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Preface

The publication of these proceedings completes the plans conceived and originated in carly February of
1975. At that time, statisticians from Los Alamos, Oak Ridge, and Pacific Northwest met to discuss the feasi-
bility of identifying what was called the *ERDA S1atistical Community™ and to diseuss means ol bringing the
members of that community together to meet one another and to share their experiences in helping to solve the
nation’s energy problems.

With the encouragement of ERDA’s Division of Physical Research. a three-vear plan was undertaken in
which meetings would be held at national laboratory sites and the responsibilities shared by the three instigating
laboratories. The program committee would be chaired by the host laboratory. (To this committee werc added,
subsequently, representatives from Sandia Laboratories and Princeton University.) The proceedings would be
published by one of the nonhost laboratorics. ‘

In accordance with the plan, the First ERDA Statistical Symposium was held at Los Alamos. New Mexico,
in 1975. The proceedings were published by Pacific Northwest (BNWL-1986). The Second ERDA Statistical
Symposium was held in 1976 at Oak Ridge, Tennessee, with proccedings published by Los Alamos Scientific
Laboratory (LA-6758-C). The third symposium was held at Richland, Washington. on October 26 28, 1977.
That symposium, of which these arc the procecedings. was named the 1977 DOE Statistical Symposium because
ERDA had been dissolved and reorganized into the Department of Encrgy just four wecks previously.

The Program Committee, chaired by Wesley L. Nicholson. consisted of Donald A. Gardiner, Ronald K.
Lohrding, George P. Steck, and Thomas W. Woteki. 1t is a pleasurc to express appreciation for the excellent
ciforts of the Local Arrangement Committee, Ethel S. Gilbert. Richard L. Hooper. Jumes W. Johnston.
Anthony R. Olsen, and Donald Stevens under the able leadership of Pamela G. Doctor, and to acknowledge the
assistance of Charles K. Bayne, Thomas L. Hebble, William E. Lever. and Deborah E. Shepherd in preparing
these proceedings.

Thus the original plans have been successfully implemented and the eycle is complete. The ERDA Statistical
Community, now the DOE Statistical Community, has been rather completely identified, we think, The first
mailing list consisted of just a few names recalled from the tops of our heads; the list now contains more than 300
names. The interaction among the statisticians at the DOE laboratories, the academic community, and
industries engaged in energy-related enterprises has increased to a surprising and gratilying degree. The
organizers and their sponsors should be well pleased.

At the conclusion of the symposium in Richland, the participants met for a eritique and to discuss plans. if
any. for the futurc. They were of the mind that the symposia should continue on an annual basis and that the
organizers should be recruited from a wider base. Sol Rubinstein of Rockwell International volunteered to lead
the Program Committee, and representatives [rom the national luboratories, universities, and industry volun-
teered to scrve. Richard Prairie of Sandia Laboratories offered theauspicesof Sandia Laboratories as host fora
symposium in 1978, and Nicholson and Gardiner offered to work out a plan for the publication of proceed-
ings.

The contributions of all those who supported and participated in the firsi three statistical symposia are
greatly appreciated.

. Donald A. Gardiner
vil



Welcome

Tommy Ambrose

Pacific Northwest Laboratories
Richland, Washington

INTRODUCTION OF T. AMBROSE— Wes Nicholson

The Tormal welcome to the 1977 Department of Energy Statistical Symposium will be given by Dr. Tommy
Ambrose. the Director of the Pacific Northwest Division of Battelle Memorial Institute, This division of Battelle
consists of the Pacific Northwest Laboratory in Richland. which Battelle aperates for the Department of Energy. the
Scattle Research Center and the Human Affairs Research Center. both located adjacent to the University of
Washington campus, and a marine scicnees laboratory at Scquim on the narthwest coust of Washington State. Dr.
Ambrose represents DOE and the various contractors as he formally welcomes you. His remarks will include a
description of the rather unigue situation here resulting from the fact that Battelle operates a dual laboratory in
Richland. being a DOE contractor and a broad-spectrum. nonprofit research organization. ftisa pleasure to introduce
our laboratory direetor. Tommy Ambrose.

It is my pleasure to welcome you to Richland and the Tri-Cities on behall of the Department of
Energy and its contractors. We are particularly pleased to host the 1977 DOE Statistical Symposium for
those who are interested in the nation’s energy problems. I understand our audience is made up of people
from other DOE laboratories, the university community, and industry.

For the individuals who are first-time visitors to the Tri-City area. you now know that the State of
Washington is not entirely covered by green trees and lush vegetation. In fact. we are nearly in the center
of the remaining three-quarters of the State. Also. you have no doubt learned that Richland is next to
impossible to reach, and one really must work hard to get here. We thank each of you for the extra effort.

- The Richland operation is made up of a group of contractors who operate the entire complex for
DOE. This arrangement is different from most DOE sites and perhaps warrants an explanation as to how
it came into existence.

In the dim, dark past before ERDA and even before AEC, the U.S. Government contracted with the
Du Pont Company to construct and operate a facility known as the Hanford Works whose purpose was to
produce plutonium for weapons. In 1946, Du Pont turned over the operation of the plant to the General
Electric Company, and the AEC was created. The operation grew to the point in the mid-1950s that eight
reactors were in operation along with a reprocessing plant and a work force of about 8000.

In 1963, Hanfords mission to make plutonium for nuclear weapons was almost comple.ed. The
nation’s stockpile of plutonium was sufficient. Richland, the one-payroll town created just 20 years earlier.
was headed for a major reduction in employment. At that point the creative ingenuity of the AEC. its
contractor (General Electric), and community leaders went to work, and a far-sighted program was
developed in 1964 based on the concepts of “segmentation”—dividing the single operating contract for the



total Hantord Project into parts to be performed by other industrnal orgunizations, and “diverstication™
the new Hanford contractors strengthening the cconomic base ol the community by new programs and,
I estments,

Toduy the operating contractors for DOE include Battelle Memorial Institute. Boemg Computer
Services. Hanford Engineering Development Laboratory (Westinghouse). I AL Jones. Rockwell Hanlord
Company, United Nuclear Industries, and Vitro. All cight of the reactors have heen shut down as well as
the reprocessing plant, and the iabor force now exceeds 8000,

Two additional companics that have located in the arca because of our strong nuclear technical
base arc Exxon Nuclear Company. Inc.. and Washington Public Power Supply System. Exxon has
established o light-water tuel tabrication plant and has undertaken research and pilot plant work in
uranium enrichment technology, The Washington Public Power Supply System is a group of public and
private utilities in the process of building several nuclear power plant units in the area.

The symposium is sponsored by the Department of Encrgy as part of its ongoing effort to solve the
nation’s energy problems. Participants from DOE and the various contractors are your symposium hosts,
Speaking for DOE and the contractor group. we arc pleased with the scope of the statistical program and
are delighted with the caliber of people who are attending and expressing their keen interest in the nation’s
energy problems. Thank you for your participation, and welcome to Richland.
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Harmonic Regression*f
F. J. Anscombe

Yale University
New Haven, Connecticut

ABSTRACT

Ordinary hincar regression. by the method ol least squares, 1s tsed 10 determmine @ linear relation between given
independent observistions of 1wo or more varisbles. An analogous problem for tme series iy to determine o hnear
relation between two or more given stationary series. The lincar relaton may take the form that one series is a linear

filtering of the other sertes, plus a stationary error process. Fhe coctficients of the filter can be determined directly by

multiple regression ir the ume domain, but there are various ditficulties. An casier procedure, leading 10 more
itelligible results. is to estimate the Fourier transtorm of the coefticients ot the filter. which can be expressed interms
ol a gain functuion and a phase-shilt function, by 4 simpler regression cleulation in the fregqueney domitin,

| he procedures are illustrated by astudy of the interrelationship ot an annual series of output of U.S. copper munes
from 1860 10 1975 and two annual cconomic series relating to the same years, namels & series of copper prices at New
York and a series of the total dollar salue of general imports of merchandise into the United States.

The calculations of ordinary regression analysis
linear regression by the method of least syquares-
have been done correctly for a century and a half,
However, there have been changes in the computa-
tional methods used. There is plenty to discuss about
regression- lor example. is it appropriate for the
data. and what do the results mean? No doubt the
calculations are sometimes of little value. but some-
times they are appropriate and lead 10 new
understanding,

Regression analysis of time series has a much
shorter history. Although there is a good deal of
literature about it, the literature often has the air of
arm-chair meditation by a nonparticipant. My
concern has been to implement principles that are in
the literature, and devise a working procedure.
Various practical difficulties have been encountered
that do not seem to be discussed in the literature.

Does anyone nced to do regression analysis of time

series? Conflicting opinions are heard. Great

amounts of time-series material are being collected
and stored relating to the environment (weather.
pollution), the obscrvations being made daily or even
more {requently. Many economic series are de-
veloped for monthly, weekly, or daily activitics. 1
have worked with annual series. which are probably
the least satisfactory material for this kind of
study.

Some broad generalities are presented below, and
an example is given, The details are vital, but as they
have lbccn fully described elsewhere they are not given
here.

*Invited address.

“Prepared in connection with research supported by the
Army. Navy. Air Force. amd NASA under a  contract
administered by the Office of Naval Rescarch.

I. The detailed study on which this paper is bused is found in the
following: F. J. Anscombe, *Fime Series: Yale Enrollment.” Chap.
10 in Sraristical Computing with APL, (in preparation).




4 F. J. Anscombe

FORMULATION

We consider regression ol one “dependent™ vari-
able on just one “independent” or predictor variable.
(Mecthods extend, ol course. but not without some
difficulties. 1o several predictor variables.y All means
will be supposed zero. Then ordinary lincar regres-
sion can be formulated. Weare given observations on
pairs of variables, (x,, v) for i =1, 2. ... m. We
suppose that for all 7,

y=6nt e, (N

where the errors Je§ are considered to be (in some
sense) independent of cach otner and of the predictor
variable {x,}. The method of least squares can be
cquated to the method of maximum likelihood when
we suppose that the {e} are independent random
variables identically distributed A0, 67).

How should regression of tirae serics be formu-
lated? We are given series {v,}, .}, wherer=1,2,...,
n. We shall not suppose these scries. nor the error
scries {e,} when we introduce it, 1o consist of indepen-
dent clements. We shall instead supposc the series to
be starionary, that is, realizations of some kind of
stationaty stochastic process. (In  practice the
appearance of stationarity with zero mean is en-
couraged by subtracting a linear or other trend.
usually after taking logarithms.) To correspond 1o
Eq. (1), one might suggest

n=xte.

But if the scries are related, the relation may be not
simultancous. One might have

Ve = ﬂ-\'t 7 + €.

for some integer lag /. But then one might as well
postulate

Ye= .\:.j BJ'\-"J + e (2)

where j runs over some suitable set of integer values.
Equation (2) seems to be theappropriate formulation
for stationary processes, to correspond 1o Eq. (1) for
independent processes. The first member of the right
side of Eq. (2) represents a linear filtering of {x.}.
There are two main approaches to trying to
estimate the parameters {8;} of the filter in Eq. (2).

Time-domain Methods

One can try directmultiple regression of {y:§ on {x,}
and on lagged versions of it. {x, ,} for various;. There
is a difficulty about deciding how many lags should
be considered. If {x,} is strongly autocorrelated.
conditioning will be poor. An accurate representa-
tion of the relation between two stationary stochastic
processes could easily involve a large number of
nonzero cocfficients {3,].

If our reason for trying to fit a relation like Eqg. (2)
is 10 be able to forecast y, from past values of {x,.
possibly a very crude estimate of the {,} will be good
cnough. The precision of a forecast is limited by the
variance of the error term. The greater precision that
would be attained if the {8,} were known exaculy may
be only negligibly greater.” Box and Jenkins' have
presented a set of practical procedures for estimating
the structures of time series well enough for fore-
casting. If our purpose is not forecasting. but
understanding as well as we can the relation between
the serics, the Box-fenkins methods may be less
satisfactory.

1t will be argued that some of these difficultics are
mitigated or avoided by frequency-domain methods.
However, we must usually be alert to temporal in-
stability or change in a relation like Eq. (2). and that
will be detected by time-domain methods.

Frequency-domain Methods

The idea is to Fourier-transform Eq. (2) and to
estimate the transform of {8,}. It will be suggested
that (i) this procedure is easier to carry out than
multiple regression in the time domain and that (ii)
the results are easicr to understand. Claim (i) 1
derived from the fact that the first member on the
right side of Eq. (2), the filtering of {x,}. is a convolu-
tion of §8,} and {,} and transforms to the product of
the separate transforms of {8,} and {x;}. Thus Eq. (2)
becomes

FT{o) = (FT{B(FTixd) + FTe} .

2. W, S. Cleveland. Time Series Projection: Theory and
Practice, Ph.D. dissertation, Yale University. New Haven, Conn..
1967.

3. G. E. P. Box and G. M. Jenkins, Time Series Analvsis:
Forecasting and Conrrol, Holden-Day, Sun Francisco. 1970,
1976.



These Fourier transforms are complex-valued
functions of a real variable A representing frequency.
Consider a narrow frequency band (interval for A).
Suppose that in this interval the transforms of {8,
were (near enough) constant. Then in this interval the
refation between FT{y.} and FT{x,} would be exactly
like Eq. (1) between {y.} and {x.}. with the exception
that the variables and the regression cocfficient are
complex-valued. In realterms, FT{8,} is convenicntly
expressed as an amplitude, the gain function G(A).
and an angle, the phase-shift function ¢(A). Thus if
G(A) and &(A) could be regarded asconstant over the
frequency band. they could be estimated {rom the
transforms of {1} and {x:} by a slight modification of
the usual procedure for the lincar regression refation
Eq. (1) -expressed in real terms it looks a bit dif-
ferent, but the procedure is really ordinary linear least
squarces with two real coefficients 1o be estimated.
The least-squares procedure is particularly appro-
priate il the error process {e/} is a stationary Gaussian
process whose spectral density is nearly constant over
the band.

However. it has been gencrally recognized (refs. 4
and 5, and others) that treating ¢(A) as constant is not
satisfactory when its derivative is much different
from 0 and that it is better to approximate the
behavior of the transform of {8} in the narrow
frequency band by three real parameters, the average
values of G(A), ¢(A), and ¢'(A) in the band - that is,
treat G(A) as constart and ¢(A) as linear in A. Now
the regression procedure is further modified.
becoming in fact nonlinear and requiring an iterative
solution, but still computationally rather casy.

Thus the complete procedure involves examining
the frequency range of A in bands, using a moving
“window.” and in each band doing a small computa-
tion to determine three real parameters, representing
average values of G(A), ¢(A),and ¢’(A). Upon putting
the solutions together we see the whole behavior of
G(A) and @(A). With G(A) and &(A) estimated. {8;}
could be inferred by making the inverse Fourier
transform.

Intelligibility

Claim (ii) is that G(A) and ¢(A) are what we need, in
orderto understand the relation between {1} and {x.},
rather than the {8,}. If the latter were given, we should
have to Fourier-transform them to see qualitatively
the effect of the filter. Compare this with the usual
commercial description of performance of an ampli-
fier in a sound-reproduction system.

Harmonic Regression 5

EXAMPLE

As an example of methods, we try interrelating an
annual series of total copper mine output for the
United States and two economic annual series. one
giving the New York price of copper. the other the
total dollar value of imports of merchandise into the
United States. The copper price series is thought to
reflect the world supply and demand for copper.
Changes in price might be expected to lead to similar
changes in production. possibly a little later. The
imports series is wken as an indicator of the U.S.
cconomy. The copper production series is N235, and
the price series is N241. in Historical Statistics of the
United States!” the production figures run from 1845
to 1970, the prices from 1850 to 1970. The figures
have been taken exactly as published. except that to
smooth a change in price definition in 1968 the
average of two definitions has been used for 1967,
The price figures for 1850 1859 arc of uncertain
meaning. and the production figures tot betore 1860
show a more rapid proportional rate of growth than
for later ume periods. For present pusposes it has
seemed wise to ignare the pre-1860 data. Continua-
tion of the series from 1970 to 1975 has been obtained
from the Statistical Abstract of the United States.
The two scries are reproduced in Fig. 1. except that
the last two digits of the produetion entrics have been
dropped for ease of reading. The imports series has
been given in ref. 1 and is not reproduced here; only
the portion from 1860 to 1975 is uscd.

Figure 2 shows a plot against the date of the
logarithm of the production serics, with the linear
regression on date subtracted. Figure 3 is a similar
plot for the price series. A plot for the imports serics
has been given in ref. 1.

The three given series ecach have 116 entries (for
1860-1975). To prepare them for Fourier analysis
they have been prewhitened by these three steps: (i)
take logarithms, (ii) subtract the lincar regression on

4. H. Akaike and Y. Yamanouchi. “On the Statistical Estima-
tion of Frequency Response Function.” Ann. Inst. Star. Math. 14:
23 56 (1962).

5. W. S. Cieveland and E. Parzen, “The Estimation of
Coherence, Frequeney Response, and Envelope Delay.” Tech-
nometrics 17: 167 72 (1975).

6. U.S. Burcau of the Census, Hisiorical Statistics of the United
States, Colonial Times to 1970, Bicentennial Fdition, U.S.
Government Printing Office, Washington, D.C.. 1975.

7. U.S. Burcau of the Census, Svatistical Abstract of the United
States, U.S. Government Printing Office, Washington, D.C.. 1975,
1976.
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+ 0 1 2 3 4

5 6 7 ] 9

U.S. COPPER PHODUCTION (MINE OUTPUT, HUNDREDS OF SHORI DTCHZ)

1860] 81 ey 106 g5 90
1870] 141 146 140 174 196
1880 | 302 358 453 578 725

1890] 1299 1421 1725 1647 1771
|

1300] 3031 3010 3298 3490 4063

1910] Suu4l 5574 6245 6178 57u42

1920} 6123 2331 4823 7389 8031

1930] 7051 5283 2381 1906 2374

1940] 8781 9581 10801 10908 9725
|

1950f 9093 9283 9254 9264 8355

1960] 10802 11652 12284 12132 12468

1970| 17197 15220 16650 17180 15970

PRICE OF REFINED COPPER AT NEW YORK (CENTS PER POUND)

1860 22.88 22,25 21.88 33.88 47.00
1870] 21.19 24.12 35.56 28,00 22.00
1880} 21.50 18.25 18.50 15,88 13.75
1890] 15.75 12.88 11,50 10.65 §.42

f
1900} 16.5% 16.40 11.96 13.62 13.11

1810| 12.88 12,55 15.48 15.52 13.31
1920{ 17.50 12.65 13.56 14.61 13.16
1930] 13.11 8.24 5.67 7,15 8.53

1940] 11.40 11,87 11.87 11.87 11.87
f

19501 21.46 24,37 24.37 28.92 29.82

1960| 32.16 30.14 30.82 30.82 32,17

1970| 58.07 52.00 51.20 59.50 77.30

95 100 112 110 150 A
202 213 235 241 258 B
829 789 907 1132 1134 c

1303 2300 2470 26733 z&u3 17
Gynu 4585 4236 4784 5633 E
7440 10029 9477 9550 6062 F
B391 8626 8250 9043 9976 G
3865 6145 Bu20 5578 7283 H
7729 6087 8476 8348 7528 I
9986 11042 10869 9795 B2uE J
13517 14292 9541 1204k 15u4E K
14110 A
39.25 34.25 25.38 23.00 24.25 A
22.69 21.00 19.00 16.%56 18.62 B
11.10 11.00 11.25 16.80 13.75 5
10.70 10.92 11.30 12.01 17.7% U
15.9¢ 19.77 20.86 13.39 13.11 E
17.47 28,46 29.19 29.19 18.50 F
18,16 13.95 13.05 14.68 18.23 G

8.76 9.58 13,27 10.10 11.07 H
11.87 13.92 21.15 22.20 19.3¢ I

37.3% u41.88 29.99 26.13 30.82
35.19 35.82 38.01 41.17 u47.u43
64,20

[l S

Fig. 1. The data.

date, (i) filter by the two-point filter with weights
(—0.9, 1). The last operation reduces the length of
each scries to [15. Then the series have been
circularized (tapered) by lincarly splicing the first
seven and the last seven entries, so that the length of
cach series becomes 108. The Fourier transform is
made at frequencies (0, 1, 2, ..., 54), 108 cycles per
year; the transform is expressed as a sct of (real)
coefticients of cosine and sine terms, or alternatively
as a sct of squared amplitudes and phase angles. The
frequencies are referred to as harmonics, numbered 0
through 54.

The first step 1o pereciving an interrelation
between any pair of series is to plot the difference of
phase angles at each harmonic against the harmonic
number. Figure 4 shows this for the production and
price series, and Fig. 5 for the production and imports
series. At each harmonic, thc product of the
amplitudes is classified by size into one of six

categories and represented by one of the plotting
symbols:

o o e [0 H©

Each phase difference is plotted with this symbol
twice over in the interval from 0 1o 8 right angles. In
looking for trends. the viewer’s eye should be guided
by the heavier symbols.

Figure 5 shows a fairly strong relation between
production and imports, especially at the higher
frequencies  the phase differences are mostly ruiher
close to 4 (or 0 or 8) right angles and show no trend
with frequency. A simultaneous positive corrclation
between these two series is indicated. Figure 4 shows
a less clear relation between production and price. At
lower frequencies there is some suggestion of trend in
the phase differences, implying that production
follows price, possibly by two ycars, possibly by four,
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COMMON LOGARITHEM OF COPPER PRODUCTION--RESIDUALS FROM FITTED LINE
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Fig. 2. Plot of the copper production series: (a) 1860-1915; (b) 1920-1975.
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Fig. 2 (continued).
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COMMON LOGARITHM OF COPPER_PRICE--RESIDUALS FROM FITTED LINE
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Fig. 3. Plot of the copper price series: (a) 1860-1915; (b) 1920-1975.
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Fig. 4. Phase-difference plot for copper production and copper price.
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Fig. 5, Phase-difference plot for copper production and general imports,
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Smoothed spectral | Regression coefficients of copper prodn, with Rx2,
estimates (i) on copper price {(ii) on imports

11 1274 853 583 | .635 6.10 15.1 .270 | .625 6.26 1.1 ,179
12 1272 860 566 | .666 .01 12,2 .299 | .687 6.26 2.0 .210
13 1252 861 542 | 695 .15 9,8 .332 | .756  6.26 2.4 .2k8
14 1259 868 519 | .692 .25 9.6 .330 | .787 .02 1.0 .255
15 1258 79 503 | .686 .36 10.6 .328 | ,796 .03 .3 .253
16 1240 883 486 | .674 .46 10.7 .323 | .804 .03 .4 .253
17 1213 880 472 | .65 .57 11.3 .321 | L7895 .02 T.6  .2u6
18 1166 867 455 | .652 .69 11.9 .316 | .779 6.28 .5 .237
19 1109 852 439 | .621 .79 11,5 .296 | .768 6.26 .8 .233
20 1058 82u 427 | .580 .86 10.5 .262 | .766 6.21 ~1.8 .237
21 1014 805 427 | .525 .84 7,5 .219 | .762 6,18 T3.3 .24y
22 972 777 427 | .487 .70 2.8 .190 | .769 6.15 3.8 .259
23 936 745 425 | .473  ,60 T1.8 .178 | .790 6.14 "4.8 .28y
24 893 719 427 | .457 .56 "3,0 .168 | .801 6.12 4.9 .307
25 842 706 439 | Lua41 0,51 73,3 .163 | .798 6.08 Tu.6 .332
26 782 694 446 | L409 .48 3.6 .149 | .793 6.04 3.9 .359
27 716 672 471 | .378 .46 4,2 .134 | .761  6.02 T3.1 ,381
28 646 B4l 491 | 349 42 Ts.7 121 .736 5.99 T2.0 .u412
29 617 620 507 | .355 .42 T10.5 .127 | 717 5,97 T.3 0 422
30 614 597 517 | .391 .44 T14.9  L149 | .715 5,94 2.0 .431
31 620 589 525 | L8400 .36 T16.4  .152 | .729 5.90 4.9 .u450
32 634 589 531 | ,413 .21 "15.1 .158 | .743 5.93 6.0 .u63
33  pul 582 537 | 430 .07 T13.7 .168 | .753 5.98 6.7 ,475
34  6u4 567 536 | 450 6.22 T12.3  .178 | .766 6.04 7.2 .488
35 642 545 533 | 477 6,11 T10.5 .193 | L774  6.10 7.4 497
36 637 515 526 | .513 6.00 8.7 .213 | .775 6.15 6.7 .496
37 627 us8e 512 | .550 5.90 5.7 .23y | ,775 6,19 5.9 ,u91
38 625 u458 492 | .578 5.83 5.5 ,2u45 | .781 6.24 5.5 480
39 630 438 471 | .600 5.79 4,8 .250 | .795 6.28 5.1 .473
40 640 432 450 | .633 5.77 3.5 .270 | .810 .00 3.8 .u62
41 659 425 u28 | .B41 5,78 T2.4 ,266 | .834 .01 2.6 ,452
42 869 wu21 402 | ,645 5.77 T1.,6 .262 | .861 .02 1.4 446
43 875 417 375 | .652 5.76 1.2 .262 | .895 .0y .0 .Lu5

Fig. 6. Tabulation of regression calculations in frequency bands.

