data and analysis—Diversity
indices for benthic invertebrate species
in Piceance Creek just north of tract
C-b are given in Table 9.

c. Statistical vests—Hn: no change in
benthos and/or periphyton commu-
nities will occur as the result of de-
velopment. Statistical tests proposed
by the lessees include analysis of
productivity during monitoring vs
baseline by analysis of variance or co-
variance, by correlation, by diversity
indices, and by some unspecified non-
parametric tests.

d. Problems—A study of the baseline
data disclosed the need for good qual-

ity assurance programs in using aquatic
sampling instruments and procedures.
All statistical tests must be carefully
and fully detailed prior to collection of
data.

e. Possible solutions-Suggestions are
solicited for achieving a reasonable
monitoring program.

II. Abiotic
A. Air

1. Gaseous constituents (sulfur dioxide,
oxides of nitrogen, nitric oxide, hydrogen
sulfide, and carbon monoxide)
a. Methodology— Monitoring is done con-

tinually with automated instruments,
both intermittent samplers and con-
tinuous analyzers, in environmentally
controlled shelters.

b. Baseline data and analysis—Typical
average monthly and ambient air
constituent concentrations of gasesand
particulates were monitored during the
two-year baseline period (Table 10).

c. Statistical tests6—The more commonly
used statistics are those which describe

6. Charles E. Zimmer, "Air Quality Data Handling and
Analysis," pp. 453-84 in Air Pollution, Arthur C. Stern, ed..
Academic Press, New York, 1976.

Table 9. Benthic invertebrate species diversity indices for Piceance Creek
from September 1974 through November 1975

Month

September
October
November
December

January
March
May
July
September
November

P-l

1.66
1.49
2.21
0.67

1.76
1.75
1.62
1.74
2.31
1.55

P-2

2.08
1.59
1.40
1.47

1.82
1.77
1.99
1.76
2.40
1.10

P-3

2.59
2.05
2.47
2.37

1.58
1.65
2.00
2.01
1.96
2.86

Station

P-4"

1974

2.75
1.36
2.46

1975

P-5

3.26
2.40
2.20
2.12

2.35
2.24
1.65
1.84
2.18
2.65

P-5A

1.29
1.16

1.06
2.08
2.80
1.61
1.55
0.84

P-6

1.44
1 59
0.44
2.02

1.27
1.16
1.44
1.82
1.33
0.70

P-7

1.00
1.19
1.42
1.84

1.76
1.49
0.97
0.86
1.52
0.35

"Station P-4 was relocated to P-5A in November 1974.
Source: Ashland Oil, Inc., and Occidental Oil Shale, Inc., Oil Shale Tract C-b - Environ-

mental Baseline Program Final Report (November 1974 through October 1976), vol. 4, 1976.
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Table 10. Monthly and annual average ambient air constituent concentrations
of gases and participates

3 = 6.244 X 10"" lb/ft3

1976-1975
Tr«,l*

0?J

020
023

023

020
023

020
D23

0JO
021
022
073
024

020
021
022
023
0?4

020
D?I
022
02S
024

tK>2 l-*'m
3>

NonMrthwiHC i-5'm3)

CH4 <, ,.m*>

CO l->"n3)

SO? l-g/m')

H2S (*5/m3)

FJ:IICUUI* (-^m3 j

2 4

M0
•31 4

e?sr

SSI 6

0
1.5

0
16
02

0

•4f. 7(3)
•?0 4

•1170

•4 7

69 3
2*0

:CZ13 6">

ICSJSM)

676 9

1 8

0
0
1.2

0 1

43

29

7 4

93 7
43 4

9C3 2

0

0
02
O

O

2 3

0 2

105 1

es a

"533 7

]3?8 5'̂ J

0 1

0
0B
02

02

3 6

•0 4

85 0
Sit

•fc^a

14)5 o!-)

II

0 6

04
04
03

04

115
49

0 9

77]
905

S2? 6*2)

536 3

0.1

0.5
I I

0
0.2
0.7
0.5
10

15 4
102

41
06

71 5
87 3

B34 3

181*5(2)

3

• 7

4

3
33

19.3
1M

•0 3
00

64 1
M 4

EI47

109? |l-J

1 0

00
06

02
07
04
0.3
1.1

95
IB 3
B7

0 6

•1 7
15

74 6
661

??0 7

2C* 5(2'
466 5

16

06
01

0
02
02
46
01

146
14 4
113

47
1 0

61 0

?: : 7

09

2 0
01*

0
04
0 1
2 4
0 1

I v •
11.&

i: i
! \ 1

•30
01

41 1
f J4

933 4

" S i

07

09
07

01
07
04
2 I
06

12 4
126
11 1
96

• " )

r 3

12 8
43 3

S M

I

1 4
1 8
06

H

OS
02

1 0

11 2
124
97

137
12 4

.VlflS.*i

1 s

1 * -

<! • - :

]f-. .
11: i :

i ••

• •

1 !
I !
I '

1975-1976
iiilcr

(i.'n

iijn

IS
tijii
»:\

»{'}

HJI

«:;;•

01'*

M e *

V ( qftw1)

\on ^ t h a n * H.C.

i l l ( I « / I B 3 )

II,S (i^/m1)

P. i i l ia i la ic (*ftV»5)

2 .6

e.s
.8

30.9
39.2

No Data
30S.fi

No O J I J

So tut a
1847.3

1

&

4
4
3

s

0
9
1
0
)

1
1
0

4

0

0
3
6
9

J.J
: . s

2.2
2.6

32.7
it.2

26.4
151.3

(J)
(J)

.0

.0
1.4
.?

.8

.0

.2

.1

.9

.1

; . e
3.7
2.8
2.J
2.5

Jar.

1?.5
0.0

4 . 8

35 . '

20.S

in.:
592.S

J08.S

.0
1.7

!>
.2

. : >
.0

3.5
.4

3.2

3.J
2.H
5.)

Irs.

(3 )

: . i
«)

;o.7

15)
."R1.7

' 3 )

(3)
1161.8

.D

.1

:?">
.0
.»
.0

J.J
2.7
; .6
2.4
3.0

Mir.

2.0

(3)
.1

id.2

m
1SS.7

( ! )

13)
1271.5

1

2

0
6

it«;
2

!<«
o
4
0

7.5
6.9
5.7
5.5
7.5

Aiir.

U)
.4

(3)
0.3

66.S

(3)
eia.3

(3)

IS)
(,$7.0

1

0
8
0
5
3

3
^
6
3
0

14.7
14.0
12.S
9.8

14.4

Hi."

(3)
l.S

(3)

l.S

11.7

1.94.6

S33.1

12M.8
(3)

1.1
1.3
O.S
0.6
O.S

.0

.6

.2

.6

.0

10. S
10.3
7.6
8.9

10.2

Jar.c

{3J

2 . :

(3)
l .S

tb. i

10 3

P28.9

Sf.2.fi
1S21.S

1.1
(-M
.0
.3

1.1

.0

.8

. ]
7.

.0

k \S
13.J
10.3
11.4
14.?

Jni>

4.9
1.2

(3)
.2

"•6(!l

J4J. 0
(31

.7

.1

.1

.0

• %
.1
.]

i:.9

1.6
13.4
16.4

V..

i-t.

:6.s

««; • . .

.c
f >)

.1

. i
6 :

.0

.6

.4

.7

10 b
l i . . ~
8.4
9 \

! : • . ;

*iTt.

S5.1
1 9

7.4

55.9

ss.s

F-..5
32.2

53.7

M.O
(3

• ' , 3
.2
.7

{3

.0

.6

.4
,s

9 . :
7.9
•j.i

F.I

a!.

t- j

t:-i
4.1

.s.n
• 7.4

J.ti
S3.2

!(>(• 0

. t

.4
:3 )
.6

1 S

0
1.2

. " • )

.4

.1

10.1
Hi 2
6 :
r.i
t T

\ r ni •

JJ •
: j

SJ"
i . ?

iri.i

' « • : t.

tiOi.4
I."!.] •

1 .*

.1

1 Reported data are incorrect because of contaminated manifold.
2 Reported data may be incorrect becaus" of possible malfunctioning instrument.
3Few or no data collected because of instrument malfunction.
4Side-by-side monitoring of H2S in trailer 023 and of SO2 in trailer 021 was initiated as a data reliability check for three

months beginning January 1, 1976. Therefore, no SO2 analyzer at 021 are reported in the row for 023 for January,
February, and March. Data from the second H2S analyzer at 023 are reported in the row for 021 for January. February, and
March.

*50% or less data.
**.O indicates below limits of detectability of the instruments.
Source: Ashland Oil, Inc., and Occidental Oil Shale, Inc., Oi! Shale Tract C-b-Environinental Baseline Program Final

Report (November 1974 through October 19761, vol. 3,1976.
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location and those which describe
dispersion. Statistics which identify a
point of cluster are arithmetic mean,
median, and geometric mean. To in-
dicate the extent ol data varianeeabout
the mean, the standard deviation and
standard geometric deviation are
used.

d. Problems How to distinguish the
pollution sources, which may be a
point source (slack), line source (a line
ol' traffic), and an area source Ulisuim-
source pollution from area cities or
local source from shale storage piles).
How to determine, from the air quality
data, whether baseline and monitoring
levels differ. How to assess natural
changes when comparing baseline data
to development data.

e. Possible solutions Locating air-qual-
ity stations in areas of (I) most likely
pollution and (2) least likely pollution.
Emission data should also be taken at
the slacks, and all of the data should be
compared wilh the baseline data.
Specific procedures must be estab-
lished lor handling and analyses of data
to provide information in required
format and at the appropriate time.
These procedures should include all
aspects of data recordings, validating,
storage and retrieval, presentation, and
statistical methods of analysis. A
possible null hypothesis that could be
tested would be II,.: there IN no
significant difference between the con-
centrations of gaseous constituents
during the baseline period and during
the development period. If the first null
hypothesis is proven false, a second
null hypothesis that could be tested
would be Hi,: all of the increase in
gaseous constituents during commer-
cial development is due to stack
emissions.

2. 1'articiilates
a. Methodology A high-volume sam-

pler at each of three air-quality-
monitoring sites collects samples 20 ft
above ground elevation near planned
site development activities.

b. Baseline data and analysis Table 10
gives the two-year monitoring data.

c. Statistical tests None given.
d. Problems Will enough information

be taken to (I) assure compliance with
regulator standards: (2) evaluate the
effectiveness of fugitive dusl control
measures; (3) determine traffic patterns
to minimize airborne particulates: and
(4) aid in evaluating the effect of dust
deposition on tract vegetation and on
water surfaces'?

e. Possible solutions Identify develop-
ment-related perturbation from natu-
ral occurrences by positioning high-
volume samplers at points of maxi-
mum concentrations: other samples
upwind of development could provide
control. Possible null hypotheses that
could be tested arc like those for the
gaseous constituents.

li. Hydrology
1. Surface water

a. Methodology Standard techniques,
including concrete controls at most
stations to ensure a stable rating curve.
Seeps and springs are also measured,
because hydrologic studiesandanalysis
of the two-year baseline data indicate
that some of the springs and seeps are
hvdrologically connected to the upper
oil-shale aquifer. Perturbations to
springs and seeps will be detected by
analysis of flow and water-quality data.
Some water-quality information is
collected at springs and seeps quarterly
or semi-annually. Continuous data are
collected at most of the stream-gaging
stations on several parameters, in-
cluding How. temperature, conduc-
tivity, sediment, dissolved oxygen, and
PH.'

b. Baseline data and analysis Tables 11
and 12 give typical data collected
during the two-year baseline period.

c. Statistical tests The nature of the
data will determine statistical methods
to be used for data analyses. The
following hypothesis will be tested on
the chemical and physical parameters:
Hn: there is no significant difference in

7. Ralph I. Larson. A Mathematical ModelJor Relating Air
Quality Measurements to Air Quality Standards. U.S. Govl.
Printing Office. Washington, D.C.. 1971.
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Table 11. Summary of the mineralogy of seven samples from the stream bed at the
Evacuation Creek gaging sites

Mineral
Percent composition

Mean
Standard
deviation

Maximum Minimum

Quartz
Potassium feldspar

Plagioclase feldspar

Calcite

Dolomite

Clay minerals

Analcime

33

6
7

14

17

14

2

8
1

2

3

5
2

1

44

8

8

IS

27

15

3

21

4

4

11

12

10

1

Source: Phillips Petroleum Co.. Sunoco Energy Development Co., and Sohio Petroleum Co.,
First Year Environmental Baseline Report for Tracts (J-a and U-b. Utah- White River Shale
Project, VTN Colorado, Inc., vol. 1. May 1976.

Table 12. Results of regression analyses from Evacuation Creek water-quality
data collected during the two-year baseline period

Variable"

Independent

Specific
conductance

Dissolved solids

Dissolved solids

Dissolved solids

Dissolved solids

Dissolved solids

Dissolved solids

Dissolved solids

Dissolved solids

Dissolved solids

Dependent

Dissolved solids

Calcium

Magnesium

Sodium

Chloride

Sull'ate

Copper

Iron
Molybdenum

Selenium

Regression line

Intercept

98

48

6

-33
_ ?

1964

29

118
9

4

Slope

0.83

0.03

0.04

0.20

0.013

0.030

—0.0001
-0.021

0.007

0.0003

No. of
pairs

74

73

75

75

• 73

73

44

44

45

43

Accuracy

Correlation
coefficient

(1.85

0.68

0.91

0.97

0.70

0.05

0.01

0.19

0.25

0.008

Standard error
of estimate

371.0

2 1.0

13.0

36.0

8.1

563.0

V3.0

42.0

12.0

3.7

"Specific conductance in pmhos/cnu 1 pmho/cm = 2.54 X 10 1 2 mhos/in. All other variables in mu/liter: 1
mg/liter = 8.343 X 10"6 lb/gal.

Source: Phillips Petroleum Co., Sunoco Energy Development Co., and Sohio Petroleum Co., First Year Environ-
mental Baseline Report for Tracts U-a and U-b, Utah - White River Shale Project, VTN Colorado. Inc.. vol. 1. May
1976.

the chemical composition or physical
parameters of the surface waters
studied during baseline and develop-
ment periods at each monitoring
station.

d. Problems—(1) How to obtain, from
the observed two-year baseline hydro-
logic data and sparsely available long-
term data, a true picture of the
hydrologic regime for determining

effects during oil-shale development:
(2) how many data-collection points
must be operated during development
to obtain a statistically valid picture of
impacts on surface waters; (3) how to
accurately gage and evaluate the
required surface-flow augmentation to
protect existing water rights; (4) how to
evaluate the efficacy of mitigating
measures, if required, to protect the
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environment: and {5) how to determine
when modified in-situ retorts have
reached a stale of stability so as to
release the lessee from further environ-
mental liability.

e. Possible solutions A sound statisti-
cally based network design should be
established to show how the surface-
water flow and quality will be affected
by the modified in-situ development.
Monitoring surface-water flows down
established channels will be relatively
easy: complications arise because the
ground-water surface-water systems
are intimately connected.

2. Ground water
a. Methodology Ground water is moni-

tored by observation wells in the
alluvium and in oil-shale aquifers.
Water levels are measured contin-
uously in several holes and monthly or
quarterly in others. Samples arc col-
lected scmiannually. quarterly, or more
frequently, and analyzed for alkalinity,
pH. silica, fluoride, conductivity, tem-
perature, and the major ions. Analyses
for trace elements and organics are

made quarterly or semiannually. Re-
cording How meters will be used in the
dewalering wells to determine dewatcr-
ing rates. Water-quality monitoring
will concentrate on dewatering well
discharges.

b. Baseline data and analysis Table 13
gives typical ground-water quality data
collected during the two-year baseline
testing. Modelingtcchniqucsalsosimu-
lated ground-water How.

c. Statistical tests The major ions found
during baseline studies were plotted on
trilinear diagrams. Water will be
categorized by the relative concen-
tration of calcium, magnesium, sulfate.
chloride, potassium, bicarbonate, car-
bonate, silicon dioxide, and fluoride.
The following hypothesis will be tested:
Hi,: there is no significant difference in
chemical composition or physical pa-
rameters of the ground water between
baseline and development periods.

d. Problems The pioblems in testing
ground-water data arc similar to those
for testing the surface-water data.

e. Possible solutions The approach will
be similar to those used for surface

Table 13. Summary of ground-water quality data collected from the Birds Nest
aquifer, Parachute Creek member of the Green River Formation, tract C-a,

from November 19, 1974. through November 14, 1975

Description

Conductance (umbcis)"

Bicarbonate (mg/liter HCO3)6

Carbonate (mg/liter CO3)*

Nitrite + Nitrate (mg/liter N)*' c

Hardness (mg/liter Ca. Mg)6

Calcium (mg/liter)6 'c

Magnesium Img/liter) '

Sodium (mg/liter)6 'c

Potassium (mg/liter)6 'c

Chloride (mg/liter)*'c

Sulfate (mg/liter)*'c

No. of
sample

34
31

30

32

31

31

31

31

31

31

31

Mean

4459

643

4.2

1.8

957

131

153

807

6.8

70

2009

Standard
deviation

1208

319

21

6.1

381

64

64

293

2.8

22

843

Maximum

6070

2010

117

30

1400

210

240

1500

13

140

3000

Minimum

1130

26

0

0.00

22

5.7

0

72

2.3

36

180

"l jumho = 2.54 X 10"6 mhos/in.
6 1 mg/liter = 8.343 X 10 " 6 Ib/gal.
^Elements analyzed only for dissolved fraction.
Source: Phillips Petroleum Co., Sunoco Energy Development Co., and Sohio Petroleum Co., First year Environ-

mental Baseline Report for Tracts U-a and U-b, Utah - White River Shale Project, VTN Colorado, Inc., vol. 1, May
1976.
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water, with modeling used more
frequently.

111. Interrelationships

The lease requires the lessee to study and report to
the Mining Supervisor (Area Oil Shale Supervisor)
on eeological interrelationships including migratory
patterns of birds, mammals, and fish, and plant-
animal relationships. This very general requirement,
which allows wide latitude in interpretation, could
mean as much as a complete ecosystem study, or as
little as a qualitative description of some two-factor
comparisons.

Not surprisingly, the lessees have monitored
interrelationships differently. The C-b lessees are
using an International Biological Program (IBP)
systems approach. This program, much too complex
to present here, is described in the C-b Environ-
mental Baseline Program Final P.eport.s Essentially,
the program proposes an ecosystem model where
driving variables (precipitation, wind direction and
velocity, sulfur-compound emission, ozone, trace
metals, fugitive dust, noise and activity disturbance,
etc.) are monitored for their effect on five ecosystem
response units. These units were formed from
13 plant community, habitat types based on similar
vegetation and topographic characteristics. For
instance. "General Upland" consists of chained
pinyon-juniper rangcland, bunchgrass. sagebrush,
and mountain shrub. A wide variety of "Stale"
variables arc measured on the response units such as
animal numbers and weights, plant standing crop,
and litter. Time-series graphs show functional
equations over time and space. Impact-response
matrices are developed to select the more important
cause-and-effect relationships for monitoring and
also to provide a mathematical model.

In the more simplistic C-a method, a series of
matrices provides the basis for the interrelationship
monitoring program. The first matrix compares
individual engineering actions against specific biotic
and abiotic parameters for (1) magnitude, direction
and duration of impact, and (2) importance and
measurability of the impact. Another matrix is
prepared using the medium- to high-ranked
parameters from the previous matrix to form a
"mirror image" where biotic and abiotic parameters
arc compared for relationships among each other.
This intra- and interrelationship matrix assures
that interdisciplinary studies arc coordinated in
time and space so correlation-regression and other
analyses can be performed. This matrix also provides
the basis for causc-and-effect computer models.
Important sources of mining impact are expected
to be underground retort constructions, cumulative
construction activities, dewatering, surface dis-
charge, reinjection. atmospheric venting, storage
of raw shale and topsoil. habitat modification,
rcvegetation, and increased human activity.

The major interrelations on tract C-a are
abiotic abiotic, abiotic biotic, biotic abiotic, and
biotic: biotic. An example ol high-level relationships
expected among precipitation, vegetation, and mule
deer on tract C-a is depicted in the Fig. 7. A
diagrammatic presentation of major soil-vegetation
topography interactions is shown in Fig. 8.

8. Ashland Oil. Int.. and Occidental Oil Shale. Inc.. Oil Shale
Tract C-b Environmental Baseline Program Final Report
(November 1974 through October 1976). vol. 5. 1976.

HE1I0R010GICAL

CONDI! IONS

Fig. 7. Diagram of high-level relationships on tract C-a.
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(chei

Fig. 8. Diagram of major soil-vegetation topography interactions.

The principal influences of abiotic parameters on
other abiotic parameters that are rated as high-level
relationships are

1. precipitation (quantity) on ground water (quality,
quantity, (low; movement, level, recharge/dis-
charge, availability):

2. precipitation (quantity) on surface water (quality,
quantity, flow velocity, drainage basin, sediment
load, stream bed, springs, and seeps);

3. ground-water quantity on surface-water quan-
tity:

4. ground-water quality on surface-water quality;

5. ground-water quantity on quantity of water in
springs and seeps:

6. ground-water quality on quality of water in
springs and seeps;

7. surface-water flow on surface-water sediment
load:

8. soil erosion on surface-water sediment load; and

9. soil chemistry on sediment chemistry.

Nine abiotic-biotic relationship influences of the
tract C-a area were ranked as high level:

1. precipitation quantity on vegetation production;

2. precipitation quantity on vegetation cover and
density:

3. precipitation quantity on mule deer migrations;

4. ambient air temperature on large mammal
migrations;

5. soil chemical characteristics on plant community
distribution;

6. soil trace metals on trace metals in plants;

7. soil chemical characteristics on plant community
composition;

8. soil physical characteristics (e.g., depth) on plant
cover; and

9. slope/aspect on vegetation cover or composition.

Of the number of influences on the abiotic system
by biotic components, only one such relationship was
considered by the lessee to be highly important -the
effect of plant cover and density on soil erosion
potential. Moderate-level relationships identified
include the influence of

1. vegetation (distribution and cover) on atmo-
spheric paniculate levels;

2. plant community composition on soil chemical
characteristics;

3. relative abundance of invertebrates on soils
(erosion potential, physical and chemical charac-
teristics): and

4. vegetation cover on soil erosion potential.

Relationships among biotic parameters that were
ranked as high level include

1. vegetation community composition and cover on
small mammal abundance;

2. relative abundance of small mammals on the
relative abundance of predatory mammals;

3. vegetation production on mule deer migrations;

4. vegetation cover on mule deer migrations; and

5. pcriphyton abundance on periphyton
productivity and on benthos relative abundance.
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A workable mathematical model must be
developed to track only the more important
parameter interrelationships, utilize the most
appropriate statistical methodology, and adapt to
changing objectives and methodology.

In conclusion, several statistical problems become
evident after a parameter has been selected for
monitoring:

1. After a null hypothesis is established, what level of
resolution (probability or alpha level) is
reasonable for rejection or failure to reject?

2. Is one standard criterion acceptable, such as
means will be within one sigma 80% of the time, or
should the alpha level vary according to the
variability of the parameter?

3. How much latitude can be accepted in departure
from the usual statistical assumptions (normal
distributions, equal variance of populations,
independence of mean deviations)?

4. Because two years does not constitute a basis for
premining calibration of dynamic parameters,
how can this limited information be used to adjust
differences among control and treatment sites?

j . For the most part, interrelationships among
variables could not be determined from the
baseline data, because of temporal and spatial
differences (parameters were measured
independent of each other). What procedure
should be used to select the most important
correlations and regression analyses during
production monitoring?

6. The baseline data collection program for air and
water parameters addressed mainly the quality
control and a comparison with parameter limits
established by State and Federal law. Moderate
attempts have been made to establish statistical
procedures for detecting significant differences
among stations, years, seasons, and daily periods.

How can statistical tests be used to detect
differences due to development as compared with
natural effects?

7. There is a need to predict when a level of poliutant
or disturbance will result in a significant
perturbation in one or more parameters and or
their interrelationships. How can statistics be used
to predic these disturbances?

8. Environmental damages must be mitigated. What
statistical procedures can best be used to test
effectiveness of mitigative efforts? What would be
a reasonable level of statistical probability?

9. The assessment of interrelationships probably
require some type of modeling efforts. What type
of cause-and-effect modeling can be used to track
the major components of the tract ecosystem
during production: How can this model
accommodate statistics and be a decision-making
tool?

SUMMARY AND CONCLUSIONS

The problems of monitoring are reduced to the
need to correlate environmental parameters with
forthcoming conceptual and detailed engineering
plans and material balances. Emphasis will be
placed on physical and chemical properties of
gases, liquids, raw oil shale, and various waste
products that will emanate from shale-oil pro-
duction. Transport mechanisms are generally
known, but detailed pathways of pollutant trans-
port are little known. Estimation of these factors
now will aid in determining anticipated pollutant
levels that can be translated into likely stress
conditions on the ecosystem.

A statistical design for the monitoring program
must include features that will effectively analyze
the development, biotic. and abiotic parameters
and all important interrelationships.



Problem Discussion 1, Part 1: Assessment of Oil
Shale Development—a Problem in Statistical Design

Donald R. Dietz, U. S. Fish and Wildlife Service
Eric Hoffman and Lawrence Barker, U.S. Geological Survey

Donald Diem: Yesterday, we got cut off a little
before we gave our complete conclusions or were able
to present a statistical problem that weareconcerned
with and want help with. I'd like to finish this
summary now. After the null hypothesis is estab-
lished, what level of resolution is reasonable for
rejection or failure to reject? Also, we had some
comments yesterday about a better procedure than
the use of null hypotheses. We would like to pursue
this further and encourage your comments. A lot of
the lessees or environmental contractors have been
using one standard for their criterion for acceptance
or rejection such as, the mean should read within
one sigma 809c of the time. Should the alpha level
vary according to the variability of the parameter, or
is one standard enough? How much latitude can be
accepted in departure from the user's statistical
assumptions, such as normal distributions, etc.?
Most of the biological samples with which we work
aren't really neat, agronomic parameters. The areas
are highly heterogeneous; populations are very
dynamic. It's difficult to find areas to replicate that
are similar. Because two years does not constitute a
basis for premining calibration of dynamic parame-
ters, how can this limited data base of only two years
be used to adjust differences among control and
treatment sites in trying to determine the impacts of
oil shale development? For the most part, inter-
relationships among variables could not be deter-
mined from the baseline data simply because of
temporal and spatial differences. What procedures
should be insisted upon when we go into production
monitoring so that the important correlations and
regression analyses can be made between the disci-
plinary arts? The baseline data collection program for
air and water address quality control and how well
these parameters meet established state and federal

standards. No attempt was made to employ sta-
tistical design, null hypotheses, or any other statis-
tical testing with most of the air and water parameter
data.

How can statistical tests be u.-ed to detect dif-
ferences in air and water qualities due to project
development as compared with the natural effects?
There is a need to predict when a level of pollutant or
disturbance will result in a significant perturbation in
one or more parameters and their interrelation-
ships. How can we predict these disturbances?
Environmental damages must be mitigated. What
procedur s can best be used to test the effectiveness of
the mitig tion effort? What is a reasonable level of
probability to strive for? The assessment of interrela-
tionships requires some type of modeling effort. Will
some form or type of cause-and-effect modeling
enable us to track the major components of the eco-
systems and their interrelationships? How can sta-
tistics be built into these models? Can a model be
constructed that would be flexible enough to be a
decision-making tool for a mining supervisor? These
and many other statistical problems confront us. and
being nonstatisticians, we hope you will bear with us
in our attempt to express what we feel are statistical
problems with this huge, essential environmental
impact. So, we solicit comments from the audience.

Gary Tietjen, Los Alamos: I would like to make a
few rash comments, a few of which 1 may later regret
having made. I think thedecisionasto whether the oil
shale facility will be constructed will not depend upon
your study but will be dictated by the demand for
energy. It would take a decade or more of studying
the environment to encounter all the sources of
variation that one might encounter in the few years
after the study was completed. You can't take that

110
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length of time because the environment will change
before you can finish the study; the process of
studying it will change it! The amount of rainfall and
snowfall will be major perturbations in the environ-
ment.

There is absolutely no question in my mind that
construction of this facility will alter the environ-
ment; thus, one doesn't really need to ask that
question. Rather, you should ask. whether the
wildlife will adjust to the altered environment. The
answer is very probably yes! The coyotes certainly
will adjust: you can't keep them fromadapting unless
you hire an armed guard.

The whole community of Los Alamos has not
disturbed the deer or fox populations seriously; there
are enough of them around to disturb the gardeners
sufficiently anyway. Bears may be disturbed some-
what, but no one there is trying to encourage a larger
bear population. And the skunks will love the place!
If the lessee were to irrigate a small field there, he
would attract large numbers of deer at night. With the
construction of a little cover and some feed, he could
attract more birds. Thus, the question should be. "Is
the lessee reasonably committed to conservation?"
and if so. then he can probably operate, 1 think, with
little concern.

Water supply needs a little different treatment. II
the watci quality is being degraded, how will you
know if it's a serious degradation or whether it ma\ be
coming from somewhere upstream of the plum? One
way to know positively is to run the plant water
through a tank in which you keep trout. If the fish are
okay in that tank. I think it is safe to dump the plant
water into the stream. What I'm suggesting is that you
put less effort into this base study and that you put
more emphasis on continuing concern during and
after the construction.

Lee Eberhardl, Bundle: 1 agree wholeheartedly
with Gary in the sense that what he has said is partly
summarizable as simply. "Let's use common sense."
But I'm not sure if the audience as a whole is aware of
the amount of effort that's gone into this kind of
survey around the country with nuclear power plants
and the outer continental shelf studies. I guess 1
shouldn't try to speak accurately about the require-
ments of NEPAas to what we should be studying, but
it's pretty clear that a lot of the money is being spent
on baseline studies and on after-the-fact construction
studies. Also a lot of time and effort is going into
some sort of experimental design; my reaction is that
we c rten have a single experimental site a nonrah-
doml> selected, treated site, for which you can pick

your controls at random out of the surrounding area
if you like. But 1 am not sure what you do with that in
the experimental design. The keynote speaker
yesterday talked about a time series problem in which
he felt that 100 observations was really not quite
enough to do the kind of things he'd like to do. We're
being asked here to have three preoperalional and
perhaps three postoperational samples with a series
of six and to do much the same sort of thing. I would
appreciate hearing some philosophy from some of the
statistical people as to what constitutes a reasonable
sort of statistical treatment here. I'm not sure whether
all the statisticians are aware that we arc talking
about single years as single data points. Most of the
more important ecological species or situations
almost have to be dealt with annually. For the more
complex species, the mule deer for example, we
have pretty strong evidence of autocorrelation. For
small critters like plankton.'probably autocorrelation
between years is only that that's forced on them by the
physical system. So we have a strongly correlated
series, a very short one. and 1 simply do not'1*n.ow
what to do with it. I can only state that my philosophy*--
about the use of statistics is correlated to understand
what is going on in particular segments of the
problem. I guess 1 return to Gary's comment. "Let:s
use common sense." but 1 would argue wiih each item
he suggested, if 1 had to do it actually in the field.

Larry Barker: The lessees are required to lake thi.s
data whether it is important or not. Because they
must take it. we want something that we can use later.
The problem is how to take the data, and what to do
with the data after it's been collected. I'm not sure
that we made that clear, but I want to make that
emphasis right now.

Corwin L. Atwood, L'G&G Idaho: 1 was one of the
people who was bothered yesterday about framing
everything in terms of testing hypotheses. We know
that there is going to be an effect; so why ask the null
hypothesis: Is there an effect? If you took enough
data you'd find the answer. I was then wondering
what to do about this, not in the simple case where
you've just got one quantity of interest. Then you can
get a confidence interval and visualize what's
happening. But what about the harder to visualize
case, when you have to keep track of several things at
once? 1 can only draw three dimensions on a two-
dimensional piece of paper (Fig. 1). These three
things that you are considering might be deviations
from an overall mean and an analysis of varying
situations. 1 would like to hear what other people
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NULL ^

OTHER HYPOTHESES
OF INTEREST

Figure 1

think of one thing that I do: I consider the following:
what do the data say about the null hypothesis? what
alpha level is wanted? what is the smallest alpha level
which could be used and still be able to reject the null
hypothesis'? Hut to identify other hypotheses of
interest may be one of the various wavs that you
could gel away from the null hypothesis and be just
barely unacceptable. There might be a number of
these hypotheses, and I would check the data as if 1
were testing each of these as a null hypothesis. That
would give me a ranking among the different
possibilities of interest if I could single out a fairly
small number of them. Maybe if 1 don't have much
data, my data would accept all of these hypotheses at
reasonable alpha levels, and then I'd realize 1 can not
distinguish between them. Maybe the data would
reject some of these worrisome ones and accept the
null hypothesis, and that would tell me something.
There are lots of things that could happen, but this
ranking might give me a feeling for what is going on.
It isn't in textbooks. 1 don't know if other people have
ideas on this.

Dave (Josslee, Union Carbide Corporation,
Sudear Division: 1 would like to make two very
general points. One is partly a question. To what
extent do you intend to involve a stalistician with the
project, or is a statistician already involved? Second. I
have the feeling you can'l look al things like species
individually. I think you need to look at things like
species from a multivariate point of view to get more
power into your testing estimation.

Don Die/:: We have a stalistician available to us
out of C'SU. but so far we haven't been able to use him
much. We also have the expertise from the I-ish and
Wildlife Service, from their Biological Services
Division: they have done a lot of work with;small
mammals. We are hoping to get a statistician on
board with us. Although we have a systems ahalyst

and a computer specialist now. we still do not ha\ea
consulting statistician, and we leel that is oui major
need right now. We will be working hopetulK with
some multi\anale analyses as we gel into more
species work. I he lease that the oil companie--agrecd
to requires certain things. But mice we get the data
into a data base, then we will beableio select our own
statistical packages and run an> analysis thai scenv*
appropriate and worthwhile. Kiglu now uiis IVJ \er\
simplified approach, and the program is quite
dynamic: we still ha\e a lew years to consider
anything we can get a lead on. One thing I might say
about Dr. I ieijcn's comments. "As a biologist, lie
makes a good statistician."

I'cier lilooinjiehl. 1'iiinchni: It seems to me in this
context it's a little dangerous to talk about our limits
of things, lor example, one and two sigma limits. I
think these are numbers thai can be determined Irom
the baseline studies and then son ol written into law
and used in a rigid way. As d a n pointed out. n is
most unlikely that the baseline study will really come
up with enough data to determine those quantities m
any accuracy. I he baseline study period is io
determine good places to use as control sues, and the
ongoing monitoring should really be a continuing
process I or earn ing out inlormaiion Irom the control
site to decide, well, a basis to use lor comparison in
the development sites.

Frosty Miller, Inion Carhiile Corporation.
Xuclear Division: To in and sample the whole
environment at once and determine, shall we sa\.
tolerance levels for change due to an '"innovation" in
environment is a \er\ difficult problem. I here are
some ideas to be picked up Irom other technologies.
Chang at Berkeley has a health index which he has
proposed. Periodically, he samples people and asks
them about their health: what he gels is a high
variance on an individual observation that's sort ol a
control chart idea of the general health of a
community over a long period of time, ll seems to me
that ideas like this are what you need. I didn't hear
any discussion yesterday concerning where you were
going to place your transects, \is-a-\is the expected
changes or degradations in the environment that
would inevitably ensue from cha nging the water How.
That will certainly affect the flora, and I would think
that the fauna would go where the water is. at least to
a limited extent. Thus, il you plan your transects so
that you can discriminate between various hypoth-
eses about what will happen to the water or what
will happen to the dust burden from the site in the
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uiK-o\erecl areas, urn may have a better chance ol
delecting things than it you merely sample random
transects across \arious al'ilude /ones.

Frank Anscomhc. Yale i'luversiiy: 1 have the
notion that whenever one is planning an obser-
vational study of any sort, it's a good idea to begin
with an exercise, which may seem a little silly, but I
believe is really rather sensible: to consider what you
would ask for if you were able to ask tor absolutely
anything uhate\cr, without cost. In this matter of
surveying the environment, suppose you could have
an army of invisible demons observing absolutely
anything that you would like them to observe at
whatever frequency you like and suppose that you
could have them doing this not merely for two years
but for twenty years or two hundred years. What in
that case would you like them to observe? But
suppose that you are exposed to the risk that you
might be expected to process that data when you get
it: therefore, it would be foolish to ask for complete
information about everything- one should neverask
for that! Thus, what would one rather like to sec and
know about? The difficulty when one is thinking
about any actual observational study is that one is too
much constrained by what one thinks is practical
of course, one has to be constrained by what is
practical- but sometimes considering what could be
had in some magic way for the asking will sometimes
make very clear that only some features are really of
interest, and that might help somewhat redirect what
one does with the resources that arc actually
available. Undoubtedly, if one could observe this
area in great detail over a long period of time, one
would see all sorts of changes going on. and the
baseline would be a very' wobbly baseline. 1 think. It
would have slopes to it, all sorts of things like that,
and to try to think out what sort of summarization
would make a tremendous amount of data available
will help a good deal in pinpointing the things that
would be worthwhile trying to observe and practice.

Lee Eberhardt, Battelle: I think that's a particu-
larly important comment by Dr. Anscombe. The
trouble I have personally is that I see reasons to
believe that most details of-ecosystems are very
rigidly controlled, but the systems themselves can be
likened to a living animal. Things go precisely in a
particular form, which I think one appreciates more
or less on a philosophical basis and somewhat on a
theoretical basis and more strongly on some under-
standing of evolution. In practice in the field, though,

as a sort ol a working rule, we use the coefficients of
variation of about KM)' < on things we measure. 1
don't believe that's purely a stochastic process I'm
looking at. but it's very dilficult lor me to gel that
variability for things that arc measured much below
that. Another thing that 1 think needs to be said here
is that we arc talking about something that turns out
to be a sort of an adversary process in the end and
perhaps in the beginning. We are told in designing
studies for environmental impact evaluation thai we
can expect, sometimes literally, to be put in the
witness chair in a court, and the situation then
becomes one ol legal manuevering. The most obvious
thing for the prosecution to ask is. "Well, would you
look at this and this and this and this?" To be
protected against this sort of thing, the people who
have to design thcgeneral survey insist that we look at
every iittle item in sight, and in a sense, that's great,
but in practice, it compounds the effort hopelessly.

I'll slip in one more comment for Gary, if 1 may.
Many pieces, such as Los Alamos or Hanford.
constitute areas that have been a tremendous bonus
to the wildlife to the ecology, if I may use that word
in a way 1 shouldn't. Therefore. Los Alamos knows
that not much damage has been done to the environ-
ment there, that they have really improved ii
considerably as far as deer, coyotes, skunks, and all
those things are concerned: however, these other
situations we're talking about here are going to do a
lot of damage. Strip mining will do a lot of damage:
the oil spill off the coast clearly will do a lot of
damage. There's no doubt we're going to see an
impact. The question is how do we deal with the
adversary situation and how do we use what tools we
have effectively.

Eric Hoffman: I'd like to thank you for those
remarks. It's kind of a happy position we sud-
denly find ourselves in. In fact we have a mass of
information on each of the oil shale tracts. Here is just
the final baseline data report for tract C-b. It
encompasses five volumes and a package of matrix
tables which are kind of mind boggling. There are
similar reports to the other tracts. Behind that stands
about ten bookcases full of detailed statistical and
probed-type data that has to be weeded through, and
somehow a system has to be designed to compare that
mass of information with the data that the lessee is
required to obtain during development. Our problem
at hand is how can we read through all of that in a
statistically sound manner and decide what really
would constitute a realistic environmental monitor-
ing program that is statistically defensible. Any ideas
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or thoughts along that line would certainly be
appreciated.

Tony Olsi'n, Bundle: I'd like to add one specific
comment lo what Dr. Anscombc said. In addition to
deciding what you would like to take. 1 think youalso
need to emphasize what size of impact is really
important. And then if you are really interested in a
hypothesis-testing situation, what you should do is
make all of the nice assumptions that one generally
likes to make, look at the size of the impact that you
want to detect, and find out whether you can delect it
at all. 1 am familiar with an example in the weather
modification field: if you make all those nice
assumptions and want to detect whether you have an
increase in rainfall over an area, you find out that you
have to do approximately ten years of experimenta-
tion to detect a 50% increase in rainfall when
theoretically the meteorologist may not be detecting
effective rainfall more than 10% at most. Maybe one
would very quickly get away from the idea of testing
hypotheses.

John Thomas, Handle: If you are really going to
move away from the idea of testing hypotheses, and
we're really going to admit thai there is going to bean
impact whether we can detect it or not. and we are
really committed to doing more work past this
baseline thing and we really are going to finally
involve a statistician, and we really do have a lot of
research questions, it seems to me you have a golden
opportunity to do some real research in conjunction
with the monitoring.

Lincoln Moses. Stanford University: It seems to
me that if you have several hundred pounds of facts,
your primary job is to view the problem as a
descriptive one. What is it that needs to be described?
Several hundred pounds of paper defies description.
How would you describe the condition o! the
environment now; how would you describe changes
in it? Hypothesis testing is almost extraneous, and
sometimes biological insight would seem to be of
primary importance in order to get a dozen, five
dozen. 1 don't know, some number of descriptions
that we can monitor there and in nearby areas.
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ABSTRACT

A nuelear luirl reproeessmi! evele is used lo illustrate problems eneountered b\ a statistician when in ing in
reeoneile total amounts ol ;in element al dillerent stages in tiie rceoven cycle Calculation ot errors are discussed along
vwlh problems ot biases, holdup, and simulation.

INTRODUCTION

Each of the DOE laboratories and contractors is
already, or soon will be, deeply immersed in nuclear
safeguards and accountability. As I hear the problem
discussed from a political viewpoint, there are
frequent official references to a "malevolent act,"but
the term seems to refer more to blackmail threats to a
civilian population than to the useof weapons in war,
though the latter possibility is always present. The
questions are: How can we keep unauthorized
persons from getting nuclear material? and how do
we tell whether some of it is missing? A uniform
system of keeping track of our inventory will be
necessary because some international control seems
imminent and perhaps desirable.

The task is of enormous proportions. Some of the
reactors going on-line will process or reprocess 50 kg
of plutonium per day. Every item, every drop of
solution, every piece of scrap metal, and every whiff
of powder will have to be accounted for. Moreover,
the transactions from one place to another or from
one form to another will take place rapidly, so that
the accountability will have to be automated on the
computer. There will not be time to mull over
decisions on a case-by-case basis as we have hitherto
done.

When one mentions the word safeguards, he may
be completely misunderstood. There are many who

think of safeguards wholly in terms of physical
security. At the new plutonium facility at Los
Alamos, there probably will be a computer check of
your badge, your signature, your fingerprints, and
perhaps of your voice before entering the facility. At
the same time, you would be monitored for
radioactivity, of course. The chemists think the
problem of safeguards solved if they have devised
accurate and precise methods of analysis for minute
quantities of material. The physicists think of
safeguards problems in terms of very rapid nonde-
structive methods of analysis not requiring lengthy
sample preparation. (In all of their methods they
either count the radioactivity in the sample directly or
irradiate the sample first and then count it.) The
computer people believe they have solved the
problem of safeguards if they are able to get the
numbers quickly onto a data base with rapid retrieval
capability. It is left for the statisticians to try to make
some sense of the thousands of numbers that will be
generated.

I have chosen one small segment of an actual
reprocessing cycle at Los Alamos to illustrate the
problems faced by the statistician. I shall try to
neither exaggerate nor minimize the difficulties. Of
course, material is lost during processing. The public
and the press don't seem to understand this and have
not been sympathetic. The losses are not so large as at
first they seem. Losses of uranium at Los Alamos
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over the last 25 year*, if put in metallic form, could be
placed ma ladv\ purse. Ol course, even a weight litter
uoukl lia\c dillicultv walking out with it.

The situation is somewhat like making cookies.
Suppose that you were given a certain amount of
Hour, sugar, etc.. lor this purpose and that the
ingredients were weighed out to you. After the
cookies are baked, they are weighed. You areallowed
a certain loss for evaporation, but still there is
material /H/.S.S/H.I;. Where is it? On the beaters, the
spoon, in the bowl, and on thedishrag that wiped up
the spillage, faking all this into account, one still has
to decide whether the kids running through the
kitchen have licked the spoon or made off with a
cookie.

l e t me get into the example (Fig. 1). We Marl out
with a uranium metal alloy. The concentration of
uranium in the metal is determined chemically, and
the metal is weighed. A part is then machined from
the alloy, and this part is weighed. 1 he difference in
the two weighings is the weight ol the scrap thai is
gathered up and put into cans. The scrap itself cannot
be weighed because it is oily; it can neither be
dissolved safely nor stored safely because it is
pyrophoi ic (i.e.. it will catch on lire spontaneously).
Consequently, the scrap is burned to an impure oxide
and stored in cans in a vault until such time as there is
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Fig. 1. Metal scrap reprocessing.

enough ol it accumulated lor a batch to be
reprocessed and until the facilities are readv. Then
the ash is dissolved in an acid. The volume of the
solution is measured and the concentration deter-
mined by an NDA (nondestructive analysis) device
called the l.'SAS (uranium solution assays} stem). At
this point we make our first check: concentration x
volume = total uranium. The total uranium in
solution should be equal to the weight ol the scrap
metal times the concentration o( the metal.

Next, something is done to the solution to
precipitate the uranium oxide. About 90'i of '.he
uranium is precipitated. 9'< remains in the filtrate
solution, and I't is on the rags used for cleanup. The
precipitate is weighed, and its concentration deter-
mined chemically. (I-or obscure reasons, the concen-
tration of the batch is not used directly. Not even,
batch is assayed. Instead, the annual average
concentration is used. Because of the chemistry
involved, this should be quite close to theanah sis for
any one batch. It is the 90<r figure that will vary
considerably.) The filtrate solution has its volume
measured and its concentration determined by the
USAS device. Finally, the collection of rags for an
entire month (rather than a batch) is burned, and the
amount of uranium in them is determined by an
instrument called the Random Driver. Unfortunately
the Random Driver has a much larger error than the
USAS, but fortunately the amount of material
involved is small.

We then add up the total uranium in the
precipitate, the filtrate, and the rags, and it should
check with the amount found in the solution before
precipitation. The differences in the consecutive
totals are called M UFs(material unaccounted for) or
BPIDs (book physical inventory difference). Each
point at which the total uranium may be checked is
called an "account." There may be 75- 100 such check
points at an R&D facility such as Los Alamos.

Although we close the books on the scrap metal at
the end of each month, it may be some time before we
have all the figures with which to reconcile the totals.
What error shall we associate with the three totals we
now have? Certainly the totals have different
variances. We can enter the figures as shown here
(Fig. 2) in a system of multiple entry bookkeeping,
but we must allow an extra column for the error or
variance of each figure. With the aid of the error
column, it is our job to decide whether the books
balance. If they do not, there has been an arithmetical
error or a diversion of material, and an investigation
ensues. This system we might refer to as statistical
bookkeeping with the statistician acting as the
auditor.
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Fig. 2. A statistical bookkeeping system.

How do we calculate these errors? Each entry is a
product: concentration times volume. The variance
of the product cv is

/JLcW + /UvV + OCW .

If we replace variances with sample variances and
means with sample means, we have one estimator of
the sample variance of cv, but it is biased. An
unbiased estimate is

7 V + v V - .5cV(l - l/m - 1/n) .

The propagation of error estimate is

~cW + v V ,

and it, too, is biased. Which do we use? There is still
some argument among statisticians. No minimum
mean square estimator seems available, the problem
being seemingly intractable.

These estimates, however, d o not take into account
the error in fitting the calibration lines, which can be
considerable. To be more explicit, there is a linear
calibration line set up for the USAS device (Fig. 3),
and the equation of the regression line is y = a + bx
where the x's are regarded as fixed (they are known
standards). We use this regression line in reverse: that
is, we observe y and solve for the corresponding .v
value: x = {y — a)/b. This gives us the concentration.
We multiply this by the volume v of the solution and
sum over the several solutions processed during the
month to obtain the total uranium S VjQ', — a)/b. For
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KNOWN STANDARDS

Fig. 3. Calibration line for the USAS device.

KNOWN STANDARD

Fig. 4. Calibration line for the chemical results.

the precipitates, we have another calibration line for
the chemical results (Fig. 4) with equation z = c+dx.
Again this is used in reverse: x = (z — c)/d. In this
case, though, we observe a large number of z'sand get
an annual average, x, of the corresponding results as
the concentration factor. Multiplying this average

concentralion by the weight if of a particular
precipitate, we obtain 1 u\(r — c) d. For the filtrate, a
different calibration curve is used with the L'SAS
device (a different set of standards) and we obtain
X q,(y, - e) / where the q, are volumes and the
regression line is y = e+fx. Finally, lor the rags, we
use still another line, y = g + hx. and we use the single
figure x = (y — ,tf) h. The difference between the two
sums that should balance is then:

Q= 1 v,(_r, - a) b-2. w,(z - c) d

- i! q,(y, - e) f- (y - j?) h ;

that is.

MUF = solution - precipitate - filtrate — rags .

We could, by propagation of error, find an
approximate variance SQ2. If Q isunbiased. wcwould
like to test whether it is zero, and if we had enough
faith, we might assume asymptotic normality and
look at the ratio Q SQ. If Q has estimated bias B. we
might form the ratio (Q - B) (.v0

2 + .vs
2)'2 and

compare it to a normal distribution. Is propagation
of error the proper tool here?

Some of the sample variances needed for SQ1 may
be difficult to obtain. The statistician will have to
obtain the calibration resultsand obtain variances for
each piece of equipment used. He will need to
familiarize himself thoroughly with each step in the
process, which will be time-consuming. Thevariances
for volumes can be a real headache. The volume of a
tank is calibrated by making marks on the side of the
tank to correspond with given volumes. I had always
thought that a tank volume, once calibrated, would
stay calibrated, but that is not the case here. The
calibration is constantly drifting. This tank has to be
filled with hollow boron glass cylinders that act as
moderators to keep a solution from going critical.
The acid solutions eat the glass away, causing the
volume to continually increase until recalibrated.
Thus we get a curve somewhat like this (Fig. 5). It is
not trivial to recalibrate some of these tanks. Even if
you fill a tank with a measured container of water,
how much air is in that water? What is the density of
the water? Some large tanks have to be shielded and
are sometimes calibrated as follows: Pour a known
volume with a known concentration of strontium
into the filled tank. Observe the concentration of the
dilute solution. The ratio of the two concentrations is
proportional to that of the two volumes, and you can
solve for the tank volume. Not even the weight of an
object will stay fixed in this business. We had some
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TIME

Fig. 5. Curve showing volume of a cylinder before and after
recalibrations.

uranium foil in storage and each time it was weighed,
the weight was greater. It was assumed thai the
concentration was unchanged, and the resulting
apparent change in total uranium gave the auditors
fits until it was realized that the foil was oxidizing in
the air!

You can get real increases with "holdup" in the
tanks. Depending on the acidity, some of the
uranium may adhere to the glass cylinders. When a
more acid solution is used, you flush this off and get
more uranium than you started with. A common case
of holdup occurs in glove boxes. A little uranium
oxide may be spilled during weighing and left in the
glove box. Eventually, perhaps months later, the
glove box is thoroughly cleaned, and this buildup
added to the account. The result can be observed by
watching the account as a function of time. Nearly
every loss or low value is followed by a high value in
the succeeding month. How do we model this
holdup? How do we take it into account'?