At higher frequencies the phase differences seem very
scattered. Not reproduced is a phase-difference plot
for the price and imports series, suggesting quite a
strong simuitaneous correlation at the lower fre-
quencies, and not much at higher frequencies.

Now the regression calculation in frequency bands,
to estimate G(A), ¢(A), and ¢’(A), can be performed.
The window chosen is 23 harmonics wide, and sine
weights have been used. The results are tabulated in
Fig. 6. The first column lists the harmonic number of
the central frequency in the band; we have stepped the
central harmonic number from the lowest possible
value, 11, by unit steps to the greatest possible value,
43. (Had there been many more harmonics and a
greater bandwidth, greater steps would have been
convenient.) The next three columns list estimates of
spectral density for, respectively, copper productiof,
copper price, and imports (prewhitened as explained

|
;
‘\
|
I

above), obtained from the raw line spectra by the 23-
point, sine-weighted moving average. The next four
columns refer to regression of copper production on
copper price. They list average values in the band of
G(A), @A), and ¢'(A), and (in the fourth of these
columns) multiple R” (the coherency). The behavior
of ¢(A) and of R’ gives a numerical measure of the
trend seen in Fig. 4. The last four columns of Fig. 6
give similar information for regression of copper
production on imports and relate to Fig. 5.
(Simultaneous regression of copper production on
both copper price and imports is not considered at
this point.) '

To test a null hypothesis of no association between
series, 5%, 1%, and 0.19% values for R* for any given
frequency band are estimated (by a crude argument)
at 0.19, 0.27, and 0.36, respectively; these values
probably err in being a little too low. The tabulated
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values are very highly correlated, as one reads down
the column. So for regression of production on price,
it scems reasonable to claim a substantial correlation
at low frequencies, in the bands centered between the
11th and [9th harmonics. For regression of produc-
tion on imports, the correlation is substantial in

bands centered between the 23rd and 43rd
harmonics - R is close 1o 0.5 in many of these
bands.

Of our two predictor variables, copper price and
gencral imports, the latter has on the whole the
greater corrclation with copper production. But the
two predictor series have some correlation with each
other. How useful is the price series as a predictor in
conjunction with the imports serics? Residual
Fourier transforms of the production series and of
the price series. after regression on the imports series,
can be obtained, and a phase-difference plot can be
made, analogous 10 Fig. 4 for the original Fourier
transforms. This plot is shown in Fig. 7. The phase
trend seems rather similar to that in Fig. 4 at lower
frequencies and weaker at higher frequencies.

Figure 8 shows a calculation like that in Fig. 6, but
relating to simultaneous regression of production on
both price and imports, instead of to separate regres-
sions. The R’ in the final column is always greater
than either value of R” (for the same frequency band)
given in Fig. 6. The most striking increase over the R*
for regression on imports only occurs for bands
centered between the 25th and 28th harmonics--for
example, 0.479 instead of 0.332 at the 25th harmonic,
0.511 instead of 0.359 at the 26th harmonic. The same
sort of crude argument as beforc indicates that these
four increases (but none of the others) can be
regarded as significant at the 5% level. The increases,
on the whole, are larger at lower frequencies than at
higher frequencies.

The two phase-shift functious estimated in Fig. 8
can be fairly well approximated at most frequencies
by saying that production is correlated positively
with imports of the same year and negatively with
prices of four years before.

Figures 9 and 10 aretime-domain plots intended to
show whether the relations between the series
perceived in the harmonic analysis pervade the whole
series or are special to particular epochs. For both
plots, the original series have been transformed to

logarithms; and a linear trend has been subtracted.
Then for Fig. 9, low frequencies have been suppressed
by taking the second difference of the series, and the
resulting production values are plotted against the
imports values. The correlation coefficient is 0.60.
The decade of each plotted point is shown by the
letters appearing on the right side of Fig. I; a star
means that two or more points have coincided. For
Fig. 10, the spectra have been roughly whitened by
taking the first difference of each series, and then high
frequencies have been suppressed by three simple
two-point averagings. The first four values of the
resulting production series and imports series have
been dropped, as well as the last four values of the
resulting price series, then the production values are
plotted against the linear combination of theimports
values (for the same year) minus 0.8 times the price
values (for four years carlier). The correlation coef-
ficient is 0.53. The decade of the production values is
shown as before.

The pronounced correlation in both Figs. 9 and 10
is duc to a few extreme points labeled G or H.
representing the two decades from 1920 to 1939. Ifall
points for these decades were omitted. the correlation
would become 0.04 for Fig. 9 and —0.08 for Fig. 10.
That is, the correlation would disappear.

DISCUSSION

Harmonic regression is a systematic way of looking
for association between series in all parts of the
frequency range. Itis unlikely to reveal anything that
cannot be found by careful visual comparison of plots
such as those in Figs. 2 and 3, at least when only two
or three series are under consideration. (A similar
remark can be made about ordinary regression.)

We have found clear evidence of association
between copper production and general imports, at
higher frequencies. and some suggestion of predictive
value for copper price also, at middle-to-low fre-
quencies. What associations there are seem to be
inherent in the economically turbulent years of the
twenties and thirties. We do not see sinlilar associa-
tions in the other decades. Possibly relations between
these series are changing; possibly the phenomena are
highly nonlinear.
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Would You Want Your Child to Be a Statistician?*

J. L. Jaech

Exxon Nuclear
Richland, Washington

First, let me welcome you out-of-towners to
Richland. 1 feel that I can speak as a native since 1
have lived here for almost 25 years, excluding three
years spent in California. When we moved to this
(then) desolate spot in 1953, our intention along with
everyone else who first moved here was to stay for
about a year and then return to civilization. But they
say this place grows on you. | can now truthfully say
that if 1 had it to do over again, 1 don’t believe 1
would.

You often hear it said about New York, or
Washington, D.C., or even Chicago: “It's a great
place to visit, but I wouldn’t want to live there.” You
hear a similar thing said about our Tri-City area. “It’s
a great place to live, but I wouldn’t want to visit
there.”

Actually, there are compensations. Take the
scenery, for example. Up in the Horse Heaven Hills,
south of town. it’s simply beautiful among the wheat
fields and wide open spaces. And the nicest part
about the whole thing is that you don’t even have to
drive out there to see the Horse Heaven Hills. You
just wait for one of our dust storms and watch the
Hills blow right by your living room window. (It
doesn’t all go by; a few cubic yards filters in and
settles on the furniture. Visiting our homes after one
of these storms, you get the impression from the
decorating schemes that everyone’s favorite colorisa
dirty beige.) The chambers of commerce had a
contest to pick a slogan to promote the Tri-Cities
some years ago. The best and most descriptive entry,
although not the winner, was “Wheeze and Sneezc in
the Tri-City Breeze.”

There are a lot of misconceptions about life here,
just as I'm sure there must be about living in Los
Alamos or Oak Ridge. Judging from the sensational
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headlines that occasionally occur in newspapers
around the country, this is a very dangerous place to
live. Our fellow Americans are concerned about us.
In the aftermath of the minor chemical explosion that
occurred in the outer area several months ago, we got
a phone call from someone in the Midwest asking if
the people of Richland wereable to leave their houses
yet and wander around the streets. A television crew
was sent out in a helicopter to take pictures of the
large crater that supposedly existed. By the time I got
here in the fifiies, this was a settled community by
most standards. But an acquaintance of mine in
Portland was surprised to learn that we had running
water and a sewer system. And so it goes.

1 had better get to the main subject of my address.
Would you want your child to be a statistician? I ask
this question because as much as we hate to face up to
it, the fact remains that statisticians as a group are
often regarded with suspicion, with distrust, with
wariness, or at least with a vague feeling of
discomfort. In short, we are much maligned. Do you
want your child to go through what you have
endured? Although there are in the world between
20,000 and 30,000 statisticians according to a recent
estimate by Kendall,' the awareness of what a
statistician is and does, of how he occupies his time, is
often not there. (Parenthetically I might also quote
the following from Kendall’s article, “Not all thesc
people are working statisticians.” As a former
manager in an organization that I'll not name, 1 can
attest to that.)

Banguet address.
I. Maurice Kendall, “Statisticians --Productionand Consump-
tion,” Am. Srar. 30(2); 49-53 (1976).



Before citing evidences that our image as a
profession leaves something to be desired, let me
dwell on some positive aspects. What are the
desirable features of our profession? I'll not speak of
the monetary rewards because, of course, we are
above that sort of thing. None of us here tonight, |
would venture to say, are in any sense of the word
motivated by money.

What, then, are the advantages of being a
statistician? For one thing, the job is, generally
speaking, not hazardous. In my early days at
Hanford, we were required to have moathly safety
meetings, and it was a real struggle to plan an agenda
for these. You can spend just so many hoursdwelling
on how to avoid paper cuis. The accidents and near-
accidents that ’m personally aware of were not
covered in these meetings anyway. I recall, for
example, the time my boss in those early days(whom
I won’t embarrass by naming, but whose initials are
the same as those of the Civil’Aeronautics Board),
was deeply reflecting on a problem and fell over
backwards in his chair-—only his built-in padding
saved him from serious injury. Then, on another
occasion, I was standing in the Fred (some call it a
John; 1 prefer calling it a Fred) when, with no
warning, 4 violent sneeze racked my body. My head
jerked forward spasmodically and smashed into the
top of the urinal, causing a momentary blackout
followed by intense pain and suffering. My boss
wouldn’t let me fill out anaccident report, because he
had no suggestions on what actions to take to prevent
a reoccurrence of the accident. Of course, this
particular accident is not peculiar to our profession.
It could happen to anyone with a level of intelligence
required to be a statistician.

To go on with the positive aspects of being a
statistician, there is the inner satisfaction that comes
from tackling a tough problem and carrying it to a
successful completion. I continue to be amazed at the
beauty of mathematics and, in particular, of
mathematical statistics—at how a hopelessly com-
plex formulation often reduces to the essence of
simplicity. This enjoyment is dampened somewhat, |
must admit, when the work is presented with humble
pride to a group of peers and, at the conclusion,
someone rises and says, “I'm surprised that you are
notaware of the paper on this subject in the [937 issue
of the Journal of Quter Mongolian Anthropologists
where your key result was developed in just two
steps.™ That tends to deflate, and can be listed as one
of the most emotionally damaging hazards of our
profession.
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Then, there is the joy that comes from sharing our
skill and knowledge with others and, in particular,
with school groups in the hope of helping to mold
their lives. I remember the thrill an associate of mine
had some years back when he received a letter of
appreciation from a school group he had addressed. |
forget the details, but the talk dealt with biological
experiments with rats. The letter said, “Dear Dr. N:
Thank you very much for speaking to our class last
Wednesday. Until you came to visit us, we didn't even
know what a rat looked like.”

Having disposed of the rewards of our profession,
let me develop the theme mentioned earlier, that is,
that we as a group have a poor public image.

I offer the following pieces of evidence. How many
times have you heard, when being introduced as a
statistician, something like the following: “So you’re
a statistician” (said with an attempt at suppressing
mirth that threatens to tear the person apart). “Tell
me, is it true that if you put yourhead in an oven and
your feet in ice water you’ll be comfortable on the
average?” By estimated count, I've heard this, or a
variation thereof, about 869 times since 1973.

Or, as another piece of evidence, you've completed
a round of golf and someone suggests, “Give it to
Harry to add up: he’s the statistician.” That’s bad
enough, but then someone checks your addition to
find you’ve made a mistake. Although it may shock
some to know that we can’t add, we all know that’s
the reason we chose to be statisticians in the first
place. We don’t have to get the exact answer—just
getting within the confidence interval is close enough.
If I could add, I'd have become an accountant or a
bookkeeper—not a statistician.

It’s difficult to have your children respect you when
they don't understand what you do. Here’s a typical
conversation between youngsters. “My dads a
doctor; what does your dad do?” “He works for
Battelle.” “But what does he do?” “He works in an
office.” “But what kind of work does he do?”“He’ a
kind of an engineer, oranaccountant, or something.”
“My mom says your dad is a statistician; that’s not the
same as an engineer or an accountant, is it?" I think
so0, but his work is so secret, I'm not supposed to talk
about it.” In case you haven't perceived the
undertones there, your chiid tends to be ashamed of
you. Perhaps that’s stated too strongly; let’s just say
he’d rather that you were something else. I won’t even
bring up how your spouse may feel about your
profession.

Those among our acquaintances who are truly
interested in learning more about statisticians may
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turn to the dictionary. We read, “Statistician-—one
versed in or enguged in compiling statistics.”* That
doesn’t help a great deal.

This rather negative attitude toward our noble
profession is not restricted to the United States. To
quote from Kendall, “Statisticians are still regarded
as living in a4 world of their own and possessing very
few human attributes. Nothing is more devastating in
a social gathering than to be introduced to a stranger
as a statistician and to watch the dismay with which
he, or worse still she, wonders what you can possibly
discuss on the ordinary social plane. That is not, |
think, merely the layman’ natural distrust of
numerical information. People appear to talk quite
happily to actuaries and accountants or even to
numerical analysts and mathematicians.” 1 dare not
quote further or 1 shall be accused of plagiarism. I
refer you to Kendall’s article for a delightful 15
minutes of reading.

As a final example to illustrate how statisticians
are, at best, misunderstood, I would guess that many
of you have experienced the situation in which you
are regarded as a miracle worker. This opinion is not
meant to be complimentary, but rather refers to the
belief that the statistician can perform some hocus
pocus statistical ritual that can turn an unacceptable
conclusion based on a set of data into something
acceptable. “Here is a set of data for lot such and such
where the values for eight out of ten samples exceed
the specifications. Will you pleaseanalyzethe data so
that the lot is acceptable?” They would like you to
find some way of throwing out the eight outliers.

1 could go on and on, and I'm sure you in the
audience can cite other evidences to show that our
profession often suffers from poor public under-
standing and, hence, acceptance. We, of course,
recognize our true worth, We can become quite self-
opinionated and are a bit puzzled that others cannot
appreciate us at our true worth. Itseems to me that at
this point we have three choices: (1) let the public be
bleeped; (2) attribute our tarnished image to the
impressions created by others practicing our profes-
sion whoare not nearly so capable or conscientious as
we are; or (3) examine ourselves individually to seeif,
by some stretch of the imagination, we might have
contributed to this poor image.

Some of us like alternative (1); most of us, judging
from what ] read on this subject, embrace alternative
(2). The blame lies elsewhere. Perhaps that’s why
we’ve made so little progress in improving ourimage.
Is it perhaps time to heed the Biblical injunction,
“And why beholdest thou the mote that is in thy
brother’ eye, but considerest not the beam that is in

thine own eye?"' Let us spend a few minutes in
examining ourselves to see if maybe, just maybe, we
have done, or have failed to do, certain things such
that part of the blame lies at our own doorstep. (1
know in advance that this will be a fruitless exercise.
You will probably leave here with the same feeling
that churchgoers often have as they leave the church
after a particularly damning sermon and comment to
the minister, “You certainly told tfem off—that wasa
fine sermon.”)

I will mention some areas of concern to me, but not
in any particular order of importance. First, consider
the communications problem. 1t does no one any
good if our findings, important though they may be,
and representing an excellent analysis, are not
communicated in an understandable way. Kendall
maintains that one of the reasons that we are
undervalued is the inability of many of us to get
across our ideas, particularly in writing. 1 think it
would be most helpful if each of us were to subscribe
to Kendalls philosophy on communications, and 1
quote, “If someone fails to understand me 1 regard
the fault as mine, not his.”

Probleims in communications. to be fair, work both
ways. The consultee is not blameless either, but it’s
ultimately up to us to make sure that we are
attempting to solve the right problem. In a paper
published 20 years ago, Kimball pointed out that
poor communication can easily lead to committing
an error of the third kind—giving the right answer to
the wrong problem. This is a potentially seriouserror
because it often goes unrecognized.®

Perhaps 1 simplify too much, but in a 1966 paper,* [
attributed problems in communication to laziness.
When we discuss problems with our clients, do we
take enough time to make sure we understand the
problem—to make sure that we’ve been given all the
pertinent information and not just that which the
client thinks we need to solve his problem? That is our
responsibility, not his. Also, when we communicate
in writing, do we take the time and trouble to make it
understandable? I suspect that at times we may even
take the opposite tact, that is, be purposely obscure in
order to impress. Admittedly, it is a great temptation

2. Webster's New Collegiate Dictionary, G.&C. Merriam Co.,
Springfield, Mass., 1973.

3. Matthew 7:3, King James Version.

4. A. W, Kimball, “Errors of the Third Kind in Statistical
Consulting,” J. Am. Star. Assoc. 52: 133-42 (1957).

5. J. L. Jaech, “Problems of Consulting Statisticians—The
Statistician in Industry,” 1966 Joinr Statistical Meetings in Los
Angeles.



to include complicated derivationsand equationsina
report. but it isa temptation to be avoided. in general.

Before leaving the subject of communication, 1
recall an carly incident in my carcer that impressed
upon me the importance of leaving nothing unsaid in
dealings with the client. I had designed a fractional
factorial experiment for a corrosion engineer and, to
save him the trouble, |1 randomized the order of the
128 (1 believe it was) trials when listing the
experimental combinations to run. I discussed the
proposed experiment with him, gave him the listing,
and said goodbye. The next contact was about a
month later when he came in with the data for me to
analyze. 1 asked him if things went well. **Oh yes, no
problems. except that you gave me the sets of
conditions in such a jumbled up order, I had to
unscramble them before running the e periment.”

Turning to a second problem area, we are faced
with the temptation to be too academic, or perhaps
too mathematical. This subject isdifficult to deal with
because it is also dangerous to base results on
analyses that are mathematically unsound. Yet, there
is one thing to deal with practical problems on a
sound mathematical basis, keeping in mind that asa
practicing statistician, it is the problem that is
important, and quite another to dwell on the
mathematies, regarding the problem itself as
something to be endured but of no interest.

Those of us assembled here have had all kinds of
formal training in statistics. [ mysell attended a
school where it was considered a mortal sin for any
mathematics professor to even imply that there might
be something useful in what was being taught. As a
result, when I was turned loose, I knew how to prove
Cochran’s theorem, but not how to fit a straight line
through a set of data. I used to keep a copy of
Brownlee's old paperback hidden in my drawerso I
could handle my assignments.® I'm convinced that my
one professor, teaching matrix theory, who was
supposed to tell us how to solve the problems in life
that he had avoided by becoming a professor, had no
idea of the practicalimportance to statistics of matrix
theory. If he did, he managed to hide it from us.

But I am supposed to fix the blame in ourselves,
and not in others, We, each of us, as supposedly
practical statisticians, cannot afford to expend a
significant portion of our energy on pursuing the
intellectual pleasures of pure mathematics—except
as a hobby. Kendall feels very strongly on this. No
one can accuse Kendall of being nonmathematical.
He writes, and I quote in part, “Nowadays there is a
brand of mathematician who is a danger to our
subject, or at least, to the acceptance of our subject in
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the worlds of science and business. . . there is a place
in the world. even in the world of experimental
science, for the scientist who is mainly interested in
studying his own mind. Where we have gone too far, |
think. is in allowing him to acquire pecking order
over the scientist who is interested in dissecting and
reducing to order the external world. The intricacies
and austerities of mathematical statistics are such as
to encourage intetlectual arrogance on the part of
their practitioners. 1 do not think we should let them
get away with it.™

Turning to another, but related. subject. we
consider the poor reputation we've acquired because
of improper modeling. We all have pet techniques,
which change over the years, and we continually seek
to find problems that fit these techniques. If they
don't fit exactly, no bother; I'll change the assump-
tions to make them fit.

In a paper that I had the occasion to reread lately,
Professor Anscombe, who has honored this Sympo-
sium with his attendance, gets at the core of the
problem and at the solution as well. He writes, “*What
is important is that werealize what the problem really
is and solve that problem as well as we can, instead of
inventing a substitute problem that can be solved
exactly, but is irrelevant,”™

One challenge to the practicing statistician is that
reality hardly ever corresponds exactly to models on
which available techniques of statistical analyses are
based. On the one hand, this opens up exciting areas
of potential research but, on the other hand, it can
lead to time-wasting activities if we carry the problem
of equating the model to reality to the extreme. How
close a corrzspondence is needed? What are the
consequences of failures in the assumptions inherent
in the model? These are the questions of importance.

Criticism leveled at our profession in the area of
model building is sometimes justified, and sometimes
not. “You statisticians, you are so unrealistic, you
assume everything is normally distributed.” This is
not true, of course, but some of our critics are
convinced of this. We need a new image. By following
Anscombe’s advice, we should be able to create this
new image and be regarded as realists in future years.

I must touch on one other point before leaving this
subject, and that is the extent to which we are
personally responsible in our spheres of influence for
misapplications of statistical technique because the

6. K. A. Brownlee, /ndustrial Experimeniation, 4h ed., Her
Majesty’s Stationery Office, London, 1949.

7. F. J. Anscombe, “Rectifying Inspection of a Continuous
Output,” J. Am. Star. Assoc. 53: 702-19 (1958).
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models are just not appropriate. Standard techniques
are being applied by others on a routine basis: 7 tests,
tests for outliers, calculation of tolerance intervals,
etc. Do you ever check into the structure of the data
to see that thcse common techniques are properly
applied? Does statistics get a bad reputation,
unbeknownst to you, when ridiculous answers are
occasionally reported because the model simply does
not fit? Too often we hearabout this after the fact. As
a case in point, oneauditor auditing our plant took us
to task because certain of our data, for which
tolerance intervals are routinely calculated, were not
normally distributed, according to his application of
the W test for normality with which he was familiar.
Closer inspection revealed that large relative round-
ing ecrrors were responsible. This negative audit
finding could have been avoided had I maintained
closer contact with the application.

1 touch briefly on another arca where we
descrvedly have earned a bad reputation on occa-
sion - timeliness of response. If we cannot provide
answers when needed, then we are of little use to our
clients. This is a tough problem area, because 1
suspect that most of us operate under time con-
straints. It’s a real temptation to give priority to the
more interesting problems and neglect the others,
regardless of their importance. Most of us are
hesitant to give advice without careful study of a
problem, but well-thought-out advice after some
action has already been taken is obviously worth less
than timely advice based on available resources. 1
suspect that we all have drawers full of problems that
we fully intend to give more thought to when we have
time. If we wait to completc a project until we're 1009
satisfied with all aspects of it, very little would be
completed.

We are in the computer age, and this introduces a
whole new set of problems. In balance, of course,
computers have been a great boon to our professions.
I recall in my early weeks at Hanford when a
programmer and | struggled to invert three 8 by 8
matrices. It was easier to use the inverted Doolittle
method on my mechanical Marchant calculator than
to get the right answer out of that existing generation
or computers.

However, the computer age also creates problems
for us. 1 am not anti-computer by any means,
although I am probably the only statistician in the
country who doesn’t know how to program (I and
Carl Bennett), Yet, we have to face up to the dangers
inherent in the misuse of computers. I identify two
such dangers. First, the existence of so many package
routines often replaces the thought process and can

lead, if we are not careful, to the problems of poor
correspondence between the model and reality.
Sccondly, and here is a real danger in my opinion, we
lose the “feel” of the data through over-reliance on
the computer. I recall a very expensive corrosion
experiment with which I was peripherally associated
some years ago in which 1he effect of iron on
corrosion rate was reported 10 be dominant. and the
strong quadratic nature of the effect puzzled the lead
experimenter. He called me in to see if I concurred
with the computer analysis. The problem was quickly
detected. One observation was way out of line, having
been incorrectly keypunched, and thisdominated the
results. Hopefully, we’ve become more sophisticated
in routine processing and analysis of data in the
intervening years, but we dare not completely lose
contact with the raw data. 1 might emphasize, in view
of our topic, that the statistical analysis had been
blamed for this puzzling result. Was the blame
deserved?

While on the subject of computers, 1 am also
troubled at the overuse of computer simulation in
solving problems. Granted that simulation is often
needed., it is used on occasion in my opinion to solve
problems that can casily be handled in less expensive
and more exact ways. We are still able to think; let’s
not let the computer get all the credit.

I touch on another subject for which there is no
solution, but which, unfortunately, contributes to
our tarnished reputation. I refer to the fact that
statisticians don’t always agree with onecanother. Qur
opponents capitalize on this. “You statisticians! You
can't even agree among yourselves; why should I
accept what you say?” You and 1 realize, of course,
that that is the beauty of statistics over mathematics. [
am more comfortable in a situation in which the
“right” answer is mostly a matter of opinion.

As an example, | have a good friend. whom [ shail
not name, but who is known to many of you. We have
had public disagreement concerned with biases and
systematic errors in nuclear materials safeguards
applications for a number of years now, much to the
glee of those individuals who want nothing to do with
statistics. This disagreement doesn’t particularly
bother us. There is little chanee, in my opinion, that
these disagreements will ever be resolved. On the one
hand. my friend is too stubborn to admit he’s wrong.
I, on the other hand, am not wrong, so we are at an
impasse.

1 think we must get the message across to our
clients that disagreements among members of the
statistical profession are to be expected. May I again
quote Kendall. “The statistician...is rarely sure



about anything. Ours is a logic of uncertainty. We
make almost all our statements in terms of doubt. of
expectation, of chances in favor. And rightly so.
because that is what life is like. But businessmen do
not care for uncertainty in the advice they receive or
the statements which they are given. The function of
the statistician, as they sec it. is to give them accurate
information. They will do their own doubting.™

1 am reminded of a phone conversation | had many
years ago, which is pertinent because of the analogy.
“Hello, is this Mr. Jaech?” *Yes it is.” “This is Bill at
the analytical lab. I wastold to talk to you about your
request that we make duplicate analyses on such and
such samples. I'm opposed to this practice.” The
conversation continued as [ tried patiently to explain
the rcasons for the request, in my usual diplomatic
way. This sound reasoning failed to convince him.
Finally, in exasperation. and sensing that [ wasabove
my conversee on the organizational totem pole
(which placed him pretty low), 1 in essence directed
him to do the duplicate analyses. “Well, okay, I'll
make both analyses, but 1 warn you, you're going 1o
get two different answers.” The point is that if two
analytical results don’t agrce, why should we expect
two statisticians to agree”? I ad mit that this analogy is
somewhat far-fetched, but I wanted to work in that
telephone conversation somehow.

I have left a very importantarea until the end of my
list of reasons why we asa group are often maligned. |
refer to our lack of interest in the quality of the data
basc, to our tendency to want to get on with the
problem and apply our methodology without being
overly concerned about how good are the data. Some
say that this is not the responsibility of the
statistician, and in some sense, I suppose | agree.
However, when we deliver what turns out to be poor
advice, or give faulty conclusions because we've not
dug into the data, we're the ones who tend to be
discredited,

My message is. alwars be suspicious of the data
base! Questioning the data base quality can be time
consuming, can be boring, and can, initially at least,
raise the hackles of the client if he feels the need to be
defensive about his data. (Once hesitates todeal witha
client who has raised hackles; given the choice. one
would rather find a way to warm the cockles of his
heart since it’s much more pleasant to deal with a
client with warm hecart cockles than with raised
hackles.)

In referring 10 checking the quality of the data
base, I am not speaking merely of performing such
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actions as running outlier tests or testing for
normality, or of things of this nature. More often
than not, some kinds of data are deficient in having
been “cleaned up™ or “massaged”™ too much by the
client before you see them. and outlier tests are
superfluous. Rather than performing these tests
(although they certainly have their place). I refer o
the whole proeess of checking the data for internal
consistency. of questioning how the individual
numbers might be related. or making sure you
understand how the numbers were derived, of not
accepting data as God's truth just because they are in
the form of computer printout. (If anything. this
triggers my suspicions rather than sets them at rest.)
Some random examples may help to clacify the point
I'm trying to make.

I recall an incident that happened many years ago
in which a coileaguc of mine was given what appeared
to be a beautiful sct of data which formed a nice
smooth curve when plotied. The client wanted a
curve {it through the data. Several modecls were tried,
cach one getting more complicated, but although one
could get closc, there was always obvious nonran-
dommness in the residuals, indicating an inadequate
model choice. Finally. in desperation, the statistician
met with the clicnt to discuss the results and express
his puzziement at why. with such a beautiful set of
data, no reasonable model seemed to give a good fit.
The client’s frown progressively deepened as he
searched within himself to find an explanation.
“Well, perhaps if we look at the raw data we'll get a
clue.” In a distressed voice, my colleaguc responded,
“I thought that was the raw data.” “Oh, no. 1 used a
French curve to eyeball fit the data and gave you
some points off the curve.™ Conclusion number onc is
be suspicious also of beautiful data exhibiting little
random scatter.

As a second example, don’t always accept obvious
“facts™ stated by the client. A set of data was given me
some months ago in which concern was expressed
over the large unexplained lot-to-lot variation in the
oxygen-to-metal ratio of uranium pellets. 1 ques-
tioned whether this actually was lot-to-lot variation
or rather might be, in part at least, reflecting day-to-
day analytical variation in the lab. 1t was agreed that
a small experiment would be run to explore this
possibility, and in fact, almost all of the variation
turned out to be attributed to analytical difficulties.
This discovery led 1o a totally different set of actions
from what had originally been suggested. It is also
Turther evidence of the truth of the famous corollary,
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“Mecasurement errors are always at least an order of
magnitude larger than claimed by the person
responsitle for the measurement.™

At times, initial results of an analysis will point a
finger of suspicion at the data. In a 1962 JASA
article, “The Case of the Indians and the Teen-Age
Widows,™ keypunch errors in some of the 1950
census cards were uncovered as a result of what the
authors called a “statistical detective story.” They
questioned the fact that there were more 14-year-old
widowers than there were at ages 15, 16, etc; that
there were similarly more 14-year-old divorcees; and
that the number of young Indizans seemed excessive.
After a thorough investigation, circumstantial
evidence pointed to the probable causes of these
peculiar results.

My last example concerns an event of 18 yearsago.
1 was traveling in a car toward Seattle with a friend
and my six-year-old son. To keep him occupied (the
son), 1 had him keep a tally of the last digit of license
plates, wanting to show him that all ten digits would
tend to appear the saume number of times. We had
agreed to stop collecting data upon entering the city
of Yakima. Just after we passed the city limit sign, he
saw one more car. with the digit 4. Although he had

set down the pad of paper, he picked it up to mark in
the 4, “because I'm short onds.” The point is that the
tendency to bias data begins at a very early age.

We've covered a number of reasons why our
profession suffers from a poor public image and, by
implication at Jeast, have indicated some things that
we as individuals can do about it. This has taken a
good deal of your time and mine. It would have been
far simpler, and also just as meaningful in my mind, if
not more so, had I only had 3 minutes to fill rather
than 30 or whatever. Then my message would have
been simply, but completely: In order to achieve
respectability in our profession, we must, each of us,
live by u code of ethics. Granted, we do not have a
formal code of e hics but if we, as individuals, do not
know what it means to follow a code of ethics in
carrying out our responsibilities, then we’re in worse
shape than I thought.

In closing, may | offer this bit of advice. We may as
well learn to laugh at ourselves; everybody else does.

8. Ansley J. Coale, and Frederick F. Stephan, “The Case of the
Indians and the Teen-Age Widows,"J. Am. Stat. Assoc. 57:338-47
(1962).
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ABSTRACT

Exploratory data analysis and classical statistics are compared in terms of their potency for the analysis of major
energy issues. First, the positions of the two approaches in the contemporary philosophy of science are considered. The
relevance of these positions to the major energy issues is developed. Then a set of guidelines for the use of exploratory
data analysis on energy data is presented. Finally, the exploratory and classical approaehesare compared by using cach
to estimate the price elasticity of residential natural gas. The analyses suggest those arcas in which cach approach is

most useful,

INTRODUCTION

For even the casual observer of our nation’s energy
situation, it should be clear that many of the difficult
decisions which must be made in planning the course
of our nations energy futurc require accurate
information about key energy parameters. For
example, a reasonable choice of whether or not to
implement a conservation program in the com-
mercial sector requires a knowledge of the degree to
which the program in question willimpact demand as
well as a knowledge of the hardships that the program
might force upon the targets of its provisions.
Because little is known about the potential impact of
such programs, debates such as the one about the
potency of the marketplace vs public law as the major
conservation mechanism in the commercial sector
tend to be nothing but expressions of prior political
positions. Similarly, decisions regarding the optimal
rate of utilization of our domestic reserves of crude
oil obviously require reasonably accurate estimates
of the size of such reserves as well as estimates of the
response of the discovery-recovery mechanism to
variables such as price and changing life styles. As
evidence of the absence of such accuracy, the
extremes of current published estimates of domestic
crude oil reserves have a ratio of 18 to 1.

To obtain knowledge about key energy parameters
such as current energy utilization rates and patterns,
size of reserves, energy embodied in products, the
impact of person/machine interactions on demand,
response of demand to changes in price or culture,
and-the potential impact of various conservation
programs, federal and state policy makers need to
draw on the talents of people versed in the subjects of
data gathering, data storage and management, data
exploration, and data analysis. | contend that both
classical statistics and exploratory data analysis are
tools which are of considerable importance in trying
to unravel our energy past in order to assess our
energy present and plan our energy future. 1 will
argue that classical statistics is being under-utilized
by the policy-making process while exploratory
methods are almost totally ignored. Furthermore, in
those few studies in which classical inferential
procedures are used, the problems often would be
more amenable to analysis by the informal approach

*The author acknowledges the support of the National Science
Foundation, Grant No. 72-03516-A04; the Encrgy Rescarch and
Development Agency, Grant No. E(11-1)2789: and the Office of
Energy Programs, Dcpartment of Commerce. Contract No.
6-35599.
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of exploratory data analysis. I will describe several
important characteristics of empirical research in the
energy policy area and then proceed to outline what 1
consider to be the properrole for forinal and informal
statistical methods to play in this area.

My feelings about the appropriate role for statistics
in the analysis of energy problems have arisen, in
part, as a function of three of my research
efforts—efforts which have spanned the past several
years. First is my involvement as one principal inves-
tigator on an interdisciplinary multiyear study of
residential energy demand, a study which focused on
analysis of the components of demand in a planned
residential community in central New Jersey.' My
involvement and the involvement of other statisti-
cians led to a study of the effects of the onset of the
energy crisis on residential demand,” studies of the
effects of changes in price on the demand for natural
gas and electricity,™ development of a simple two-
parameter model of the demand for natural gas as a
function of an indicator of the coldness of a month,*a
statistical analysis of the cffects of physical modifica-
tions to the dwelling on demand for energy,” and
several more technical collaborative modeling efforts
involving statisticians, physicists, and engineers. This
involvement convinced me that a careful data analyst
armed with both classical statistics and exploratory
methods and blessed with a little'good data can make
a significant contribution to understanding issues
such as the consumer reaction to changes in price,
issues which are central to our understanding of our
energy environment.

The second effort has been an 18-month evaluation
of econometric models for forecasting our energy
future.” This effort has convinced me of the limita-
tions of classical statistical methodology as a tool for
developing basic understanding of energy-related
behavior in areas which lack both well-developed
empirical theory and reliable, valid data. 1 am
particularly skeptical of using classical statistical
methods to make longitudinal inferences from non-
experimental cross-sectional data, a common energy
econometric practice,

The third effort has been an attempt to provide a
philosophical base for the use of exploratory data
analysis as an alternative to classical statistics.” My
approach involves the construction of a set of “meta-
theorems™ which act as informal guides to deciding
whether exploratory methods are appropriate for the
analysis of the problem under investigation and, if
they are appropriate, act as informal guides to the
seleetion of a particular exploratory teclinique. The
emphasis of this work has been to argue that once cast

into a sound framework in terms of philosophy of
science, exploratory methods are easily viewed as a
supplement to classical methods within the repertoire
of the competent data analyst. The only competition
that should arise between the use of classical methods
and exploratory methods in policy analysis in general
and in energy policy analysis in particular shouid
arise because policy problems are often so poorly
defined that the statistician has no way to decide
which of the approaches is more appropriate. If the
problem of interest is well defined, then the choice
between informal and formal methods of inference is
arather easy one, and consequently, exploratory data
analysis and classical statistics are complementary
and not competing tools.

These efforts have led me to formulate a firm
position regarding the optimal interaction berween '
data, statistics, and energy policy.

CHARACTERISTICS OF THE ENERGY
POLICY AREA

Several characteristics of the :nergy policy arca
make it a suitable arena for the use of statistical
methods in general and for the use of both explora-
tory data methods and classical statistical methods in :
particular. First, the area is important for the future
of our society and thus is worthy of the statistician’s
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attention. Unlike areas of more academic interest, the
energy area involves the making (or postponing) of
difficult decisions regarding our energy future.
Because the growth of energy utilization cannot, and
will not, follow historical patterns, the question of
how to reduce the growth in demand is paramount.
To whatever degree the statistician can help unravel
the patterns of current end-use statistics. test the
potential of conservation programs, test the potential
of new supply technologies. and monitor the
performance of implemented conservation or supply
programs. he:she can make a significant input into
our {uture.

Second, the energy area involves considerable
underlying physical theory and the policy maker
must make sure that programsare consistent with the
physical realities of energy processes. For example,
the notion that “if enough economic incentives are
given, the supply of domestic oil reserves will ex-
pand indefinitely” appears to be part of the energy
economic folklore; it is a claim that is totally
ignorant of the physical realities of energy supply.
If the laws of economics contradict the laws of
physics, I choose to have faith in the latter. I
believe that the statistician is. or should be, trained
to deal with the complex interaction between
physical laws, data, and public policy problems.
The complications introduced by physical laws
make the energy area ripe for analysis by statisti-
cians who are well versed in the fundamentals of
physics and chemistry and vet are oriented toward
policy problems.

Third, the energy area is plagued by severe data
problems. Often the data needed to test a given
theory, such as a theory of consumer demand, is
partially missing and partially so unreliable that it
might as well be missing. To whatever degree the
statistician is capable of analyzing “weak™ data and
encouraging the collection of better data, the energy
area appears an excellent domain for his/her
efforts.

Fourth, energy policy analysis often involves
subtle interactions between variables which at first
glance appear either unrelated or related in a way
different from their empirical relationship. Often
policy initiatives which have direct positive benefits
locally may exacerbate the overall energy picture.
For example, a program which directly encourages
residential consumers to reduce their thermostat
settings may indirectly encourage consumers to use
their stoves for supplemental heating of the kitchen.
The overall effect of such a program might be to
increase the residential demand for energy. Clearly

statisticians trained to dissect data to obtain esti-
mutes of the nature of such interactions would be
most helpful in such arcas. Consideration of these
interactions brings us to the final characteristic of the
energy policy area: the need for large-scale experi-
mentation with conservation strategies. Unlike areas
such as health policy in which experiments usually
involve serious moral and ethical problems, almost
all strategies for reducing energy demand. such as the
provision of tax incentives for home insulation or the
provision of peak-load pricing structures for com-
mercial consumers, can be tested without serious
moral or ethical complications. The statistician
should be involved in the design and analysis of such
experiments. The design of such experiments is
complicated by legal and regulatory practices and by
the fact that the effect produced by a successful policy
program is often small relative to the effects of
uncontrolled determinants of demand. For example.
it wou.d take a carefully designed experiment usinga
controlled sample to demonstrate the effects of a few
percent rise in energy prices on residential demand,
because energy demand is heavily influenced by
uncontrolled variables such as structural defects of
the dwellings and variations in outside temperature.
The furnace responds to temperature more than it
does to price.

THE APPROPRIATE ROLE OF
CLASSICAL STA.(ISTICS

Delineation of the proper role for classical sta-
tistics to play in the formulation and analysis of
energy policy begins most easily with criticism of the
current use of such methods in energy analysis. The
majority of formal statistical analyses found in the
energy area are contained within the body of litera-
ture which develops either econometric models of a
single energy variable such as the residential demand
for a single fuel or econometric models of the entire
energy/economic system. The level of sophistication
of the statistical procedures found in such models
varies enormously, as does the degree to which the
principles of classical statistics are correctly applied. |
will not deal with these issues. The goal of these
models is to forecast one or more energy variables
into the future; even where the principles of statistics
are correctly applied, I am highly suspicious of these
forecasting devices since they give little evidence of
their accuracy and model validation is ignored. I see
little reason why, in the absence of scientific scrutiny,
the policy maker should treat forecasts based on
formal statistical models as any more accurate than
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the predictions of seers.” In addition to the validation
issue, I have doubts about the wisdom of using formal
statistical inference in the development of energy-
forecasting modcls. My doubts stem from the
following problems:

First, the empirical theory regarding the behavior
of energy actors is usually so weak that the necessary
scientific framework within which statistical infer-
ence makes sense is rendered inoperative. (Oftenin an
econometric model the residential consumer is
assumed to shop for a fuel type the way he or she
shops fora pair of shoes in the market, an assumption
which is given no ecmpirical support and virtually no
theoretic support.)

Second. if the estimates of the variance of
parameters in the models and estimates of the
variance of the forecasts generated were reported
they would render the parameters and forecasts to be
“ball park™ estimates and virtually uscless from the
policy perspective. For example, the success of an
energy program such as the gasoline tax proposed in
the 1977 National Energy Plan requires the elasticity
of demand to be in such a narrow range that the
question of whether or not the elasticity falls in this
range would easily be seen to be beyond the resolu-
tion power of classical inferential procedures
provided the variances of estimates were reported.

Third. even if the forecasts could be made more
accurate. classical inference places inordinate con-
centration on the concept of explained variance.
Often from the policy perspective an important
component of the variance of a particular energy
variable is too small to be significant in the statistical
sense. Suppose one is trying to assess whether
customers of a particular utility will reduce their
demand in response to a few cents increase in the
price of electricity. The variance due to the price
change is going to be small; for this variance to be
detected, very large samples and accurate models of
demand are needed. Without such models the effects
of small changes in price are important but arc easily
lost in the variation contained in the response of
demand to physical factors such as outside tempera-
ture and length of daylight period. Simple classical
methods such as analysis of covariance usually donot
provide adequate controls for the effects of such
variables on demand, because they leave too much
error variation uncontrolled,

The fourth problem with the current use of
classical statistics is that the units of analysis and the
time frame found in such analyses are often not the
ones of interest to policy makers. It is common
practice, for example, to use the formal theory of

linear models with cross-sectional data at the state
level to fit a model of the relationship between energy
prices and residential demand. The model is then
used to forecast the response of individual consumers
to a change in the price of fuel delivered to their
household. While such articles may be statistically
sophisticated, the logical foundation of this type of
inference is at best questionable.

The final problem is one of emphasis. Due to the
lack of empirical theory in the energy area. one of the
goals of any data analysis should be to assess the form
of an effect or relationship and not to be satisfied to
test for statistical significance. It is not particularly
instructive to know that a community responded to
the onset of the energy crisis by reducing its demand
for energy unless we know the form of the response.
Did the high consumers respond more, or less. than
the low consumers? Are there any indications that
people responded more in the cold months than in the
marginal or summer months? Is the form and degree
of the response related to simple design charac-
teristics of the dwelling? Does the response appear to
be a response to changes in price? Without answersto
these questions, the fact that consumers responded to
the crisis is a piece of information which may be of
academic interest but is not of policy relevance.
Knowing that a nonzero effect exists may soothe the
academic mind, but the policy analyst needs to know
the form of the effect as well as its magnitude.
Classical statistics is partially unsuited for the
assessment of such form due to its emphasis on
estimation and testing.

1 feel that the strongest role that classical statistics
can play in the formulation and analysis of enerpy
policy is in the design and analysis of large-scale
experiments for testing the potency of various
strategies for increasing energy supply and strategies
for reducing energy demand. For example, if utility
companies are to be forced to change their rate
structures to ones with marginally increasing prices
or to change their billing practices so that the
consumer receives accurate and complete statistics
regarding his demand, then there ought to be full-
scale experiments which demonstrate the value of
such changes. Similarly, the claims of the emerging
industry which markets energy-conserving materials
and equipment should be tested statistically “in the
field.” Classical statistics should be involved in the
design, conduction, and analysis of such experi-
ments. These experiments need to be designed to
eliminate confounding sources of variation; classical
statistics could then be used to give accurate estimates
of the effects of various “treatments” on demand as
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well as to give probabilistic statements about the
probability that such treatments have an effect.

The second role that classical statistics can play in
the energy-policy area is in the development of statis-
tical models of the thermal performance of various
pieces of energy equipment. For example. classical
modeling techniques are probably well suited for
generating first-order approximations to the thermal
response of the dwelling to changes in the outside
temperature. Such models could be used to assess the
impact of a community retrofit program on the total
energy demand for the community. The methodology
would require (1) using simple experimentation to
estimate the effect of the program on the parameters
in the statistical model and (2) using estimates of the
degree of saturation of the program to estimate the
tutal impact on demand. Most current models of the
thermal performance of the residential structure are
complicated computer models which rely on engi-
neering principles and have never been validated by
field data. Such models are usually too detailed,
cumbersome, and possibly inaccuratc to be used to
monitor a conservation program in the field.

The third role for classical statistics is in the
development of simple microlevel models of the
process which can be used to make optimal cnergy
decisions. For example, many industrial decision
makers face the choice of whether or not to replace
natural-gas-consuming pieces of equipment by coal-
fired equipment. Although it isclear that the decision
depends on the relative price and availability of the
two fuels in the future. it is not clear how projections
of price and availability are best used by the decision
maker, Similarly, a state legislator might want to
utilize a simple decision model in determining
whether to alter the process by which local building
codes are developed. Again, empirically based clas-
sical statistical analyses are well suited for such tasks.
We believe that classical statistics is well suited for
these tasks because the nature of the problem forces
the decision maker to adopt a relatively strong
empirical theory.

THE APPROPRIATE ROLE CF
EXPLORATORY DATA ANALYSIS

1 do not see exploratory data analysis as a replace-
ment for classical statistics in the analysis of energy-
policy problems. The output of classical statistics
includes probabilistic statements, statements which
allow the policy person to attach an uncertainty to
his/ her claims. The realities of the policy process are
such that the policy maker is probably better of f u:sing

such statements than using more informal inferential
statements provided he, she has reason to believe that
the formal statements are reasonably accurate.
Probabilistic claims appear to “sit well” with legis-
lators and citizens. The accuracy of such statements
depends on the validity of the inferential framework
within which they are generated, and in turn. the
validity of the inferential framework depends on the
validity of the empirical thcory adopted. Thus, we
suggest that the policy maker lean toward the use of
classical statistics provided the statistical theory
underlying an analysis is understandable and palat-
able. Unfortunately, in most areas of energy policy so
little is known about the behavior of energy actors
that we are hard pressed to suggest even plausible
behavioral theories. Although some economists teil
us that we can understand both the individual and
aggregate energy consumer by having faith in neo-
classical economic principles, the economist gives us
little reason to believe this claim.

1 propose that exploratory data analysis is the
optimal tool to use in developing an understanding of
energy phenomena in problem areas where “under-
standing” involves the generation as opposed to the
testing of empirical theory. Furthermore, 1 propose
that there is such a scantiness of empirically scru-
tinized theories in the energy policy arena that
exploratory data analysis is idcally suited foranalysis
of most encrgy data.

Although it can be argued that much of the data
gathered in the energy arca is not worthy of any
analysis. it is important to note that the need for
reliable. valid data is probably much less for use of
the cxploratory analysis method than for usc of
classical statistics. An exploratory data analyst can
peruse even bad data to try to assess general patterns
and trends. Because the exploratory analyst makes
fewer formal statements about data than does the
classical analyst, these statements tend to be much
less influenced by missing data or the presence of bad
observations.