Another approach we have tried is simulation. We
need a confidence interval for the MUF. We do not
wish to rely either upon normality of Q nor upon the
propagation of error approximation for the variance
of Q. To do simulation, however, we shall have to
assume certain distributions and parameter values
for the random variables involved in Q. Mark and
Myrle Johnson at Los Alamos have done some
simulation work on this problem. To keep the results
from being overly dependent upon a given distribu-
tion, one needs a family of reasonable distributions
for the random variables. They have come up with a
family, each member of which has mean zero, unit
variance, and zero skewness (i.e., they are all
symmetric). There is a parameter or that governs the
kurtosis (Fig. 6). The family includes the uniform
distribution at one extreme (Pi = 1.8), the normal
distribution (fr = 3), and a very peaked distribution

c
0)o
ID

Q-

XI

- 3 0 - 2 0 -10 00 10 2-0 JO

0-2 -

Fig. 6. Densities for selected a values.
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Fig. 7. Safeguards application.

with fii = 5.4. A single algorithm permits easy
generation of the variables for any member of the
family. They first decided to call these new distribu-
tions the NEW DIST family until someone pro-
nounced the acronym too rapidly. By varying the
kurtosis, we can study the length of the resulting
confidence interval on Q (Fig. 7). This is done by
generating a large number of MUFs from a given
distribution, sorting them, and picking off the
percentiles. We can then choose the longest interval
for which we think the kurtosis is reasonable. Of
course, one could study a family of asymmetric
distributions by exponentiating the random variable
we generate.

The simulation approach requires the same
amount of work in gathering parameters and
variances but has seemed a bit more reasonable and
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flexible to us than the straight propagation of error.
We are looking for further suggestions along these
lines.

The picture may be still further complicated by
frequent (say. weekly) calibration, which will be
insisted upon at the new plutonium facility at LASL.
I hen we will have to add a few more but similar terms
to our expression for Q.

A more disturbing problem is bias. What is bias?
Some of you were raised on the concept that the bias
oi' an estimator 0 is Ii(6) — 0. That, by definition,
seems to make the bias a constant. In a series of
influential papers, Churchill Eisenhartat NBSgavea
very similar definition, but he has replaced £(0) with
the limiting mean /i ol a set ol measurements (under
identical circumstances) on a quantity. He then says
"the systematic error or bias . . . of a measurement
process will ordinarily have both constant and
variable components." That makes bias a random
variable. He illustrates by considering a distance
measured with a steel tape. The temperature on the
day on which the measurements are made adds a
random variable into the limiting mean, hence into
the bias. The term "limiting mean" is not so well
defined, and thus the concept has expanded into
"long-term" and "short-term" systematic errors,
which may be either constants or random variables.
Not understanding each other, there have been
vociferous arguments among statisticians within our

DOE community about bias and systematic error
and how to correct for them a nd when not to correct
for them. etc.. with everyone using his own
definition of bias. May I give an example of what
confuses us as statisticians, and even more confuses
the experimenter? It is to get a form like some we see
from the EPA and NBS asking for a series of
measurements to be used, say, in standardizing a new
method. Here are the questions the experimenter is
required to supply under the heading of Calibration
Results: (1) What is the overall uncertainty on the
value of the activity? (2) What is the standard error?
(3) Give a 99(/j confidence limit. (4) The total
estimated systematic error is comprised of 9c
due to — and c,{ due to etc. (5) How arc the
systematic errors combined? (6) H ow are the random
and systematic errors combined? To fill out such a
form requires agreement on what the terms mean,
and 1 don't think we have yet reached that agreement
among ourselves. We need to do some housecleaning.
Indeed, we may be a little disturbed about filling out
the form because we think they might misinterpret or
misuse what we say. I am trying to say that this
chemistry business is swarming with biases and
systematic errors. The Random Driver, for example,
has large errors for small amounts of uranium,
moderate errors for moderate amounts of uranium,
and large biases for large amounts of uranium. 1
would like to get a colloquium started on that issue.



Problem Discussion 1, Part 2: Statistical Aspects
of Nuclear Safeguards

Gary Tietjen, Los Alamos

Gary Tietjen: I described yesterday a system of
multiple entry bookkeeping which I called a statis-
tical bookkeeping for accountability with an added
error column. One of the questions was how do you
calculate that added error column and do you use it to
reconcile the total. 1 suggested several ways of
calculating a variance there and asked which one of
those we should use. I gave a/ mathematical
expression for the MUF in one particular case, MUF
being the material unaccounted for, and asked if we
should try to propagate the error on this MUF to test
a hypothesis set at zero. Shall we use simulation to
accomplish that purpose or is there something better.
How shall we handle changing calibration on
volume; how shall we model holdup; and finally, how
shall we handle questions of bias in deciding whether
this M UF is zero. Let mejust make one remark about
the holdup. The situation frequently appears some-
thing like this (Fig. I): as we observe the M UF, it will
first go below the line and then above the line; the
next month there will be a compensating factor, and
one will get a curve something like this. There seems
to be a type of regularity about this discrepancy as
you get one high value, then followed by a low value,
and so forth. Perhaps one could do something with
that by plotting the values that fell below some line

MUF

(perhaps zero) against those that fell above that line
(Fig. 2) to see if there was perhaps some relationship
between those points that fell below and those that
fell above the line (with a lag of one month say or
several months depending on the process). If there
was. then maybe one should infer something about
modeling the holdup. Now with relation to the bias, I
was just going to say this: Eisenhart gave the example
of a steel tape that was calibrated, and to calibrate a
steel tape you need to take the temperature of the day
into account. He talked about using a steel tape to
measure a distance. On a particular day, however, if
repeated measurements were made at a temperature
below the temperature at which this thing was
calibrated, then you would get a kind of bias on that
particularday, and that would be a random variable
in the sense that it would vary from day to day. So
there he's talkingabout bias that's a random variable,
and we as statisticians usually talk about a bias as
being something that is constant. Jim Lechner said
that his boss at the National Bureau of Standards
would like to reserve the term "bias" for that which
was characteristic of the measurement process and
could not change from day to day. It was a long-term
kind of thing, and I would like to talk about perhaps
claiming some other terminology or something on
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which we could agree and which would help us to
describe those sorts of situations.

Sylvester Sue/a. Brookhaven: 1 have two examples
of the variable components of systematic error that 1
can identify. One of them involves any calibration
line. Since Gary has already brought up the problems
of volume calibration, I'll start with that as an
example.

The typical way to calibrate a tank is to start with
two known quantities a tank and a response system.
You don't calibrate the tank; you calibrate the
system. Typically in a larger facility, your tank
doesn't seem to change. What you really want to
worry about is the sensing instrument changing. The
typical way is to advance, collect data, and have one
calibration line; and you do it again. This is
exaggerated, but you do have, if you repeat the
calibration so that you get enough data, to assess the
uncertainty associated with the calibration process
here. There are techniques that are used in the
analysis of covariance, which are in Brownlee and
have been described in the first paper that John
Shepherd and I put together, of looking at this data
and deciding whether these calibration lines, in fact,
are similar. If they are similar, you can then combine
the data and get one average calibration line.
Although this calibration line has some uncertainty,
you can set confidence intervals on this thing, and we
know that the confidence interval tells us that the true
line lies somewhere within the band. The calibration
line will have some bias associated with it, as, for
example, it will be 2 liters too high or too low, and
every time we use that value, we won't know. So here
we have this variability, this uncertainty associated
with the calibration line where, in fact, it is a
systematic error that has to be included in the
uncertainty associated with that volume determina-

tion. Then, of course, you do have operator error,
and a lot of things could happen at the litr.e of
measurement; there are ways of determining that
random error.

You have a similar situation with a weighing
system if you have some nominal value, AH. that
you're using as a standard; it is a very good standard,
and you get it from the Bureau of Standards. It will
have some limit of uncertainty associated with it,
however. If you run all month and record observa-
tions associated with this thing so that you're
measuring a complete program, at the end of the
month, first of all. you can look at the distribution of
the ,v's—.v and some A-, (Fig. 3). You have the
distribution of x and .v,. and we can define, in this
case, this distance here, as an estimate of the bias,
which is equal to.v— xu. lean well attest or determine
whether, in fact, that bias is significant or not. If it is, I
want to make a correction for it. Let's assume 1 do
make this correction, I have some uncertainty in the
way that this /? was determined. I can take the
variance of both sides here, and if I assume they are
independent, 1 now have something that I define as
the constant complement of systematic error and the
variable complement of systematic error. I'd like to
hear people's reaction to this.

Jim Lechner, National Bureau of Standards:
Having had my name taken more or less in vain by
Gary a few minutes ago, 1 think I need to come up and
make a correction here. Apparently, I didn't make
myself clear, Gary, on the bus the other day. I would
not like to have you quoting me misquoting my boss.
That's not healthy.

The term bias (as learneu in elementary statistics
courses) is the difference between the expectation
(that's the statistical term) of an estimator and the
quantity that you would like to be estimating.

• •
x, Sx

Var ( 0 ) = ) + Var(*0)
Figure 3
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Therefore in order to define a bias, you not only need
an estimator oi statistics (which was defined), which
might be the sample mean, the sample standard
deviation, the median, or who knows what else, but
also you have to know what quantities you're
estimating or wishing you were estimating. Then
you can define the bias: it is not so much that my boss
would like to have the bias be a permanent
characteristic of the measurement process as that it be
this mathematically defined quantity depending on
both what you are calculating a nd what you hope you
are estimating. This will change each day if the
quantity you're calculating is calculated different-
ly for example, by a different calibration line or for
day-to-day effects (operator, instrument, or other)
that creep into your process. So indeed, the biasdoes
change day to day if there are these effects, as there
almost always are. On the other hand, the term
"systematic error" has been bandied around in many
different directions by many different people John
Jaech referred to this last night. The feeling I get from
talking to a lot of people (I must admit that most of
them are at NHS) is that the term "systematic error" is
one they would like to see reserved lor a permanent
kind of unusable, unchangeable characteristic of a
measurement process. Now. anytime you get the
measurement, there are components of the error in
that measurement, some of which are fairly random
in the sense that you can repeal the measurement six
times and have six truly independent observations on
that component of error. Other components are
random, but they only vary every month or with a
change of operator or something of that sort. These
latter kinds of random components are often
included in systematic error, and I'm "guilty" oi
having done this oftentimes myself. I talk about
systematic errors that vary over long periods of time,
and then 1 think I'm not being really careful with my
language. I don't know what term to use for these
components, other than just calling them compo-
nents of the error variance. Now that's a precise term
that has a well-defined meaning; people know what it
says for the most part, 1 believe, and you don't get
into the problem that a lot of us have with the term
"systematic error variance." If systematic error is a
life-long constant, then it can't have a variance as do
the components of error which arc like systematic
errors for an entire run (maybe all week long or
whatever); therefore, we don't like to call them
systematic errors. Last night John.I aech said that we
should educate people to expect statisticians to
disagree. The interpretation of data is something
where there's much room for disagreement, more so
than we like to see many times, but on terminology we

ought to be able to come to an agreement. Ill say red.
1 hope other people know what I mean; and if I say
bias. I would like them to know what I mean; and if
they say bias or systematic error. I'd sure like to Know
what they mean. 1 really think we ought to have some
terminology we can all agree on. even if we do
disagree on how to interpret data.

Gary Tieijen: 1 would like to thank Jim for that,
and I did misquote him I'm glad he got up and
corrected me on thai. I wonder if he could make an
additional comment or two about combining these
types of quantities and what they, at NBS, feel should
be done.

Jim l.cclmer. National liurcau oj Slumlords: Vlost
of my practicing career, which has been longer than I
care to admit, has been spent asa probabilist.and not
too much as a statistician. 1 don't speak from lotsand
lots of experience computing data: however. I've had
some. As ageneral rule. N BS strongly pushes the idea
of stating your systematic errors separately from your
random errors, not trying to combine the two,
because the way they should be combined depends on
the use to which you are going to put the results.
There is one particular case I will mention. A scientist
at NBS came up with a value for. not a basic physical
constant, but a definite something that has a true
value however you want to define true value of
two orders of magnitude better than had been known
before. I got his paper, which had a discussion ol the
systematic and the random errors, for review, and we
had to knock some heads together before we could
come up with something we both could agree on. In
there he had random errors ol' which he could
estimate the variance by his internal repetitions. He
also had random errors which were constant
throughout his entire experiment. Nevertheless, they
are random errors, and he knew the variance in this
case because he had worked with the same apparatus
so many times and in so many different ways. He
knew there w ere components of error in there, but he
knew how they varied from experiment to experi-
ment, so he could say, "1 have in here one component
of error; 1 have only one; if it's in there, it's in the
whole set ol experiments, so I can't have any hint
internally on what it is. However, there's a random
draw from the distribution which is essentially
normal between zero and variance, so he should
include that in his random error. You can have
random errors which look like systematic errors for
your entire set of runs, but you've got to know what
you're doing. Basically, your answer for that is don't
try to combine the systematic and the random errors.
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Let the reader combine them the way he knows is best
lor liis use.

Keith /.ieglcr, I.os Alamos: I want to get away
from the subject of bias and systematic errors,
because 1 don't understand them. 1 would like to
discuss the calculation ol the uncertainty associated
with the MDF. One of the things Gary talked about
yesterday was the calibration curve. In the ordinary
sense, the calibration curve is written as r= a +
h{.\ - .v), because thai is the way I like to write it. But
you never use the calibration curve in that sense: you
always fall for .v as equal to something in terms
of v. In a rather controversial paper that was
published in 'lec/moineirics not too long ago by
KrutcholT, he advocated that you can get a smaller
mean square error it you will not do this type ol
calibration but actually set x = c + </( r - i): proceed
as though y were the independent \ariableand .v were
the dependent variable, and complete the calculation.
I would like to suggest that people look at this very
strongly when they are calculating their MDF.
because it is much easier to calculate the variance on
this quantity, and it does seem to give a smaller mean
square error. As I have said, this particular paper
created quite a controversy when it came out. There
was lots of rebuttal and argument as to why this
wasn't a really good method. However, when the
simulation is studied, it is a pretty good method.
Because of all the other approximations that go into
calculating the MDF. 1 think that this would be a \er\
minor perturbation on the total calculation.

Now we will not lead the audience to believe that I
do not talk to Gary. I know (hat (iary is fully aware ol
my views on this, and so he has indicated these ideas
at I.os Alamos Scientific Laboratory.

Lincoln Moses, Stanford University: In her Ph.I).
dissertation. (Catherine I .a inborn considered two
problems. One of them was the Krulehoff paper. She
had theoretical arguments indicating that the results
he had arranged to be published were quite true, but
if you reached outside that range (her analytical
results confirmed her simulation was lor the range
she chose), everything went to hell in a handbasket.

Sylvester Suda, Brookhaven: I'd like to comment
on Keith's statement regarding the smaller mean
square error. In this propagation of error and
LEMDF' analysis you've got to be careful about
actually seeking the smallest mean square error,
because these numbers will be used against you if you
claim your measurements are too good, and the
inspection facility shows up and samples one of the

kinds of things that you measured. We are going to
have IAD inspectors in D.S. facilities shortly: the
determination of whether you have made an
inaccurate statement of your inventory will be based
on how many of these differences they discover.
Therefore, it is not the small or mean square error
that is something you look for. What you need is a
realistic estimate of how well you are measuring, so
that you are not being cooked in your own juices
because you've claimed a smaller limit of error than
you really have.

Keith Ziegler, Los Alamos: 1 guess that I am a
little bit in disagreement with the other statistician. 1
would like to come up with the best estimate but the
smallest mean square error. Part of the purpose of the
whole safeguard program is to attempt to detect
diversion if there is diversion. So you would like to
have the smallest reasonable mean square error that
you could get, if you're really going to be looking at
diversion. It's not the statistician's role, as I see it. to
come up with a wide error just so you can explain the
MUF.

Carl Bennett. Batlelle: I just want to say to Keith
that my problem with MUF's over the years has not
been with the lack of significance. My problem has
been to explain the fact that almost 500; of them
usually turn out to be significant. In other words. I
guess what happens in this business of using M DFas
an index of diversion is Hying to eliminate the things
from that- particularly biases, and frequently other
sources of error and variability -that tend to make
the rather synthetic variances we create so the use of
things like LEMDF and so forth are considerable
underestimates (and this may be what Syl was talking
about) of what the true variability in a measurement
is. You can go through life as a statistician in a chem-
plant trying to explain why we had significant MUF
and why we had MUF that was not consistent with
the errors that should have been assigned. Thereare
many notable examples of fairly significant chemical
advances and process advances that have come out of
the analyses of these significant MDF, particularly
MUF which persisted in being significant for let's say
12 months or 24 months in succession. It is this kind
of information from the data that says, "Yes, you do
need a consistent error of estimate; you need a
consistent error, or you need a good knowledge of
what your measurement error is and how well you
can trust these things." From then on you have to
explain all of the other sources of both variation and
bias which enter into that index.
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ABSTRACT

Technology in solar energy is moving very rapidly, l-or any given solar energy system an important consideration

is its performance. There arc many methods available lor assessing performance, all of u hich require meteorological

input. Thus, a question that is asked is how well will a given solar energy system perform over a t\ pica \\ ear for a given

location. Our problem is to develop a typical year. A typical year will no! be an average but will be a profile of typical

fluctuations that occur in weather over a period of lime.

There a re data available from twenty-six different locations. Hach location has hourly data on six different

meteorological variables over a number of years. O u r intent is 10 develop a model that represents the joint behavior of

the six variables and that can be used for generat ing a typical year. A set of criteria will bedcvcloped based upon the

data , and the generated typical year will be checked according to the criteria.

SANDIA ENERGY ACTIVITY

The management structure at Sandia has seven
vice-presidents. Underthe Vice-President of Research
there is a Directorate of Energy and Systems Analysis
which has most of the nonnuclear energy work. This
Directorate is made up of three departments (Fig. 1):
the Solar Energy Department, the Gcocnergy
Department, and a Systems Analysis Department.
The projects in these departments include a total
energy program generating both electricity and heat;
a solar thermal test tower; wind turbines; and
research in the areas of photovoltaic technology,
geotechnology, oil shale and drilling technologies.

DIRECTOR OF ENERGY PROJECTS
AND SYSTEM ANALYSIS

• SOLAR ENERGY DEPARTMENT

• GEOENERGY DEPARTMENT

• SYSTEMS ANALYSIS DEPARTMENT

Fig. 1. Sandia energy directorate.

and technical management of DOE's solar irrigation
efforts. About 350 people are working in these
areas.

SANDIA PARTICIPATION IN DEVELOPING
A TYPICAL METEOROLOGICAL YEAR

A few years ago, a colleague in the Solar Energy
Department discussed with members of the Statistics
Division some of the statistical problems that he saw
in the solar energy area. One problem was the lack of
direct normal (DN) radiation data. Direct normal
radiation is the energy that is received directly from
the sun and does not include the diffuse radiation-
radiation received from the clouds, for example.
Twenty-six weather stations had collected total
horizontal radiation data. Total horizontal (TH)
radiation (DN plus diffuse) is the energy received on a
flat plate horizontal to the earth's surface. The
majority had not collected DN; however, a few
weather stations (Albuquerque, New Mexico; Blue
Hill, Massachusetts; and Omaha, Nebraska) had
both DN and TH radiation data. The availability of
these data allowed us to establish an empirical
relationship between the TH and DN values for these
three locations. This empirical relationship made
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possible the construction of maps like the one shown
in Fig. 2a. Figure 2b shows the isopleths of TH
radiation for January. For some time, TH maps of
this nature have been available. Examination of the
TH map shows that the isopleths have a tendency to

be in an easl-wcsl direction across the United
States. As shown in Fig. 2a, someol the I)N isopleths
have a tendency to lie in a north-south direction. The
map indicates that the northern latitudes receive
:nore DN radiation than one might expect by looking

(b)

Fig. 2. Solar radiation for January (kilowatt-hours per square meter), (a) Mean daily direct normal radiation; (b) Total horizontal
radiation. :
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only at the bottom map. The large amount of
northern DN radiation was somewhat ofa surprising
result to us.

Contact with personnel in the solar energ\ group
continued after the above-mentioned project was
completed. Earlier this year our colleague in this
group suggested that we submit a proposal to the
DOE to generate a typical meteorological year
(TMY). The proposal was accepted, and we are now
in the process of selecting a method to generate a
TMY. The motivation for a TMY comes from the
need fora common weather data base for each oi the
26 stations so thai energy systems can be sized and
compared.

DATA BASE

The existing data base, to be used for the genera-
tion of the TMY. consists of hourly meteorological
measures on five variables—dry-bulb temperature,
dew point, TH radiation, wind s^eed, and wind
direction. There are 12 years of hourly data available
plus a few years of 3-hr data. The data are available at
26 weather stations. The map in Fig. 3 shows the
locations of the weather stations. A TMY is to be
generated for each of the stations.

1 he National Climatic Center in Asheulle. North
Carolina, has hat! the responsibility ol "rehabili-
tating" the data Irom each ol (he local ions so we do
not have the job ol "cleaning it up."

CRITERIA FOR SELECTING A TMY

One of the problems to be laced in developing a
TMY is to decide on what indexes might characterize
a typical year. As a first step, some summary statistics
were obtained. For the dry-bulb temperature, dew
point, and wind velocity variables, the mean and the
variance were calculated. Also calculated were daily
minimums. daily maximums. and daily ranges. Dis-
tributions of these variables were determined, an
example of which is given in Fig. 4. This figure shows
the distribution of the dry-bulb daily maximum
temperature for January 1953 at Lake Charles,
Louisiana. The data consist of 372 readings the
daily maximum temperature for 12 years. The per-
centages are also given and are shown in Fig. 4.
Distributions for the other variables and other
months are being generated for all the locations.

For the solar radiation variable, daily total
radiation is calculated and its distribution and
summary statistics are determined.

• HOUKLY

• DAILY

BBOWUSVILI.E

Fig. 3. Solar radiation rehabilitation stations.
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Fig. 4. Distribution statistics of January daily dry-bulb temperature maximums for Lake Charles, Louisiana, for 1953-1964.

In addition to these statistics, persistence was also
determined. Persistence refers to consecutive days
possessing a given characteristic, such as five
consecutive days of cold weather. A solar engineer
has to worry about such strings in designing a solar
system. How much storage he needs to build into his
system is affected by such strings. Persistence has been
measured by runs of days possessing a certain
characteristic. Figure 5 gives the number of runs of
"cold days" for the years 1953-1964 for Lake Charles,
Louisiana, in January. Here, a cold day means that
the daily minimum temperature is less than the 25th
percentile over all 12 years. Figure 5 shows, for
example, that twice in January 196! the minimum
temperature was less than the 25th percentile for two
days in a row and once it was less for three days in a

row. From the information in the figure, ue can
calculate the average number of run>pei yea rand the
average run length.

Figure 6 gives similar information on the number
of runs in which the maximum wind velocity
exceeded the 75th percentile of the maximum wind
velocity distribution.

In addition to single-variable persistence, two-
variable persistence is important. Figure 7 shows a
two-way table for temperature and radiation. The
blocks with A"s are the pairs which are of primary
interest. The lower left X indicates days in which both
the temperature and radiation is low—a cold and
cloudv day.

Figure 8 gives the number of "cold and cloudy"
days. Here cold means the minimum daily tempera-
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Fig. 5. Run length frequencies of January daily dry-bulb
temperature minimums less than the 25th percentile for Lake
Charles, Louisiana.
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Fig. 6. Run length frequencies of January daily dry-bulb
temperature maximums greater than the 75th percentile for Lake
Charles, Louisiana.

ture was less than the 25th percentile. and cloudy
means the daily radiation was less than the 25th
percentiie. The figure shows that there was one two-
day period in which the weather was cold and cloudy.
Figure 9 gives the number of runs of sunny (daily
radiation greater than the 75th percentile) and cold
(daily minimum temperature less than the 25th
percentile) days.

X

X

• - —

X

X
RADIATION

Fig. 7. Joint persistence of dry-bulb temperature and solar
radiation.
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Fig. 8. Run length frequencies of January joint minimums of
solar radiation and dry-bulb temperature less than the 25th
percentile for Lake Charles, Louisiana.

METHODS FOR GENERATING A TMY

To understand what is to be done, it is useful to
look at some data in terms ofa time series. In Figs. 10
and 11 two such plots are shown.

One approach for constructing a TMY is purely
empirical. "Empirical" means that existing segments
of data are selected according to some criteria and
then pieced together to form a year. For example, the
month of January 1963 may be typical for all the
Januarys for which we have data, which is mated with
February of 1955, etc., for a given location. This
approach has the advantage of using actual data and
of avoiding the mathematical difficulty with the
correlation structure.
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Fig. 9. Run length frequencies of January joint minimums of
solar radiation and temperature greater than the 75th percentile for
radiation and less than the 25th percentile for temperature for Lake
Charles, Louisiana.

A second approach is to fit the data with auto-
regressive-type models and then generate weather
data based on the mode]. Figure 12 shows two models
which have been tried for the temperature data. The
/ / , ( / = ! , . . . , 24) in the model ] is an hour effect, and
the rest of the model consists of autoregressive terms
which attempt to relate the present temperature to the
temperature of (a) 1,2, and 3 hr ago, (b) 23,24, and 25
hr ago, and (c) 47, 48, and 49 hr ago. Model 2 in the
figure contains trig functions to account for the daily

cycles. Both models have been used to fit the Lake
Charles temperature data for all years. The fits have
been very good, >?: = 0.98, a = 0.8. Model 2 contains
fewer parameters than the other model. Figures 13
and 14 give examples of simulated results from both
models. The models were based on 1957 Lake Charles
temperature data. The simulated results do not
appear to be unreasonable.

PROBLEMS

1. What criteria should be used to determine when a
reasonable model has been determined? In Fig. 15
one method is shown.

2. If a model is selected, how should a typical year be
selected? In Figs. 16 and 17 some ideas are given
for comparing generated radiation and tempera-
ture data with actual data.

3. Wind direction: How do we handle the variable in
which a wind direction of 2° and 359° are almost
the same but yet are numerically quite different?
Figure 18 shows a summary of wind direction for
Lake Charles in July. This type of summary may
or may not be useful.

4. Multivariate time series: We have five simulta-
neous weather measurements or a multivariate
time series. How do we correctly model these data?