Two recent efforts™ illustrate some of the advan-
tages of using exploratory methods in the analysis of
energy data. In the firstanalysis, the typical consumer
in the community under study responded to the onset
of the crisis by significantly red ucing his/ her demand
for both natural gas and electricity. Close exploration
of the data reveals that both of these responses vary as
a function of the month and weather. Furthermore,
there is little evidence that the reduction in demand is
in response to changes in price, the major increases in
price occurring months after the major decreases in
demand. The analysis was repeated using the
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standard econometric approach and religious appli-
cation of the principles of classical statistics. The
second analysis gave strong evidence to the conclu-
sion that consumers responded to changes in price
and gave no indication of the differential response as
a function of the month. We prefer the exploratory
analysis because its claims are based on far simpler
assumptions than are the econometric claims and its
methods are very straightforward.

In a related effort’ we have developed a simple
indicator of the coldness of the month and then
modecied monthly demand for natural gas for the gas-
heated units under study as a nonlinear function of
the two parameters in the indicator, The first param-
eter is a reference temperature which estimates the
interior temperature of the dwelling plus the free-heat
contribution of the appliances, occupants, and sun.
The second parameter is a slope parameter which
estimates the response of the space heating system to
a 1° change in the exterior temperature. Using robust
methods, the model was fit to monthly demand for
each dwelling for all the months since the onset of the
Arab oil embargo. The model predicts monthly
demand very well yielding an average product cor-
relation of over 0.98. We also fit this mode! to
monthly demand for each dwelling for all months
prior to the embargo. We then examined the two
models to see whether the response of the consumers
to the onset of the energy crisis would be reflected in
the parameters of the model. If most observers of the
energy world are correct, then consumers responded
10 the onset of the crisis by reducing their thermostat
settings a few degrees over the entire heating season.
Such a change would be reflected by a lower reference
lemperature in the post-embargo model than in the
pre-embargo model with equal slopes and correla-
tions. Our analysis shows that the response to the
crisis almost uniformly reduced the slope parameter

and did not affect the distribution of reference
temperatures or the quality of fit. At first glance this
result seems to indicate that the consumers responded
to the crisis by altering the thermal characteristics of
the dwelling, perhaps by adding insulation to the attic
or by installing storm windows. However, our
experience in the community as well as our explor-
atory analysis of detailed hourly data from 28 of the
dwellings indicate that such modifications did not
occur. We thus conjecture that the change in the slope
parameter reflects the fact that consumers only
responded to the crisis by lowering their thermostats
in the very cold months, a behavior which is reflected
in the slope parameter. This conjecture has important
policy implications. First, it suggests that, contrary to
economic theory, consumers respond directly to the
total cost of energy and only indirectly to its price.
Secondly, it suggests that the mechanisms which
affect demand in the severe part of the winter may not
affect demand in the milder months. Although
demand for energy is relatively small in these mild
months, it may be an important policy goal to reduce
such demand since the reduction in space heating in
these months probably does not cause the discomfort
it does in the coldest months. These hypotheses,
which are generated by cxploratory analysis, should
be the objects of further statistical study. 1 suggest
that proper testing of these hypotheses will require
large-scale experimentation involving the use of
classical statistics.

Energy analysis would benefit from the use of
cxploratory methods to uncover the empirical
regularities in complex data, regularities which are
then put to scientific scrutiny using classical statis-
tical designs and analysis. Under this scenario both
approaches can contribute significantly to under-
standing our energy environment and planning our
energy future.



On a Method for Detecting Clusters of Possible

Uranium Deposits*
Ww. J. Conover

Department of Mathematics
Texas Tech University
Lubbock, Texas

ABSTRACT

Thomas R. Bement

Los Alamos Scientific Laboratory
Los Alamos, New Mexico

Ronald L. Iman

Sandia Laboratories
Albuquerque, New Mexico

When a two-dimensional map contains points that appear to be scattered somewhat at random, a question that
often arises is whether groups of points that appear to cluster are merely exhibiting ordinary behavior, which onc can
expect with any random distribution of points, or whether the clustersare too pronounced to be attributable to chance
alone. A method for detecting clusters along a straight line is applied to the two-dimensional map of *"Bi anomalies
observed as part of the National Uranium Resource Evaluation Program in the Lubbock. Texas. region. Some exact
probabilities associated with this method are computed and compared with two approximatc methods. The two
methods for approximating probabilitics work well in the cases examined and can be used when it is not feasible to

obtain the exact probabilities.

INTRODUCTION

Whenever several points (occurrences) are located
on a two-dimensional map, a natural question that
sometimes arises is whether the points tend to cluster
together in some parts of the map or whether such
apparent clustering is merely the result of the chance
clustering one can expect under a random distribu-
tion of the points. Examples include the location of
rocket bomb hits on London in World War I, craters
on the moon, or high radiation readings in an aerial
reconnaissance search over a certain area. The latter
application prompted this study.

The method for determining clusters is quite
simple. A rectangular window of some predeter-
mined size, much smaller than the entire area of the
map, is moved across the map. Whenever the number
of points within the window equals or exceeds some
predetermined number k, the entire area covered by
the window is considered a cluster area, and that
region on the map is shaded in or otherwise marked.
The size of the window is determined from practical
considerations, for example, the smallest area that
has some real interest to the investigator. The value

for k is related more to probablity considerations and
is the primary subject of this paper. The entire
method is merely an application to a two-dimen-
sional map of a procedure that has been widely used
in one-dimensional situations.

Let us first examine the one-dimensional situation.
Suppose events in the time period (0, ), or along a
line (0, #), occur according to a Poisson process with
parameter A/r. That is, the times between successive
events are independent exponentially distributed
random variables with mean r/A. We define a cluster
to be the occurrence of & ormore events withina time
period of length r, for some predetermined values of &
and r. Let Pi(A, r, 1) = P be the probability that no
clusters occur in the interval (0, ¢). Then choosing & so
that Py is large, say 0.95, furnishes a most powerful

*The work reported in this paper was performed under the
auspices of the Energy Research and Development Administra-
tion, Contract No. W-7405-ENG. 36, Grand Junetion. Colorado.
Office.

TReport LA-UR-77-769, Los Alamos Scientific Laboratory.
Los Alamos, New Mexico. ’
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procedure for detecting certain types of cluster-
causing phenomena.’

Applications of this model abound in the
literature. In the spare parts problem,” items fail
according to a Poisson process and are immediately
replaced by one of 4 available spare parts. The failed
item is repaired in time r. The probability that thereis
always a spare (or repaired) part available when
needed in the time period (0, 1) is represented by Pg.1.
In human physiology one theory holds that an
impulse is sent from the eye to the brain if £ or more
photons strike the same area in less than a fixed
period of time r.* In physics the impurities along a
line in a crystal are distributed as in a Poisson
process, and a certain phenomenon occurs when & or
more impurities are found in an interval of length r.”

In the two-dimensional application a single pass
consists of moving the window horizontally the com-
plete width of the map. The number 4 is selected so
that the probability P: associated with one pass is
close to one. If the map represents a two-dimensional
Poisson process. the number of points within the
moving window at any time has the same distribution
as the number of points in a moving interval in the
one-dimensional case. If the map results from a
system of parallel one-dimensional Poisson processes
as in aerial reconnaissance, then the window may
include several linesat one time as it moves parallel to
them and the number of points in the window at one
time again behaves as in a one-dimensional Poisson
process.

Although k is selected from the Pr.computed on the
basis of one single pass, the same value of & is used for
repeated passes as the window is moved slightly ina
vertical direction prior to-each pass. Admittedly, this
increases the chances of signaling false clusters, but
the clusters formed in this way will tend to identify
entire areas of interest on the map, which is highly
desirable in most applications.

The notation used in the remainder of this paper is
defined as follows:

A = theexpected number of points in the window
at any one time;

f = the total number of window widths
necessary to traverse the map once;

k = the minimum number of points in the
window at any one time that defines a
cluster;

P = the probability that there are always fewer
than & points in the window as it traverses
the map once.

In the following section, the exact expression for Py
is given and some computed values are given. In later
sections, an empirical approximation for Py is intro-
duced, and an approximation for P, using computer
simulation is described. The application of this
method todata from the National Uranium Resource
Evaluation Program (NURE) is described last.

THE EXACT VALUE OF P

An exact expression for the probability P of
having no clusters is given by Naus as

p=e™ X A"detlll . 4y
s (‘,j!

where A and [ are as defined earlier and

S = {n}Li such that all n, < & ,

det|-| = determinant of an /X I matrix ,
I

G =k(j— N~ Z n+m,fori<j,

i = k(G—0+En,, forizj,
azj

i . .

:—‘= 0,if;<0orifc; >n.

o

This formula is quite cumbersome to calculate,
since there are k' terms in the summation and
theoretically each term involves the determinant of
an /X / matrix.
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For the special case of & = 2, an alternative
method of derivation® yields the form

i
Pi=e ™ X NI+ -0y, V)

i=0
A simple equation for P; also exists,” but we have
not seen it. An exact expression for P:. given in
ref, 8, is not correct because of an error in the
derivation. Still the formula is useful; it is
discussed later.

For purposes of making comparisons the exact
probabilities were computed for most combina-
tions of & from 2 to 10 and for values of / from 3
to 6. Larger values of [ were not considered
because of the amount of computer time required.
In each case, numerous A values were considered
so that P ranged from near 1.0 to small values
not usually of interest. A typical set of values is
presented in Table 1 and compared with the sets
of approximations obtained from methods de-
scribed in the next two sections. The approxima-
tion methods appear to work quite well, but more
discussion of this point is deferred until later in
the paper.

Table 1, Exact values of P; for /= 6 as compared
with two approximate caiculations

Approximate Simulation

A Exact /-

formula approximation
0.83 0.999 0.999 0.999
1.00 0.998 0.998 0.998
117 0.994 0.995 0.994
1.33 0.988 0.989 0.988
1.50 0.978 0.979 0.977
1.67 0.963 0.964 0.962
1.83 0.940 0.942 0.944
2.00 0911 0913 0.910
2.17 0.873 0.876 0.880
233 0.827 0.829 0.829
2.50 0.773 0.773 0.771

AN EMPIRICAL APPROXIMATION OF 7

The empirical approximation of P. is given
by

Pk'=%Pk—lexP{_)\(j_ D (' _lE)}

D=1

[
~3 exp{—AL(1l — ps-2)}, (3)
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where pi is the cumulative Poisson probability;
that is,

k
pe=et LN 4

=0

The values of P, which are relatively easy to
compute, were compared with the exact values of
Pi; the agreement varied from roughly *£0.005 for
P.>0.9,and +0.01 for 0.9 > P,>0.8,t0 +0.05 for P,
near 0.2. The approximation is worse for larger 4,
say k = 10, but does not seem to get worse as /
gets large, when exact values are costly.

The approximation, Eq. (3), is the weighted
average of two other approximate formulas F, and
I,

|
Pk'=—F|—5Fz, (5)

where F) is the erroneous result derived in ref. 8
and F> is obtained as follows. The probability of
obtaining a total of i points along the path of the
window in one complete pass is exp{—Af}(A[), !,
and the probability of a given point having fewer
than & — | neighbors to its right is approximately
given by the Poisson probability pi2. By treating
all of the events as independent (which they aren’t)
the approximation

D ‘
F=Le B g (6)

>0

is obtained, which eonverts easily into the form for
F> defined by Egs. (3) and (5). The particular
weights used in Eq. (5) were selected because they
worked for & = 2, 7 = 10. Further investigation
indicated that results were satisfactory for all of
the values of & and [/ investigated in this study, as
reported earlier.

6. Ronald L. Iman. Personal communication. 1976.

7. M. V. Menon, “Clusters in a Poisson Process™ [abstract].
Ann. Math, Star. 35: 1395 (1964).

8. James M. Goodwinand Erich W. Giese, “Reliability of Spure
Part Support for u Complex System with Repair,” Oper, Kes. 13:
413-23 (1965).
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APPROXIMATION OF P
BY COMPUTER SIMULATION

For our purposes the most satisfactory method
of obtaining a rcasonable cstimate of Py is by
computer simulation. For / = 10, a reasonablc
value in our application, it is impractical to obtain
the exact values of Ps, Ps, and £, The approxima-
tion given by Eq. (3) appears to be satisfactory for
the cases examined, but without cxact values to
compate it with, onc has no way of knowing for sure
how well Eq. (3) will work for other values of /and k.
So a computer simulation program was written and
run. The programtakes /and A as inputs,and ina few
seconds {urnishes the outputs P, P, ..., Puforany
designated integer i (we used m = 20) so that the
choice of & can be made. Bricfly. the method is as
follows.

Uniform (0. 1} random variables Uy, Us, ..., are
generated using a standard computer random
number generator and are transformed to exponen-
tial random numbers with mean | A using X, =
—(1:A) In U. Enough values of X are obtained so
their sum barely exceeds /. If the moving sum of &
consecutive X’ is less than | anywhere along the
sequence of X7s, not counting the fast X, then a cluster
has occurred. Otherwise, no cluster has occurred.
This process is repeated 10,000 times to see how many
of the 10,000 repetitions result in no clusters, and this
proportion is used to estimate P, Obviously. it is easy
1o keep track of several values of & at the same time.

Table 2. A comparison of the approximate formula [Eq. (3)]
and the simulation approximation (S. A.) for
I1=10and k=4,5,and 6

. h=d k=5 k=6
SSAL B () S AL Eq. ) SCAL Eqo ()
0.1 1.000 1.000 1.000 1.000 £O00 1.000
0.2 0.998 (.98 1.000 1.000 1.000 100
0.3 0.991 0.992 0.999 0.999 1.000 1.000
04 0.975 0.976 0.997 0.998 0.999 1.000
0.5 0.94¥ 0.949 (.994 0.993 1.000 0.999
.6 0.909 0.908 0.984 0.986 0.998 0.99%
0.7 (.854 (.852 0.971 0.972 0.996 (1.Y96
(X3 (.791 0.783 1952 0.952 0.991 0.992
0.9 0.712 0.702 0.920 0.924 0.986 0.986
1.0 0.630 0.614 0.886 0.888 0.975 0.976
i 0.538 0.523 0.847 0.842 0.965 0.963
1.2 0.445 0.432 0.792 0.78¥ 0.943 0.944
1.3 (.383 0.346 0.741 0.726 0.926 0.920
1.4 0.313 0.268 0.670 0.657 0.892 0.891
1.5 0.242 0.200 0.602 0.584 0.456 0.855

In all cases where exact values of £ were obtained.
as described earlier. an approximation by simulation
was also made. The simulated value was within 0.005
of the true value more than two-thirds of the time. as
one would expect. With this assurance that the
method works well, simulated values were obtained
for values of fupto 10and fork upto9. The approxi-
mation defined by Eq. (3)agreed reasonably well with
the simulation value in almost all cases. as indicated
in Table 2. The cases with the greatest disagreements
were those where P was small. and those cases are
generaily not of interest.

The standard deviation of such an estimate is less
than 0.005. and much less il Py is close to 0 or 1.

AN APPLICATION TO NURE DATA

As part of the NURE project. airplanes have flown
cast-west patterns over a region near Lubbock,
Texas, recording radioactivity attributable to “"Bi
(ref. 9). The presence of “*'Bi in abnormally high
guantitics may indicatc potential for uraninm
mineralization. A certain amount of “"Bi is present
almost every where, and occasional high counts may
occur even though the concentration is low. simply
due to chance. Clusters of such high rcadings arc of
interest however. particularly if such clusters are
unhkely to occur by chance.

The aerial reconnaissance data were analyzed by
the Los Alamos Scientific Laboratory, and outlicrs,
or anomalies, were located. Figure 1 shows 77 such
anomalies in the Lubbock rcgion. These anomalies
are located on 23 “map lines.” east-west flight lines,
flown by radiometric reconnaissance airplancs. A
window of width 0.2 degrees longitude (representing
about 6 miles) and of height sufficient to include three
map lines (representing about 8.5 miles) was moved
horizontally across the map 21 times, for the 21
different groups of three adjacent map lines. Each
time the window included five points (anomalies).
that arca was marked with dots. When the window
contained six points. that arca was shaded with
diagonal lines and when the window contained
seven or more points, the area was marked with cross-
hatching. These results are also shown in Figure 1.

The probability Pi of obtaining no clusters in a
single pass of the window was not obtained tor /=10

9. Geodata International.-Inc.. Aerial Radiometric and Mag-
netic Survey of Lubbock and Plainview National Topographic
Maps, NW Texas, vol I, prepared for the U.S. Energy Research
and Development Administration, Grand Junction. Colorado,
olfice under contract number AT(05-1)-1654, 1975,
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and £ = 5, 6, and 7 as in this example. So the s _(MH 3 _
simulation program described earlier was used to A= (23) (10) = LOO.

estimate these probabilities. The paramecter A was
estimated from the data using

-
-

N'
Ny .

A==,

where

X = number of points on the map,
number of lines in the window,
total number of map lines.

~
]

Thus,

The results where Ps = (0.886, P, = 0.975 and P-=
0.995 with standard deviations of 0.0032. 0.0016 and
0.0007 respectively. The estimates using Eq. (3) were
in reasonable agreement, being(.888,0.976 and 0.996
respectively; all were within one standard deviation
of the simulation results.

The results of identifying clusters in this way are
interesting. Certain geographical areas stand out
clearly as areas deserving further investigation using
ground survey techniques.



Computer Graphics for Extracting Information from Data*?

Ronald K. Lohrding
Myrle M. Johnson
David E. Whiteman

Los Alamos Scientific Laboratory
Los Alamos. New Mexico

ABSTRACT

This paper presents computer graphics which are useful for displaying and analvzing data. Many classical and
several newly developed graphical techniques in statistical data analysis are presented for small univariate and
multivariate data sets, These include histograms, empirical density lunctions, pie charts, contour plots, a discriminant
anilysis display, cluster analysis. Chernof! “faces.”™ and Andrews” sine curves.

Recent advances in data collection technology and computer data base management systems have made it
imperative 1o utilize computer graphics for large data sets. Scveral innovative graphical technigues are presented to

handle this situation.

Spatial relationships among the data (particularly geographic data) arc difficult 10 conceptualize. Severa}
cartographic technigues are presented which enhance the understanding of these spatial relationships within the data.

INTRODUCTION

The Energy Systems and Statistics Group at the
Los Alamos Scientific Laboratory (LASL) is in-
volved in several projects with energy-related data.
Some of these projects have small univariate or
multivariate data sets, while others have large data
sets that require data management systems for
efficient data manipulation. A statistically oriented
graphics package is presently under development;
numerous modules have been completed. The
purpose of this package is to provide graphical
techniques for the initial examination of the data.
This paper uses data from several projects to
demonstrate some of these techniques.

In the following sections, we discuss graphical
methods useful for a preliminary analysis of small
data sets, graphical techniques which are appropriate
for large data sets, and finally, spatial relationships in
geographic data sets. Throughout this paper, ex-
amples of computer graphicsare used toillustrate the
techniques. (The 35-mm color slides of computer-
generated graphics shown at the conference are
reproduced in black and white for this paper.)

38

PRELIMINARY DATA ANALYSIS OF
SMALL UNIVARIATE AND MULTIVARIATE
DATA SETS

Computer graphics for a preliminary raw data
analysis may include histograms, empirical distribu-
tion function plots, and probability plots. The data
used in this section were collected on 17 variables for
each of the 50 states plus the District of Columbia.
The variables and their means and standard devia-
tions are listed in Table 1. Of particular interest is the
average household Btu consumption per capita
(HHBTU). The histogram in Fig. 1 shows that the
assumption of normality may be questionable. Two
graphical tests of normality are shown in Figs. 2
and 3. One test uses Lilliefors’ test statistic; the other
uses a test statistic developed by Lohrding. In the
former, the normality assumption is tested by placing

*Work performed under the auspices of the Energy Research
and Development  Administration, Contract No. W-7405-
Eng. 36.

+Report LA-UR-77-2456. Los Alamos Scientific Laboratory,
Los Alamos, New Mexico,
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Table 1. Sample statistics for 17 measurements collected on 50 states

Vuriable Definition of variable Mcan 33:1;:?;2
1. HHBTU  Household Btu per capita (10%) 87.33 21.30
. . Z65-1
2. DEGD Heating degree day loads ——°F 5.00 2,23
365
30, " {uvcrugc daily temperature if ¥ < 65° F}
(107 °F) where V=
65°Fif ¥ > 65°F
3. MAXT Nurmal July maximum temperature (°F) 86.41 5.96
4. PCAIR Percent of houscholds with air conditioning 33.73 18.44
5. POP 1971 population (108) 4.04 4,36
6. FRZR Percent of population with freezers 32.90 10.94
7. ONEP Single individuals per housing unit 218.63 271.30
8. PCURB Percent urban population 66.47 15.11
9. COML Percent commercial sector, commercial/(residential & commercial) 36.71 3.31
10. MEDIN  Median income (10%) 9.17 1.45
11. LOWIN Percent of family incomes below government poverty levels 11.67 5.18
12. SINGLE  Percent of single family houses 71.72 11.19
13. NEWHS Percent of houses built sincc 1960 25.91 7.92
14. OLDHS Percent of houses built before 1950 53.42 12.34
15. AVEIN Average income per capita (103) 3.96 0.63
16. LAT Latitude of center of the state 39.48 6.44
17. LONG Longitude of center of the state 93.59 19.50
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Fig. 1. Histogram of household Btu (HHBTU)—all states and Washington, D.C.
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Fig. 2. Lilliefors’ 95% confidence bounds on the empirical distribution function of HHBTU for all states and Washington, D.C.
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Fig. 3. Lohrding’s 95% confidcace bounds on the empirical distribution function of HHBTU for all states and Washington, D.C.

(1 = @) 100% confidence bounds on the empirical
distribution function (edf). The normal cumulative
distribution function (cdf) with mean and variance
estimated by the sample mean and sample variance is
plotted. H the cdf falls outside the bounds placed on
the edf, the assumption of normality is rejected at the
a level of significance. In the latter, the riormality
assumption is tested by placing (! — ) 100%
confidence bounds on the normal cdf with thean and
variance estimated by the sample mean and sample
variance, I the edf falls outside the bounds placed on

the cdf, the assumption of normality is rejected at the
a level of significance, In neither test is normality
rejected at the 95% level of significance. A normal
probability plot and a lognormal probability plot,
two additional graphical techiques which may give
further insight to the structure of the data, are given
in Figs. 4 and 5.

To describe the joint relationship of HHBTU to 26
other variables (including transformations of some of
the variables), a linear multiple stepwise regression
procedure is used. Seventy-five percent of the vari-



Computer Graphics

PERCENTILE

00 Y T g -
é 200 300 400 500 600 700 800 900 KO0 1D 1200 1300
loditlomos OBSERVATIONS

natemittia labererery

Tva/-

Fig. 4. Normal probability plot of HHBTU for all states and Washington, D.C.

10000

0-8333 -
06867
0-3000

0-3333

PERCENTILE

O-%67 -

-

iooooow' T ——— . ——rr,
sarRalomos OBSERVATIONS :

Fig. 5. Lognormal probability plot of HHBTU for all states and Washington, D.C.

ance is accounted for by the variables degree days X,; = DEGD for the ith state (x axis) ,
(DEGD) and percent urban populatlon (PCURB). = ~ L .
The equatlon of the fitted linear multiple regression X3 = PCURB for the ith state (y axis) .

. Z“z"ﬂr\; l""”"':"i* 49 g
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Figure 6 shows a three-dimensional graphical repre- —

model is n
3 . sentation where the fitted plane and the data points

=22.155 + 8.657 X5, + 0.328 X5, , | are plotted Lines are drawn from the data points to

! the surface to give some indication of the deviations.

where ! Ina ponliriear regression analysis, the equatlon ‘of the

fitted model is
i=12,..51,
Y: = HHBTU for the ith state (z axis) ,

34
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Y, = 33.835 — 77.607 <§—z) + 1374.90(
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’

Fig. 6. 3-D representation of a linear multiple regression
HHBTU model.

where
i=1,2,..,51,
Y, = HHBTU for the ith state (z axis) ,
X,; = DEGD for the jth state (x axis) ,

X3, = MAXT (maximum temperature) for the ith
state (v axis) .

The fit of the data to the surface is shown in Fig. 7.
The two extreme points are Alaska and Hawaii.
Several techniques are available for displaying
multivariate data. We first discuss a gray-level coded
correlation matrix which displays the pair-wise cor-
relations between variables, The gray-level scale
ranges from positive to zero to negative correlations,
Frequently, such a display may be useful in directing
attention to interesting variable rélationships. In
Fig. 8, note that HHBT U is positively correlated with
DEGD, LAT, OLDHS, MEDIN, and AVEIN; neg-
atively correlated with MAXT, PCAIR, LOWIN,
SINGLE, and NEWHS; and not correlated with
POP, FRZR, ONEP, PCURB, COML, and
LONG. ‘
Another technique called Andrews’ sine curves
uses the standardized data as coefficients of a func-
tion involving sines and cosines of ¢ in the range
(—m, ). A function involving the 17 variable§ was
plotted for each of the 50 states plus the District of
Columbia to visually clustersimild’r states. Relatively
tight bands suggest clusters. When the originalldata

.

po

Fig. 7. 3-D representation of a nonlinear multipie regression
HHBTU model.

are used, it is very difficult to separate clusters, as,
shown in Fig. 9. However, a plot of the factor coef-
ficients from a principal components analysis in
Fig. 10 shows three possible clusters of states.

Figure 11 shows the so-called Chernoff faces for
the 50 states plus the District of Columbia. Here, a
facial characteristic is associated with a variable as
indicated in Table 2. For example, wide noses
correspond to large single populationsand long noses
correspond to large populations. The faces for New
York and California are striking because of this
feature. Similarly, Alaska has a wide face because of '
the large HHBTU consumption per capita, whereas
Hawaii has a thin face.

The dendogram, a tree-like graph of nonover-
lapping hierarchical partitions, is another visual
technique used in cluster analysis. A computer
program containing eight clustering techniques
(nearest neighbor, furthest neighbor, simple average,
group average, median, centroid, Lance and
Williams’ flexible strategy, and Ward’s method) is
used. Initially, the data are standardized; both clas-
sical and robust standardization techniques are used.
When the data are standardized by the sample mean
and sample standard deviation, no noticeable
peculiarities in. the data structure are present.
However, when the data are standardized by the
trimmed mean and trimmed standard deviation, four
states (New York, California, Alaska and Hawaii)are
distinct from the main cluster regardless of the .
algorithm used.
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Fig. 9. Andrews’ sine curves of HHBTU data.

CA, NY FL, IL, OH, PA, TX

Fig. 10. Andrews’ sine curves of the factor coefficierits from a principal components analysis.
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Fig. {1, Chernoff faces of HHBTU data for all
states and Washington, D.C.



Table 2. Variables associated with
specific facial characteristic for
Chernoff faces representing all
50 states and the District of Columbia

Facial characteristic Variable
1. Face width HHBTU
2. Brow length SINGLE
3. Face height MAXT
4. Eye separation LAT
5. Pupil position AVEIN
6. Nose length 50}
7. Nose width ONEP
8. Ear diameter PCURB
9. Ear level COML
10. Mouth length DEGD
11. Eye slant MEDIN
12. Mouth curvature PCAIR
13. Mouth level FRZR
14. Eye level LOWIN
15. Brow height OLDHS
16. Eye eccentricity LONG
17. Eyebrow angle NEWHS
LARGE DATA SETS

In data analysis many of the ensuing problems can
be attributed to the data itself—perhaps inaccurate,
missing, too little, and recently too much. These large
data sets not only create a tremendous storage
problem, but challenge computer graphics for
effective display techniques.

The analyses considered here deal with National
Uranium Resource Evaluation (NURE) data. The
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objective of this nationwide airborne and stream
sediment reconnaissance survey is to classify regions
with respect to their potential mineralization. For
example, in the stream sediment survey, LASL
analyzes the data from five statess Wyoming,
Colorado, Montana, New Mexico, and Alaska. In
the second year of a five-year study, LASI data bases
already contain seven million words.

The probability distribuiions of certain random
variables such as thallium signals over a given
geological formation of a flight line are thought to
indicate uranium concentration. A technique for
computing an empirical density function (edf) used to
estimate a probability density function has becn
developed. As many as 100 of these densities, each
representing a map line or transect. can be displayed
simultaneously as shown in Fig. 12. Since some of the
edf’s may be visually obscured by other edf’s, the 3-D
plots have been compressed into a 2-D grid plane ina
lightness-darkness plot shown in Fig, 13.

Figure 14 is a scattergram of bismuth vs thallium
for all geological formations on one map line in the
Lubbock-Plainview area in Texas. The data in the
lower left-hand corner represent recent geological
formations and most of the formations follow a linear
trend except for the data on the right-hand side of the
plot where thallium becomes constant with bismuth
increasing. These data belong to two older forma-
tions with known uranium mineralization. Figure 15
shows data for one geologic formation. Scattergrams
such as this one are useful in identifying clusters
representing misclassified geological formations
data.

.28
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Fig, 12. 3-D plot of empirical density functions.
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Fig. 4. Scattergram of bismuth vs thallium for all geologic formations, Lubbock-Plainview area.
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Fig. 15. Scattergram of bismuth vs thallium for one mapline, Lubbock-Plainview area.

Figure 16 shows a linear discriminant analysis
displayed as a gray-level matrix useful in delineating
between favorable and unfavorable regions of
uranium mineralization, Each square represents 100
records (i.e., 100 sec of gamma-ray signals on a map
line) in the Lubbock area. The 23 rows represent 23
map lines. There are eight gray levels which are
linearly spaced from light to dark over the interval
[0, 1]. The lighter shades represent low probability of
favorable uranium mineralization while darker
shades represent high probability of favorable
uranium mineralization.

Contour maps of the Lubbock-Plainview area also
indicate regions where the probability of finding
uranium is high. An example is shown in Fig. 17.

CARTOGRAPHIC DATA SETS

Maps are very usefu] in displaying and communi-
cating information contained in data with spatial/
geographic relationships. The figures shown are
applications of cartographic techniques and have
been extracted from various on-going projects.

Figure 18 summarizes U.S. offshore oil and gas
lease data from October 1954 through November
1976. The number of leases, the leasing years, the
acreage and the producing acres through 1974 are
given for individual statesand regions as well as totals
for all the leases. Of the total 1,940,000 producing
acres, Louisiana has 1,824,000 acres and Texas has
103,000 acres.

Figures 19-21 are for a study of the impacts of
electric power generation in the West. The location of
existing and proposed power planis by type for the
Western and Rocky Mountain regions are shown in
Fig. 19. The letters represent the type of plant, that is,
coal, oil, gas, and nuclear, The size of the letters
indicate three levels of power generation: small,
500-999 MWe; medium, 1000-199% MWe; and large,

LUBBOCK QUADRANGLE
VERTICAL AX[S - MAP LI[NES (¢t - 23,
HORIZONTAL AXIS - LONGITUDE «1G2 - 100,

Fig. 16. Linear discriminant analysis display.
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Fig. 17. Contour map of bismuth-thallium ratio.
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Fig. 18. Offshore oil and gas lease map.

2000° MWe, The Los Angeles and San Francisco
areas have a number of oil-fired plants, and these
arcas are simply shaded. Figures 20 and 21 are maps
to study pollution dispersion patterns. Figure 20
shows SOz concentration in southwest Wyoming for
1985 with pollution contours drawn every 0.25
ug m’. Figure 21 shows change in length of life due to
pollution in days per person. Similar graphical
displays were done for exposure 1o suspended par-
ticulates, additional restricted activity days due to

pollution and annual morbidity costs per person and
per town.

Figures 22 24 are from solar feasibility studies.
The first map shows heating degree days which is the
average of the high and low temperatures subtracted
from a 65°F basc temperature for the 48 contiguous
states. Simply, the colder the climate, the higher the
number of heating degree days. Contrast Florida
with 214 and Maine with 7511. The second map
shows 1977 residential gas prices in dollars per
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thousand cubic feet by state. Gas is generally cheaper
in the southern, central, and Rocky Mountain
regions. Note that Maine has higher prices than
nearby Vermont and New Hampshire. Figure 24
shows the pattern of economic feasibility for
domestic hot water under incentives provided by the
National Energy Plan of April 1977 and the House
Modification of that plan.

Figures 25-32 are maps displaying energy-related
data from the regional studies program. Figure 25
shows the five coal export-import regions, and
Fig. 26 is a flow map for the export of Rocky
Mountain coal. The circle rcpresents the within
region total, and the thickness of the arrows
represents relative amounts of export to the other
four regions. Bar charts and pie charts are useful in
displaying energy totals for regions or siates.
Production, consumption, export, and negative
export (import) figures are displayed in Figs. 29
and 30 using shaded bars. Figure 29 uses varying
sized circles to indicate production levels by region.

Total Exposed Population DAYS PER PERSON

475, 615 people Lesw than 0.1
Aversge Change in Life Length 0.1 0.5
due to One Year Exposure . 00.5t0 1.0

0.18 dtys per person % - ® More than 1.0
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Fig. 21. Change in length of life.

Fig. 22. Heating degree days.
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Fig. 25. Five coal export-import regions.
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Fig. 27. 1975 regional energy totals.
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Fig. 28. Rocky Mountain coal.
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Fig. 29. 1975 regional energy production.

Fig. 30. Countyair quality maintenancearea data map—Rocky
Mountain states.

Scctions of a circle are shaded differently to indicate
coal; oil and natural gas: hydro, nuclear, and other;
and uranium production. Figure 30 shows county air
yuality maintenance arca data for the Rocky
Mounitain region. An interactive composite gco-
information mapping system known as GMAPS

COAL FIELDS
ROCKY MOUNTAIN REGION

W LIGMTE
1 suBeI TuminguS
W BiTLMINGUS

Fig. 31. Coal fields of the Rocky Mountain region.

provides map data on such items as wilderness arcas,
ccosystem trends. locations of natural resources, etc.,
for selected regions in the United States. Figure 3!
shows types of coal fields, and Fig. 32 is a composite
of coal ficlds with oil shale basins in the Rocky
Mountain region.
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Fig. 32. Coal fields and oil shale basins.

SUMMARY

The computer-gencrated praphic products de-
scribed in this paper represent a varicty of technigues
{or displaying and analyzing small univariate and
multivariate data sets, large data sets, and car-
tographic data scts. Computer graphics arc useful
tools for communicating information efficiently and
effectively.
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Estimation of a Model for Electric Utility Demand
in the Presence of Missing Observations*

P. M. Robinson

Harvard University
Cambridge, Massachusetts

ABSTRACT

The estimation of models for demand of coat and oil by electric utilities is complicated by the presence of mitny
rero observations, which scem to preclude the use of standard methods. such as regression. Also, the time series
characteristics of the data render inappropriate the estimates of “limited dependent variables™ models. recently
proposed by cconometricians. Thus we suggest estimates of open-loop time serics models, involving autoregressive
structure in the dependent variable or the residual. The maximum likelihood and related methods we consider may
prove computationally too onerous. so somewhat simpler types of estimate arc proposed also. Applications to the data
are described.

INTRODUCTION

This paper was motivated by some monthly time series of demand for, and price of, coaland oil to electric
utilities in the United States, Series were available for each of the 50 states plus the District of Columbia, foreach
of the nine census regions, and for the nation. Coal and oil were classified by percentage of sulfur content. The
time period covered was January 1974 to August 1976 although some series contained later observations, up to
December [976.

One is interested in modeling these data and using the modet for forecasting. On the one hand a multiple
equation econometric model might be constructed. This equation might treat current and lagged values of
demand as the dependent variables; current and lagged values of price, along with other variables (such as scrub
cost, Environmental Protection Agency standards, etc.), might be treated as the predetermined variables.
Alernatively, the price series might be included among the dependent variables. Another approach would
involve models of a much simpler form, involving only one or two variables. Forexample, one might attempt to
model demand in terms of its own past history, possibly by means of an autoregressive moving average model.
Such “closed loop™ models, containing no predetermined variables, are easier to use in forecasting than the
“open-loop™ econometric models just described, for the latter require forecasts of the predetermined variables to
forecast the dependent variables. Moreover, recent evidence suggests that the closed-loop models, despite their
simplicity, tend to provide the better forecasts.

Whichever of these approaches is adopted, there are difficult decisions about model specification to be
made. However, if the resulting model is one of several standard forms, a number of estimation procedures,
many of which are available in computer packages, can be used. Unfortunately, the data in question do not lend

*This research was supported by NSF Grant SOC75-13436. The author is grateful to Data Resources Incorporated of Lexington.
Massachusetts, for providing the data and to M. C. Ferrara for preparing it for use. The computations were carried out on the Massachusetts
Institute of Technology's IBM 370/ 168 computer.
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themsclves to a madel of “standard form,” because observed demand is sometimes zero, possibly because of
differences between spot and contract prices. To sce what problems this causes, consider the simple rcgression
model

q
_l'l*:z /7:—':1+.\'1. r=1.2.....

=1

where 3/* is the dependent variable (e.g.. demand), the z, arc predetermined (e.g.. price). . is an unobscrved
residual, and the b, are unobserved parameters, which one wishes to estimate. In the standard regression theory.
X is a normal random variable, so in theory y* is capable of taking negative values even if the z; are not. The
fact that observed demand cannot be negative does not really disqualify it from being 1/*, because if XL, b.z4
tends to be large and positive, Prob(rr* < 0) will be small. However, if 1* is sometimes or often exactly zero, it
seems that it should not be modeled as a continuous random variable. Rather, some positive probability weight
should be assigned to the event Prob(i,* = 0). while aliowing y, to vary continuously over the positive real line.
One way of solving the problem is to introduce an underlying variable 1, such that

4
n=Yhata, =12 )
i=1
where
=y iy >0. )
r*=0. i <0. ‘ 3)

Thus we say that ), has been “censored.” The set-up, Egs. (1)- (3).isoften known asa “Tobit™ model:’ 1 is called a
“limited dependent variable.” The statistical methodology of such models is now quite well developed.” and
Amemiva’ has extended Eqgs. (1) (3) to multivariate regressions and simultaneous equations models, wherein *
is a vector, The estimates suggested require more complicated computations than docs standard multiple
regression, but they arc usually quite feasible ori- modern-day computers. at least when 1 is scalar.
Unifortunately, this work seems only of limited relevance to our data because it is motivated to deal mainly
with cross-sectional data—in particular, large microdata sets on families or firms. For such data the assumption
that the .x; are uncorrelated over ¢ is usually reasonable. This assumption scems essential for the estimates
suggested by Tobin. Amemiya. and others to have desirable properties. However, inapplying Egs. (1) (3)toour
time series, we would take ¢ to represent time. The assumption that x, is uncorrelated over time is no more
reasonable than the assumption that the observed variables are correlated over time, unless the =, manage 1o
aceount for all the serial correlation in 1y, Because a model can seldom be perfectly specified. there are usualiy
predetermined variables that should have been included in Eq. (1) but werent, These go to make up x. so if they
are serially correlated, we would expect the same of x. A typical model fur x, in Eg. (1) would be the
autoregression ‘

»
wi=Y ax , +e. (4)

1. J. Tobin, “Estimation ol Relationships for Limited I)Jpcndcm Viriables,” Econometrica 26; 24 36 (1958).

2. T. Amemiyi “Regression Anadysis When the Dependent Variable is Truncated Normal.™ Economerrica 41: 997- 1016 (31973).

3. T Amemiyi, " Multivariate Regressionand Simuhancou’ Equation Models When the Dependent Variables are Truncated Normal.™
Fecnometrica 43: 9991012 (1974).
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where the ¢, are serially independent with zero mean and
P
- Z as' #= 0, sl<1. (5)
/=1
A closely related modification of Eq. (1) would be the dynamic model

Ji4 q
n= Z aye; + Z bz toe, (6)
= i=l

wherce we again assume Eq. (5). Chern® considers a model of this form for the demand for electricity. Note that
Egs. (1) and (4) can also be written in a similar way to Eq. (6):

{ 4 q
V= Z aye + Z b, <’-’n - E a]'—’:,t-}) +e. (7
i=1 i=l ,

J=1

The right-hand sides of Eqs. (6) and (7) contain variables that are themselves subject to censoring, so the theory in
Tobin' and Amemiya® does not apply.

Because they do not use information on the dependence of the variables over time, estimates based on the
incorrect assumption that x; is serially independent willnot be asymptotically efficient. Moreover, it appears that
they may not be consistent. When there is no censoring, ordinary least-squares (LS) estimates, although
inefficient, are usually consistent, because the limit as 7— % of the quadratic objective function will still be at the
true parameter poimt. But in the case of censored data, the likelihoods assumed in Tobin' and Amemiya® are
products of multivariate normal density functions and univariate normal probability integrals. It is not at all
clear that the value maximizing this function asymptotically will be identical to the one maximizing the “true”
likelihocd, which as -we see below, involves one or more multivariate normal integrals.

In the next three sections, we propose parameter estimates for models such as Egs. (6) and (7). (In principle,
it would be possible to extend our work to multivariate models of the type mentioned earlier, although the
complications are then even greater than the ones we encounter here.) The last section is an application to our

data set.

MAXIMUM LIKELIHOOD ESTIMATES

Let y* be recorded for r=1, ..., T. Let r be the set of these 7 values for which Eq. (2) cceurs, and let 7 be

the set of ¢ values for which Eg. (3) occurs.
Denote by ¢4(z; m, S), the distribution function (d.f.) of the #-dimensional normal distribution, with mean

vector m and covariance matrix S. Let i, be generated by

D
K=Y ayy o, (8)
/=1
in which w = (w, .... wy)" has d.[. ®r(w; f, a°I7), where

f=[/6), ... /107

I
4. W. S. Chern, “Estimating Industrial Demand for Electricity: Methodology and Empirical Evidence.” pp. 103-20 in Energy:
Mathemarics and Models, ed. by F. §. Roberts. SIAM. Phifadelphia. 1976.
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and Jis the T-rowed unit matrix. Thefi(8) are known functions of rand of predetermined variables (reference to
. 2

which is suppressed) and a vector of unknown parameters 8, of which ai, ..., a,, but not o”, are a subset. For

example,

q
f48) = Z bizi ©)
=1

as in Eq. (6), or

q P
o=y b,<z.-, -X a,z,-,,.,) (10)
=l j=1

as in Eq. (7). Our work applies aiso to cases where f(8) is constant over ¢, so that we have a closed-loop model,

possibly with nonzero mean, of the type already discussed.
The d.f. of y = (31, ..., »7), conditional on the predetermined variables and with y1,=... =) =0, 1is

or(y: PL S(PPY)

where
[ 1 0 0]
—a 1
p=|: ; (I
—ap - 0
| 0 —ap —a IJ

The likelihood is then

f~ . f_d‘br(y; P, (P’P)“‘) . 12)

w<0g€T

This equation can be written as the product of the joint probability density of the T (say) y,, 1 € 7, and the joint
d.f.of the T;=T— T, y,at 0, €7, conditional on the y,, € 7. Evaluation of Eq. (12), or of an iterative step in
the solution of the first-order conditions for a maximum, thus seems to require numerical evaluation of a
multiple integral of dimension 7.

Actually the autoregressive structure of Eq. (8) may lead to a substantial simplifying of these computations.
From Eq. (11), it follows that P'P has a “band” form, with the (i,f)th element zero for{i— j| > p. In other words
the partial autocorrelations of observations more than punitsapartare zero. Wecker® has considered prediction
and estimation for closed-loop autoregressions i which censored observations are spaced more than p units
apart. To be somewhat more general, suppose there isa block of p consecutive observations ys+1, . . . , Vasp, which
are uncensored. It follows that the d.f. of the y,, ¢t 7, conditional on the y, r&7, can be factored into two
multivariate normal d.f.’s for the y,, €7, 1< h,and for the y,, 1 €T, 1> h+ p. If there are other blocks of at least
p consecutive uncensored observations, then the d.f. can be further decomposed. Thus, ultimately Eq. (12)
contains the product of n d.f.’s, of dimension Ty, ..., T2,; computationally it ismuch easier to handle these than

5. W. E. Wecker, “Prediction Methods for Censored Time Series,” pp. 627-32 in Proceedings of the Business and Economic Statistics
Section, American Statistical Association, American Statistical Association, Washington, D.C., 1974.
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it is a single one of dimension T3+ ... + T2, = T (Dutt® gives apparently accurate and efficient formulas for
computing multivariate normal probabilities of dimension less than or equal to six.)

In principal the maximum likelihood (ML) estimators can be found by one of a number of numerical
algorithms. The Newton-Raphson procedure has the reputation of converging rapidly; if it is initiated with a
consistent estimate, it produces an asymptotically efficient one in a single step. Unfortunately, we can see no
simple way of getting an initial consistent estimate. Moreover, Newton-Raphson requires first and second
derivations of Eq. (12). These are difficult to obtain and complicated to program.

An alternative approach seems rather well-suited to the problem at nand. This is an algorithm for ML
estimation recently studied in depth by Dempster, Laird, and Rubin’ and called by them the “EM algorithm.”
Each iteration of the EM algorithm contains two steps: in the E (expectation) step we find expectations of the
sufficient statistics pertaining to the “complete” data y,, ..., yr, conditional on Egs. (8) and (9) and the
parameter estimates obtained on the preceding M step; in the M (maximization) step we insert these expectations
into the likelihood for yi, ..., y7, and maximize it, to obtain new estimates.

The EM algorithm seems useful here because the M step is very easy to carry out when f;(8) has the form of
either Eq. (9) or (10). If we observed j1, ..., yr, the log likelihood would be

T— , 1 X P i
- (—2[))” logo'-— § [J’: - Yoy —f:(ﬂ)] . (13)
207 g J=1

{ignoring an asymptotically negligible term). Maximizing Eq. (13) with respect to @ is equivalent to minimizing

] T P 2
S7(68) = hX [,w— )2 ajyz-j—ﬁ(ﬂ)} , (14)

T=r Sul &
and maximization of Eq. (13) with respect to o’ is achieved when ¢° = mingSr(@). When fi(8) is given by Eq. (9),
therefore, the g;and b; are estimated simply by linear LS regression of v, on the y,-;and z;. In Eq. (10), things are
only slightly more complicated. As an alternative to minimizing Eq. (13) by nonlinear LS, one could find
approximate estimates as follows. First estimate the b; consistently by linear LS regression of y; on the z, [see
Eg. (2)]. Denoting these estimates&;, one then estimates the 4; in an asymptotically efficient fashion by linear LS
regression of the

Y Z bizy

on the
P e
Yy — Z bizi.!-j .
i=1

This is often called the Cochrane-Orcutt procedure.

6. J. E. Dutt, “Numerical Aspects of Multivariate Normal Probabilities in Econometric Models,” Ann. Econ. Soc. Meas. 5: 547-61

(1976). [Appendix available from author.]}
7. A. P. Dempster, N. M. Laird. and D. B. Rubin, *Maximum Likelihood from Incompiete Data via the EM Algorithm,” /. R. Sraz.

Soc. Ser. B 39: 1-38 (1977).
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The LS estimates described in the preceding paragraph depend in simple ways on sufficient statistics of the
form

T T T
z VriVik s z YiuZir-k o z Zit—j2li-k - (15)

=] =pt+i t=pt+l

Unfortunately the conditional expectations of the sufficient statistics involving the v, required for the E step are
likely to be complicated. They involve first and (if there are some intervals of p or less units between censorings)
second moments of the truncated multivariate normal distribution. The distribution in question is the 7>~
dimensional distribution of the y, ¢ €7 conditional on the y, 1 € r, although as earlier described, this may
sometimes be factored, in which case the expectations can be taken with respect to distributions of smaller
dimensions. Even so, we have to compute 73 first moments, and 12 Ta(Ty+ 1) second moments. from
distributions of dimension 73, forallj= 1, ..., n. Each moment involves a multiple integral of dimension 73,
along with integrals of smaller dimension, and the formulas for second moments are particularly complicated.
As a result, we shall now explore alternatives to the E step.