5. How do we know when we have a typical year? We
need to know what parameters will characterize a
TMY.

6. How do we combine data over years? Do we take
averages or should we do something else?

STflTION 3937. l ' S 3
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Fig. 10. Plot of dry-bulb and dew point temperature for January 1953 at Lake Charles, Louisiana.
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7. Howdo\veuse3-hrdata?OurTMY musl beonan
hourly basis. One possibility is to use the 12 years
with hourly data and forget about the 3-hr data.

How do we adjust lor long-term cycles? Perhaps
12-15 years of data are not enough to detect any
long-term cycles.

STSTION 3937, 1/57
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Fig. 11. Plot of solar radiation for January 1957 at Lake Charles, Louisiana.
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GENERATE 12 YEARS OF DATA

CALCULATE SUMMARY STATISTICS AUTO-
COVARIANCE AND PERIODOGRAM

COMPARE WITH 12-YEAR DATA SUMMARY
STATISTICS AUTOCOVARIANCE AND
PERIODOGRAM

Fig. 15. Criteria to check adequacy of model.
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Fig. 18. Wind direction frequencies for July in Lake Charles,
Louisiana.



Problem Discussion 2, Part 1: Generation of a Typical Meteorological Year

Irving Hall and Richard Prairie, Sandia Laboratories

Irving Hall: 1 don't have very much to say that I
didn't say yesterday. There is one thing that I want to
emphasize: I mentioned that our data base is from 26
sites. Now we visualize making a standard meteoro-
logical year for each of these sites; we aren't going to
make one for an entire year for the whole country or
something like that. There will be one data-base year,
typical year, or whatever you want to call it, for each
of the 26 sites. If you have your handout, I had a view-
graph of that.* but I didn't have one of a specific
problem that we are interested in. The first one is
wind directions. Somebody did mention a possible
way of handling this problem yesterday. We thought
that we understood it at the time, but then we got to
looking it over afterwards; either we misunderstood,
or I'm not sure it is going to work! But if somebody
has some apt comments on any of these things—this
multivariate thing—I don't know exactly how they
are going to handle it, but maybe there is a
straightforward way. Just a little aside here: I
mentioned yesterday that I talked to a meteorologist
who has done some work for the State of California.
One thing he told me was that a statistician couldn't
do tiiis job.

Dave Gosslee, Union Carbide Corporation,
Nuclear Division: In handling meteorological data or
other data that are in a similar form, we want to
look at two-dimensional space. There has been
quite a bit done with the circular normal distribu-
tion, and I think you came up with uniform circu-
lar distributions too. I haven't done this since I
left some work I did with some climatologists quite a
few years ago, so I don't have anything up to date on
that. But there certainly are things that can be done,
and there is considerable literature about circular
normals; whether these would be normally dis-
tributed circular or not, I would have no idea.

Francis J. Anscombe. Yale: In the presentation
yesterday, I think there was not really any discussion
of the purpose of simulating a standard meteorologi-
cal year. 1 suspect that if a standard year has been
chosen, it will be used for a variety of purposes, and 1
suppose that these purposes would indicate -ather
different criteria for what would constitute a suitable
standard. I could imagine that one use of the standard
meteorological year would be for testing various sorts
of theories. For that sort of purpose, I think one of
the requirements should be that some few important
variables should average out right for that site. 1
could imagine that it would be desirable to average
the total amount of solar energy received, which
should come up about correct, and the average
amount of rainfall in that year should come out to be
about the average rainfall for the region. However, if
one were to define a standard meteorological year in
which every possible variable was averaged, let's say
for the date October 28, you have the average rainfall,
average amount of sunlight, average speed and
direction of the wind, and so on like that, over many
years. In that way, you will altogether compile a year
which is fantastically untypical! As I said there will be
no storms and none of the variability which is
ordinarily perceived. If the purpose of a standard
year is meant to be typical weather, it certainly can't
be the mean weather. More than a hundred years ago,
there were very intense discussions about what is the
average man—the mean man, and it was pointed out
that if you average all the physical dimensions of a
man you may get a description which doesn't cor-
respond to any real man at all. There is obviously a
conflict between means, or averages, on the one hand
and modes on the other hand. I would suppose that

*I. J. Hall and R. R. Prairie, these Proceedings, Fig. 2.
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the objective should be to have a year that in some
ways is more or less the mean for certain important
variables, but otherwise it is much more the mode
than the mean. The mode for the joint distribution
for all these variables may easily be quite a long way
from the mean.

Corwin L. A/wood. £"G"&(//</«//»: The fact that this
year will be used for different purposes will be
another reason for trying to persuade the funding
agency to accept a collection of several typical years
and a couple of extreme years cold ones or
wet ones or something.

Ram Uppithiri, Union Carbide Corporation,
Suclear Division: Many questions went through my
mind when I heard the talk yesterday, and 1 was
thinking about this important problem of standard
meteorological data and about defining the concepts
like typical meteorological year. The first question
that went through my mind was "Is it as hard to
define a typical meteorological season as a meteoro-
logical year?" Maybe that isa helpful question forthe
people who are involved in policy decisions and
might lead to the concept of a typical meteorological
year. When we start thinking like this, 1 would like to
break it down further: "At a particular site, is there a
typical meteorological day?" Maybe we should try to
build it up from information which we have. If you
persist and try to use the p.d.f. runs, you may run
into the problem of independence and dependence.
People have to handle these problems using finite
Markov chains to look for the transitions or for peaks
of a different nature when you are looking at
problems about persistence.

More than anything else, the concept of a typical
manner of year needs to be defined. It is not clear to
me how one defines a typical meteorological
timespan (whatever the unit of time may be). Does
this mean that we are thinking of particular plus or
minus sigma limits? or does it mean, as Professor
Anscombe pointed out, the modal frequency of a
particular variable? Perhaps a greater effort should
be made to define the terms; depending on the
definition, we have the kind of tools we're looking
for. If you want to use tools like quality control,
maybe you can define the mean—or perhaps make a
lot of pictures around these 26 sites. I imagine we can
define ±5-10% of the A involved. I suppose the
definition has everything to do with the kind of tools
we are willing to get into.

A typical meteorological season is more appropri-
ate because we will be eliminating, at least, the

problem of seasonal variation, as well as other types
of complications. More often than not. 1 hear people
trying to look at the whole problem at one time and
trying to get a spectral analysis and getting lost a little
more.

Dick Prairie: We are realK having great difficulties
with the criteria for defining a typical year. We
thought about means and modes and runs and tips
and downs, and we have charts all over the oil ice
trying to look at all these things. We talked to the
energy systems people, and we talked to meteorolo-
gists hoping we could gel some sort of help in
defining what the criteria are. Regarding the typical
year, we're really thinking now in terms of a typical
month possibly going to a typical season, which 1
would call the weather season (e.g.. summer: June.
July, and August). One of the problems we are having
with this whole thing obviously is what's written. In
one sense we've got too much data.and inanothcrwc
don't have enough. We've got twelve years of hourly
data. In reality, we look at a simple thing like
temperature, and it varies all over the place from year
to year fora given month and a given location. On the
other hand, there are not really enough years to look
at seasonal variation. In terms of what we're going to
use it for. as Irving pointed out yesterday, people are
sizing various energy systems all of the time, and what
they would like to do is to feed this "typical year" in
the little black box and compare various systems that
different groups have proposed. So that is really the
primary purpose of it. Also this business about upper
and lower bounds of some sort is useful, but I don't
really know what to do [here. Suppose we put in a
lower bound of a bad year, but "bad" has to have
some specific context, that is, it must be bad with
regard to temperature or radiation, for example.
Thus, we have to come up with some sort of
combination of bounds on badness.

The measures we are using include one measure on
solar radiation, two on temperature, and two on
wind - velocity and direction. I would say, however,
that the biggest problem we have to grapple with right
now is actually to set up these criteria (which will in
fact satisfy some people) for what a really typical year
is. Obviously it is a problem we will never win
because, no matter what we come up with, somebody
.is going to say that it is not typical. One other
thing—on the models that we are trying, the fits that
we're getting are looking pretty good. The standard
deviation that we are coming up with about the model
is like three-quarters of a degree right now, and we've
had some models that we then simulate from and get
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what looks like reasonable results to us. Of course
we've had somewhere we've found out that Louisiana
gets down to —25O°C which we feel is probably
slightly atypical at this time.

Dave Gosslee, Union Carbide Corporation,
Xuclear Division: I just want to comment on some of
ihc problems thai 1 was involved in some time ago.
With respect to the work of your people in Ashe-
ville now be sure that you don't read that as Nash-
ville; Nashville, Tennessee, has a lot of records too
he's talking about Asheville, North Carolina, where
the weather bureau has stored a lot of data. H. C. S.
Thorn (Herb Thorn) is a statistician-climatologist,
and he laid down a lot of methodology for some
regional, chronological studies. His typical weeks
went from March 1 to March I to avoid the leap year
and the short week; thus, the first week of the year
was March I through March 6. There is certainly
nothing wrong with thinking in terms of other than a
chronological year. We were talking about the rain
year yesterday, which 1 think they said went from
October I to October 1. We would try to establish
distributions for these observed variables, whether
they be heating-degree days, cooling days, maximum
temperatures, and so forth, and this will give you the
transformation. We need to try to put out totals of
means, medians, and variouspercentiles. Now 1 don't
know whether this kind of thing really is what we're
looking for or not, but there certainly is a lot of work
that can be leaned on there and used as a starting
point. Dr. Uppuluri brought up a point of persis-
tence. Does anyone have a comment on how to
handle that?

Lincoln Moses, Stanford: This idea is not really
fully baked; but suppose that one chose an interval
like a month or like ten days (one must make a choice,
and 1 can't say anything about what would be smart)
and then chose from the 12-year battery a random
choice for January and a random choice for February
and so forth. Now this will not be a typical year, but it
can't help but be more or less representative of the last
12 years' weather. It will contain most of the
persistence; you get breaks at the month intervals;
and if it were easy to do (as it might be), all kinds of
questions of multivariate things will have been solved
simply by the way the weather gets made in that area.
You can do lots of these "representative" years and
get an idea of what the variation was with very little
theorizing. However, you would be bound by your
12-year period, and in the case of a drought interval
or something, it would not show up, but it would be
there.

David Rubinstein, Nuclear Regulatory Commis-
sion: Essentially one can establish distance functions
between years or months, whatever is regarded as
suitabl. months appeal to me more than years. The
distance function would combine, let's say. the
difference of the mean temperature or difference of
the number of runs, whatever value weare concerned
with. Once thedistance function is established, we can
compare each year in terms of the distance function
with every other year and pick the year that was the
smallest sum of the distances or something of that
sort.

Ronald Thisted, University of Chicago: One of the
nice things about these discussion sessions is that we
can make suggestions and then leave. I'm very
sympalhic to the remarks of Professor Anscombe.
Dr. Atwood, and Professor Moses. Already over-
month boundaries persistences are ignored. 1 think
that is right. Look at January; if there is a cold spell
that runs from January 28 to February 3. that's not
picked up. So, there's no real loss in picking random
months as far as persistence, because that's already
considered minor. It seems to me that one of the
problems you're facing is that you have a program
which simulates years fairly well. It's consistent with
the data you have, and you want to know which of
these to pick out as a typical year. Germane remarks
have been made to the fact that typical years are not
things that we should fix on. Ifwe buy a house for the
energy demands of a typical year, we may face the
same problems that would occurifwe built houses for
typical families which have 2.3 children. It is very
hard to find housing that fits a seven-member family.
We may be in thesamepositionofhavinghousesthat
might withstand extreme weather or be overbuilt for
nonextreme weather, which aren't really atypical-
just not near the middle. First of all, I think the
statistician hasan obligation to inform the contractor
that what he is asking for may not really be what he
wants. Secondly, you have very good programs,
apparently, that simulate years; why don't you
provide the contractor with a program which would
generate typical years, that is, generate a year's worth
of data which is consistent with the last 12
years- that's very much the spirit, 1 think, of
Professor Moses's remarks-where your data actu-
ally follows from the 12 years but is not tied to any
one. People could use this information. Because
everybody wouldn't be looking at the same year,
every so often, somebody will get something that's
just atrocious, like last winter perhaps. I think that's
good.
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II tiliam Conover, Texas Tech: My suggestion is
lust a political one, because everyone has agreed that
there is no such thing as a typical meteorological
year. 1 think it might be a good idea to avoid those
words. No matter what you come up with, peopleare
going to attack you and say, "That's not a typical
meteorological year." There is no such thing; we've
never had a typical day in weather anywhere that I've
been. You might want to decide upon another name
and that may solve a lot of your problems. You may
want to call it a random meteorological year, a modal
meteorological year, a mean meteorological year, or
a computer-generated meteorological year, and each
of these would have different purposes. If you are
going to decide whether to fund a solar evergy
project, nobody will make that decision on a
computer-generated meteorological year or a ran-
dom meteorological year. Funding agencies want you
to use something more stable, because someone will
say that it wasn't fairtousethat year to comparetheir
site with somebody else's site. That year had a bad
storm in it, and it's not something you can expect
each year. Your purpose will determine the name you
ought to use; then decide what parameters you want
to work with, and define these parameters. Do you
want first-order serial correlation to be one of your
parameters. Take an example from the Rand
Corporation random normal deviates. They don't
make any claim that there's no serial correlation, and
to people who come up and say, "Oh. there's a serial
correlation in these normal deviates," they say,
"That's all right; we didn't say there wasn't. We just
said that if you plot them out, they plot like a normal
distribution." So make your foundation fairly firm,

and then you'll withstand any criticisms that may
come around.

Wes Nicholson. Battelle: I'd like to rcemphasi/e
what Conover just said and possibly relate it a little
bit to what John Jaech said the other night in his
elegant comments. This reminds me a little bit of the
problems that you're faced with when you consult
with metallurgists, and they can only take a few
samples, and they want you to find them a
representative sample which has all the different
kinds of properties in it that they may face when they
look out in the real world. They would like to test a
few representative samples and find out the strength
of the materials, lt'sthesameproblemthat isfaced by
the biologist when it is very expensive to prepare
sections; therefore, the biologist wants to find that
sacred section which will allow him to scan across it
with his microscope and find all thedifferent kinds of
anomalies that there could be in the material. This is
not a new problem. It's just phrased in a new area,
and I'm wondering if maybe this isn't one of those
points where we have to bite the bullet, stand up. and
say "Well, folks, if what you really want to do is
simulate what's going on, you can't do it with
something on the average, and you've got to look at
the problem as being a distributional problem first of
all." We know how to give you good estimates of
distributions, and we can tell you how to play games
with these distributions, depending upon the ques-
tions that you want to answer, but you can't really
answer very many real-world questions by looking
for things that are typical.
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ABSTRACT

The statistical analysis of environmental data presents many interesting problems when the data are taken under
Held conditions where it is difficult to control factors that may have an effect upon a particular response variable. This
paper presents different approaches to theanalysisofdata from a field experiment that examined the influence of adult
dt-'nsin on production of a calanoid eopepod /.ooplanktcr. Problems arc presented involving the analysis of these data
using regression and principal components regression.

INTRODUCTION AND SUMMARY

There are many difficulties associated with the use
of regression techniques to analyze data from
undesigned experimental contexts. For example, the
parameter estimates may be unsatisfactory, ormean-
ingful inferences may be difficult to make. The
problem to be considered in this paper resulted from
a collaborative effort of the authors to analyze data
from a field experiment that examined the influence
of adult density on reproduction of a calanoid
copepod population. The data consisted of observa-
tions on clutch size, female size, adult density, and
water temperature from samples collected in a pond,
representing a closed ecosystem during a full repro-
ductive cycle. The next section of this paper contains
a detailed description of the experimental back-
ground and a statement of the objectives or goals of
the original experiment.

Preliminary data analysis made use of regression
techniques to study the population dynamics of the
zooplankter. Starting with a complete second-order
polynomial regression model in terms of factors
related to female size, adult density, and water
temperature, the variation in the observed clutch size
(i.e., number of eggs per brood) was reasonably
explained by a linear model containing ten terms. In
addition, heterogeneity of variance and lack-of-fit
tests were performed to conclude that it was reason-
able to assume the observed number of eggs per
brood was a Poisson random variable. The regression
analysis was then done on the second-order model

'Research sponsored by the U.S. Department of Energy under
contract W-7405-eng-26 with the Union Carbide Corporation.
ESD Publication No. 1108. Environmental Sciences Division,
Oak Ridge National Laboratory.
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using weights appropriate for Poisson-distributed
data. This type of analysis made it possible to test for
the adequacy of the polynomial approximation and
the assumed Poisson distribution. The details of this
analytical approach are presented later.

As an alternative to the regression analysis de-
scribed above, principal components regression was
used for analyzing the relation between clutch size
and the factors related to female size, adult density,
and water temperature. This procedure involved
obtaining the principal components of the set of
standardized explanatory variables and then cal-
culating their regression upon the clutch size variable.
Correlations of these principal components with the
original explanatory variables assisted in yielding
physical interpretations. A total of nine explanatory
variables were used to obtain a new set of nine
principal components. Various selection procedures
were used to reduce the numberofcomponentsinthe
final regression model and also to reduce the number
of original explanatory variables without sacrificing
the ability of the regression model to explain the
observed variation in clutch size. The details of this
procedure are presented later.

The results of the regression analyses are presented
and compared, and in the last section, conclusions
from the analyses are summarized. In addition,
problems resulting from the analysis are stated, and
alternative methods of analysis are solicited.

BACKGROUND AND OBJECTIVES

Zooplankton are an important component of lake
and pond ecosystems, serving as an intermediary in
energy flow between algae (e.g., phytoplankton) and
fish. One group of zooplankton, calanoid copepods,
is extremely important in large bodies of water, with
the genus, Diaptomus, often being the most
abundant of the microcrustacea.1 These organisms
(diaptomids) are primarily herbivores (i.e., eat
plants—in this case algae) and detrivors (i.e., eat
decomposing organisms), and in turn, they are
consumed by larval and juvenile fish. Changes in
diaptomid populations, consequently, could quite
possibly affect the type and quantity offish found in a
lake.

Their vital role notwithstanding, knowledge con-
cerning the general biology, environmental require-
ments, and interrelations of this group within the
ecosystem is woefully inadequate. It has not been
possible to state what role past changes in water
quality have had on these organisms, and hence, no
prediction can be made concerning what might occur
as a result of future changes in water quality.

A substantial research effort was conducted from
1969 through 1972 to gain insight into the ecology of
one diaptomid. Diapiomus clavipes. This study made
use of laboratory and field investigations and was
designed to determine what role various factors such
as water temperature, food, pH, alkalinity, etc.,
played in regulating populations of these organisms.
Additionally, such organismic and population vari-
ables as age class distribution, reproductive rate,
female size, and adult density were analyzed for their
roles in regulating the populations.2

The field study was conducted over an entire
reproductive year (February through October) with
random samples collected on each sampling date.
During the colder months of the year the population
is composed only of adults with no immature stages
present. Consequently, it was relatively easy to
determine how many young were being produced and
how they were developing. During the course of the
year five distinct generations were produced.' The
major concern in this study was with those animals
that reached adulthood during this one reproductive
year. From previous knowledge,1 it was realistic to
assume that the first of these animals reached adult
form in early April. Consequently, while data from
February and March were available they have been
excluded from this study.

Preliminary evaluation of data showed that clutch
size was the most important determinant regulating
population size: and that water temperature, adult
density, and female size were the three primary vari-
ables affecting clutch size. The purpose of this study
was to determine to what level these three variables
explain changes in clutch size and what is the relative
importance of each of these variables as a deter-
minant. With the goal and purpose of the experiment
formulated, the objective of this paper is to describe
the ways used in attempting to elucidate the role of
these variables or factors in regulating clutch size in
Diaptomus clavipes.

In the statistical context, this problem involves
exploratory analysis dealing with interrelations
between variables. More specifically, the purpose is

1. Andres Robertson, Girl VV. fiehr<. Bryan D. Hardin, and
Gary W. Hum, Cuhuring ami Emltigi 1/Diaptomus clavipes ami
Cyclops vernalis. Report EPA-660 i-74-006. U.S. Environmental
Protection Agency. 1974.

2. C. W. Ciehrs. Aspects nf the Population Dynamics of the
Calanoid Copepotl. Diaptorrus elavipes Schacht. Ph. 13. thesis.
University of Oklahoma. Nonnan. 1972.

3. Carl W. Gehrsand Andrew Robertson."Useol Life Tables in
Analyzing the Dynamics ofCopqiod Populations," Ecolotfr 56(1 )•
665 72(1972).
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to explore ideas for analyzing the relation between a
response variable (clutch size) and a set of explana-
tory variables (female size, adult density, water
temperature).

ANALYTICAL APPROACHES

Description of Data

At each sampling dale the following variables were
recorded:

• Water temperature. In addition to theactual water
temperature at the sampling time, estimates of two-
and four-week delayed water temperatures were
recorded. These delayed water temperatures might
affect development (ultimate animal size) during
the early formative stages. An average water
temperature for the four-week period prior to the
time of sampling was calculated by fitting a
quadratic function to the sampling, two-week
delayed and four-week delayed water temperatures
and then calculating the average value ol this
function over the four-week period.

• Adult density. The adult density was the average
number of adults per liter recorded from the
samples at each sampling date, and the log of the
density was used in all subsequent analyses.

• I-emale size. The average length of the sampled
females was used as the measure of female size.

In addition, for each of the sampled females with
clutches, the number of eggs in each clutch was
recorded. Table 1 contains a complete listing of the
explanatory factors and response variable. Because
the main objective of this study is concerned with the
dependence of the average number of eggs per clutch
(response variable) on the explanatory factors, a
regression equation relating the response variable to
the explanatory factors appeared to bea logical start-
ing point in analyzing these data.

However, before the regression analysis was
performed, testing determined if it was reasonable to
assume that the observed number of eggs per clutch at
each sampling date followed a Poisson distribution.
The first test was a heterogeneity of variance test and
used the following statistic to detect extra-Poisson
variation:

where

n = number of clutches observed.

v" = sample variance of observed clutch sizes,

r = sample average of number of eggs per
clutch.

Under the null hypothesis assuming Poisson vari-
ability, Eq. (1) should have a chi-square distribution
with (n - I) d.f. The results of this test are sum-
marized in Table 2. Although the results of this test
were not significant (P > 0.05) in 21 of the 25 sam-
pling dates, the overall pooled test indicated the
presence of cxtra-Poisson variation that should be
considered in subsequent analysis. In fact, when some
"suspect" observations in Table 1 are omitted, the
overall chi-square value reduces to l56.06(d.f.= 149)
which is not significant (P > 0.05). The second test
was a goodness-of-fit test assuming an underlying
Poisson distribution and was applied only to those
samples having at least len observations. The results
of this test, and the pooled chi-square value, are
summarized in the last column of Table 2. None of
these tests was significant (P > 0.05). Therefore, the
Poisson assumption will be used in subsequent
analysis.

Regression Equation

Since no model previously had been derived to
simulate the change in clutch size as a function of the
explanatory variables, a second-order polynomial
function of the explanatory' variables was the first
approximation. That is, the expected value or
average value of the response variable was approxi-
mated by

£(.>',) = P« + 0i-vi. + j8:-v:, + j&.Vi, + /3,,.v7,

+ j8n.vi,.\-u + (2)

[n - l)v r,. (1)

where

y, = average number of eggs per clutch observed
on the /th sampling date.

.vi, = average water temperature over the four-
week period prior to the /'th sampling date,

.v;, = logarithm of the adult density on the ah
sampling date,

AM, = female size observed on the /th sampling
date.



Table 1. Experimental data

Sampling
date

1
2
3
4
5
6
7

8
9

10
11
12
13
14

15

16
17

18

19

20

21

22
23
24
25

Water temperature,
*l CO

7.26
7.60
7.63
7.10
9.69

11.30
11.38

11.53
11.87
10.22
13.55
17.46
17.78
19.98

21.95

24.44
26.10

25.18

26.84

28.32

26.09

23.95
21.47
20.59
17.77

Adult density,"

1.54
0.81
1.44
2.03
2.69
2.41
3.72

3.53
1.76
4.87
4.19
8.11
2.32
1.19

2.72

6.12
6.65

17.09

11.37

11.00

7.57

7.20
2.09
1.38
0.39

Female size,
*3

102.53
101.20
101.42
100.75
106.00
102.67
102.10

101.00
102.00
100.40
99.56
97.80

100.00
95.73

99.86

99.79
96.17

94.50

93.45

92.53

89.43

88.63
88.33
94.00
99.57

Number of clutches
observed,;;

6
2
7
3
4
3
9

3
4
7
3
4
2

16

9

5
12

9

8

27

16

6
6
3
2

Number of eggs
per clutch

38,36,32,31,37,34
30,38
52,34,40,30,23,34.38
35,33,43
43,15,38,26
20,18,22
20,20,18,15,19,18,

15,19,23
11,18,19
15,28,26,14
23,25,24,25,19,7,21
25,27,26
15,18,20,22
11,17
15,13,13,15,17,15,11,

17,16,16,19,15,16,17,
14,17

28,28,23,34,25,26,26,
29,17

19,18,22,12,20
12,11,20,11,26,12,14,

16,13,13,18,14
13,17,10,25,30,18,10,

9,12
12,13,14,11,17,13,17,

11
9,12,9,14,12,7,31,11,

8,8,11,8,8,17,8,8,5.
12.8.10,8,8,10,12,12,
6,6

16,12.20,12,4,10,11,14,
15,10,15,16,15,6,15,7

12,13.14,13,9,17
8,14,10,14,14,12
21,17,10
30,30

Average number
(if eggs per
clutch,.)'

34.67
34.00
35.86
37.00
30.50
20.00
18.56

16.00
20.75
20.57
26.00
18.75
14.00
15.38

26.22

18.20
15.00

16.00

13.50

10.30

12.38

13.00
12.00
16.00
30.00

o
3
r>
3

m

aX2 - ln(adult density) in text; however, values in the table arc the average number of adults per liter.
*Units are such that if.v3 = 100, the female size is 2.4 min.
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Table 2. Analysis of Poisson Variation"

Sampling!
d.ne

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Pooled x2

d.f.

n

6
2
7
3
4

3
9
3
4
7
3
4
2

16
9
5

J2
9
8

27
16
6
6
3
2

S
2

7.87
32.00
81.48
28.00

157.67
4.00
6.28

19.00
52.92
40.62

1.00
8.92

18.00
3.85

21.44
14.20
19.64
53.50

5.71
24.22
17.85
6.80
6.40

31.00
0.00

V

34.67
34.00
35.86
37.00
30.50
20.00
18.56
16.00
20.75
20.57
26.00
18.75
14.00
15.38
26.22
18.20
15.00
16.00
13.S0
10.30
12.38
13.00
12.00
16.00
30.00

(n - 1 )s2fy

1.13
0.94

13.63*
1.51

15.51''
0.40
2.71
2.38
7.65

11.85
0.08
1.43
1.29
3.75
6.54
3.12

14.40
26.75''

2.96
61.13C

21.63
2.62
2.67
3.88
0.00

209.96*
151

GoodnL'Ss-ul-m
X2 (d.f.)

13.88(6)

1.46 (4)

5.57 (4)
8.83 (4)

29.74
18

"n = number of clutches observed: s - sample variance of clutch sizes: andy
= sample average of number of eggs per clutch.

bO.OKP<0.05.

The first step in applying Eq. (2) to describe the
variation in the observed clutch size involved obtain-
ing the iterative weighted least-squares estimates of
the ten /3's in Eq. (2) using the following weights:

W, = »,/[£(r.)] , (3)

for the /th observation where /;, is the number of
clutches observed on the /th sampling date and /= 1,
2, ..., N. The details of the iterative procedure are
presented in the paper by Frome, Kutner, and
Beauchamp.4 Various variable selection procedures
were also applied to regression Eq. (2) in an attempt
to reduce the dimensionality of the estimation pro-
cedure. After obtaining the weighted least-squares
estimates of the /3's, the following statistic was
partitioned and used to test for the presence of extra-

Poisson variation and the adequacy of the regression
model:

(4)

where

y,j - the observed number of eggs in theyth clutch
on the /th sampling date,

v, = predicted average number of eggs per
clutch on the /th sampling date.

The details of this test are also shown in the article by
Frome, Kutner, and Beauchamp.4

4. E. L. Frome. M. H. Kutner. and J. J. Beauchamp, "Regres-
sion Analysis of Poisson-Distributed Data." ./. Am. Slat. Assoc.
68: 935-40 (1973).
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Principal Components Regression

An alternative exploratory approach was applied
by obtaining the principal components of the set of
standardized explanatory variables in Eq. (2) and
then calculating their regression upon the clutch size.
The objective for using the principal components is to
find a linear transformation of the explanatory vari-
ables into a new set. which has desirable properties.
Some of the rationale for using the principal
components are (1) the principal components are
uncorrelated with each other, and (2) each principal
component, progressing from the oneassociated with
the largest eigenvalue of the correlation matrix of the
explanatory variables to the smallest, accounts foras
much of the combined variance of the explanatory
variables as possible, consistent with being orthog-
onal to other principal components. Massy5 gives a
discussion and development of the necessary statis-
tical methods. In this analysis the principal compo-
nents were calculated from the explanatory variables
standardized to have mean zero and unit variance.

The regression of the clutch size. r. on the scaled
principal components of the explanatory variables in
Eq. (2) is denoted by

= 7" + 7i Pu + yzPz, + 7--^'

+ 74ft, + y.P'., + y,,P,« + yiP-,

+ ys Pi., + 7,/% . (5)

where

y, = observed average number of eggs per clutch
on the /th sampling date.

Pr, = pth principal component, calculated from
the correlation matrix of the explanatory
variables, on the /th sampling date, for P= 1.
2 9 and / = I, 2 A'.

To examine the possibility of reducing the dimen-
sionality of the problem, the following approaches
were considered: (1) the principal components having
the smallest eigenvalues were dropped, since these
would be relatively unimportant as predictors of the
explanatory variables; (2) the components havingthe
smallest correlation with the observed clutch size
were dropped; and (3) the principal components
resulting from the reduced set of explanatory vari-
ables in Eq. (2) were used to explain the variation in
the observed clutch size. Weighted least-squares
estimates of the 7's in Eq. (5) or its reduced form were
obtained using the weights of Eq. (3) and the same
iterative procedure. The heterogeneity-of-variance
and lack-of-fit tests were also examined.

RESULTS

Regression Analysis

In Fig. I plots of the explanatory variables, .vi. A:,
and .Vi. against the observed mean clutch size are
shown. Table 3 contains the calculated correlation
coefficients among the explanatory variables and
response variable (clutch size) included in regression
Eq. (2). From this figure and table it is clear that
many of the explanatory variables are highly cor-
related with the observed clutch size. However, it is
difficult to interpret the effect of the explanatory
variables on the response variable because there is
also a high correlation present among many of the
explanatory variables of Eq. (2).
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Fig. 1. Plots of clutch size against explanatory variables.

Table 4 summarizes the results of the regression
analyses using Eq. (2) and reduced forms of this
regression equation. The reduced forms of Eq. (2)
were determined by starting with a single-variable
model, which contained the single explanatory vari-
able having the largest /?:-va!ue. This single-variable
model was then expanded to a two-variabic model.
At the next stage all two-variable models are con-
sidered, and the two-variable model is chosen that
gives the maximum /?"-value for all two-variable

5. VV. F. Massy. "Principal Components Regression in Explor-
atory Statistical Research." ./. Am. Slat. Assuc. 60: 234 56
(1965).
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Table 3. Correlation coefficients among explanatory variables and response variable

Variable

•Vl

x2

* 3

*\
x\

4
.V,JC2

JC,.V3

X2X3

r

x\

1

0.566
-0.778

0.989
0.671

- 0.783

0.769
0.995
0.527

•0.758

X2

1

-0.415
0.603
0.887

-0.416
0.934

0.558
0.997

-0.583

* 3

1

-0.778
-0.491

0.999
-0.587
-0.711
-0.356

0.681

A

1

0.710

-0.783

0.816
0.979
0.562

-0.717

A

1

-0.497

0.932
0.664
0.868

-0.528

A

1

-0.590
-0.718
-0.358

0.684

x,x2

1

0.757
0.912

-0.633

* 1 * 3

1

0.524

-0.741

*2*3

1

-0.561

Table 4. Summary of regression analysis

Tests"

Stage

1

2

3

4

5

6

7

8

9

Variables omitted

Complete

.v,.v2

x2 andA|.v2

xl.xl.xtf2
X2.X3,xl,Xtf2

X2,X3.x\.xl.Xtf2
X3,xl.x\.Xtf2.Xtf3,

X2X3

X2 , A3, x\,x\.X tf2,Xtf3,

x^llx2 v2 v2 v x
Xtf3.X2X3

NumDer oi
variables

9

8

7

6

5

4

3

2

1

R2

0.83

0.82

0.81

0.78

0.78

0.75

0.71

0.63

0.58

Heterogeneity of variance
(X2)

212.03 (151)

211.96(151)

208.23(151)
212.24(151)
197.47(151)

199.78(151)

199.82(151)

192.83(151)

212.30(151)

Lack-of-fit
(F)

2.93(15,151)

2.74(16,151)

4.03(17,151)
3.68(18,151)
5.68(19,151)

5.81 (20,151)

6.98(21,151)

6.99(22,151)

5.23 (23.151)

Overall
(x2)

273.65 (166)

273.54(167)

302.64(168)
305.45(169)
338.56 (170)

353.47(171)

393.70(172)

389.14(173)

381.56(174)

uValue in parenthesis is degrees of freedom. See ref. 4 for details.

models. This model can be thought of as the "best"
two-variable model in the sense of maximizing the
y?"-value. This procedure is repeated in subsequent
stages to give the"best"three-variable, four-variable,
etc., models. Since some variables may be included at
one stage and then omitted at so me subsequent stage,
there is difficulty in determining the significance, or
lack of significance, of terms in the regression
equation.

A review of the results in Table 4 shows that the
complete nine-variable model(stage l)doesexplaina
reasonably large amount of the variation (83%) in the
observed clutch size. However, the heterogeneity of
variance and lack-of-fit tests from the weighted

regression analysis were both significant (P<0.0l),
indicating extra-Poisson variation as well as a signif-
icant amount of unexplained variation by the model.
Another conclusion from Table 4 and Fig. 2 can be
made by observing the increase in R2 from the "best"
single-variable model to the complete nine-variable
model. The first variable, _vi. explains more than 69%
of the total variation explained by the complete nine-
variable model, and the subsequent variables added
to the model all increased subsequent R: values by
less than 10%. However, a comparison of Figs. 3a
and 3b, which plot the observed and calculated clutch
sizes from the fitted complete and "best" five-variable
model, respectively, indicate a definite improvement
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Fig. 2. R~ and error mean square values (EMS) for different
models.

in the explanation of the observed clutch sizes with
the complete model. This improvement is especially
seen for the larger clutch sizes.

Figure 4 shows plots of the residuals from the fitted
complete second-order polynomial against each of
the explanatory variables and the predicted clutch
size. The most obvious conclusion from an examina-
tion of this plot is that there are "suspect" outlier
observations falling outside the 2a and 3a limits. The

investigator would now need to examine these obser-
vations closely to determine their influence upon any
future conclusions.

An additional difficulty in this particular regres-
sion analysis approach arises when a partitioning of
the regression sum of squares is done to determine the
amount of variation attributable to the different
explanatory variables in Eq. (2). Table 5 shows two
different partitionings of the regression sum of
squares for the "best" eight-variable model. From an
examination of this table, the significance or lack of
significance of the different explanatory variables
would be difficult to determine.

Principal Components Regression

The principal components regression began with
the calculation of the principal components of the
standardized explanatory variables in Eq. (2) and
their correlation with the original explanatory vari-
ables. Table 6 displays the eigenvalues and ortho-
normal eigenvectors from the correlation matrix of
the explanatory variables of Eq. (2). These eigen-
vectors are used to obtain the /"'s of Eq. (5). From the
first part of Table 6 it is clear that the first three
principal components are accounting for a majority
(>98%) of the variation in the explanatory variables.
The physical interpretation of the variation of the
new principal components is difficult merely from the
eigenvectors that are also shown in Table 6. There-
fore, the correlations of each explanatory variable
with each principal component, as well as the correla-
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Fig. 4. Residual plots from complete second-order regression equation.

tions of the response variable with each principal
component, were calculated. These correlations are
summarized in Table 7. As expected, the highest
correlations among the explanatory variables and
principal components exist in the first three or four
principal components. Therefore, the first thought
would be to omit the last five principal components in

the regression to decrease the dimensionality of the
problem. However, the correlations of the response
variable do not follow this ordering. In fact, the
correlation between the response variable and fi was
the fourth largest in absolute value. This would imply
that P9 would be relatively important as a predictor of
the response variable. These considerations lead to
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Table 5. Regression analysis for eight-variable model

Source d.f. Sum of squares

X2

x3

4
4
*i
•V1V3

.v2.v3

Error

Total

1

1

1

1

1

1

1

1

16

24

(1)
R(xl | mean) = 953.34

R(x2 Uj.mean) = 58.077

R(x3 lA.-LX2.mean) = 39.911

R(x\ U-I,.v2,JC3,mean)= 180.41

R(xl I ,v 1, x2,x3,x1. mean) = 37.197

R(x3 \xux2,X3,x\,x2, mean) = 0.00985

U[,.V2,.V3,.VI,J:1,.V3, mean) = 75.064

R(x2x3 ,.v,A-3,mcan) = 22.869

291.031 (Mean square = 18.189)

1657.91

(2)

R(xi I all other variables) = 115.79

R(x2 I all other variables) = 17.782

R(x3 I all other variables) = 67.787

R(x\ I all other variables) = 181.492

R(xl I all other variables) = 20.055

R(xl I all other variables) = 64.583

R(xix3 I all other variables) = 97.657

R(x2x3 I all other variables) = 22.869

aR(x I y) = sum ot squares explained by A: given y is included in model.

two criteria for deleting components from Eq. (5): (1)
delete the components having the smallest eigen-
values, and (2) delete the components having the
smallest correlation between the componentsand the
response variable. Both of these criteria were used,
and the results of the principal components regres-
sion are summarized in Table 8. In addition, the
results of the heterogeneity-of-variance and lack-of-
fit tests from Eq. (4) are also summarized in this
table.

The physical interpretation of the principal com-
ponents can sometimes be made by an examination
of the correlations between the principal components
and the explanatory variables as well as the response
variable (Table 7) along with plots of one principal
component against another (e.g., see Fig. 5). An
examination of this figure reveals a clustering of the
high-and low-density values into two disjoint groups
separated by the dashed line. Thus P\ and Pi should
give valuable information related to the influence of
adult density on the response variable of clutch
size.

Additional attempts have been made to reduce the
dimensionality of the problem by calculating the
principal components from the standardized vari-
ables of the "best" reduced variable models sum-
marized in Table 4. The results of these calculations
are given in Table 9 along with the heterogeneity-of-
variance and lack-of-fit tests.

As expected, the results summarized in Tables 4
and 9 are similar, because the same number of vari-
ables were used in each stage with the principal

components being only linear combinations of the
explanatory variables. Therefore, the only advan-
tages to the use of principal components regression
has been the orthogonality of the P's in Eq. (5) and
the increasing amount of combined variability of the
explanatory variables explained by the P's as one
progresses from Pt to P2, etc. Both of these advan-
tages should be of some assistance in the physical
interpretation of the analytical results.

An additional interesting result is seen from an
examination of Fig. 6, in which the observed and
calculated clutch sizes are compared for three dif-
ferent forms of Eq. (5). The most obvious conclusion
is that using only the principal components with the
largest eigenvalues may not do as well in predicting
the response variable as another set of principal
components that account for a smaller percentage
of the combined variance of the explanatory
variables.

A graphical aid to the physical interpretation of the
principal components is shown in Fig. 7 where the
components of the eigenvectors, called loadings, are
plotted for each principal component. This figure
shows the loadings using only eight of the original
explanatory variables. From an examination of this
figure, it is possible to easily determine (1) those
explanatory variables of major importance for each
principal component, that is, those explanatory vari-
ables with the largest absolute value loadings; (2) the
relative ordering of the explanatory variables for
their contribution to each principal component; and
(3) the particular explanatory variables being



Table 6. Eigenvalues and eigenvectors of standardized explanatory variables

Value
Proportion
Cumulative proportion

Vector ->
Variable I

Value
Proportion
Cumulative proportion

Vector -*
Variable I

x,x3
*2*3

6.70
0.744
0.744

1

-O.35S
-0.317

0.303
-0.362
-0.335

0.30S
-0.364
-0.347
-0.303

5.83
0.729
0.729

1

-0.388
-0.324

0.338
-0.393
-0.348

0.340
-0.379
-0.309

1.61
0.179
0.923

0.232
-0.429
-0.397

0.196
-0.302
-0.397
-0.239

0.205
-0.466

1.50
0.188
0.917

0.190
-0.488
-0.369

0.154
-0.359
-0.368

0.162
-0.525

5.18 X 10
0.058
0.981

-0.356
0.176

-0.501
-0.317

0.017
-0.488

0.006
-0.481

0.145

5.18 X 10"
0.065
0.982

3

-0.355
0.178

-0.500
-0.317

0.019
-0.488
-0.480

0.147

Nine-variable model

Eigenvalues

1.34 x 10"1 3.64 X 10"2 3.05 x 10"
0.015 0.004 0.000
0.996 1.000 1.000

Value
Proportion
Cumulative proportion

5.27
0.753
0.753

1.11
0.159
0.912

4.89 X 10
0.070
0.982

4

0.101
0.319
0.007
0.010
0.850
0.007
0.040
0.121
0.386

1.34 x
0.017
0.999

4

0.096
0.309
0.006
0.011
0.861
•0.008
•0.115
•0.374

1.13 x
0.016
0.998

Eigenvectors
5

0.217
0.131

-0.031
-0.430

0.256
-0.058
-0.719

0.333
0.231

Eight-variable model

Eigenvalues

10"' 1.51 X I0"2

0.002
1.00

Eigenvectors

5

0.261
-0.071
-0.025
-0.840

0.081
-0.069

0.454
0.064

Seven-variable model

Eigenvalues

10"' 1.49 X10"2

0.002
1.000

6

0.159
-0.103

0.000
-0.731
-0.085
-0.045

0.535
0.324

-0.171

5.26 X 10
0.000
1.00

6

0.517
0.348

-0.380
-0.114
-0.005

0.463
-0.356
-0.335

4.43 X 10
0.000
1.000

5.19 X 10"'
0.000
1.000

-0.521
-0.326

0.392
0.081

-0.002
-0.477

0.028
0.380
0.300

-0.169
0.628
0.320

-0.037
-0.029
-0.311

0.184
-0.585

3.11 x lO" 5

0.000
1.000

1.28 x 10"
0.000
1.000

8

-0.121
0.653
0.337
0.032

-0.017
-0.316
-0.070

0.102
-0.574

2.62 x 10"5

0.000
1.000

-0.570
0.150

-0.481
0.057
0.003
0.423

-0.016
0.470

-0.135

CO

1.70 X
0.000
1.00

10"4 2.79 X
0.000
1.00

10

8

-0.560
0.099

-0.502
0.042
0.002
0.440
0.469

-0.096



Table 6. (continued)

Vector -»•
Variable I

Xl

X3

x?
A
x\
X1X3

X2X3

-0.419
0.372

-0.422
-0.344

0.374
-0.408
-0.289

0.090
-0.386

0.050
-0.516
-0.384

0.049
-0.652

-0.365
-0.462
-0.314

0.173
-0.451
-0.487

0.291

4

0.076
0.024
0.006
0.761
0.008
0.089
0.638

eigenvectors
5

0.263
-0.022
-0.843

0.082
-0.067

0.456
-0.007

Six-variable model

Eigenvalues

-0.561
0.462
0.084

-0.009
-0.533

0.424
0.008

-0.542
-0.534

0.050
0.006
0.470
0.445

-0.003

Value
Proportion
Cumulative proportion

Vector -»
Variable I

X l

X2

X3

x? -
Xl* 3

X2X3

Value
Proportion
Cumulative proportion

4.49
0.748
0.748

1

-0.450
-0.367

0.371
-0.454
-0.443
-0.350

4.02
0.804
0.804

1.15
0.192
0.940

2

-0.246
0.584
0.339

-0.205
-0.231

0.623

8.45 X 10"1

0.169
0.973

3.42 X 10"'
0.057
0.997

3

0.236
-0.110

0.853
0.200
0.402

-0.053

1.13 X 10"'
0.023
0.996

1.60 X
0.003
1.000

4

-0.275
0.057
0.096
0.832

-0.455
-0.109

1.90 X
0.004
1.000

10"2 4.23 X 10""
0.000
1.000

Eigenvectors

5

-0.375
-0.638
-0.076

0.132
0.223
0.616

Five-variable model

Eigenvalues

10"2 3.25 X 10"3

0.001
1.00

1.58 X 10
0.000
1.000

6

-0.682
0.321

-0.068
0.036
0.576

-0.307

Vector ->
Variable 1

-0.473
-0.478
-0.429
-0.471
-0.377

0.341
0.284

-0.479
0.345

-0.675

0.080
-0.007
-0.760

0.112
0.635

0.103
-0.774

0.090
0.618

-0.022

Eigenvectors

-0.802
0.303

-0.015
0.515

-0.005

73n
00

O'
3

>

m
<
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Table 7. Correlations between explanatory variables, response variable,
and principal components

Variable

.v,

.v2

-V3

A-J

4
4
A,.V2

,V2A-3

y

Xi

x2

x3

4
4
4
Xlx3

X7X3

y

x3

4
•4
X,X3

X7X3

V

* 1

x2

x3

4
XiX3

X2X3

y

A-,

•vf
4
xtx3

X2X3

y

-0.919
-0.820

0.785
-0.937
-0.868

0.789

-0.942
-0.898
-0.785
0.759

-0.937
-0.783

0.816

-0.950
-0.841

0.820
-0.914

-0.746
0.773

-0.961
0.854

-0.969
-0.791

0.859
-0.937
-0.664

0.773

-0.954
-0.777

0.786

-0.963
-0.938
-0.742

0.783

-0.473
-0.478
-0.429
-0.471

-0.377

0.742

0.295
-0.545
-0.504

0.248
-0.384

-0.504
-0.304

0.260
-0.592
-0.148

0.232
-0.598
-0.452

0.189

-0.440
-0.452

0.198
-0.643
-0.089

0.095
-0.407

0.053
-0.543
-0.404

0.0S2
-0.686
-0.027

-0.265
0.627
0.364

-0.220
-0.248

0.669
0.043

0.341
0.284

-0.479
0.345

-0.675
-0.095

-0.256
0.126

-0.360
-0.228

0.012

-0.352
0.004

-0.346
0.104

-0.025

-0.256
0.128

-0.360

-0.228
0.014

-0.352
-0.346

0.106

-0.026

-0.255
-0.323
-0.220

0.121
-0.315
-0.341

0.204

-0.021

0.138
-0.064

0.499

0.117
0.235

-0.031
0.093

0.080
-0.007
-0.760

0.112

0.635
-0.278

Principal compc

Nine-varial

0.037
0.117

-0.003
0.004

-0.312

0.002
-0.015

0.044
0.141

-0.278

ble model

0.041
0.025

-0.006
-0.082

0.049

-0.011
-0.137

0.064
0.044

-0.264

Eight-variable model

-0.035
-0.113

0.002

-0.004

0.316
-0.003
-0.042
-0.137

0.272

0.032
-0.009
-0.003

-0.103

0.010
-0.009

0.056
0.008

-0.279

Seven-variable model

0.026
-0.008
-0.002
-0.255
-0.003

0.030
0.214

-0.289

0.032
-0.003

-0.103
0.010
0.008
0.056

-0.001
-0.274

Six-variable model

-0.035
0.007
0.012

0.105
-0.058
-0.014

0.336

-0.008
-0.013
-0.002

0.003
0.005
0.013

-0.017

Five-variable model

0.103
0.774
0.090
0.618

-0.022
-0.124

-0.802
0.303

-0.015
0.515

-0.005
0.351

incnl

0.009
-0.006

0.000
-0.040
-0.005

-0.002
0.030
0.018

-0.009
-0.110

0.012
0.008

-0.009

-0.003

-0.000
0.011

-0.008
-0.008

-0.081

-0.012
0.010
0.002

-0.000
-0.011

0.009
0.000
0.097

-0.009
0.004

-0.001

0.000
0.007

-0.004
0.214

Pi

-0.012
-0.007

0.009
0.002
0.000

-0.011
0.001
0.009
0.007

0.080

-0.002
0.008
0.004

-0.005

-0.000
-0.004

0.002
-0.008

0.050

-0.003
-0.003

0.000

0.000
0.003
0.002

-0.000
0.217

P,

-0.001
0.007
0.004
0.000
0.000

-0.004

-0.001
0.001

-0.006
0.052

-0.003
0.001

-0.003

0.000
0.000
0.002
0.002

-0.001
0.241

P*

-0.003
0.001

-0.002
0.000
0.000

0.002
0.000
0.002

-0.001
0.258
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Table 8. Summary of principal components regression using all explanatory variables

Principal components
"used (P )

Pi. P?, Pi, P4, Ps, P6, Pi. P1.P9
Pi, Pi, PA, Ps, Ps, Pi, Pi, P9
Pi, Pi, Pi, Ps, P6, Pi, P9
Pi, Pi, Pi, Ps, Pi. P9
Pi, P2, Pi, Ps. P9
Pi. Pi, PS. P9
Pi, PA, Ps
Pi, PA

Pl,P2
Pi

Number of

p

9
8
7
6
5
4
3
2
2
1

R2

0.83
0.83
0.83
0.82
0.81
0.79
0.72
0.65
0.60
0.58

Heterogeneity of
variance (x2)

211.94(151)
212.58 (151)
21071 (151)
210.25(151)
209.84(151)
211.65(151)
211.47(151)
214.03(151)
212.42(151)
220.04(151)

Tests"

Lack-of-fit
(F)

2.93(15.151)
2.84(16,151)
3.03(17,151)
2.84(18,151)
2.74(19,151)
2.84(20,151)
4.75(21,151)
4.93(22,151)
4.49(22,151)
5.26(23.151)

Overall
(x2)

273.55 (166)
276.65(167)
281.11 (168)
281.51 (169)
282.25 (170)
291.34(171)
351.30(172)
367.83(173)
351.51 (173)
396.30(174)

"Values in parentheses are degrees of freedom. See ret". 4 for details.
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Fig. 5. Plot of Pi and Pi from full nine-variable mod 1.

compared for each principal component, that is, the
explanatory variables with comparable positive and
negative loadings.

Because the correlation between the principal
components and the explanatory variables, as well as
the response variable, is of major importance in any
principal components regression, Fig. 8 isa graphical
representation of these correlations to aid in the
choice of principal components. In this figure the
correlation between the explanatory variables and
the principal components is shown for each principal

component. In addition, the correlation between
each principal component and the response variable
is also exhibited. This figure is presented for the eight-
variable model and vividly displays the following: (1)
the decreasing correlation between the explanatory
variables and the principal components as the eigen-
values decrease, that is, as one considers Pi relative to
P2. Pi relative to Ps, etc., (2) the explanatory variables
highly correlated with the principal components: and
(3) the principal components highly correlated with
the response variable. A figure of this type is a
graphical aid in demonstrating the alternative choices
one can make in reducing the dimensionality of the
problem, that is, whether the choice of appropriate
principal components is based on correlation with the
explanatory variables or correlation with the
response variable.