AN ALTERNATIVE ESTIMATOR

Instead of {inding conditional expectations of the sufficient statistics, Eq. (15), we could instead find
conditional expectations of the y',, 7€ 7. themselves, and use these in Eq. ({4). Thus the computations described in
the previous section would be limited to finding first conditional moments. However. unless censorings arc
infrequent (which is not the case with much of our demand data), this procedure may still lead to evaluation of
integrals of high dimension. We propose to reduce the dimensions involved by conditioning on only part of the
available information. Therefore, ultimate convergence to the ML estimate cannot be expected; it is to be hoped
that the resulting iterations will converge, and to a value closely approximating the ML.

The method described below depends on the existence of at least one block of p consecutive uncensored
observations. As with the ML method, the more such blocks the data contain, the casier the computations will
be. Denote such a block yip, ..., yr1, t 2> p, t < T+ 1.

We wish first to predict a censored value y,.s, 2 22 0. It is convenient to represent Eq. (8) as a first-order
vector-difference equation. Define

B 3Y] ] Fa. a ... ap— f_w, ]
Y-y 1 0 ... 0 0
= y A= 0 { . , W=
L_yl-p*l_l _0 I 0_ _0 B

Thus Eq. (8) can be written
Y= Ay + w, . (16)
Then we can recursively generate

!
Yor= A"y + § A W, 0<ISh. 4 (17
A=0 .
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Denote by ' the (i, j)th element of A*. Then from Eq. (17).

Yo = Z aive,tw, 0<Ii<h, (18)

{
= z a(lkl’ Wik . (|9)
k=0

We propose to estimate y,.; by its expectation, conditional on y,-;, 1 <j << p, and on the events 1., < 0,
0 < I < h (assuming, for simplicity, that all these latter y,s are censored); namely,

]

Yeon = Ee |y, 1 <j<p Ly 0,0 <US Z Vet (20)

14
l}h <uhl ul E ”’”‘l} ] S l g h> » (2])

s'nce the events . < 0 and

Y24

1+1
Ul Z (")

are identical, from Eq. (18). To find the distribution of the u,, write

o ] [1 o .0 [r®
alt 1
u = , D= L=
: ; 10 :
s af ... at 1 Joon ()

Since the w, are NID(f,(8), ¢°), it follows from Eq. (19) that u ~ N(Df,, ¢°DD’). Thus Eq. (21) and thence
Eq. (20) may be deduced from formula (3) of Tallis," for the mean of a truncated multivariate normal
distribution. (Tallis’ formula is expressed in terms of the correlation matrix, not the covariance matrix.)

The computation of y.x requires evaluation of an (h + I)-variate normal probability, along with -variate
normal integrals. If there is a long run of censored observations, the prediction of the later ones will therefore
be expensive, It is therefore suggested that one predict these by working back from the subsequent block of p
consecutive uncensored observations, if such there be. This method will also enable us to predict any censored
observations before the first block of p uncensored values.

8. G. M. Tullis, *The Moment Generating Function of the Truncated Multinormal Distribution.” . R, Star. Soc. Ser. £23: 223-29
(1961).
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To see how this may be done, write Eq. (16) as
yi=A"(y.—w).
[0 1
A= 1
1 —a —dpsy
ap ap ap
Then to predict y,pn1, 120, from 1-1. ..., ¥r-p, we first generate
!
Ver:= Ay = Y A e, 0<UI<hL (22)
k=0
Let @, be the (i, j)th element of A, Then from Eq. (22),
p
Vepr1 = Z a;v’” 4y~ Vi1, O<I<hs
J=1
Z a(l - “‘11-k-l .
Now consider .
EWrpni | i A SJKp o vip €0, 0K/ h)
—Z a5 My (v,,lw/ Za,‘.,'” ,,.0</<h). (23)
Define
Vo ay"! 0 Si(0)
2 -
v=1| | E=| % - =
Vi a},_l""’ e a},’f’ tI;u” Sr-n-1(0)

Because the w, are NID(f;(8), o), we have
v ~ N(Ef..(8), 6°EE’) .
Thus we can again compute Eq. (23) by again using Tallis’ formula (3).*

Note that by using both the forward and backward predictions in concert, to fill in a gap of T, censored
observations, the multidimensional integrals involved are of order at most [ 7o+ Y2]. (The IMSL library includes
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a package for computing bivariate normal probabilities.) Moreover, most of the computations, such as the
recursive generation of the 4, 4™, and the formation of D and E, are straightforward to program. Only the
eventual formation of the moment quantities is complicated.

A SIMPLE ESTIMATOR

The prediction method proposed in the previous section, while simpler than that proposed earlier, still does
not lend itself to routine calculation and may be expensive if censorings are not sparse. Thus we suggest a general
predictor that leads to simple calculations, involving only the univariate normal integral.

It is suggested by the usual one-step predictor of y, when there is no censoring:

P
o= IE ay + f(0)
=

where the J,,, j 2 |. are either observed or predictors themselves. To modify this scheme to our circumstances,
first replace Eq. (8) by

p
»= z it ow, . (24)
/=1

Suppose y; is censored, so v, < 0. Then from Eq. (24), we define y, as

~ - - . 4 ~ ¢’(0’l)
FEEW | Fo  SjSp, <O =L ai it fll)—o— , (25)
o1 P(a,)

wherein ¢ and ® are the standard normal density and d.f., respectively, and

a,=—[§a_,-j',.,+j} (0)]/0 :

Since ¢ can be computed by a simple transformation of the error function, which is one of the FORTRAN
functions, the computations will be simple to program, and inexpensive. This will be so even if there are long
blocks of censored observations, so long as one has p values to start with. Notice that when (1 —1,...,1—p)er,

Eq. (25) is identical to Eq. (20), for /2 = 0.

APPLICATION
To illustrate the alternatives to ML in the previous two sections, the simple model

w=ayt b+ bzt e (26)

was estimated on some of the data described in the Introduction. We took y,=log (1 + D,), z,=log P, where D,
is “demand for” and P, is “price of” oil with sulfur content between 2.01% and 3.00%. (D, is measured in
thousands of barrels and P, is measured indollars per barrel.) Thus y, =0 because D,=0,and y,=0if and only if
D, =0. The regional time series selected was that for the West North Central region. One would expect this model
to be much too crude to explain reality, and ideally one would wish to construct a model which used the
relationships between the various demand series, and information on additional predetermined variables, and
involved additional lagged y, However, our concern is primarily to assess differences in the results of the
estimation procedures, and these are likely to be easier to detect in the context of a simple model such as Eq. (26).
Chern* also estimates a first-order dynamic model for demand for electricity.

The 32-observation time series {y*} contained seven zero values; these were numbers I 1, 13, 14, 15, 29, 30,
and 32. To use the procedures described in “An Alternative Estimator,” we must first classify the latter
observations into three groups. Group I (11, 13, 29, and 32) can be predicted using information on the
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immediately preceding demand. Group II (15 and 30) can be predicted using information on the immediately
Jfollowing demand. Group 111 (14)-can be predicted using the demand of two periods back, because 13 is also
zero. The prediction of Groups 1 and Il will involve univariate integrals, and the prediction of 14 involves a
bivariate one. ML estimates, on the other hand, necessitate computing a trivariate integral.

The computational formulas for the various predictions are as follows.

Group 1
We must find

,:'1 = E(y, I Veis Vo < 0) R

which, as we may immediately infer from Eq. (25). is given by

~ o
m=ave t+ by + bz, — o iia:; s
where o, = — (av,-1 + b1 + baz))/ 0.

Group 11

In this case we need
}t-l = E(_Vr»'zl Yty V2 < 0) -

From Eq. (23), this is

o - - by + baz,-
,Vt-:z}—l'—l‘ <Vuqu>}_l“l’) ,V()"‘N<;——l,a—_y).
a a a a
Thus
;_ - Y= b - bz — g @(8)
o a a 1— o8,

where 8: = (v — by — baz)/ 0.
Group III

Here we need to find

.IA'/vl = E(rm I AYSIRVE S A <0)

=ay- tw,
wr = E(u, I Uy < —av;-y , Ui < _a-_l'l-l) .

where

— {l ~ N [ by + baz o[ a ]
" (UI) atby+ baz) + (b + baze)] "% a1+ 4 )



64 P. M. Robinson

Putting
ave v b+ b @y g+ oathy + boz) + (i + bazp)
o (amthrhey bz -
G oV i+a

Then from formula (3) of Tallis.”
w, = athy + h.z)y + (hy + bz

olad(y.Yb(v.a (5,\;'/1 Fay+ v a DOYP(Sa — vy, 1 +a )

(l)‘<_<ﬂ/:) 1 a 1 + (l"r
’ 5./ la Vi +a |

Phe standardized bivariate normal d.I. in the denominator can be computed by means of the IMSLL library
program MDBNOR.

The “Simple” Predictor

From Eg. (25) we have

=yt by bz~ 0@—“—) .
’ Plas)
ar==(av, T b+ ho) o

An iterative procedure of the type deseribed in *Maximum Likelihood Estimates™ was used. alternating
between computing LS estimates and predictions. The estimator of o computed on cach step using the current

data and estimates wis
. | . N " .
o :TITZ (vv—avey— by — by .
I

We commenced cach iterative sequence by computing the LS estimates for the data v# =1, ..., 32, that is.
taking “sero™ values to be zero, In practice better staring values would be negative. However. we wished to
comparte our results with the naive approach of doing LS regression on y/*.

InTuble I we give the estimates and standard errors using 1/, the “alternative " predictors. and the “simple™
predictor, Convergence to four decimal places was obtained after nine interative steps in both cases. The most
noticeable aspect of the results was the difference between the estimates (particularly f) using v* and those
estimates using the alternative and simple predictors. (We also fitted a model with s = D, z. = P, butin this case
the estimates of ¢ showed the greater variability.)

The predictors of the censored values are given in Table 2. The main differences here are in the i and vy
values. where predicting from the future and past give very different results.

Table 1. Parameter estimates
Table 2. Predicted values of censored y,

Qs

a b
- —¥n Vi —Fi =Fis —V 1w Vi
vt 0.4224 (0.0286) —1.5788 (0.4591)  1.5626
Alternative  0.5442 (0.0276)  —5.0370 (0.5955) 1.9766 Alternative 1,301 0923 1.569 2.71S 0.792 3154 1.096

Simple 0.5274 (0.0275) —~4.5197 (0.5280) 1.7696 Simple 1107 0772 1.286 1.360 0.665 1.056 0.931
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ABSTRACT

An experiment was designed to assess the effects of retrofits on the heat balance in a sample of occupied houses. In
particular. the theoretically expected vs empirically determined effects on heat loss of installing additional insulation in
attics were examined, as werc the implications for policy analysis. The statistical analyses featurcd use of robust
methods applied to large sets of primary data collected in the field.

INTRODUCTION

In this paper we briefly outlinc the need for sys-
tematic evaluation of changes in energy policies as
they occur. Paying special attention to the residential
sector, we point out the value of field experiments
and the need for certain types of data in this sector.
We conclude with a brief review of a field experi-
ment, which was conducted to serve as a guide for
future experimentation.

ENERGY CONSUMPTION AND
PUBLIC POLICY: THE NEED FOR
SYSTEMATIC ASSESSMENT

Many people agree that the depletion of our con-
ventional energy resources and the general uncer-
tainty about our energy future is putting a strain on
our environment and social institutions and that we
are faced with critical decisions about the future.
However, there is not so much agreement on how to
deal with this energy crisis. Several approaches have
been suggested, each having its proponents and op-
ponents: (1) develop nuclear power; (2) developsolar
power; (3) develop other sources—geothermal, tidal,
hydro, shale oil, coal gasification; (4) deregulate to
spur exploration; and (5) switch to more abundant
fuels, such as coal.

All of the above suggestions are in the nature of
supply strategies or policies. Alternatively wc may
consider various consumption or conservation poli-
cies and strategies:

Economic—(1) realistic pricing and dercgulation to
control consumption, (2) rate structure reforms to
encourage load shifting, and (3) tax incentives’dis-
incentives to encourage conservation.

Behavioral—(1) alert consumers to the need for
conservation, (2) inform consumers as to how they
can conserve, and (3) provide consumers the
opportunity to conserve energy and encourage
them to do so.

Physical—(1) install retrofits—thereby altering the
current stock of energy-consuming devices, (2)
replace old devices with new, more efficient
devices, (3) encourage cogeneration wherever
possible, and (4) encourage approaches that match
production of energy to end uses.

Whichever policies are adopted, the need to assess
the effects of policy decisions is apparent. With

*This work was supported in part by the National Science
Foundation (RANN) under Grant No. SIA03516A04 and the
Energy Research and Development Administration (now the De-
partment of Energy) under Grant No. EC-77-02-4288.
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respect to conservation policies this need calls for
unproved or, in most cases, new data on cnergy
consumption. The nation’senergy consumption is the
result of millions of individualdecisions about energy
use against the background of its social and institu-
tional structures; therefore, to determine the effects
of a new policy, we will need to know how the policy
affects the individual decisions that determine aggre-
gate consumption. But data on energy use are scarce
and inherently hard to come by: decisions about use
are decentralized, records are usually not kept. and
energy costs may be only a small part of the total cost
of an activity. Thus. although data presently exist to
describe energy use at the aggregate level, there is very
little data available at the level of the individual,
cither residential or industrial consumer, and no sys-
tematic effort is being made to monitor the effects of
policy decisions on individuals’ cnergy uscs.

One potentially effective means of obtaining such
microlevel data is the field experiment. Field experi-
mentation affords three advantages when assessing
the effects of policy decisions:

1. Field experimentation allows the relative effec-
tiveness of alternative policies to be assessed ona
scale that makes failure of the policies to achieve
desired effects tolerable.

2. Partially controlled field experiments are a step
toward providing precise estimates of the effects of
policies; they permit a systematic assessment of
the factors that help determine the results of new
policies.

3. Field experimentation allows the policymaker to
experience some of the problems that are bound to
occur when a new policy is implemented.

The advantages of field experimentation outlined
above are taken for granted as first principles by
statisticians but not necessarily by policymakers,
especially if the expense, difficulty of execution, and
ethical problems attendant to field experiments are
considered. Thus the single most important task for
statisticians interested in becoming involved in
problems related to energy consumption and public
policy may be that of consciousness raising. We must
alert policymakers to the need for data adequate to
the critical decisions at hand and the singular value of
data and experiences gained as part of a field experi-
ment.

THE RESIDENTIAL SECTOR

Approximately one-third of the nation’s energy
consumption is attributable to fuel and electricity use
in the residential sector. Of that one-third. slightly
less than half is used for personal transportation. and
about one-third is used for space conditioning. Both
aspects of residential energy use provide scope for
contributions by statisticians, especially with respect
to planning field experiments and surveys and col-
lecting, evaluating, and analyzing data bearing on
policy questions. In determining how energy is used
for space conditioning, for example. we need data to
describc and model (1) the physical characteristics of
the nation’s housing stock; (2) the type, age, and typi-
cal rate of use of various heating devices and other
appliances; (3) the demographic and socioeconomic
charaeteristics of users: (4) the relationship between
the energy used in space conditioning structures, the
physical characteristics of the structures, and the
behavior of the occupants; and (5) the expected
return on investments in specific retrofits on a struc-
ture-by-structure basis. A/so, we need measuring
devices and instruments that can collect this data.

All of the tasks implied above will require a great
deal of effort if they are done. We believe they must be
done if the effects of conservation policies on the con-
sumption patterns of residential consumers and
aggregate energy consumption in the residential
sector, the ultimate target, are to be systematically
and accurately determined. We also believe that stat-
isticians should take the initiative in pointing out the
need for systematic evaluation of energy policies and
that they should not hesitate to claim their rightful
role in helping to determine the effects of such
policies.

THE TWIN RIVERS PROJECT

Since 1972, members of Princeton University’s
Center for Environmental Studies have been investi-
gating various aspects of energy consumption in the
residential sector. We have been involved in a series
of experiments at the planned housing development
of Twin Rivers in East Windsor, New Jersey. About
12,000 people live in approximately 3000 houses in
Twin Rivers. Our group has monitored the construc-
tion at thesite, interviewed many of those responsible
for energy-related decisions in the planning and con-
struction phase, formally surveyed and informally
interacted with the residents, obtained a complete



record of monthly gas and electric utility meter
readings, built an onsite weather station, placed data
acquisition instruments in more than 25 townhouses,
and rented and occupied another of these town-
houses, turning it into a field laboratory. Both the
National Science Foundation (RANN) and the
Energy Research and Development Administration
(now Department of Energy) have supported our
efforts.

Our basic observational units have been two-story,
three-bedroom. attached townhouses and theiroccu-
pants. The townhouses were conventionally built
with masonry walls and wood framing flor floors and
rools. They sold for approximately $30,000 when
built in 1971, and they enclose about 1500 ft* of living
space. Typically, ubout 15 ft' of natural gas per
Farenheit degree day are required to heat a Twin
Rivers townhouse. Thus, over a six-month, 5000-
degree-day winter, the total requirement is 75,000 ft’
of gas. which a1 $0.25 per hundred cubic (eet results in
a heating bill of about $190 for the year. Electricity is
used at an average rate of about 1500 kWhr per
month from May to September resulting in an aver-
age monthly electricity bill of $60 during this period.
Most families in Twin Rivershave rootsin New York
City. Their Twin Rivers townhouses represent their
first home ownership experience. About half the resi-
dents are Jewish, 96% are white, and most heads of
households are white-collar workers in New York.
Twin Rivers is about 50 miles from New Yorkand 15
miles from Princeton.

Our goals in working at Twin Rivers have been to

. establish that field experiments can be carried out
and provide a basis in experience for further work;

2. examinc the role of the resident in conserving
energy, the physical characteristics of a dwelling
which determine energy consumption, and the
relationship between resident and dwelling;

3. develop exportable diagnostic tools, both physical
and data analytic, for evaluating conservation
strategies and policies; and

4. identify some effective retrofits.

We believe we have been very successful in pursuit
of these goals, especially in establishing that generally
useful field experiments can be carried out. Qur intro-
duction to this section of the report summarizes how
far we have gone toward achieving this particular
goal, Our achievements with respect to our other
goals are documented in the reports cited in the
bibliography. Some highlights of these reports are
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e Twin Rivers residents reacted to the onset of the
1973-1974 oil embargo by reducing their space
heating energy use by 15%; (Mayer, 1976).

e Simple two-parameter models provide useful
descriptions of the variation in monthly and hour-
to-hour consumption of energy used to heat Twin
Rivers dwellings. The two parameters are the
conductivity of the shell of the dwelling and the
temperature at which the furnace first comes on.
The models are related so that microlevel measure-
ments can be related to estimates of monthly
consumption (Mayer, 1976. Woteki, 1976).

e Residents will reduce their consumption when
provided with feedback information on their
consumption in relationship to their peers and to
weather conditions (Seligman and Darley, 1276;

1976).

e Simple experiments employing portable electric
area heaters can be done to determine the efficiency
of any residential furnace (Sonderegger, 1977).

o Simple models analogous to electric circuit models
with two resistances should prove very useful in
diagnosing how much heat is lost by conduction
from the living space of a house to its attic. Such a
model would be useful in diagnosing the need for
and effects of installing additional attic insulation
in 2 wide variety of housing types (Beyca, Dutt, and
Wotcki, 1977, Woteki, Dutt, and Beyea, 1977).
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Heat Shock Threshold Estimation for Fish Eggs and Larvae

in Power Plant Cooling Systems*

Allan H. Marcus

Washington State University
Pullman, Washington

ABSTRACT

Although mortality and hatching success data are often analyzed By bioassay methods (e.g.. probits or logits), it is

suspected that actual thresholds exist for the adaptive response of a biological system to multiple environmental
stresses. These thresholds can be estimated using a general linear model. The optimal estimation of the response
thresholds is a nonlinear least-squares problem, however, and the derivatives of the residual sum of squares surface will
have cusps. Approximate confidence regions for thresholds are readily calculated. The separate effects of temiperature
shock and cumulative temperature dose in clectric power plant cooling systems are shown for hatching success of
striped bass eggs and for mortality of the larvae of the American shad.

INTRODUCTION AND DISCUSSION
OF RESULTS

The Chesapeake Bay is the most productive
marine estuary in the world. There is intense
competition for use of its waters for shipping,
recreational and commercial fishing, and power
plant cooling (among others). The requirements,
however, for efficient operation and economical
design of electricity generating plants (whose
condenser cooling waters should be discharged ata
sufficiently high temperature to control biological
fouling of condenser screens without adding biocides
such as chlorine and ozone) may be directly opposed
to maximal production of finfish and shellfish. Eggs
and larvae of these animals may be drawn into the
power plant cooling system and, as they pass through
the heat exchange system, be subjected to an abrupt
increase in temperature that overwhelms their
adaptive capabilities (i.e., heat shock). They may:
then spend an extended period of time in the heated |
waters of the discharge where, even if they have not |
succumbed to heat shock, the cumulative exposure |
to temperatures exceeding their acclimation limi
will result in increased larval mortality and in:
decreased hatching success of eggs.

There is sufficient evidence to believe that there
arc, indeed, actual physiological thresholds for heat
stresses to aquatic and other organisms.' It is thus
reasonable to look for distinct threshold tempcrature
values for heat shock and cumulative exposure, as
they represent distinct short-term and long-term
phenomena. In any case, the specification of
temperature limits for cooling water discharges are
often given separately. A case in point is the water
discharge permit of Calvert Cliffs Nuclear Power
Plant owned and operated by the Baltimore Gas and
Electric Company. This very efficient steam electric
power generating plant has a once-through cooling
system. The original operating permit required a
maximum temperature increase (DELT) across the
condenser of 10°F (5.6°C) and a maximal
temperature in the discharge canal of 90°F (32.2°C).

“This work supported by the Maryland Power Plamt Siting
Program.

. V. H. Hutchison, “Factors Inflluencing Therma! Tolerances
of Individual Qrganisms.” pp. 10 26 in Proceedings of Thermal
Ecology. 11, ed. by G. W, Esch and R. W. McFarlane. A.E.C.
Report  CONF-750425, U.S. Government Printing  Office.
Washington, D.C.. 1976,
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[he normal summer surface water temperature is
80 b but may be as high as 83 F for 100 hr per
year, so the maximal discharge temperature could be
as high as 93 F (33.9°C). The plant has been
operated experimentally at DELT = 12°F (6.7°C)
for 316(h) studies, and higher values up to
DELT = 14 F (7.8 C) have been considered.” We
believe these values are likely 10 be typical design
values for future power plants.

Numerous temperature stress studies have been
carried out at the Chesapeake Biological Laboratory
of the University of Maryland.' We will discuss some
results for the mortality of larvae of the striped bass
( Morone saxatilis) and for the hatching success of
eggs of the American shad (Alosa sapidissima). The
cpgs or larvae are first acclimated o a BASE
temperature. then subjected to an instantaneous
temperatiire increase (DELT). which is maintained
for TIME minutes. Here. BASE was 18%C for shad
egps and 24- C for bass larvae. DELT ranged from
10 Cto14.5 C, and TIME varied from 5 to 60 min.

o0
10 =Y

Hypothetical
o o o Observed

DELT Above Base Temperature {°Cj

Time (min}

Fig. 1. Total percentage mortality for nine experiments using
50 eggs each from striped bass 1. For an explanation of letter
codes. see Table [. Sowrce: T. S. Y. Koo, C. F. Smith,
M. L. Johnston, G. E. Balog. Jr., and H. L. Mathers. Effects
of Heat Shocks on Fish Eggs and Larvae. Report CEES
No. 76-112-CBL, Chesapeakc Biological Laboratory, Unlversny
of Maryland. July 1976, adapted from Appendix L.

1 i L 1 N 1
O 4565 85 166 T T40

Table 1. Experimental runs for all fish eggs and larvae®

1 etter Facess ime of exposure Cooling-down ume
dL'\lLanlH)Il lL'!l"lpL'l'&ﬂllfC 1 tminutes) tninutes)
2 [{/] 10 120
”2 o 60 10
Kt s A 140
K2 i W 160
1t t30 h len
12 i30 20 1XG
A3 135 s 180
A12 145 15 200
Cantrol ] i 4

About 450 eggs trom cach tish were ferulized at o base tempera-
ture, then diaded into the mine groups listed sbove with about 50
tertihzed eggs i cach expenimentai group tor each fish

Seuree 15 Y Koo € F Smuth, M 1 Johnsion, G}
Balag, Ji o and H U Mathers, fffects of Heat Shodhs on Fisie Eggn
amd Larvac. Report CELS No T6-112-CHl . Chesapeakhe Biological

Faboratony, Unneraty of Manbind, Julh 1976, adapted  from

Appendin )

The waters were then allowed to cool naturally 1o
BASE, as shown in Fig. 1.

About 450 eggs from each fish were divided into
nine groups of 50 each. The nine experimental runs
included a control run and the eight combinations
listed in Table . Larvae from striped bass 6 were
2 days. 4 hr old: her larvae had the volk-sac partially
absorbed and the eyes pigmented. Larvae from
striped bass 7 were only 2 days old. and although the
yolk-sac was partially absorbed. the eyes were not
pigmented. Because the BASE temperature was high
(24°C), we belicved that these data were particularly
relevant to the conditions of power plant dis-
charge.

We also evaluated eggs of four American shad at
age 24 hr (late gastrula stage) to study the variation
among individuals of the same species at the same
developmental stage. For each of these shad, 450
eggs were allocated among niue treatments as above,
The BASE here was 18°C. Eggs in the tail-free
embryo stage {(age 41 hr) at BASE 17°C showed
practically no mortality, while those in the early
gastrula stage at BASE 24°C showed almost 100%
mortality.

Striped bass are a particularly important environ-
mental indicator species for citizens of Maryland.
The status of the striped bass population plays a role
in their gastronomic and recreational preferences

2. Decision of Hearing Officer, NPDES Permit =MD002399.
Jan. 15, 1977. In the matter of Calvert Cliffs Nuclear Power
Plant, Baltimore Gas and Electric Company, Request for
Adjudication.



that is scarcely captured by caleulation of the
economic benefits of commercial and sport fishing
for this species. While neither bass nor shad are
spawned near the Catvert Cliffs plant, we have  for
the sake of definiteness  evaluated the Calvert Cliffs
discharge limits for bass larvae and shad eggs.

The basic data are percent mortality of larvac (c.g..
Fig. 2) or percent hatching success of eggs. These
data were dre sine transtormed to achieve stablc
variance and then were treated by the methods
described in the next sectian. Confidence contours
for larval mortality are sketched in Fig. 3. Note that
for striped bass 6. the thresholds for the cxperi-
mental condenser cleaning trials of 1976 12°F
(6.7 C) for heat shock and a maximum discharge
canal temperature of 95° F (35°C)  do not lie helow
the 99¢¢ lower confidence bound for heat damage.
although they do lie below the 95¢¢ lower confidence
bound for heat damage. There is thus a remote
possibility that these extreme conditions could start
to damage some striped bass larvac. However. the
striped bass 7 larvae lie well below the detectable
thresholds of mortality.

The assumed exposure, TIME = 1 min, is an
extremely short time for heat dose. Longer TIME

Start End Hours After DELT Run
DELT Run DELT Run
0 10 20 30 40
100 e e S s

—

50F

Cumulative Mortality, %

Stiriped Boss Larvoe
/ Experiment |

May 16, 1975

Base Temp. 20.5C

1 1 -

0

Fig. 2. Example of typical agreement between experimental
time-cxcess temperature history, Dy, and its hypothetical
analogue. Source: 3. S, Y. Koo, C. F. Smith. M. .. Johnston.
G. E. Balog. Jr.. and H. L. Mathers, Effects of Hear Shocks
on Fish kggs and fLarvae, Report CEES No. 76-112-CBL.,
Chesapeake  Biological Laboratory. University of Maryland.
July 1976. Fig. &.
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B e s et
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i

“1974 NPOES l

32L__é.__s_l_A O S ST SUU |
s
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Fig. 3. Outer confidence contours at levels of 95 and 995 for
temperature shock thresholds, THETA(1), and heat dose
thresholds, THETA(2), for striped bass 6. \iso sliow., .
conditions spectfied 1 the 1974 NPDES Pernut and the 1976

wonst-case  operating condition. enpenntental pomts

contours are being cvaluated by a computer program
net vet fully validated: these results will be reported
in detail tater. Longer TIMES will not change the
center or approximate shape of the contours but
will compress them somewhat in the heat dose
thresnold. THETA(2). dircction.

For the shad cgg hatching success data we
evaluated the hypothesis that the threshold for heat
shock fell below 14°F (7.8°C) and the threshold for
test temperature dose effect fell below 90°F (32.2°C)
with an assumed exposure TIME = [ min,
Application of a formal F test of significance is
reported in Table 2. For shad 1, the thresholds are
very probably below these values (P = 0.4); for
shad 2 (P = 0.026) and shad 4 (P = G.01), thercisa
small possibility that their actual damage thresholds
are below these values: for shad 3 (P =0.0006), there
is practically no chance that her damage thresholds
are below these values. We thus conclude that limits
of 14°F (7.8°C) for DELT and 90°F {32.2°C) in the
discharge canal will allow damage to the egg haiching
success of some American shad. The population
effects on the Chesapcake Bay fishery can then be
evaluated (in principle) by an ccological model.
Contours similar to those for striped bass will be
presented elsewhere.

The present model assumes the existence of
thresholds. Unlike chemical carcinogens or ionizing
radiation, there is evidence that physiological
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Table 2. Test of hypothesis that THETA(l) = 7.8°C,
THETA(2) = 32.2°C, for TIME = | min

. Sigmhicance
Lh ! vadue probabihity
Shad L2 0.4
Shad 2 892 0.026
Shad 3 4737 0 0006
Shad 4 1334 0.0l

Degrees of freedom 204

thresholds for temperature are real and represent
limiting conditions of physiological homecastatic
adjustment. The question of thresholds is contro-
versial, however, in that this assumption often leads
to more conservative assessments of damage and
higher allowable levels of environmental insult than
other methods. For example. we could estimate the
proportion ol bass larvac dying. or shad cggs
hatching. using probit or logistic regression methods,
and express the uncertainties of the analysis using a
confidence interval  for  that proportion. Our
threshold  estimation  procedure could thus be
described as a “horizontal window™ method. and the

probit or logit method is a “vertical window™

method. Clearly. both methods are of use in deriving
temperature limits for cooling water discharge with
laboratory bioassays.

METHODS
Introduction

Fhe effects of temperature stress on aquatic
organisms may depend on at least two threshold-type
phenomena. In o typical bioassay experiment,
organisms (c.g., larvae, for which mortality is
measured, or eggs. for which hatching success is
measured) are exposed ta an instantaneous tempera-
ture increase DELT (7C) over a long-standing base
temperature BASE (- C). This temperature increasc
to test temperature

TEST = DELT + BASE (n
is maintained for TIME minutes. The first effect is

that of heat shock or more properly. temperature
shock:

DELT < THETA(I) .
DELT = THETA(]) .

no effect if

adverse effect if

The second effect s a dosage ctiectwch depends on
TEST temperature:

no etlect i TEST - THETAQ) .
adverse cftect il TEST - THETAQY .

It is by no means abvious that THE A1)+ BASE =
IHETAR). although this could be tested.
This problem can be viewed as a4 multnariate

“hockey stich™ regression.” Suppose that N ex-

periments  are carried out at devels DELT(.
TIME(). BASE. ~o that

TEST(1) = BASE = DEL 1(1) . )
The response is the number of “successes.™ StI). out
of K(I) organisms. We can define possible re-
sponses:

Py = Sd) Ky .
ARCSIN() = are sin (1S(h [K(D) + 11177)
+aresin(J[S(H+ 1T [KD+11177). (3
LOGIT()=In ([S(D+0.5] [K(h+1 -S(h]).

LOG) = In([Sthy + 0.51 [K(h + 11) .

Let Y1) be some one of these. [Hasselblud  used
EOGET(D]) Our model is

Y = A) + A [DELT() - THETA(D]

AQ)TIMEMDIESHD - THEYAQ)] + error

= SUM[BETAWU)X(L. )] = error . @)

I u
where
P4l

BETAWO) = AW). XL.O)y=1. (5)

Il

3. V. Hasselblad, 11 Creason, and W, C, Nelson, Regression
Using Hodiev Stick Funcrions, Report EPA-600 1-76-024, .S,
Enviconmental Protection Ageney. Washigton, D.C.. fune
1976.



BETA() = A(l) .
N(I. 1) = DELTUA) . (6)
BETAG) = A()THETA()
X(L 3y =U(). (7
BETA(2) = AQ2) .
N(1. 2) = [TIMED[TEST(HIVD) . (8)
BETA@) = —~ AQTHETA(Q) .
XL 4) = TIME(OHV() . 9)
0 if DELT()< THETA(),
ud) = (10
I il DELT(I)> THETA() .

{ 0 if TEST(I) < THETA(2).
V() =
1 il TEST() = THETA(Q2) .

where

0
Z =
(.

This is a key point. Noic that the “predictor”
variables X(1, J) depend on the currently believed
values of THETA(J). The ordinary least-squares
estimate of the regression vector BETA is B,

if Z2<0.
if Z2=0.

B =C' x X' xy . (12)
(prIxh)  (pelxpt])  (prlxN) (N#I)
where
c= X'x X . 13
(prixN)  (Nxprl)

X=[XLNH.1=1,...,N§ 1=0,....p,
Y=[Y()},1=1,....N,
B=[BJ)].J=0,....p.

The predicted vector is YHAT = XB. The residuals

are given by a vector RESID = Y — XB. The sums
of squares are

SSY = SIQM[Y(I) — YBARF, (14)

Heat Shock Threshold 73

s -
SSRESID = SUM[RESID(1)]
i

N
=SUM [Y(D — YHAT()]
[
= (Y ~ XB)'(Y - XB) . (15)
Goodness of {it is meuasured by
RSQR =1 — (SSRESID SSY) (16)
and is tested by
F=(N~-1-p)SSY — SSRESID) [(m)SSRESID] ;
that is,
F=(N—1-p)RSQR (p)(I — RSQR) .
The “best™ values of THETA(1) and THETA(2) may
not be found. As has been noted. the function
SSRESID will jump cvery time THETA(1) crasses
DELT(]) and cvery time THETA(2) crosses another
TEST(l). Between these values, SSRESID is a
quadratic function of THETA. A derivative-free

nonlinear regression program such as the BMD.PAR
program to be relcased shortly may be of use here.

Confidence Contours

It may be prelerable to present the results of
analysis by a confidence region or contour for the
thresholds. To test a null hypothesis about

THETA' =[THETA(l), THETA@)]. 7)
we note that this is equivalent to

B(I)THETA(1) + B(3) =0 .
B(2)THETA(2) + B@4) =0,

so that the null hypothesis will now read

H XBETA=0,

(2xp+1) [REST]

where the matrix H is

0 THETA(I) 0 1 0
0 0 THETAQ2)XTIME 0 TIME
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Define the test statistic
T=HB.

so for the usual model in which the Y(I) are
independent with variance SIGMA- it has mean
value and covariance matrix

E(T) = H(BETA) .
VAR(T) = E(TT")
= (HC 'H") (SIGMA”) .
This producces statistics

FITHETA)
=(N—1—p)B'H'(HC 'H') '"HB: (2SSRES).

P(THETA)
= Prob[F(2. N = | — p)> F(THETA)] .

Note that the value of THETA enters into both Band
C since the values U, V depend on THETA. The
function SSRESID does not now have to be
minimized, merely contoured for fixed values
covering a range of THETA.

Optimal Estimates: Explicit Solution

As Hassclblad. Creason, and Nelson observed,' it
is only necessary to calculate SSRESID a total of
(2N — 1) times to obtain the least-squarcs estimate
of THETA in the sivele-threshold case, because
the optimal THETA must lie either between two
adjacent values of X(1) or coincident with a value
of X(I). An cxplicit solution is thus possible for
one, two, or any number of thresholds, because
in addition to the “normal” equations resulting
from minimizing SSRESID in Eq. (15) [subject to
the linear constraint in Eq. (19)], we also have the
requirement that the regression planeis continuously
joined at the threshold values. Their solution' for
the single threshold case can then be applied
repeatedly so long as there is at least one value of Y
which allows us to discriminate between the two
(or more) threshold effects. These equations are
given explicitly in the Appendix.

The present method extends in a fairly obvious
way the well-known univariate two-phase regression
problcm."" In our case there are two (or more)
distinct but not necessarily independent thresholds
for multiple predictor variables. Hinkley has

established the asymptotic normality of the estimated
intercept THETA but also has shown that the
asymptotic approximation is poor for small
samples.*” The joint asymptotic distribution of
THETA(). THETA(2) cstimates should then be
bivariate normal. but the possibility of obtaining
useful small-sample results suitable for these data
appears remote.,

APPENDIX: LEAST-SQUARES ESTIMATES
FOR DOUBLE THRESHOLD MODEL

Indices

K=1.2.
L=1,....MorL=M+1[..... A
M=1..... N

Variables

X(1. 1) = DELT(D) .
ordered so that
DELT() < DELT( + 1) . (A-1)

X(2. )= TIME()[DELT(I) + BASE]. (A-2)

Statistics
M
SY(L. M)=SUM Y(]). (A-3)
-1
Rt
SX(K. L. M)=SUM X(K. ). (A-4)
=L
M .
SSX(K. L. M)=SUM X(K.,I)", (A-3)
=1L .
M
SYX(K, L, M)=SUM Y(DX(K, I). (A-6)
=L

4. D. V. Hinkley. “Inference About the Intersection in
Two-Phase Regression,” Biometrika 56: 495- 504 (1969).

5. David V. Hinkley. “Infercnce About the Change-Point in a
Sequence of Random Variables,” Biometrika 57: 1-17 (1970).

6. David V. Hinkley, “Inference in Two-Phase Regression.”
J. Am. S, Assoc. 66; 736 43 (1971).



Deviations

SDEV(K. L. M) = (M — L)SsX(K. L. M)

~SX(K. L. M) . (A7)
SDEU(K. L. M) = (M — L)SYX(K. I.. M)
~ SY(L. M)SX(K. L. M).  (A-8)

SDEW(K. L. M) = SX(K. L. M)SYX(K. L. M)

— SSX(K. L. M)SY(I.. M) . (A-9)
First Case: L. <M
I X(L L)< THETA() < X({I. L+ 1).
A0)=SY(l. L) L, (A-10)
THETA(1) = [A)SDEU(I. L. + 1. M)
+ SDEW(IL. L + 1, M)]
+SDEV(I.L+ 1. M). (A-1])
A =[SY(L + 1. M) — (M = L)A(0)]
+[SX(1. L+ 1. M)
— (M - L)THETA()]. (A-12)

Having estimated THETA(l). we will now
estimate THETA(2) using partial residuals that arc
based on the estimated THETA(]). Replace Y(1) in
Egs. (A-3). (A-6). and (A-7) through (A-12) by
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Y*() = YU) - A - A(DX(1. D) : (A-13)
thus,
A¥) = SY*(1. M) M | {A-14)
THETAQ2) = {A¥*()SDEU2. M + 1. N)
+ SDEW*(2. M + 1. N)]
+ SDEV*(2. M + |I. N) . (A-15)
A2) = [SY*M + 1. N) — (N — M)A*(0)]
F[SXC2. M+ 1LN)
— (N - M)THETA(Q2)}. (A-16)
I THETA(l) = X(I. L),
A(0)=—SDEW(. L.+ 1. M)
+SDEV(L. L.+ 1. M) . (A-17)
A =[SY(L + 1. M) — (M~ L)A(0)]
+ SX(I. .= 1, M). (A-18)

Second Case: L > M

In equations (A-10) through (A-16) replace K = |
by K =2.



Statistical Analysis of Reactor Core Operating Limits

Rubin Goldstein and Raymond Krisciokaitis Krisst
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ABSTRACT

Muoitoring and protection systems are included in 2o modern pressurized water reactor (PW R) to obsenve the

nuclear and thermal chariteteristios of the reactor care. These systems citheralert the operator as core aperating hnits
are approached or imtiate & reactor trip betore fuel design limits are exceeded. To prevent damage to the nuclear fuel,
Combustion kngincering (C-E) specifies fued design limits on the depurture from nucleate bothng ratio (DNBR) and
the peak lincar heat rate (PLHR) or local power density . Caleulational approximations, uncertamties in the design
pitrameters, measurement inaceuracies, and calibration and processing errors all huyve an ettect on the on-line inferred
values of DNBR and PLHR.

Lo demaonstrate the potential gioms in available thermal margm by using a statistical approach, a stochastic
simulation of the basic input variables to the Core Protection Caleulutor in the C-E reactor protection system is curried
out. 1he results obtained from the autput distribution for the IDNBR uncertainty are compired with corresponding
muluplicatis e estimates ("worst vase conditions™). For a typical set of operiting conditions, 1 1 specihically
demonstrated that the margin to the limit on DNBR is increased by approximately 10.5¢¢.

Computational efficiency is improved by incorporating concepts of experimental design in the stochastic
simulation. In particalar, sigmilicant variance reduction ol the estimator of the mean is achieved by using Latin
Ha pereube Sampling, as compared 1o simple random sampling.

the raot-sumesquare expression with sensitiviny coetticients is investigated as an estimate o the vanance ot a
composite parameter, For the caleulational range of interest. it is found to give a reasonable spproximation to the

relative standard deviation of the output parameter (DNBR).

INTRODUCTION

In a modern pressurized water rcactor (PWR),
instrumentation and control systems are provided lor
the surveillance of both reactor systems and variables
over their anticipated ranges of normal operation. for
moderate frequency cverts (MFEs) and for accident
conditions as appropriae to ensure adequate safety.
The protection system is designed so that specified
acceptable fuel design limits (SAFDLs) are not
exceeded as a result of o MFE. by automatically
imitiating the operation of appropriate systems,
including the reactivity control systems. The protec-
tion system s also designed 10 sense accident
conditions and to initiate the operation of systems
and components important to safety. An MFE
corresponds 1o those conditions of normal operation
that are expected to occur one or more times during
the hfe of a nuclear steam supply system (NSSS).
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The lincar power densitv and the thermal-
hydraulic conditions of the reactor core are physical
characteristics which are important to evaluate in
order to prevent damage to the fuel. Restrictions on
these characteristics are placed by Combustion
Enginecring (C-E) on their PWRSs by specifying fuel
design limits on peak linear heat rate (PLHR) and
departure from nucleate boiling ratio (DNBR). The
PLHR in the limiting fucl pin shall not be greater
than the valuc corresponding to the centerline fuel
melting temperature, and the DNBR limit is specified
at a value such that the probability of a departure
from nucleate boiling event is acceptably small,

The design bases for a C-E PWR require that
sufficient thermal margin be maintained under condi-
tions of normal operation to preelude the violation of
specified fuel design limits in case of an MFE. When
considering such events, initial process conditions are
assumed to be within the limits designated in the



plant specifications, Salety analyses must demon-
strate that anicipated transients initiated  within
process limits at any time during the core life will not
violate the minimum DNBR and the PLHR limit.

Iwo surveillunce tunctions are performed in a
reactor. The first function is called protection. which
is primarily to determine the operational status of the
reactor core and provide a trip input to the reactor
trip ssstem whenever the DNBR or the PLHR
reaches a caleulated set point. These trips are de-
signed to prevent fuel damage during an MFE and
normally play no role in the prevention of postulated
accidents, although they do provide the initial
response to mitigate the conseguences of some de-
sign basis accidents,

The second function is termed monitoring. For
protective systems to function as intended in the
design. it is necessary that NSSS parameters be main-
tained within established operating limits (OLs). For
example. inferred DNBR and PLHR values are com-
pared to their respective OLs. The OLs. in turn. arc
taken as initial conditions for various transient
events. Analyses from these initial conditions are
used to establish that acceptable consequences of the

event occur. Monitoring systems arc also provided to.

advise the operator of current margins to operating
limits.

In the C-E PWR, these two key protection func-
tions are performed by Core Protection Calculators
(CPCs).' Monitoring is performed by the operator
with the assistance of a Core Operating Limit
Supervisory System (COLSS).” The CPCs are four
redundant digital computers which acquire data from
plant process sensors and control element assembly
(CEA) position sensors and perform the required cal-
culations. Each CPC provides trip inputs to thercac-
tor trip system when the trip set points are exceeded.
~COLSS is a software system provided in the plant
monitoring computer to assist the operator in main-
taining normal operation within the process limits
assumed for the CPC system protective functions.

An example is the operating limit on the maximum
PLHR during normal operation of the reactor core,
The OL is generally the maximum PLHR that can be
allowed prior to the postulated initiation of a loss-of-
coolant accident (LOCA) so that analysis of the
latter will still show acceptable peak clad tempera-
tures and other consequences.

The monitoring and protection systems observe
the nuclear and thermal characteristics of the reactor
core and have the mission either to alert the operator
as core operating limits are approached or to
initiate trip before fuel design limits are exceeded.
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The digital protection system provides on-line rou-
tines for synthesis of the power distribution in the
core and evaluation of the DNBR using measured
inputs from (1) ex-core nuclear flux monitors, (2)
CEA position indicators. and (3) other sensor data.
such as core inlet temperature, primary system
pressure. and coolant pump speed. The COLSS sys-
tem cmploys available in-core detector signals to
synthesize i hot pin power distribution for the reac-
tor core. lnputs 1o both the reactor core monitoring
(COLSS) and protection (CPC) systems consist of
both analog and digital signals. The analog signals,
consisting of sensor signals. are converted to digital
signals by means of an analog-to-digital converter.

The calculations performed by COLSS and the

CPCs are carried out at the plant. The on-line
algorithms are a simplified version of the off-line
design procedures. The simplification provides the
reduced running time required for on-line processing
but results in sone loss in accuracy relative to the
design procedures. The calculated thermal margin
results are compensated for this loss in accuracy
through the use of penalty factors. whose magnitudes
are sufficient to result in conservative thermal margin
calculations relative to more rigorous calculations
used in the design.
-= In addition to modehng inaccuracies and analog-
to-digital conversions errors. there are a variety of
uncertaintics arising from various sources which are
associuted with the inferred DNBR and PLHR
thermal output parameters. For example, they may
arise from measurement inaccuracies, calibrations
crrors. stochastic events, or signal processing errors.
The caleulational. measurement, and processing un-
certaintics must be factored into any thermal margin
assessment of reactor operation.

A common practice has been to combine these un-
certainties, be they random or sysiematic, in a
multiplicative fashion. to produce an overall con-
servative result. It is clear, however, that this
approach produces a ncw result which is overly
conservative and that it is possible to demonstrate
significant gains in avaitable thermal margin from the
application of statistical technigues.

. Combustion Engineering. Inc.. CPC. Assessmens of the
Aveuraey of PUR Safery Sysiem Actuarion ay Performed by the
Core Protection Caletdarors, Report. CENPD-170, Windsor.
Conn.. July 1975,

2. Combustion Engineering. Inc.. COLSS, Assessment of the
Accuracy of PH'R Operating Lintits as Determined by the Core
Operating  Limit - Supervisory Srstem, Report CENPD-169,
Windsor, Conn.. July 1975.
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To ensure that the design objectives of reactor trips
for high local power density and low DNBR are
achieved. the trip set points must account for uncer-
tainties associated with modeling and calculational
approximations, in addition to those due to sensor
measurement and calibration errors, By treating
these uncertainties statistically, it is possible to pro-
duce an overall uncertainty factor that is less restric-
tive than the multiplicative factor when evaluating
the trip set points but still conservative in the deter-
mination of the thermal margins. A reduction in the
net uncertainty is what will provide the future gainin
available thermal margin, which can be used to im-
prove the performance capabilities of an NSSS,

THERMAL HYDRAULICS
AND NEUTRONICS

For currently operating C-E plants. the thermal
margin design code is COSMO,* which is an open hot
channel code. The CPCs currently use a simplified
fast-running version of this code, calied CPCTH. The
latter uses a closed-channel model that does not
explicity take into consideration the divergent cross-
flow between the hot channel and the neighboring
channels. To account for this in the CPC input. an
adjustment is made to the mass velocity input to the
applicable alogrithm, such that when all other system
conditions are the same. the DNBR predicted by the
closed-channel calculation (CPCTH) is equal to the
minimum DNBR predicted by COSMO.