CONCLUSIONS AND PROBLEMS

The regression analysis of the field data sum-
marized in this paper has demonstrated the need for
the continued interaction between the statistician and
investigator during the data analysis process. The
original polynomial approximation in Eq. (2) has
done a reasonably acceptable job in explaining the
variation (R2 = 0.83) in the observed clutch size. The
regression analysis and the principal components
regression have also provided some plausible choices
of important variables and their relationship from
which the biologists can choose the biologically most
acceptable alternative. From these alternatives, it is
possible to suggest some additional laboratory
studies to quantify the effects implied from the
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Table 9. Principal components regression on reduced models

Stage

1

2

3

4

5

Number of variables
retained

9

g

7

6

5

Variables retained

X X X X2 X2 X2

X1X2,XlX3,X2X3

x,.x2,x3,x
2,x2,xl.

X\X3,X2X3

2 2 2Xi, X3, Xi, X2,X3)XiX3,

^2*3

•* 11 ^ 2 » 3 ' •* 1 ' ^ * 1 ^ 3 '

•^2-^3

.2 2

« 2

0.83

0.82

0.81

0.78

0.78

Heterogeneity
of variance

(x2)

211.94 (151)

211.99(151)

208.26(151)

212.24 (151)

209.23(151)

Tests"

Lack-of-fit
(F)

2.93 (15.151)

2.74(16,151)

4.03(17,151)

3.68(18,151)

4.57(19.151)

Overall
<x2)

273.55 (166)

273.59(167)

302.69 (168)

305.46 (169)

329.58 (170)

"Values in parentheses are degrees of freedom. See ref. 4 for details.
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Fig. 6. Comparison of observed and calculated clutch size from various principal components regression models.
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Fig. 7. Loading for eight-variable principal model.

explanatory variables. The results of these laboratory
experiments can then be used to refine future field
experiments. This iterative process could be
continued through many phases.

There have been some specific suggestions for
designed laboratory experiments resulting from this
analysis. For example, laboratory studies have been
initiated to examine the effect of adult density and
female size on clutch size when the ranges and values
of the two explanatory variables are investi-
gated under known and controlled environmental
conditions.

The regression analysis did still leave some
problems concerning the adequacy of the model.
However, collaboration with the biologist has re-
sulted in some plausible explanations for the
apparent unexplained variation by the model that

3 4 5 6

PRINCIPAL COMPONENT

Fig. 8. Correlations between explanatory variables, response
variable, and principal components from eight-variable model.

may be incorporated with the laboratory studies to
modify future field studies. Some of the explanations
are (1) water temperature was the only water quality
variable recorded and there may bea need to measure
other water quality variables, (2) the use of average
water temperature may need to be refined using addi-
tional information about the water temperature
history, and (3) the inherent variability of any uncon-
trolled biological system is always difficult to
explain.

Any suggestions for alternate analytical ap-
proaches or refinements and modifications to the
approach as presented are solicted. These approaches
should recognize the need to assist in providing
plausible explanations and relationships so the
biologist and statistician can interact in solving the
problem.



Problem Discussion 2, Part 2: Use of Regression Analysis to Evaluate
Environmental Effects: Exploring Methods of Analysis

John Beauchamp, Union Carbide Corporation, Nuclear Division

John Beauchamp: For review, my objectives for
this problem were to determine if the explanatory
variables related to water temperature, adult density,
and female size influence clutch sizeand if they can be
used to explain Ihe observed variation in clutch size.
In this particular situation. I (and 1 hope the
biologist) am thinking in terms of possibly interpola-
tion and maybe some prediction within the range of
the variables of interest. The approaches that I have
used there did appear to be some things that we had
gained from it and also some problems that were still
present both with respect to the polynomial approxi-
mation that was used and also to the principle
components regression approach that was used.
These are some of the things that we talked about
yesterday, and 1 would welcome some comments. I
must admit that for the units on the femalesiz.e, there
is a factor missing. This has been brought to my
attention, and it will be corrected in the final version.
Of course, this factor is not as big as the units given in
the paper. They are only fractions of inches rather
than 4 in. or so as indicated in the table of data given.
I would welcome any comments, or suggestions to
alternative approaches that you would have.

Donald Gaver, Naval Postgraduate School: I'm
wondering if an alternative analysis transforming the
clutch size by taking logarithms could not have been
an effective approach, and whether this approach was
tried. It seems to me that that might, first of all,
remove the necessity for weighting in response to
different variances and, second, possibly separate the
interaction terms that appeared in the cross product
of terms that is part of the original model. It might
make those other representations unnecessary.

Ronald Thisted, University of Chicago: IDo you
have a viewgraph on which you plot the mean against

the variance in the different samples? Did you say
that you found extra Poisson variation—more
variation than you'd expect?

John Beauchamp: Ves, this is the plot I believe
you're referring to (Fig. 1). Yes, there were samples
where we did find the presence of extra Poisson
variation. • , ,
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Ronald Thisted, University of Chicago: One thing
that comes to mind: the Poisson distribution is
appropriate for counting data: however, these really
aren't counts, but are tallies of counts. For each
female you have a count; one way that you could
make the problem very much harder and maybe only
a little bit more realistic would be to say that each
female has its own Poisson parameter and say that
the distributional Poisson parameter is gamma. Then
estimate the parameters that introduce extra varia-
tion. It'sjustasifthegamrna wereapriordistribution
except that it really has physical mean, as opposed to
a suggested belief, but then you could estimate the
parameters of that compound process which could
account for the extra variation.

John Beauchamp: Can I ask fora little expansion
on this with respect to the presently available data?
The individual measurements of length of the females
have been lost in the reduction of the data; couldn't
this loss cause problems in the approach that you are
thinking about? Or am I misunderstanding the
approach that you are suggesting?

Ronald Thiswd, University of Chicago: Wei! my
approach is a partly baked idea. I think the loss of
these measurements would cause problems because
you use that as a covariant essentially on the mean,
right? I just saw all the individual egg counts in your
data display, and I guess I just assumed that all the
other measurements were there as well. That could be
the fatal blow to my suggestion.

William Conover, Texas Tech: I think that it struck
many of us that the asumption of the Poisson
distribution is going to be difficult to prove or
disprove with the data that you have, where the
parameter apparently changes from one day to the
next and there are only a few observations. For
example, on one day you had two observations, both
observations equaled thirty, and you accepted the
hypothesis that this was a Poisson distribution. It's
very difficult to make a decision on data like that. If
you insist on using this statistic (A' - l)jr/7that you
were using, it seems to me that at least it would be
better to use the two-tailed rejection region rather
than the one-tailed, because too small of a variance
would be just as unsatisfactory as loo large a
variance. Then when you went through and added the
statistics together, the large statistics canceled with
the small statistics, and the result was an overall
statistics which again to me would not have very
much power in detecting lack of a Poisson distribu-

tion. So 1 wonder whether it might not be better to
abandon the whole idea of trying to stick with the
Poisson distribution and follow something like Don
Gaver suggested or perhaps use rank ti ansfonnation.
1 suggested rank transformation because you do have
a problem with outliers. The outliers appear to be
legitimate from the biologist's standpoint, and yet
they affect the calculations a great deal. By using the
rank, an outlier just has rank one. it doesn't matter
how far out it is. and it's not going to affect your data
very much. We've had a lot of success using rank
transformation when there are outliers. You might
try to rank the data and use the same techniques that
you are using to see if the results are in agreement.
You can work backwards to see how well it predicts
what you got, as a backup to the methods you are
using.

John Beauchamp: In this particular situation,
would you also suggest working with the ranks on the
variables that 1 have referred to as explanatory
variables- that is, working with ranks on the entire
data set instead of the actual observations. This
approach would be interesting.

John Jaech, Exxon Nuclear Co.: In the spirit of the
comments made by the other two gentlemen. 1 think
that I would agree. I really don't see any basis for even
performing a test of the hypothesis that the data arc
Poisson. I think we can reject that hypothesis on the
basis that they are from different females of different
sizes. If they are. in fact, different sizes, then there is
no reason to believe that anything more than female
size has an effect; there's no reason to believe that the
data should be Poisson. If memory serves me
correctly, the compound distribution that results
from the fact that the Poisson parameter has a
gamma distribution is a negative binomial distribu-
tion which has a known mean and variance and which
is very easy to work v/ith. I think that you can get a lot
more insight into what's really going on ifyou assume
at the beginning the negative binomial and work
backwards and gel a feel for how the actual means per
cell are varying according to the undcrlyinggamma. 1
think that is a real good suggestion.

Donald Gavcr, Naval Postgraduate School: 1
didn't mean to imply in any way that we should focus
on the distribution oftheclustersi/es to the exclusion
of all else. It seems to me lhat actually the negative
binomial distribution is certainly suggested by the
scatter plots that were shown and possibly by
mechanisms. 1 believe lhat some form of the
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logarithmic transformation will indeed prove to
remo\ e the dependence of the mean and the variance.
1 think that you buy a great deal Irom this kind of
transformation, at least potentially, because you also
buy the removal of the interaction that is present in
the model. I think there's no hope of determining or
verifying any particular distributional form for these
cluster sizes: that's a false trail to go down.

Lincoln Maxes, Stanford: 1 never understood
exactly what the purpose of this study was. Whether
it is to understand causal mechanisms or to
interpolate and graduate data over other variables.
So I don't know whether the following suggestion
helps or hurts. 1 recall that there was a trend (I forget
whether it was up or down) with a clutch number or
date arranged in order of this trend. At the same time,
you told us thai the temperature of the water exhibits
a trend with that order. It's quite possible that the
density of adults exhibits a trend in order. You might
find that putting in time, or even a quadratic in time,
would capture a great deal of what you are now
capturing against three variables. You could see if
any of them add beyond that. I do not know whether
it would simplify your interpretation or give you
belter prediction, but time may be what's underlining
several of these variables in part.

John Beauchamp: The problem that 1 have with
including time is that, in any biological mechanism,
the critter or animal is not particularly concerned
with the time mechanism. Time. true, isa conglomer-
ate of many factors, and that was why I was trying to
look at these individual factors—to see if possibly one
factor or maybe all of them were of interest. I'm not
sure whether the biological significance of time would
be very meaningful even if it did explain a great deal,
which 1 think it does. Of course the biologists would
have to have some input on this. That's the difficulty
that 1 had with the inclusion of time, though I'm not
sure that answers the whole question!

Dave Gosslee, Union Carbide Corporation,
Nuclear Division: I thought the point was to look at
time as a random variable, so to speak, and then see
what additional variation could be explained by
temperature, etc.

Lincoln Moses. Stanford: Whether times are
suitable depends on what the purpose is. I really can't
explain or understand: the biological significance is
exceedingly obscure. If you have three variables that
are just servants for the unfolding development of

this pond, then pulling in something on time tells you
that you have a problem that is very complicated. I
guess! It might be a useful thing to do. If you don't
understand, then it is no help that I can see.

Chuck liayne. Union Carbide Corporation.
Nuclear Division: John. I noticed you did a lot of
principal component analysis, and one of the
difficulties I always find with principal components is
to try to interpret what they mean to the experi-
menter. Now I noticed you were able to put them in
some chart form and to determine whether the
loadings were high or low. Were you able to use these
facts to explain what these principal components
actually represented to the biologists'.'

John Beauchamp: At this particular point the
principal components approach is still an open
problem. 1 hope that something may be gained from
these charts when 1 sit down with the biologists. If
others have had experience using this approach and
trying to explain it to the investigator. 1 would like to
hear about your experience.

Ronald This ted. University of Chicago: I've been
thinking a little bit about the negative binomial
suggestion. There are no problems really created by
the fact that you haven't recorded the length of each
female or the fact that that's gone: this new analysis
would follow exactly the same form as the old one.
One of the problems now is that you have two
parameters involved. The two parameters are the
gamma distributions that overlie everything as
opposed to the one Poisson parameter. I don't know
how to do the regression analysis to get those two
pieces. I wouldn't know a reasonable model forthat. I
think that's where the difficulty is, not in the setup of
the covariance.

Francis Anscotnbe. Yale: Don Gaver has already
suggested trying to play the transformation game on
the variables, and I would just like to reinforce that
suggestion. The regression analysis done here is on
quadratic expressions in the three experimental
variables. Why stop at quadratic? Why not go to
cubic? We all know why not go to cubic; that
produces a very large number of coefficients, and
clearly one isn't going to be able to estimate them all
properly. The trouble is. however, that one does not
know that the quadratic expression is adequate. We
don't know what kind of expression is adequate, and
I'm sure it will be very worthwhile to try playing tricks
on transforming the dependent variable and the three
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experimental variables, making transformations to
see whether one can get apparently good approxima-
tions to simple linear relations between them.
Although there is no guarantee that playing the
transformations will greatly simplify the expressions
that need to be fitted, sometimes one really does come
off very weii that way. I think there is a little internal
evidence in the plots that I was given that even the
quadratic model is not fitting very satisfactorily. Note
the figures in the written material here which were
labeled Fig. 3.* There are two figures there: one for all
nine variables fitted and the other for five. Both of
those figures, but particularly the five-variable one.
have some suggestion. I think, of a quadratic trend:
that is. the residuals appear to be positive when the
abscissa value, which is the calculated clutch size, is
either very low or very high, and the residual seems to
be negative when the clutch size is in the middle. Then

in Fig. 4.+ the bottom right diagram there shows
residuals plotted against predicted clutch size. This is
another plot of a similar kind. I think, if I understood
that right, and again there's a tendency for the
residuals to be positive at the left side and the right
side of the diagram and a trend to be negative in the
middle. That sort of curvaturedoes suggest some sort
of nonrelalivity in the model that is actually being
fitted and also suggests, perhaps, that some trans-
formation of the dependent variable still would help.
so 1 would certainly like to support Don Gaver"s
suggestion that making various scale changes should
be tried.

*.l. .1. Beaucluimp. these Proceedings, l-ig. ^.
M. .1. Ueauchiimp. these Proceetlmgs. l i g . 4.
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ABSTRACT

"1 he developnu'nt of a statistics methodology for use i

:ea. u is necessary mat me various moaeis interlace properly ana mat some meaning is
h is a random function of the input and is dependent upon site selection. We hope to
dologv for analyzing such a complex system.

INTRODUCTION

My presentation concerns some of the statistical
problems that are associated with the disposal of
radioactive waste material in geologic media. This
research is done under a contract with the Nuclear
Regulatory Commission (NRC) which requires that
at least one statistician be assigned to the project. Our
group, headed by Dick Prairie, is working on a
variety of problems; earlier Irv Hall discussed
Sandia's approach to energy prohlems.

PURPOSES AND APPROACH

The purpose of our work on this problem is to
provide insight into the risk associated with radioac-
tive waste disposal and to develop methods and
models that can be used in the repository licensing
program by the NRC staff. Hopefully, this program
would include identification of parameters that
determine long-term safety.

There are two steps in the approach, one of which
would be involved with risk calculations where we
would hope to gain an understanding of the risk of

disposal in different geologic media. At the current
time there will be a particular site for study; different
types of geologic media will have to be considered
later. The second step in the approach is in regard to
the sensitivity studies. We hope to determine the
important site and waste characteristics which would
in turn be used by theNRC staff to assessaparticular
site for a disposal site license.

An overview of this problem fora hypothetical site
is shown in Fig. 1. (Note the vertical exaggeration.)
There is a lens of salt in which the repository would be
placed. On either side of the salt there is a shale
formation, and above and below the shale there is a
sandstone aquifer. We do not want any water to get
into the repository from the aquifer and thereby carry
the radionuclides to the environment. I would like to
emphasize that, while Fig. 1 represents a hypothetical
site, we still hope to make it as realistic as possible.

*In support of a project being performed by the
Fuel Cycle Risk Analysis Division of Sandia Labora-
tories. Work is funded by the Nuclear Regulatory
Commission.
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LANBSUKFACE « WATER TABLE

Fig. 1. Hypothetical geologic cross section. (Vertical exaggeration: X10).

MODEL STRUCTURE AT SANDIA
There are a number of individuals at Sandia

involved in this project (Fig. 2). The site description
indicated in the upper left-hand corner includes such
items as the engineered facilities (shaft and excava-
tion), hydrology, geology, and surface characteris-
tics. The box in the upper right-hand corner
(radioactive waste description) will provide informa-
tion at any one point in time regarding the types and
amounts of waste materials. This information
includes knowledge of the half-lives of the various
nuclides, so in the event of a release at some point in
time the chemical composition of the waste isknown.
The boxes in the middle of Fig. 2 represent models
whose development involves at least one person.

METHODOLOGY

SITE
DESCRIPTION

POTENTIAL
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MECHANISMS

RADIONUCLIDE
TRANSPORT

I
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TO
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i
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AND
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WASTE
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Fig. 2. Problem format.

These models have been developed at Sandia, or on
contract by Sandia with Sandia personnel involved.
Although these models exist at the present lime, not
all of them are developed to the point where we are
ready to do a sensitivity analysis on them. Once that
work is finished, the problem of coupling the models
will have to be addressed. The first box in the middle
(the release mechanism) will output the probability of
release as a function of time as well as the rate of
release. Items that this model would consider are
those for which a release could take place for
example, an earthquake, undetected faults, a shaft
that might fail to seal properly, or something as
remote as a meteorite striking the site.

The transport model represents probably the
biggest single task because it is a very complicated
model with many, many variables. One of the
problems associated with this model is that there are
little if any data available that pertain to it. Therefore,
a lot of the variables are going to require estimates
just to determine a physically reasonable range. This
type of problem occurs throughout this project.
There are so many variables in the transport model
that for the last few months two people at Sandia
(including a geologist hired in from the outside) have
been attempting to reduce this model to a workable
size. That work is progressing now. and the sensitivity
analysis should soon start on the transport model.
When the transport model is coupled into the system,
it will provide the rate of discharge of the radionu-
clides to the environment. Given that there has been
a release at some point in time, the nuclides are
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transported to the underground water system from
which they will eventually reach the environment.
Once they have reached the environment, the
pathways model is used. The pathways model uses
the input of the transport model to calculate ingestion
and inhalation rates of radionuclides in curies per
year for maximum and average diets. This analysis is
done with respect to the types of food consumed by a
particular individual and with respect to whether or
not the individual consumes irrigated food. Thereare
two basic parts to the diet: (1) a water-based diet with
foods that come from water sources, and (2) a land-
based diet that comes from land-type sources. Also, a
combination of these is possible. The dosimetry and
health effects model uses the ingestion rates output by
the pathways model to calculate the probability of a
latent cancer fatality as a function of time.

DEPENDENT VARIABLES FOR THE
PATHWAYS MODEL

1 have attempted to simplify this problem. For
instance, there are many isotopes that could be
ingested, but we have looked at only one. Therefore,
everything that you see with respect to ingestion rates
is only for one nuclide. Also, there is a problem of
ingestion rates changing over time. I will show some
predictions for a model that uses only one time
period, but I dohave several plots which indicate that
time probably will be a consideration. Next there is a
concept of a zone. The pathways model uses the
concept of a homogenous zone along some water
source with nuclides in it, such as a river. For
example, there may be a large area where all the food
is irrigated—which would determine one zone. If a
dam were put on the river, another zone would be
created because of the sediment ofthenuclides. There

INDIVIDUAL
AVERAGE MAXIMUM

Y1W (WATER)

Y 1 L ( L A N D )

Y2W

Y2L

Y3W

Y3L

Y4W

would be yet a different zone below the dam. There
could yet be other zones where there is no irrigation.
Initially we consider only one zone.

The "average" and "maximum" classifications on
Fig. 3 come from the WASH-1400 report descrip-
tions given for an average individual and a maximum
individual. The other classification in the two-way
table is for individuals having either irrigated or
nonirrigated food. I consider that there are basically
eight dependent variables with the subscripting
notation explained as follows. The subscripts !, 2, 3,
and 4 refer to the individual and irrigation combina-
tions. The second part of thesubscript uses Wio refer
to ingestion from water sources (possibly something
as simple as drinking water, but could include sources
like invertebrates and fish). The subscript L refers to
basically a land-type diet such as plant, milk, or beef.
Therefore, in block I if there is no irrigation involved
with a land-type diet, the ingestion rate is going to be
much smaller than it would be where irrigation is
involved. The difference in the dependent variables
Yu. and Y3L is in the magnitude of the intake;
therefore the independent selected variables for these
diets should be very similar. Due to the complexity of
the pathways model, I attempted to fit a response
surface to the output to determine the important
independent variables associated with each depend-
ent variable.

INDEPENDENT VARIABLES FOR THE
PATHWAYS MODEL

A few comments need to be made with respect to
the independent variables (Fig. 4). First, I
conveniently refer to these variables as Xi to Xt and

Fig. 3. Dependent variables: ingestion rates of radionuclides in
curies per year.
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have not attempted to attach any names to them, as I
felt in the format of this meeting it would be just as
well to exclude them. However, these variables were
carefully selected by the individual who developed
the model. He also selected ranges for these variables
that he felt were physically reasonable (Fig. 4). A
major point with respect to these variables is that
there is no probability distribution given with them,
which is the case throughout the pathways and
transport models. About the best information
available are the ranges associated with the different
variables. These ranges are relatively broad and are in
terms of orders of magnitude.

LATIN HYPERCUBE VARIABLE
SELECTION TECHNIQUE

To fit a response surface, it is necessary to run the
program for the pathways model several times using
various combinations of the independent variables as
input. For variable selection I used the Latin
hypercube variable selection technique. This
technique was presented at the first ERDA
symposium in Los Alamos, and Mike McCay, Jay
Conover, and Dick Beckman will soon have a paper
in Technometrics explaining its advantages. Very
briefly the Latin hypercube variable selection
technique works as follows. Assume there will be N
observations used as input into a model. The range of
each one of 'he input variables is divided into exactly
N nonoverlapping pieces. The procedure for selecting
the pieces may be something as simple as using a
uniform distribution which makes all pieces the same
width. If the probability distributions associated with
these variables is known, the pieces could be selected
based on equal probability. Once each range has been
divided into A'pieces, a value is selected at random in
the fth interval for say A'I. Likewise, for Xi select a
value at random in the/th interval. Continue in this
manner for each independent variable until each
interval has been used exactly once. Next obtain a
random mixing of these values as input. A question
associated with this technique is what type of
distribution should be assumed for these
variables—or does it make any difference?

PARTIAL CORRELATION PLOTS
I first assumed a uniform distribution for each

of the input variables, as indicated in Fig. 5. For
example, on A'I the range should be divided in
exactly N nonoverlapping pieces all of the same width
from 102 to 105. For # = 5 0 this procedure gives one
point between 102 and 103, four points between 103

PARTIAL CORRELATION FOR \ AHD Y l w BASED ON RAW DATA

PARTIAL CORRELATION FOR X j AND Y l w BASED ON RANKS

.110 l .M ».«! 4.2% 1.41 •••« •>•*« t . t t It.2

tIHE

Fig. 5. Partial correlation plots for X\ and Y\w—uniform
distribution.

and lO1*, and the remaining 45 points between 104and
105. The pathways model was run with these 50 input
observations and the partial correlations plotted as a
function of time as the pathways model outputs
ingestion rates as a function of time. The horizontal
axis in Fig. 5 has ten points with the time scale in
hundreds of years, so the first point is ingestion rate
after 100 years, then 200 years, and so on to 1000
years.

The top portion of Fig. 5 indicates results when
using the raw data. The bottom of Fig. 5 indicates
results when using the rank transform on the data
(partial rank correlation). Clearly, there is a large
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disagreement with respect to the importance of Xi.
The ranks indicate that Xi is extremely important as
the partial rank coordination remains constant
around —0.8. The raw data partial correlation
changes over time, starting around —0.45 and getting
close to -0.2.

In Fig. 6, a log uniform distribution is used on the
independent variables. Taking the logic on 102 and
10* will give a range between 2 and 5 for X\. Divide
this range into 50 equal pieces; then one-third of the
points will be between 102and 10"'—rather than only
one point obtained using the uniform. There will be
another one-third between 103and 104. The net result
of the log uniform is to give more observations

PARTIAL CORRELATION FOR Xj A.ID V l a BASED ON RA« DAW

toward the lower end of the rangeonthe independent
variables. A comparison of the rawdata graphsat the
top of Figs. 5 and 6 indicates a slightly different story
with respect to change over time. Therefore there are
going to be some difficulties in determining the
important variables with respect to time, depending
on the type of distribution that is assumed on the
input.

Figure 7 indicates the results of pooling the 50
points from Fig. 5 and the 50 points from Fig. 6. As
one might guess, the result is a compromise between
Figs. 5 and 6.

PARTIAL CORRELATION FOR Xj AND V ] a BASED ON RAW DATA

•SOD I.SO 9.00 4.20 9.40 B.SO 7.«0 9.00 l t . 2
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PAr.TI.'.L COHKLATIO.; For. Xj AND 1U BASED OH RAilKS
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PARTIAL CORRELATION FOR Xj AND Yj H BASED ON RANKS

. M 1.10 4.20 9.40 •.»> 7.M «.M 10.

Fig. 6. Partial correlation plots for Xi and Yi»—log uniform Fig. 7. Partial correlation plots for A", and Y,»—mix of uniform
distribution. and log uniform distributions.
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The uniform distribution is shown again in Fig. 8,
but now the dependent variable has changed to Y\L
(land-based diet, no irrigation). The reason for
considering Yu is that there is no irrigation involved
and, since the nuclides are in the groundwater,
chances for ingestion of radionuclides are reduced. It
would be reasonable to expect different variable
selection in fitting a response surface to the land-
based diet compared to the water-based diet. One
might expect the relation of X[ with Kit to be
different from what it was before with the Yin-.
(Compare Figs. 5 and 8.) The raw data indicate a
partial correlation that is essentially zero in Fig. 8,

whereas in Fig. 5 the raw data indicate a slightly
negative correlation. The analysis on ranks shown on
the bottoms of Figs. 5 and 8 changes considerably.
Next, I would like to compare Figs. 8 and 9 where
time seems to become very important. The raw data
indicates the time dependence as the importance of
this variable is diminishing across the time axis. For
ranks, the correlation starts around -0.6 at time step
1 and is 0.2 at time step 10. This is an interesting
point. We are trying to explain the effects of X\ on
Y\L, and at time step 10 the raw data indicates a
negative correlation while the ranks indicate a
positive correlation.

CORRtLATIOil FOR X j U V 1 L kAStD ON RAW JAIA PARTIAL CORRELATION FOR X j AUD V j L BASED OH RA« 1AIA

l.»0 3.00 4.20 3.40 I.tO 7.10 a.OO 10.2

TIME

CORI.LLATIO,: F0!I \ AID Y ; | LAitO J.i PARTIAL CI/JftLATIOii TOi :', All) <„ a ' i u ) u.'l :.'.... .

(00 l .M 3.00 <.?0 9.40 0.00 7.10 t.CI 10.2.10 3.00 1.20 ».<! t .M 7.M O.00 10.2

Fig. 8. Partial correlation plots for X\ and Yu—uniform
distribution.

Fig. 9. Partial correlation plots for Xi and Ku—log uniform
distribution.
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Figures 10-13 can be gone through very quickly.
The mix on Figs. 10 and 13 again represents the
pooling of the 100 points from the previous two
figures. In Fig. 11 the independent variable has been
changed to X3 while still using Y\L. Thetwographs in
Fig. 11 are roughly in agreement indicating that X)
does not seem to be very important. However, in Fig.
12 where the log uniform was used, the importance of
A's has changed considerably from Fig. 11.

Problems for consideration would include the
following: (1) What type of distribution should one
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uniform and log uniform distributions.

.100 I.ffl 3.01 4.20 9.40 t.SO 7.10 9.00 10.2

TIKE

•Fig. II. Partial correlation plots for Xj and Yu—uniform
distribution.

assume on the input variables? Is there a "good"
distribution to assume or should one use a sequential
procedure such as starting with something like the
uniform, finding points where the ingestion rates
seem to be quite high, and obtaining more
observations in this area by using a distribution
something like the log uniform. (2) There is some
evidence indicating that different response surfaces
are needed. As time changes, how serious is the
consideration? (3) Lastly, what type of transforma-
tion would be appropriate?
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of

RESPONSE SURFACES

The response surfaces were fit by using the six
independent variables indicated in Fig. 4 plus the
squares of each and all possible cross products which
were put into a forward stepwise regression program.
Initially, the raw data was used to see what variables
would be selected as important. What was learned is
best explained by referring to Fig. 3. Every time the
dependent variable changed, a different selection of
input variables was noted. That is, there didn't seem
to be any consistency of selection, whereas from
knowledge of the situation there should be some

consistency. In particular, if the water involvement is
considered (all dependent variables having subscript
W, then the only thing that changes is the magnitude
of the ingestion rate. Likewise, the variables ^/.and
Kii will act much like those variables having
subscript W, due to the effect of irrigation. In other
words the independent variables selected in fitting the
response surfaces to these six dependent variables
should be similar, and this was not the case when
working with raw data. When there is no irrigation,
Y\L and Y}Lt and only the magnitude of the food
intake is involved, the same independent variables
should be selected for the response surface fit. Again,
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this was not the case on raw data. The response
surface fits were made forall thedependent variables,
and even though they had different variable selec-
tions, each fit was used to make predictions for an
additional 50 test points. The manner in which the
test points were selected is best explained by
considering Xi (Fig. 4), which has a range of 10" to
10*. Sort of a compromise between the uniform and
log uniform was used with ten points selected
between 10: and 10'. another ten points between 10'
and 104. and the remaining 30 points selected from
I04 to 10\ The response surface based on raw data
predicted negative ingestion rales for 21 of the 50
points for }'m, whereas zero is the minimum
ingestion rate. The remaining 29 ingestion rates were
simply nowhere in the ball park. The same thing
happened for the other dependent variables.

The next attempt to fit a response surface used
stepwise regression on ranks. Jay Conover and I
presented a paper on this technique at the ASA
meeting in Chicago in August. It is very simple to use.

as the regression program is run on the ranks assigned
to the variables and the variable selection noted.

The first thing noted with respect to Fig. 3 was a
consistency in the selection of the variables where it
should have been consistent, that is, on the four
water-type dependent variables plus the two irrigated
land situations. The two nonirrigated land situations
selected different variables from the other six. but the
two were consistent in selecting the same variables.
Based on the response surface fit from ranks,
predictions were made for the 50 test points. These
predictions are given in Fig. 14 for Km. Logm
of the points was plotted just to make a little nicer
graph, and the same scale was used in Figs. 14-16 for
ease of comparison. The vertical axis represents the
actual ingestion rate, and the horizontal axis
represents the predicted ingestion rate. The zeros
plotted on these graphs aid in drawing in the line
where logui)' = logiof. The lines on either side
represent a one-order-of-rhagnitude shift. In Fig. 14
the observations vary over the entire range, and the

-B.5? -7.')'. -7..17 -<i.8a -4.32 -5.65 -5.08 -*.51 -3.93 -3.36
- 9 i C a !

LOG1QY

Fig. 14. Log-log plot of actual ingestion rate vs predicted ingestion rate for diet Y\w.
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Fig. IS. Log-log plot of actual ingestion ran; vs predicted ingestion rate for diet Yu.-

predictions are pretty well in agreement. In Fig. 15 we
have YII. (average individual, no irrigation) with a
lower ingestion rate than noted for Km. as indicated
by the points in the lower left-hand corner. There arc
no points in the upper right-hand corner, so it seems
that the fitted response surface lor Ku. worked well
for low ingestion rates. On the other hand, when
considering Fig. 16 for variable YAI (maximum
individual, irrigated food, land source), the ingestion
rates are going to be higher. This fact is indicated by
the absence of points in the lower left-hand corner,
and it seems the response surface for YM is also
predicting well for high ingestion rates.

We might consider what happens if a
transformation other than the rank transformation is
used—for instance, a log transformation. The log

transformation was tried, and it seemed to work
pretty well with respect to variable selection. It was
also considered in terms of the predictions and in
particular with respect to the variance associated with
the predictions. For comparison purposes some
arbitrary parallel lines were added to Fig. 16 on either
side of the line log,,, Y = log,,, Kaboul a quarter inch to
three-eights of an inch away from ii. The number oi'
points included in these bounds was counted for the
upper half of the graph because these represent high
ingestion rates and as such are very critical. I counted
29 of the predicted points between these lines, while
the log model had 16 points between the same lines;
that is, there was a much greater variability
associated with the predictions from the log model, so
it was felt that the ranks were doing a little belter.
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Fig. 16. Log-log plot of actual ingestion rate vs predicted ingestion rate for diet YAL-

To summarize some of the problems, howdoes one
go about fitting the response surface to these
dependent variables—in other words, is there a need
for some sort of a transformation? Should an
argument be made for some sort of nonlinear model?

1 believe that examination of the rank transform
procedure will show that it is circumventing some
of the problems associated with fitting nonlinear
models.

_ _ . _ . I ) . i v • _,



Problem Discussion 2, Part 3: Statistical Methodology for Use in Risk
Assessment of Radioactive Waste Disposal in Geologic Media

Ronald Iman, Sandia Laboratories

Ronald Iman: The purpose of this problem is to be
able to identify the important sites and waste
characteristics that would in turn be used by theNRC
staff in evaluating the potential applicant for a
repository before granting a license to him. The
problem over the next few months will become quite
large: there are a number of models which have been
developed. Presently we are in the process of doing a
sensitivity analysis on these models. The pathways
model is the only oneatthispoint thatisonline ready-
to go: the others will be ready shortly. We will have
some common problems in putting a response surface
to the various models to help determine what the
important variables or combination of variables
might be. Some insight will be needed for proper
approach when working with the individual models.
Then big problems will come up in tying these various
models together to get some sort of a meaningful
output fora given scenario. Yesterday, on some of the
graphs, I indicated with respect to the partial
correlation the types of distributions that are
assumed here. I point this out because I know that
there are individuals at NRC that seem to feel rather
strongly about this. I would like to get your feelings
on whether a person should assume some sort of
sequential procedure like I've done or whether there
is really some distribution that could safely be
assumed in all cases.

Gary Tietjen, Los Alamos: Ron, I think you
mentioned yesterday that one of your even longer
range goals in selecting the site was to decide whether
there were any health effects due to injested nuclides.
The effect of plutonium on the human body has been
studied more extensively than the effects of any other
known substance, and the literature is so extensive
that people frequently overlook significant previous
studies. I read one article which declared that

plutonium was the most toxic substance known to
man -worse than cobra venom. That phrase caught
the public's fancy, and a lot of people believed it.
Some 25 years ago. Langham from Los Alamos
performed a spectacular experiment with plutonium.
which can never be duplicated. You never hearabout
it except in terms of condemnation on ethical
grounds. Yet 1 regard it as the most important piece
of data we have. He took eleven patients (I believe)
who had terminal illnesses of various kinds, and he
obtained permission from them to inject really large,
almost massive, doses of soluble plutonium directly
into their blood. Now the effect of this is quite
different from inhalation of the insoluble oxide, but
the surprising thing was that there were no medically
discernible effects. Four of these patients with
terminal illnesses lived quite a while. I believe two of
them are still alive after 25 years, and there are still no
discernible effects. So much for the cobra venom
theory! With that in mind, it will be an exercise in
futility, I think, to try to pick up health effects caused
by small amounts of injested plutonium. One reason
for this is that the plutonium goes through the GI
tract so rapidly that it has very little time to do much
damage.

Michael McKay, Los Alamos: I've worked with
these correlation coefficients, and I think it is very
helpful to the investigator to see plots of the
distribution of the response variable over time. Ifyou
find that you have to change your data which have a
small range of variation, then what your partial
correlation coefficients or partial-rank correlation
coefficients seem to tell you can be influenced quite
drastically. A correlation very close to 1 with an
extremely small range of ypriation—standard devia-
tion, say—might imply that this variable is extremely
important but doesn't do a whole lot. Let me go now
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to something: on the magnitudes of the correlation
coellicicnls I think Run is the lirs; person thai I've
seen gel e\eiled ibnut .1 eonclation i)l 0.2 and
whelhci 01 not it's ditlcrenl Irorn one that's 0.34. I
have kind ol .1 rule til thumb: I |usl put mv handover
•0.5 I don't know what vou can sas about them. We

did .1 lew Imle studies to gel some ideas oi the
tiisinhutions. and it seems that 1! you don't gel
ai oilnd 0.5. v on ean'l uidieale u hat's important. I! he
had showed us plots ol the partial correlation
cocliiciciits I01 all ol the A variables on a single
graph. I think it could ha\e been ven lielpkil. I
wonder ( I) il sou lound anything really outstanding
(there was a I).,S that was displayed lor us) and (2)
whether Mm lound ail oi the correlation coefficients
kind ot huddled around zero. Hnallv 1 base a
question about the ranked correlation vs the
correlation with the nnranked data. You ha\o very
nicely plotted their display lor us. and I have also
occasional!) managed to gel nice smooth plots:
howevei. more often I find that the partial-rank
correlation coefficients tend to jump up and dossn.
I he response variables, which tend to cross over on
the time axes, seem to plas havoc with the rank
correlations, and I think it's reasonable lo expect this.
1 would also ask whether or not we managed to see
anything like that in your data. Again this is tied to
how much variations you obtained when you did the
study.

Ronald Iman: 1 didn't realize to what degree 1 was
being carried away here with the magnitude of
correlation. It must have been a fit of passion! I agree:
0.2 doesn't really excite me that much either, so
maybe we can get that cleared up in the record. I do
think that one of things that I was concerned about is
determining which of these variables are important
and what would be the magnitude oi their effect, lfeel
ih.-t the effect of these various variables, as 1 have
indicated here working with the raw data, seems to be
disguised: the reason for that could be shown by
making some sort of plot of the response variable
over time to get some idea of the magnitude of the
response variable. What it would indicate is that there
are some combinations of independent variables that
arc giving us very high response rales and this is
obviously what's making up the correlation; that is,
we need some sort of transformation on it.

I might give you plots of all these independent
variables.* In my selection of plots here, 1 tried to go
to all the extreme cases that 1 could find. Forthe first
case, X\,Y], the raw data were indicating that you
have raw correlation to partial correlation in the

neighborhood ol 0.4 to 0.3 whereas the ranks were
indicating this vs.is kmlv stable at O.S. Now this is
also true loi two more ol the si\ vaiublcs. so I01 a
total ol three vanab'es. the stoiv is dilkrent Raw
indicated reasonabK weak and the other indicated
reasonably stiong. \ o t ea l so : the plot ol \ v\ the
second dependent variable, which is really )' r. the
correlation seems to change considerably overtime. I
wondered il there was a time ellect. 1 he raw data
indicate there is some reasonably mild change, but
the rank seems to indicate a rather severe change. In
putting the icsponse surlacc at different points ol
time. 1 want to know other different variables at
dilterem points ol time that 1 need 10consider: thai is.
the role ol a particular variable change over lime. So
if I'm trying to make these predictions al some point
in time, exactly what combination ot variables do I
need? 1 think thai I'm getting different stories from
these, which mas have been the cause ol the
enthusiasm. But ranks tell me "positive correlation"
and the raw data tell me "negative." and. they do have
some bit ot dillerencethereconcerningthe number of
observations, although it might he difficult to
establish that il is a significant difference. I guess the
only other point was with respect to the distribution
that is assumed on here. 1 know that Mike has worked
with the Latin hypercube technique as much as
anyone, and I would appreciate a comment herewith
respect to distributions, and again I plead for that.

Chuck Bay iw. Union Carbide Corporation,
Suclear Division: 1 would like to disagree with the
author a little bit: he pointed out that the variables he
had to work with were given to him by the
experimenter. It seems to me that the most important
contribution that we could make as statisticians is
usually arguing the problem svith the experimenter.
We should not accept that the variables they give us
are what we have to work with; 1 found in my
experience that many times the engineer or chemist
gives you variables on a basis that this is what has
been done in the past. One of the advantages that we
have is that we can takea fresh look at these variables
and point out where they may not be applicable to the
problem. One other comment: the range of the
variables seems quite large and quite variable. For
example, there are some ranges to I02 and also some
to 106; it seems to me that if you're using quadratic
variables where you are squaring or taking the fourth

*Ronald I. Iman. these Proceedings. Fig. 5.
* Ronald I. Iman. these Proceedings. Fig. 9.
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power, tliat you may need 10 do sonic type ol scaling
on these variables.

Jud\ Maluitlc\. I'uiitu \urth\\e\i: One ol (iarv "s
comments bothered me. lie was talking about one
massive exposure. Our experimental work concerns
animals, not humans certainly. We've given repeated
mid-level and low-lev el exposures w Inch indicate that
we get different results than when we give them one
single exposure and never repeat it.

I'ranas AiiMonibe, Yule: I wou ld like to ask (or .

perhaps, an item ol clarification. 1 tound myself
rather puzzled about |ust v\hal was being done. My
understanding is that regression analysis is being
done on something that's called data: however, the
data related to a thousand years of experience is not
observational data at all. I think, but the output ol a
mathematical model which is predicting what will
happen. Now il that's so. I wonder why regression
analysis on presumably some simulated output is
done, rather than perhaps a direct study of the
consequences of the mathematical model. Why
regression rather than a direct study of the model
itself. I mean, if the mathematical model is reason-
ably intelligible-looking. I would have thought it
would be possible to infer what properties its
solutions would have without really generating some
random output and then doing a regression analysis
which somehow is probably not particularly related
to the form of the mathematical analysis. I haven't
seen the model, so I don't know. Maybe the models
are too complicated for direct theoretical study.

Ronald Inian: The models that we're working with
are extremely complicated differential equations all
through the place. It isn't something that simply can
be identified immediately, so this is the reason for the
choice of trying to fit it to a response surface to help to
determine what might be important. The first model,
the pathways model, is a little easier to get to as faras
the choice of the variables. I worked with the
individual who developed the model and relied upon
his choice of what he felt would be the important
variables to consider.

With respect to Chuck's comment that it is my job
to work with this individual and indicate to him that 1
can help him select the variables. First of all this
presupposes that 1 know a lot about geology which
I do not. We're talking about variables such as
suspended solids and things of this nature. After long
consideration, we did choose those particular
variables. Now some of the other models, for
example, the transport model that's coming out. are
many times more complicated than this pathways

model. In lad the pathways model is going to look
simple alongside this. As I indicated yesterday, since
.lane, there's been a group ol individuals working on
that particular model just to tear il down to a usable
size. In other words, they are talking in terms ol
thousands ol variables and .ire Irving to get it down to
a handlul. I here isn't any nice humiliation.

\lu had \U haw 1us .•thinms: I'd | list like to throw

niv suppo r t behind R o n when he asser ted the

i m p o r t a n c e ol using the co r re l a t ion coc l l ic ien ts

t e rms , in I act anv sensitivity m e a s u r e , in identity ing

i m p o r t a n t t ime regimes in ihc m o d e l . I th ink it can be

extremely beneficial to the researcher to b e a b l e l o tell

h im. "1 think var iab le \ . is impor t an t loi / 2 0 . " l o r

e x a m p l e , and " I here doesn ' t seem to be much lor

()•• I- 2 0 . " \ \ ' c ' v c l o u n d in reac tor s i lc tv s i i i d i c s iha t

it has been ol benefit .

Dave (>o.\.\!ee. L won Carbide Cdr/xnalion.
Xnelear Division: I'm .lot surprised that vvhen y on lit
this entire model to eight diflcrem dependent
variables hav ing correlations among the independent
variables that you don't get the same best model in
some sense by your stepvv ise procedure. In doing this
correlation, could you substitute one variable for
another variable that is highly correlated with it to
end up with eight or lour or some set of regressions
that have some consistency.

Robert liaslerling. Sandia: It seems to me that this
may be another ease ol when we need to tell our
fundcrs that they are asking us to lace the wrong
problem. My particular problem is with these known
distributions. I've encountered in problems like this
that there arc multiple sources of error, sources of
variations, sources of uncertainty, etc. To pretend
you call somehow simulate all these and put them
together and come out with a distribution, such as
log-normal or log-uniform, is terribly naive. I've
never known a distribution, and I don't expect to
know any. yet we're being asked to work these
problems as though we do. I think that this fate will
be another situation where we should suggest to the
people proposing these problems that maybe the
problem should be stated differently.

Dave Gosslee, L'nion Carbide Corporation.
Suelear Division: Let's go back to the other papersor
all three of them. 1 want to say one thing about the
first paper. There has been a lot of looking at the
persistence of one meteorological variable. I was
quite intrigued by looking at the persistence of
combinations of extremes of two variables simulta-
neously. I think this is a very important approach.
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Richard Hooper: Most of the decisions in
formulating a national energy policy have been
heavily impacted by consideration in areas such as
health effects, nuclear reactor safety, and nuclear
materials safeguard. Each of these areas is almost a
macrocosm in statistics in that each involves
measurement problems, data problems, modeling,
and evaluation. I'd like to begin the panel discussion
with a question — to obtain from the panelists their
views on the role of statisticians in these areas and on
the kinds of things that can be done to enhance the
statistician's role.

Carl Bennett: We've been presented with a very
broad subject, and I think that what happens when
presented with a subject like this is already apparent
from some of the brief discussions we've had together
earlier this morning. Each individual tends to tie this
role and his response to it to his own role as a
statistician and to his own background and
experiences (which I think is probably best under
these circumstances). I, in particular, have been
involved with the energy problem in a somewhat
narrow point of view: first of all from the point of
view of nuclear energy and more recently from the
point of view of safeguards. On the other hand, we all
realize that the adequacy of safeguards is one of the

more important elements in gaining acceptance of
atomic energy or nuclear energy as the power source.
Safeguards in a sense are supposed to establish some
kind of control — first of all, over the possibility of
misuse of nuclear materials, but in addition to
helping establish that control, they also need to help
establish the credibility of that control or the
credibility of the existence of that control. In the brief
period I'm supposed to talk to you, I want to look at
two examples which deal with the subject from these
two viewpoints i n terms of what the statistician's role
could be. It is rather interesting to compare the term
"safeguards" in the international context with the
domestic context. The term is used in this country to
indicate the first of the rather expensive procedures
that must be carried out either under regulatory
standards or under contract to maintain control and
accountability for nuclear material. In the
international context, the term safeguard is
concerned almost entirely with (1) the verification
and audit of such control to establish credibility in its
existence and (2) the fact that material has not
escaped such control. These two completely different
aspects of the subject, in my opinion, may call for two
somewhat different uses of statistics. The first
problem, the problem of control, evidently involves
statisticians who become heavily oriented with the
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production ol data, with measurement, with the use
nl those measurements in a control I unction lor the
dc\elopmenl ol indices (such as the rather famous
I- ['I/.), and with the use ol these indices to maintain
[his control. Merc I think our chiel problem as
statisticians isiobc.-aircthat we assist in every way we
can to make sure that the data arc obtained, that the
consequences o| that data are understood by people,
and that new methods are available to deal with new
situations. Yesterday I was saying to some people at
the discussion session on safeguards that I'm
absolutely convinced that the modern real-time
control methods which are being used to obtain
iimeliness under conditions where timeliness is a very
important thing in the control of nuclear materials
are going to call lor some entirely new statistical
methods of dealing with data, l-'or example, it is very
dillicult to define an appropriate combination of
timeliness, and the amount of detection which can be
used to paramcteri/e the systems we try to develop. It
is one of the kinds of things I think statisticians will
haie 10 idea! with.

I'he other side of the picture is the side that I
mentioned earlier when I was asked. "What do you
think is the most important single problem facing
safeguards?" and 1 responded that the single most
important way in which statisticians might help is to
be able to state some measure of the effectiveness of
safeguards that would be credible to the public: first
the public as a whole and second as an international
body such as the Sarsi group. Then I could turn to
somebody from another country and say. "Yes I do
believe that such and such can be accomplished if we
put so many inspectors in your plant." In other
words. I don't have to be in the position of saying.
"Gee. why don't you let me send some inspectors into
the plant, and after a while I'll tell you whether we are
getting any results and whether they're correct or
not." I should be able to convince him that he should
accept the intrusiveness of inspectors in his plant,
because 1 can convince him of exactly what the
effectiveness is going to be. Now that might not be a
statistical problem as such, but it certainly depends
heav ily on the ability of somebody, systems people or
statisticians, to quantify what happens because you
have an inspector present, what happens because you
have a barrier, what happens because of all the other
measures that are usually associated with safeguards.
1 suppose that what I'm really trying to say is that in
this area of establishing credibility in the face of
uncertainty (if I can use the term), we really have to
think of this first in a positive sense — how to act in
the face of uncertainty or how to live with uncertainty

(or you can create your ow n phrase), linally. because
I like it so well. I'm going to borrow from a
summarization that John made this morning: 1 think
we also need to have statisticians act in the negative
sense: that is. they need to minimize the raise
attractiveness ol highly sophisticated procedures. I
will give you a specific example of this. 1 think we
ha\e long overdone theattractiveness to many people
of material-balance accounting, limits ol error, and
so lorth. simply because they do produce numbers
that are. in a sense, quantitative. It is easy for a
statistical procedure to be oversold und o\er-
attracthe. simply because it is statistical and because
it can be. to some extent, quantified.

//<•/•/> Koul.s: 1 guess 1 have the distinction of being
the only member ol this panel who is not a
statistician. I'm a consumer and not a producer of
statistics, and 1 guess 1 represent that part of the
world. I do have some things that might be useful to
say on the subject, however, because I do keep
running into statistics in a number of applications
and a number of things that I do.

First, let me talk about statistics in a broad sense,
that is. the broad utility of statistics and statistical
methods toward the energy problem and its solution.
When I was getting ready to come here. 1 went to the
library and quite naturally got out the U.S. Statistical
Abstract for 1976 and looked through it to see what
kind of data base we're operating on in this country,
and I found about ten pages of closely crammed
information directly related to energy in a section
entitled "Energy of the United States." I also found
that almost all of the rest of the L'S. Statistical
Abstract was full of tables which impacted indirectly
on the energy problem. There is certainly a great
lesson to be gathered here on the importance of
statistics to the solution of the energy problem,
because you have a data base which is reliable and
comprehensive to start with, and even though it may
be a fairly humdrum application of statistics to
generate such a data base, it's an extremely important
application, it seems to me. One gets involved in this
kind of data base in connection with all the energy
modeling activities that are popular these days and
that are really the analytical input to decision-making
in the energy field. If the energy modeling activities
start with statistics, a framework is begun within
which the statisticians begin to interact with this
problem. With respect to the question of the Reactor
Safety Study, or the Rasmussen report, since Rich
Hooper has brought it up, I might say a few wordi
because it's an example, ] think, of the kind of
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analysis in a specific field which does interact and
have importance with decisions in the energy system.
The Reactor Safety Study was an analysis of risk in
the nuclear field risk associated wit lit he production
of power by nuclear reactors. I guess I wasassociated
with it in various depths and various forms from the
beginning, when the group under Professor
Rasmussen at M.I.T. was first put together, until the
time the report finally came out: I'm still associated
with it because I'm on a panel that is reviewing the
report for the Nuclear Regulatory Commission at the
request of Congressman I'dall. At any rate, the
Rasmussen report is an extremely complicated
application of relatively simple statistical
methods that is. of propagation of probabilities
through model-describing modes of failure, or
possible failure, in complex nuclear systems. I know
most of the people who worked on it; 1 was in almost
daily contact with the work over a long period of
'time; and I can assure you that this is a very honest
piece of work and about the best level of work that
competent people of this character could put
together, at this time and with the information they
had available. It had several characteristics which
every application of statistics to a technical or social
problem has. First, it had a data base; second, it had a
model and calculations based on that model; and
finally, it had an error analysis to be attached to it.
These are all important aspects of the application. 1
think that, in each one of these areas in this particular
application, there is room for considerable
improvement. The data base for the Rasmusscn
report needs improvement; everybody says so,
especially the people who worked on it. The models
for the probabililies of failure arc pretty good, but the
models for consequences need a lot more work, partly
as a result of inadequacy of data, because when the
data base gets bigger, then your models can get more
complicated, but certainly the modeling needs to be
improved. Most important of all is the question of
error analysis. This area is one in which I think
statisticians really have a great deal to develop and to
accomplish, because the error analysis of the results
of the Rasmussen report are still rather rudimentary
compared to the generation of the values they
produced themselves.

1 should point out that there isanotheranalysis of a
simpler kind, commonly used in reactor safety areas,
which is just a calculation of what happens if you
have a reactor accident. It's the calculation of the
effect of what used to be called the maximum
hypothetical accident, now called the designed-base
accident—a pipe break, let's say—in a Pressurized

Water Reactor. One nl the most difficult problems
lacing people who calculate this kind of thing is an
estimate of the error attached to the uncertainty in the
numbers in the input to a calculation ol this kind. I
think a great deal can be done by statisticians to help
in this very important held because the analy sis ol all
reactor safety these days lor every reactor plant goes
through a phase where this is the predominate set ol
questions to be asked.

/•red Leone: I look at this picture from a somew hat
different point ol view, partly in terms ol the
individual, but also in terms ol the prolcssional
organization. I'm a little bit torn because even within
our own board of directors there's a question as to
whether the ASA should be a learned society or a
professional association. We arc a professional
association, and somehow we should have some
impact both as protessionalsandasan association on
some of the decision-making processes. We have been
involved in a few things one is relating to the
American National Standards Institute and. at the
same time, sending a representative to the
International Standards Institute. We have
attempted to provide a forum. As most of you know,
we had a symposium last year and two years before
that on the topic of statistics and the environment,
i his next year the symposium will be extended, and
ne're broadening it to include energy, toxicology
and environment. We'ie not speaking to statisticians
alone, which I think is important. Unfortunately,
most of my own contact is with statisticians, but 1
would like to sec us go beyond this limitation. We're
getting into legal aspects; one-third of the program
committee is made up of members of the bar
association whose particular area is along the
environmental and energy lines. We have an ad hoc
committee that is working with the American Bar
Association and with the committee on
environmental guidelines. Somehow there's a lot ol
frustration because we know that, when the final
decisions arc made, there's a great deal of political
input sometimes evasive on what the actual
decision should be. As was mentioned earlier by Carl,
we've got to develop a stronger and stronger
credibility with reference to the data that arc
collected, with reference to the data base. I think the
time is here for us. I think the public is waiting even
though they wonder about the credibility, especially
when they see two different results from public
opinion polling, and in general, they don't realize that
these polls possibly start from different bases. We
have tried and will continue to try to have an impact
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on llie lc|>islali\c process, hnl as «c all knou n is
cMii'iik'h ililliculi lo mllucnix* legislation, especially
•.nice the inimhei ul hills lhal are pouring through
Congress lias gone up bv at least a lactor ol 10. 20. or
more as compared lo a lew vcars ago. In some in-
stances, we ha\c taken aclion. though nol in llie line
nl energv; hopclull). we will get more and more into
lhi» area. One nil) I leel I ha\e . as I \ isit a number ol
chapters, is beating the drum ol ihe indn idual statis-
iician. giii 'ng invoked in the dillcrent decision
making. Insi .M local levels and then hcvond that.

A number ol v ears ago we were asked to produce a
report on the statistics system ol the Bureau ol Mines.
I hat report was completed about 1950 or 1951. and 1
think that was the last heard of it. Two weeks ago 1
was asked hv the assistant director lor metal,
minerals, etc.. il the ASA was interested in reviewing
their staiistical systems. He had only been aboard for
six and one-half v ears: he did n't know about the other
report. 1 think a lot has happened since 1950. and
perhaps the bureau is hearing some of the sounds
about the kind ol staiistical data that's coming out.
Next week I will be silling down with the acting
director of the Bureau ol Mines, the individual who
contacted me. and two or three statisticians, l.ct me
state that I think there is a role that an association can
plas as a professional, as a group of professionals. 1
think the \oice has lo come from individual
statisticians demanding that we take greater steps
along this area, but I feel that a national office as such
cannot do it without the individuals who are the
experts, not in statistics alone but also in the subject
matter area, to come forth and propose that they
themselves will be part of this role, will be part of this
impact.

John Tukey: I suspect most of what I'm likely to
say really attaches to things that have been said
before, but maybe I can sharpen some of the issues a
little. At the 50th (or was it the 75th?) anniversary of
the Mathematical Association of America. I was
asked to speak about what mathematics can do for
the government. I refused until there was a small
change in title; I said I was willing to talk about what
mathematicians could do for the government. Now if
people are going to contribute increasingly lo
decision activities, they have to plan to be
increasingly uncomfortable. Usually, you arc not
going to contribute to decision-making in major and
high-level ways (there may be a few exceptions) by
doing statistics as defined in the textbooks, and this
means that in a certain sense (it's never bothered me
very much), you won't sleep so easily at night.

I know ol one statistician whose name is known to
ail ol \ou. and 1 will be caretul not to reveal it either
direct h or indirectly, who some vears ago gave up
consulting, because he was deeplv concerned,
honestly concerned, that he may not have given all his
clients the best possible advice everv time. I think
every bod\ in the room is aware that il you are going
to adhere to this standard. \ou do have to give up
consulting.

Well, the requirement tor giving up decision-
making or contributing to it is much more stringent
than that. I'm not convinced that 1 understand when
the technical tacts should really determine the
decision. It might have been possible to interpret one
of the earliest speaker's words to mean that technical
tacts ought to settle the matter. Clearlv. 1 don't leel
this is always true. II 1 tell it was always true. 1
wouldn't have any dilliculiv in making up mv mind
when it was true. 1 think there's a very real
responsibility on the profession, or on anv
profession, lo see that the technical facts are. at the
very least, reasonably available and in some cases,
perhaps, vigorously so. Whetherlhosefaclsaregoing
to determine the difficult social decision is one
matter, and whether they ought to is another matter;
so one has to be prepared for oneself and the rest of
the technical community to be a voice crying in the
wilderness, maybe for a year, or ten years, or
indefinitely, and we can't afford to let that get us
down. I'm saying that just being a statistician. 1 would
recognize some very strong obligations to go well
beyond what is taught in statistics today. If you are
concerned with an area, you have an obligation to
understand about measurement in that area. You
may be lucky enough to find some other people who
understand and you may not. It is a narrow
responsibility of the statistician. I think, to see that
the measurement facts get realized, which isn't easy,
and not all the measurement facts are going lo be
statistical.

Let me follow Carl's suggestion and draw on my
recent experience in a couple ol directions having to
do with thechlorolluoro methane in the ozone layer.
Generally speaking, the Academy report got pretty
good press. However, i saw a copy of an editorial in
onepaper.and if) remember right, it wasn't too many
miles from here, probably considerably less than
2000, which siiid either the freons arc damaging the
ozone layer or they're not, and the Academy of
Sciences shoi.ld have told us which. It's a good joke,
gets the reaclion of people, including more people in
our technical organization than is comfortable for
any of us to think about. The issue of gradually
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educating the public, thai they arc living with
uncertainty whether they think so or not. is very
important.

lay Vaughn Newell, who used to work tor the
I: PA. at one stage had an administrator to replace.
Vaughn is a medical type but not a statistician, and he
expressed his problem very much in medical terms:
it's easily demonstrable medically that it's dangerous
to get up out of bed in the morning: you get up. and
you may have an accident. Also it's easily
demonstrable medically that it's dangerous to stay in
bed and not take the exercise. If people could
understand that this is the way the world is. that
they're living their life under these conditions all the
time, and that they need to learn to manage the
situation, then 1 think some of our problems with
uncertainty would be less serious. In the report on
chlorolreons. or chlorofluoro methanes in the ozone
layer, we quoted some uncertainties. Important in
those uncertainties were certain chemical rule
reactions. Estimated uncertainties for those reactions
were used, and these estimates were not the internal
uncertainties you would discuss if you analyzed the
last set of determinations of that rate constant, if
there was one. Based pretty much on professional
judgment among chemists skilled in kenetics. the
uncertainties would likely be between what you had
now and where the thing might settle down. I think
statisticians have to look forward to doing more of
this.

The reason things are rather different than they
were a year or so ago the reason that the committee
on impacts of stratospheric changes to some degree
must go back to its drawing board is that one of
the significant reaction rates has changed by a factor
of 38; I believe, though I am not sure, that this is a
factor of 38 between the best judgment that could be
made before any measurement and the first
measurement. One is, 1 think, still somewhat
uncertain as to whether there are more important
reactions in the mill, and I am sure that there are
other reaction rates which are, and not unreasonably,
still in that state. This is the best judgment by analogy
with the things that you have measured, because
reactions, for example, are between two free radicals
at stratospheric pressures and temperature in
concentrations that may be a few parts per billion. It
is not a thing that one feels nice about or a thing that
the next new graduate student would go into the
laboratory and measure.

There was a conference in Boulder two months ago
on the detectability, by direct ground-base
measurements, of trends in the total ozone overhead.

When the conference was all over, it looked like some
unspecified units, which I will just call units because
nobody usually does, existed. Out of four possible
units, one and one-half came out of the statistical
evaluation oft he available data, and you had to allow
about one and one-half for that. One-hall unit was
ample to allow for the stations not being uniformly
distributed over the faceol the globe. I wo units came
from the instruments being known to ha\e certain
kinds ol drift in terms of what you know about how
they've been calibrated o\er the years, and this is a
trend that you would expect to seeo\er probably one
or two decades. You haw to leave two units in there
for the measurement, and also you have to be \cry
careful to say you know the o/onc goes up and down
anyway. You have detected a trend, but it would be
unwise to say that we are sure that this is the result of
what the human race has been doing. I don't think
that's an unfair example of where the quantitative
technical issues often'come out. in a decision base
situation, and we have not vet besun to inquire which
uses of the chlorofluoro methanes arc important to
society. If you are going to contribute the most cither
narrowly or boardly, you've got to spread your
individual responsibility well beyond the courses in
the university. The further up the line that you're
going to have some influence, the further you're going
to have to spread that responsibility and the more
things you're going to have to say that you may feel
uncomfortable about after you've gone to bed at
night.

Richard Hooper: Regarding thesccond question. I
need to summarize a couple of things that were said.
Carl made several statements about the need to see
that credible data is obtained and the consequences
evaluated. He talked about the development of
evaluation schools that provide credible information
to the public; Dr. Kouts made reference to a very
complicated model for which the error analysis that
went along with it wasn't nearly as sophisticated as
the model; Dr. Leone made reference to a stronger
credibility, generally in the data and the data base
which is used eventually to support decisions. We in
the profession should recognize that most of what we
end up doing is the result of our own selling
efforts—either selling ourselves and our services to
investigators in other areas or selling an idea that we
think some sponsoring agency would buy. It seems
that our recognition of the necessity of salesmanship
in itself might be a mechanism to begin turning some
of these problems around, and I'm interested in your
views on this.
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< ail Bcniwu. 1 ihink the real problem comes in
salesmanship ol certain types, and I don't mean
salesmanship in the sense ol going out. il vou know
what I mean, and advertising 01 anything like that,
but the salesmanship I hat's talked about in. lor
example, ihe book bv Ralph C'ordner. I he
desciiption is given in C'ordner's book, ol t he guv who
ended up developing loi. I believe. S\ Kama, one ol
the lundaiiienial items u> patent lor television.
Hetween Wl"< and I9.'7. heluidhisresearehliindsci.il
ol! perhaps ten limes. Hut this turned out to beoneol
the single most important patents that Sylvania ever
bought. I think what we're getting back to is the kind
ol persistence that enables von to look at a data base
Mm have investigated, look at a process which vou
are lamihai with, havea certain amount of confidence
in sour own leelings that you understand what's
going on and that vou do have some kind ol
understanding, which it is important lor somebodv
else to liave. and then be able to go through the
uncomlorta hie process ol ed ucating somebody else to
this point ol understanding. In a sense, vou have to
lirst analwe the data so vou're comfortable with it.
but then vou have to go through the process of
making thai understanding credible to someone else,
and it's establishing that credibility to someone else,
in in\ opinion, that's going to make you a part ol a
deei-.ion process. It is not enough to understand the
process voursclt. \ou see. Unless you can use the
results ot sour statistics to influence others, your
work might end up like the report Fred was talking
about on the shell, vou see. Now. this can be very
uneomlortable: vou can gel laughed at.

I can remember the expressions on the laces of the
people in the room when 1 first suggested to a group
of people that thev could learn an awful lot if they'd
simply run about 50 fuel elements to rupture. My
heavens, there wasn't a single person in that room
that wasn't going to have the whole problem solved
before they had ten ruptures. 1 can remember sitting
in a room with a group ol five production people that
just laughed at the idea of deliberately loading and
running till rupture until we can get some idea of
distribution theory and so forth.

That's the scn.se of uncomlorta bleness, I think, that
we're talking about. It's the sense of being out there
on a limb with, first of all, something you believe in
because you've done your best to look at all the data
you have, and I can't go through this stale process
until 1 really believe in that fact. That belief has to be
established first, but then you have the responsibility
for selling it and to establish that you have credibility
in someone else. There are two different levels of

understanding, and I think that again I am indebted
to Morton Schubert lor this insight. About 15 scars
ago. he said that there are two completely dillerent
levels ol understanding ola problem: one is w lien vou
suddenlv gel the insight and understand it voursell.
and the other is the appreciably later time when sou
have it formalized to the point that vou can explain it
to someone else. I heseare two sigmlieantlv dillerent
levels ol understanding ol the problem. I am
admittedly a little turned on because I was triggered
by. like I usualh am. John's remarks with respect to
this business ol living dangerouslv. and the fact that
one must live dangerously because it so elcarlv
expresses just what a lot ol us are not willing to do.

It's hard to describe to a group like this what the
situation was like, let me sav about M) sears ago.
when vou could be in the relatively lonclv and
uncomfortable position ol dealing with data out in
the plant. Vou were sort ol looked down upon by the
group back at the university as though you were
prostituting yourself, and you were looked upon as a
way-out longhair bv the group vou were working
with. It is very dilficult to understand the sheer
uncomfortablcness ol j;oing out and dealing with
data in a time when it was far more enticing to retreat
to the nice comfort ol good, theoretical development
or to go over to the comfort of a handbook which told
you what d o d o . It's that kind of thing that you should
challenge, if you're going to become part of the
decision-making structure.

John Tukey: Of course, 1 agree with everything
that Carl said. I would expand it just a little bit more.
Carl was emphasizing "understanding the data" and
those who know me. know 1 think this is extremely
important. In most of these situations, it's also
important to understand the problem. In another
direction is another level of understanding when you
not only understand the data, but you understand
how people think about the problem, why they think
about it that way. andhovvthedata fits into that. It's a
different second level, and ifyou can combine the two
separate levels, so that you not only understand the
data but you understand the problem and can
transfer the conviction of this understanding, then
you've gone a long, long way.

Fred Leone: I'd like to emphasize another point in
the matter of salesmanship. Too often I have seen
cases, especially in analysis of quality control groups,
where the individuals are highly regarded as perhaps
being good statisticians but not good scientists. In
other words, these individuals may be respected for
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what they can do in their own small circle, but they
somehow do not get it across. Now surely we must be
willing to be uncomfortable, uncomfortable to the
point where we're willing to be patient to the people
who do not understand us at first: then we try to reach
them. I'm not talkingabout those we know we cannot
reach and the barriers there, for there's no way to gain
their respect, at least initially. We need to understand
why the data are such, how they are collected, what
the implications are. and how to gel that
understanding across. 1 think that too many good
statisticians are not ready to take the time to sell
good, sound, statistical bases for a decision. I don't
think we can underestimate this process at all: 1 think
it is very, very important.

John Tukey: I'd like to come back fora moment to
the very important process on the other side of the
fence. Jack Youden and I-rank Wileoxon were
dedicated chemists lor 25 years in the same
institution, and my estimate is they argued statistics
an hour a day for four days a week on the average
over that time, but that made two very good
statisticians. It's a question of whether five years
should have been enough. The related idea (and I
think all of you must be familiar with this) is that it's
sometimes often accidental that you start establishing
a working relationship in some area and that your
best relations have often come by the continued
growth of something that seemed to start purely
accidentally. You don't get to the places where your
expertise is most needed at once: you are lucky if you
get to most of them in the long run: and how you get
there is sometimes very interesting and round about.
In dealing with the subject matter areas. I suspect the
most important thing to do is to understand the
phenomenology. I've always admired Joe
Hurstfellow's title "At the Bikini Tests." He wore the
title of chief phenomenologist. Too often the
technical people you deal with from other disciplines
will not have given the phenomenology enough
attention. Where they haven't, if the statistician can
learn it and use it in the right way, not too
obstreperously, maybe that's a way to take a good
step forward.

Herb Kouts: Well, there's a lot of talk about pitfalls
in this application to problems of the day, and I'd just
like to put some of these in a few different words.
Both Carl Bennett and John Tukey have talked about
the need to define the problem. I think it is necessary
to define the problem in very simple ways. If you can
write the problem out in one sentence you stand a

chance of solving it. If it takes a page to write the
problem out, you might as well give it up. In addition
to writing the problemout in one sentence, you ought
to write it out in such a way that your wife will
understand it. If she can understand it. then you have
a good chance of solving it. I'm not jokingabout this!

In the application to social problems of this kind, it
is important to recognize that the social problems are
the kinds that affect everybody and the effect on other
people is expressed in terms of an inability of other
people to understand. Of course there are exceptions
to all these things; 1 doubt that some of the things that
took place at Bikini could have been put in a form
understandable to one's wife. Other applications of
bikinis, yes. There's another pitfall that one runs
into- deviating from the initial goal. Frequently
sicentists start out knowing what they are going todo.
and then, by a process which is like drowning in
motion, collision with small problems of the day
divert them in completely different directions, and
they end up trying to solve other problems. This is
often called solving the problem you know rather
than the problem that needs to be solved. It happens
all the time.

Let me just say something else; if you are going to
try to solve social problems, you arc going to have to
do some selling. You are going to have to convince
somebody to let you go where you can do some of
this. You are going to have to communicate in
understandable terms, which means stating what you
intend to do in terms of what's to be had. It's a
standard problem in salesmanship.

Every salesman has to make it clear that he has
exactly what is wanted. Jn dealing with the
government, the same sort of "rules" apply that are
appropriate for a butcher dealing with a housewife.
The man in government faces problems that he's
really able to condense into a little package usually.
These are usually the problems I have to solve. If you
go to him, telling him you want to do something for
him which doesn't fit into what he has to solve, he's
not even going to listen to you, he'll throw you out.
This disaster often happens even when there is a
wonderful match to be made. I was talking yesterday
to a fellow at Brookhaven who has some very nice
ideas about stress analysis. He has some beautiful
capabilities for doing analysis, for instance, of things
that might happen to pipes under very difficult
circumstances, but what he wanted to do was to
develop codes. Well, I'm sure there's no one in
government interested in developing the code that he
wants to develop, but there are lots of people in
government who are interested in doing calculations
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01 seeing the results ol calculations that might be
done with codes that he might develop. It's up to him
to approach people in a manner to convince them
that his product might be beneficial to them.

Hit hui\l Huoper: I ime is mm ing on. I he panel has
indicated its willingness to accept questions from the
floor.

Davit/ Rii/'iiiMciii, \A'(.J We've heard several
explanations which go sort of in different directions,
and I wonder il the panel can give us guidance in
relating them. One is that statisticians should remain
"sellativc." Not that I wish to state the problem
simply in one line and not that I suggest we get out ol
the decision-making process, beyond what might be
lormal statistical input, but 1 think once we step
beyond that we are likely to lose our credibility.

.Itilm /'tikcy: II I might respond to thai last
comment, some will and some won't, and we hope
that will determine whether they keep on doing it.

/ltil< ktwl\: I'd like to say it is impossible to get
into problems that have social impact without losing
some ol your credibility.

John 'I'ukey: Going back to the first side of that
question where it was suggested that the: tatislicians
would retain their credibility, maybe the message
Irom up here was that they should gain their
credibility.

Ihiinuis Wtiicki. I'rincelon I'niver.sitv: I would
like to say 1 lound the comments really encouraging. I
think ll a statistician is going to play a role in the
energy problem, then he has to actively and
aggressively claim that role lor the following reason:
whereas the economist is automatically identified
with the economy ol energy and the biologist is
automatically identified with the biological aspectsof
energy consumption, etc.. the statistician is not
automatically identified with any particularaspect of
the energy problem. In fact, however, he has a
professional role in every aspect because perhaps
every one of those situations involve collecting data
and making measurements and decisions. 1 don't
think we're being automatically identified with any
aspect, and we have to go out and aggressively claim
our role.

I think il is inherently harder for a statistician to
claim his role in some of these tasks than il is for a
person in another discipline. If a statistician wants to

work on the economic aspects ol I lie energy problem,
he has to demonstrate lirsi an interest in some
knowledge ol economics and only then can he bring
to bear the luel that he had. An economist, however,
need not demonstrate any knowledge ol statistics or
energy or anything else: he has an automatic stake in
it lor some reason. Nobody really knows much about
some o! these problems and that's very
uncomlortable. but on tin. other hand, thai points to
the role ol a statistician. Since there's a lot ot
ignorance about these problems, then the statistician
is no more ignorant than any one else and in lacl has
a responsibility to contribute lo the lormulalion ol
the problem. .Actually I lind that much less
uncomfortable than being m .i situation where
someone comes to me and say s. " I Ins is the problem,
do it!" or even worse than that. "Here is the data: go
analyze it!" I hough n mav beuncomlortahle in some
cases. 1 still ihmk you have to go out and do it.

/•red l.eoite: I'd like to make a point here. I think
part ol the problem is with the statistician,
himsell or hersell. Von were saying the statistician
has lo learn the economics and then get into the
statistics. I nlorlunalely. when the statistician learns
the economics ol the problem, then he has to be called
an economist. Often that person is called an engineer.
1 remember a television interview ol one of our most
famous statisticians in cancer research, and hedid not
identify himsell as a statistician, hut as a cancer
expert. So the problem is that too many ol us are not
willing lo say "We are statisticians." I would guess
also thai most ol us who are associated with, for
example, the American Statistical Association are
also part of at least one other field which would be a
subject matter field. Nonetheless, we have to stand up
and be counted.

Carl Beimel 1: 1 must take the opportunity to say
that one of the high points of my career was when the
Hanlord Laboratory was formed: some important
person was visiiing. and I was being introduced by the
then head of the laboratory from each group, and he
said. "I would like for you to meet Carl Bennett, our
statistician: he's also a pretty fair scientist."

John Tukey: The message from that is if you want
to be important, you must arrange to also be a pretty
fair scientist.

Gary Tieijen, l.os Alamos: Increasingly I see
statisticians becoming involved in legal testimony
and coming away from these experiences with
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unpleasant feelings ot inadequacy and frustration.
What does the panel see as the role of the statistician
in those legal situations.

John Tukey: Well I'll answer that, if you are
willing. ;.nd preface the answer with an anecdote. 1
\\a>. on the I'.S. delegation, the technical working
group, to the test-ban negotiation: the first day 1 was
a litilc perplexed about the atmosphere. I5ut bclore
we got to the second meeting 1 knew what was
familiar: it was exactly the atmosphere of a rate case
belore a public utilities commission, except there
wasn't a .strong independent person to chair. I think if
our society is going to function well, then interest
groups are iust as entitled to have quantitative
council, as they are to have legal council. We cannot
expect that the quantitative council for opposing
points of \ iew are going to make entirely compatible
statements, but we can expect each of them will keep
the other quantitative council honest. Many of you
max not know of the case that 1 mentioned at
breakfast, in which Chester Hlaizerfield appeared for
one party, and Judge Xetterfield appeared for the
other. One did the analysis model I and got one
answer, and the other did the analysis of variance
model 2 and got the otherunswer. Now I think it was
for the good that this possibility of disagreement and
adequate quantitative representation took place. If
you are going to appear as quantitative council, that's
not the same thing as sitting in the neutral lab: there's
no use trying to make it look as if it is.

Carl Bennett: Having spent the last six years o\er
on the other side of the mountain with this Human
Affairs Research Centers group (which consists
primarily of psychologists, sociologists, lawyers.
economists, and a certain number of public affairs
type people), I've greatly enjoyed discussing with
some of my "legal friends" the difference between the
adversary type of proceedings that constitute typical
legal procedure and the kinds of procedures we are
more accustomed to, where you supposedly analyze
the data and come out wiih the answer. Really in a
sense there is a great deal more in common here than
you might think. My lawyer friends claim that the
adversary proceedings really only start after
admission into evidence of a certain set of factual
data which both lawyers essentially agree exist. That

is. there is a process in law ol agreeing on a briel or a
body of evidence or data which is taken as fact, and
the adversary argument starts from there, in the sense
ol being interpretation of this c\ idciicc. orargiimenis
ol how this evidence is interpreted. In a sense we have
almost the same procedure here. You can start w it in a
given body of data, and 1 think it perfectly possible to
have two different people agree or disagree on the
interpretation of that set of data and what is
meaningful to conclude them. I o me 1 think it is
worth thinking about.

John Tukey: It seemsto mewegoa lot lurlherthan
saying that the statistician professional!) internalize
this. The motion of the confidence interval is
perfectly equivalent to saving that (I la representative
is arguing tor each value- ol the parameter (a diltereiU
representative lor each value) now which ones of
those can you not rule out'.' and (2) the-adversary is in
a sense supplied, but the suceesslul adversaries aie
represented by the upper and lower circumferences.
Let me also not leave the impression that I think an
adversary's position is always best. I've alv.ays
thought that one of the better compliments I ever
had. which 1 eventually heard secondhand, was in an
international discussion where somebody on the
other side said. "Well I never understood why you
had I tike) along, but now I realize that he's being
absolutely as objective as one can get." So. there are
times and places: you need to know which is v our role
and trv to till it.

Richard Hooper: We started out to talk about the
roles of the statistician and decisions needed and
formulated in national energy policy: we talked at
length about the need to understand the problems to
the point that we can articulate them in a meaningful
way to consumers; we talked at some length about the
need to make the application ot complicated
procedures more credible through the kinds ol error
analyses and the statements that are associated with
them. It seems to me that, time and time again, the
conversations turn back to Professor I ukey's
statement, which will really have an impact on
decisions and enhance and increase our credibility as
a profession: "We have to be willing to be
uncomfortable."
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