The CPCs compute thermal-hydraulic conditions
in the hot channel using a snapshot of both directly
monitored and calculated input values. The pro-
cedure uscd to assess the core minimum DNBR
involves the synthesis of a hot pin and hot channel
power distribution, which is used inconjunetion with
values of primary system process parameters to
calculate the DNBR. The DNBR calculation is done
at steady-state conditions and is corrected for
changes between calculations using dynamic updates.
The steady-state calculation uses COSMO with the
W-3 correlation or TORC with the CE-1 correlation
for the calculation of DNBR, A DNBR limitof 1.3 is
uscd for plants whose thcrmal design basis was the
W-3 correlation. while a corresponding valuc of 1.19
is used in the case of the CE-1 DNB correlation. The
DNBR is the ratio of the critical heat flux to the
actual heat flux in the reactor core.

The CPCs compute the hot channel minimum
DNBR and the limiting void fraction ugjng the
following inputs to the CPCTH algorithm:

1. core power,
2. coolant temperature at the core inlet.

w2

. primary system pressure.,

. core average coolant mass velocity,
integrated radial peaking factor, and

. normalized hot pin axial power distribution.

The CPCTH code also includes tables of correction
factors which areapplied to the inputto lorce the out-
put to have adequate agreement with the results from
the design code COSMO.

The calculational uncertainty associated with the
CPC synthesized local power density is determined
with reference to design calculations. A large number
of power distributions arc generated with three-
dimensional core simulators. Ex-core detector re-
sponses for a variety of static and transient core
power distributions are simulated. For each case, the
CEA positions assumed in generating the power
distributions of interest, together with the simulated
detector signals, are then processed by a FORTRAN
version of the CPC algorithms to produce a value of
the maximum peaking factor. The CPC synthesized
peaking factor (to which the PLHR is proportional)
is compared with the corresponding value produced
by the simulator to yield an estimate of the calcula-
tional accuracy.

UNCERTAINTY ANALYSIS

The objective of the analysis is to obtain the statis-
tical distribution of important output variables. such
as DNBR and PLHR, which are functions of many
input variables. To accomplish this goal, the system-
atic crrors have to be separated from the random
processes, The latter are then treated by statistical
models which appropriately describe the input
variable uncertainties. Ultimately. the probability of
exceeding a tolerance limit is used as the means of
determining the available thermal margin.

The random inputs are treated as variates whose
means are taken as the nominal design values and
whose variances and probability densities are either
known or assumed. Theaim of the uncertainty analy-
sis is to determine the composite probability density
function (pdf) of the output variable and use it to pre-
dict the variability of the system output.

Because the thermal-hydraulic and neutronics
codes used in predicting thermal margins and reactor
power performance are quite complex, it is conve-
nient to compute the output (response) for arbitrary

3. Combustion Engincering. Inc., TORC, Compuier Code for
Determining the Thermal Margin of @ Reactor Core, Reporl
CENPD-161. Windsor, Conn., July 1975.[COS MO is deseribed in
this document.]



sets of input values. The response surface of the
output is generated using randomly selected inputs.
Since the on-line codes used by C-E for monitoring
and protection are fast running (e.g., CPCTH takes
approximately 4 ms per case on the CDC 7600), it is
possible to use them directly to generate the response
surface.

Appropriate sampling techniques must be adopted
to ensure that the response surface corresponding to
an important output variable is adequately covered.
An cxperimental design is chosen to permit an effi-
cient empirical exploration of the response surface,
one which uses as few computer runs as is practical to
calculate the output as a function of the input.

Although moment generating techniques and
other analytical shortcuts can be used to simplify
eertain aspects of the problem, a direct use of Monte
Carlo or stochastic simulation experiments is par-
ticularly convenient in that the output distributions
and other results may be interpreted with minimum
ambiguity.

Crude Monte Carlo (CMC) or simple random
sampling is a straightforward technique of samplinga
set of input values according to the cumulative
distribution function (cdf) of the uncertainty density
of the input variable. This is carried out with the aid
of a pscudo random number gencrator. The re-
sponsc is computed lor each set of input values. and
by repeating the process many times, the distribution
of the output is obtained. Any desired precision inthe
result can be obtained by conducting sufficient trials.

For a given number of trials, stratified sampling
techniques offer an improved means of covering the
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response surface. They are less likely than simple
random sampling 10 miss statistical fluctuations in
the output distribution. Factorial Stratified Sam-
pling (FSS) and Latin Hypercube Sampling (LHS)
are two techniques that have improved response
calculations at reduced computer cost.” If [ is the
number of statistically independent input variables
and & is the number of levels or intervals associated
with cach input. the classical factorial design involves
n = k' computer runs. In the sequence of computer
runs, a systematic selection of the nominal high and
low values of cach input variable is made. The FSS
corresponding to the &' factorial design can involve
the same number of computer runs, but cach interval
of the input variable is sampled according to its
appropriate pdf. The principal difference between a
fractional factorial design and FSS is that in the
latter, intervals are sampled to produce different
values of the input variables for each computer run.
In LHS the same number of intervals for each input
variable as the number of computer runs is used. In
this case, however, the sampling is carricd out so that
each interval for each input variablc appears exactly
once in the total design.

At C-E. the code JAIALAI has been developed 1o
perform the stochastic simulation and the uncer-
tainty analysis. Figure | contains a block diagram of
the code. The inputs can assume any of the standard

4. M. DL MceKay etal Report on the Application of Statistical
Technigues 1o the Analvsis  of  Computer Codes. Report
LA-NUREG-6520-MS. Los Alamos Scientilic Laborators. Los
Alamos. N. Mcex., Ocober 1976,
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Fig. |. JAIALALI stochastic simulation and uncertainty analysis code.
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discrete or continuous distributions (uniform, Gaus-
sian, Poisson, binomial. ete.) for their uncertainty
descriptions. The International Mathematical and
Statistical Library™ (IMSL) has been attached
recently to JATALAL so that all of the distributions,
routines, and tests in the IMSL are available for use
in the analysis. The inputs are sampled by means of
the random number generator RANE (0, 1) and the
cumulative distribution function of the random
variable. Three optional sampling schemes CMC,
ESS, and ILHS can be used in the experimental
design.

The set of inputs is fed into the code of interest
(black box) and the response is calculated. The
output distribution is plotted on a histogram and
sample statistics (mean, variance. ete.) are caleulated.
Various distributional tests (chi-squared goodness of
fitand 1Y and W tests for normality), as well as other
hypothesis and statistical tests, can be performed on
the response, [n “Special Statistics”™ the variance ol
the estimators is used 10 compare the efficiency of the
sampling  schemes in  determining  the output
variables of interest,

A successful simulation depends to a large extent
on how well an assumed pdf represents a physical
input variable. A basic input variable, such as cold-
leg temperature, can, itself, be dependent on many
tactors. For example, variations can result from

l. process  noise  or  prompt-fluid-temperature
fluctuations due to temperature eddies and other
time-dependent effects;

dependence on the particulur values of other basic

input variables. such as pressure. temperature,

and flow;

3. sensor- and measurement-related  uncertainties
(Systematic errors, c.g.. those due 10 radiation
damage or aging of insulation, are not included in
the pdf construction and have to be tuken into
account outside the stochastic sumulation.): and

4. signal processing uncertainties due to clectrical
noise pick-up, internal hum, and analog-to-digital
conversion.

[

The composite pdf for the cold-leg temperature can
be obtained from a stochastic simulation of its com-
ponent parts. If there is a dependence on other input
variables, then either conditional probabilities have
to be used. or an effective temperature distribution
has to be constructed. A similar procedureis used for
the treatment of the other input variables.

Figure 2 contains a functional diagram of the CPC.
The left-hand side of the dingram indicates the basic
input variables and the right-hand side denotes the

S0 International Mathematcal and Statistieal Dibraries, Inc.,
PUNSE Library 3061h ed. IMST T IBO3A006V ], Houston, Tea..
July 1977,
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trip set points for DNBR and PLHR (or local power
density. in this case). In between are the required
ncutronic and thermal-hyvdraulic calculations of
power distributions and heat tluxes. Once the
distributions of the basic inputs in Fig. 2 arc specified,
the stochastic simulation of the CPC can proceed and
the margins to the set points can be determined.

STATISTICAL RESULTS

To demonstrate the potential gains in available
thermal margin by using a statistical approach
relative to a conservative multiplicative approach.
consider the CPC depicted in Fig. 2. The basic six
inputs, primary pressure, CEA positions, ex-core
detector readings. speeds of the coolant pumps, hot-
leg temperature. and cold-leg temperature. are
subjected to independent random variations. The pdf
used for each of the inputs, together with the
corresponding mean and standard deviation. is given
in Table |.

Table 1. Probability distributions, means, and standard
deviations for the basic input variables used in the uncertainty
analysis of the CPC calculation of DNBR

Standard

Distribution Meun S
deviation

Input variable

Cold-leg temperature Gaussian ~ 553.5-F 0.48 |-
Hot-leg temperature Gaussian  6l4.6°F 052 F
Primary pressure Gaussian 2250 psi 6.5 psi
Ex-core detectors (three) Gaussian  0.3171 0.0045

0.4195 0.0060

0.3006 0.0043
Pump speed (four pumps)  Uniform 1.0000 0.0058
CEA position Uniform Unrodded .79 in.

The static DNBR is calculated for the given set of
steady-state conditions indicated by the mean values
of input variables. The variations are then stochasti-
cally simulated to yield the output distribution for
minimum static DNBR. For simple random sam-
pling (CMC) based on a sample size of 1000, the re-
sult is given in Fig. 3. The output distribution for the
uncertainty in the static DNBR is Gaussian in ap-
pearance and passes the standard normality tests. As
indicated in Fig. 3, this sample size of 1000 yields
estimates of 1,635 and 0.0564, respectively, for the
mean and standard deviation of the minimum static
DNBR.

Essentially equivalent results were obtained using
LHS sampling. Inthis case, the range of each variable
was partitioned into 100 intervals of equal proba-
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bility content and only 100 computer runs were made,
This indicates a factor of 10 in computer time can be
saved with the use of LHS relative to CMC. which is
consistent with an investigation that was made on the
following simple algorithm:

Y=x 4+ x>+ x:1.

Each variate, x,, was assumed to be normal and
indcpendent. The threc optional sampling schemes in
JATALAL were applied in the stochastic simulation
of the distribution of Y. The total sample size was
4000, which meant 40 replications of a stratified
sample with 100 levels for LHS. Significant variance
reduction was achieved in using LHS relative to
CMC. The precision, as measured by the variance of
the estimator of the mean. improved by a factor of
over 200. The FSS scheme produced intermediate
gains relative to CMC. but not nearly as good as the
LLHS did.

The absolute estimate, 1,635, for the mean DNBR
should not be regarded as significant, because penalty
factors already exist in the current version of the CPC
code. These penaltics are deterministic in nature and
account for both calculational and systematic errors,
as well as for instrumentation uncertainties. There-
fore. this code version is being used for demonstra-
tional convenience, but an examination of these
penalty factors will eventually be undertaken.

The results obtained from the stochastic simula-
tion of the basic input variables can be used to
demonstrate significant gains in DNBR margin.
Using the sample mean and standard deviation of the
output distribution, a lower tolerance limit, ¢, for the
simulation ean be calculated for the minimum static
DNBR:

=x— ks .

At the 95% confidence level, the & factorfora sample
size of 1000, which provides a lower limit that is
exceeded by at least 95% of a normal population, is
1.727." The corresponding lower tolerance limit,
thercfore, is

tysgs = 1.635 — ]727(00564) = 1.538 .

6. D. B. Owen, Factors for One-Sided Tolerance Limits and for
Variables Sampling Plans, Sandia Corporation Monograph SCR-
607. Albugucrque. N. Mex.. March 1963,
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Fig. 3. DNBRST—Minimum static DNBR.

The statistical analysis of the input uncertainty dis-
tributions thus yiclds a lower limit, such that ata 95%
confidence level, there is at least a 95% probability
that the minimum static DNBR will exceed 1.538.

On the other hand, if the conservative approach of
evaluating the change in DNBR due to a two-
standard-deviation change in each of the inputs is
adopted and if the total change in DNBR is taken as
the cumulative sum of the individual-change magni-
tudes, then the lower limit is reduced to 1.367. This
reduction is equivalent essentially to multiplying
individual penalty factors together, also known as a
“worst-case combination.”

For example, the percent change in DNBR per
percent change in the hot-leg temperature (7}) is
evaluated to be 27.7. Using this sensitivity coefficient
in conjunction with a percent change of 0.169 in hot-
leg temperature (corresponding to a two-standard-
deviation change in the hot-leg temperature relative
to its mean), this component contributes 27.7(0.169)
= 4.69% to the change in DNBR. Summingall similar
effects with their corresponding sensitivities vields a
total change in DNBR of 16.49%, This is equivalent to
the percent reduction of the DNBR {rom the original
1.635 to the conservative lower limit of 1.367.

To allow for the uncertainties in these basicinputs,
the trip set points in the CPC are multiplied by
penalty factors. The conservative estimate of the
overall penalty factor to be used in the DNBR
calculation is 1.164 (i.e., 1 + 16.49%). The statistical
estimate of the penalty factor is 1.059. which
corresponds to a (1.635 — 1.538)100 1.635 = 5.9%
change in DNBR. The statistical approach, therefore,
provides a 10.5% gain in margin to the DNBR limit,
This improvement in the core operating limit 1o the
specified . acceptable fuel design provides a direct
increase in the power margin available for reactor
operation.

It is interesting to note that the relative standard
deviation of the output distribution for the minimum
static DNBR, 8op, is close to the value calculated
from a root-sum-square expression with sensitivity
coefficients, A first-order Taylor’s series expansion
yields

2

L oa. s
dop” = X 5780, ,
'

where covariance and higher-order terms have been
neglected. The sensitivity coefficients, s, are



evafuated for cach of the input variables. For
cxample.

3= AD A, =217

is the relative change in DNBR with respect to the
relative change in the hot-leg temperature. The
relative standard deviations. §a,, are the ratios of the
standard deviations 1o the means of the input vari-
ables 7.

Using the appropriate sensitivity coefficients and
refative standard deviations of the inputs. the root-
sum-square vidue is 8o = 3.39¢. The corresponding
value from the stochastic simulation (see Fig. 3) is
100(0.0564) 1.635 = 3.45¢(. The closeness of these
two results is probably due to covariances and higher-
order effects being negligibly small in the parameter
space where the calculations are being performed. In
this kind of situation, the simple Taylor’s expression
can give comparatively good estimates ol the relative
standard deviation of the composite parameter,

CONCLUSIONS

A statistical treatment of uncertainties can produce
significant gains in thermal margin relative o cur-
rently used multiplicative approaches, and the power
performance capability of a reactor can be improved
by virtue of these gains,

A stochastic simulation of the basic input variables
to the Core Protection Calculator in the C-E reactor
protection system was carried out,and the results ob-
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tained from the response distribution were com-
pared with conservative estimates of the DNBR un-
certainty. Specifically, it was demonstrated that the
margin to the limit on DNBR was increased by ap-
proximately 10.5¢¢ fora typical set of reactor operat-
ing conditions.

The analyis emphasized uncertaintics in tempera-
ture. pressure and fow. and in CEA position and ex-
core detector readings. Uncertainties in the design
parameters, calculational methods, modeling, and
fabrication were not included. A proper statistical
treatment of these additional aspects should produce
further gains in thermal margin.

Computational cfficiency was improved by in-
corporating concepts of experimental design. In
particular, significant variance reduction of the esti-
mator of the mean was achieved by using LHS, when
it was compared to simple random sampling.

The root-sum-squarc estimate of the variance of a
composite parameter was investigated. For the caleu-
lational range of interest, it was found that it pro-
vided a reasonable approximation to the relative
standard deviation of the output parameter (DNBR).

These methods and procedures are similarly being
applicd to the monitoring svstem COLSS, with
cquivalent margin gains indicated and expected.
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ABSTRACT

The purpose of the Federal prototype oil-shale leasing program is to initiate a carcfully controlied.
environmentally sensitive effort to determine the cconomieal, tzchnical, and environmental feasibility of developing
the billions of barrels of oil locked in the kerogen-rich marlstone of the Green River Formation located in the
northeastern part of Utah and northwestern part of Colorado. These goals depend on the complete and accurate
assessment of related environmental impacts. and the design and evaluation of mitigating technology. A major
problem is the development of a statistically sound monitoring program that will permit carly prediction of

significant impacts.

INTRODUCTION

In 1973, the U.S. Department of the Interior leased
four 5000-acre tracts for commercial oil-shale
development under the Prototype Oil Shale
Program. This program was designed to test the
feasibility of producing shale oil commercially
and to determine the associated environmental
costs and impacts accompanying commercial
operation. To date, operators of the lease tracts
have completed collection of two years of
intensive baseline environmental data covering
both biotic and abiotic parameters. The lessees
have also submitted a detailed development plan
describing procedures for bringing each tract to
commercial production. The cost of this effort
has exceeded $25 miliion. Plans for the Colorado
tracts have been approved but actions on the Utah
tracts are currently in litigation.

Presented herein are some of the problems
encountered in developing effective environ-
mental monitoring and data management pro-

grams. Solution of these problems is critical to
the design of currently developing monitoring
programs to determine the degree of stress and
impact occurring on biotic and abiotic aspects
of the tracts during commercial devclopment.
This problem is complicated by the need to
compare baseline data that were gathered in a
multiplicity of formats in the past with data to
be collected during development monitoring.

ENVIRONMENTAL SETTING
Physiography

Federal oil-shale lease tracts C-a and C-b are in
the Piceance basin of northwestern Colorado:
tracts U-a and U-b are in the adjoining Uinta
basin of eastern Utah (Fig. 1). Both basins are
geologic structural features that have been eroded
into arid upland plateaus, intricately dissected
by intermittent streams. Broad, flat, soil-covered
divides give way sharply, over float and outcrop-
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Fig. 1. Location of prototype oil-shale Jease tracts C-a, C-b, U-a, and U-b.

strewn slopes, 10 narrow alluvium-filled drainage
bottoms that terminate in distinct alluvial fans
along the principal trunk streams. Relief typically
ranges from a few hundred feet to 600 ft.

Both the Uinta and Piceance basins terminate
to the south in cliffs along the Colorado River.
cut by narrew canyons that have incised the
several thousand feet of sedimentary rocks of
the Upper Cretaceous Mesaverde Group and the
Wasatch, Green River, and Uinta formations of
Eocenc age. The Green River and Uinta
formations contain  kerogen-rich  marlstone.’
which is a potential source of billions of barrels
of shale oil. The north limits of the basins are
defined roughly by the White River in Colorado
and the Uinta Mouatains in Utah. The ecastern

edgc of the Piceance basin is marked by the
Grand Hogback, while the western edge of the
Uinta basin. for economic (oil-shale) con-
siderations, is generally delineated by the Green
River. The two basins are separated along
the Colorado-Utah border by the deeply eroded
Douglas Creek arch.

Climate

Climatic conditions of the Piceance and Uinta
basins are semiarid. The influence of the Cascade

[. John B. Weeks, George H. Leavesley, Frank A. Welder, and
George J. Saulnier, Jr. Simudated Effects of Oil-Shale
Development on the Hydrology of Piceance Busin, Colorado, U.S.
Geol. Survey Prof. Paper 908. 1974,




and Sierra Nevada mountains to the west and
the Rocky Mountains to the east creates conditions
characterized by abundant sunshine, hot summers,
cold winters, low relative humidity. light precipi-
tation, and large diurnal temperature variations.
Temperatures range from 40°C in the summer
to —40°C in the winter, with a mean annual
temperature of 7°C. Very strong vertical tempera-
ture differences of more than 46°C have been
observed during winter between the valley bottoms
and the surrounding plateaus, The frost-free scason
varies from 120 days in the basins to about 50 days
in the bordering mountains.! Annual precipitation
ranges [rom less than 12 in. in the basins to as
much as 25 in. above 8000 ft on the surrounding

highlunds.' Snowfall accounts for about 40¢; of

this precipitation, and the remainder is from rainfall
during the summer when intense thunderstorms
trcquent the area. Sixty percent of the days are
either cloud-free or only partly cloudy: winds arc
generally southwesterly and average 7 mph. Air
quality in the basins is generally excellent. and acute
perception of distant objects is commonly limited
only by terrain. Photographic measurement of visual
range has been as much as 100 miles.

GEOLOGY

The Piceance and Uinta basins are broad.
asymmetric, northwest-trending structural basins
filled with deposits of sandstonc. siltstone. and
marlstone laid down mainly in shallow. warm,
alkaline lakes teeming with algal and fish life. The
lakes inundated the contiguous corners of Utah,
Wyoming, and Colorado 70 to 40 million years ago.
The deposits have since been uplifted and gently
folded into broad physiographic basins. Stratigra-
phy within the basins is uniquely uniform. disrupted
generally along the basin margins by widely
separated, near-vertical, northwest-trending graben
faults with as much as 200 [t of throw. The broad
structure is cut by basinwide joint and fracture
systems of little displacement.

A vertical slice through this basin section (Fig. 2)
reveals strata dipping gently toward the basin
centers. On top is a shallow mantle of moderatcly
alkaline alluvium and colluvium generally light-
colored, flaggy, and loamy. This “topsoil” ranges
from a few inches thiek on the drainage divides
to several tens of feet thick in the valley bottoms.
Immediately under the soil mantle are several
hundred to a few thousand feet of massive,
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yellowish-brown to light-gray sandstone and
siltstone of the Uinta Formation. Of principal
interest to the oil-shale industry is the underlying
(1500 {1 or more) kerogen-rich, dark-gray marlstone
of the upper part of the Green River Formation from
which oil can be extracted by heat.

HYDROLOGY

The Piceance and Uinta basins are drained by
creeks tributary to the Colorado River or 1o the
White River. a major tributary to the Colorado
River. Annual discharge from the White River
basin averages 510.000 acre-f1: about 16.000 acre-1
from the Piceance basin and a much lesser amount
from the Uinta basin. Most ol the runoff occurs
in late spring and early summer from meclting
snowpack. Summer thunderstorms can also gencrate
violent. but short-term runoff. Approximately
120,000 acre-ft is used within the basins for irri-
gation; an additional 500 acre-ft is diverted for
domestic usc in nearby communities.

BIOLOGY

The distribution of flora and fauna of both the
Piceance and Uinta basins. which is typical of the
intermountain region, is particularly apparent at
higher clevations on the rims that border the basins
on the south and in the highlands of the Douglas
Creck arch that separates the basins.

Subalpinc and montane lorests are common at
about 8000 {t. At intermediate clevations. mountain
shrub and pinyon-juniper dominate. At lower
elevations in both basins, sagebrush, desert shrub.
greasewood. meadow. and ripuarian specics pre-
dominate. In the higher and wetter portions of
the Piceance basin, predominant sugebrush is
interspersed with pinyon-juniper and mountain
shrub. Desert and salt-desert shrub in the Uinta
basin arc normally interspersed with greasewood
along the drainages.

The Piceance basin is world famous for its large
migratory herd of mule deer. Wild (feral) horses
roam both basins, while domestic livestock pro-
duction is one of the main endeavors of rural
communities.

Many medium-to-small wildlife species. including
birds, utilize the region for migration, nesting, and
winter habitat. Fish are not abundant in the area’s
rivers, but several threatened and;or endangered
species inhabit the Colorado, White, and Green
River drainages.
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DEVELOPMENT

Present plans call for development of the two
Colorado tracts by modified in-situ retorting
processes, and for development of the two Utah
tracts by room-and-pillar mining with above-ground
retorting. At this writing (October 1977), the Utah
leases have been temporarily constrained from
development by the Federal District Court because
of legal questions of land ownership and existence
of conflicting overlying mining claims.

The modified in-situ process involves under-
ground mining and underground retorting to
produce shale oil (Figs. 3and 4). Approximately 20%
of the oil shale within a given retort is directly
mined, and the remainder is converted to rubble in
place to create a bulked-full retort. In this manner
the permeability needed for flow-through of the
injected gases required to maintain combustion and
for removal of the products formed is achieved. The
rate of retorting is controlled by regulating the
volume, pressure, and oxygen content of the injected
air and diluting steam or recycled gases and by
varying the back pressure on the gas outlet shaft.

To initiate combustion, burners are placed on top
of the rubble. Air is either pulled through from the
top by exhaust blowers or fed by the use of air
compressors. When reaction temperature (932°F) is
reached, the burners are turned off. Steam or other
gases are then introduced along with air to maintain
burning at a desired temperature and to contro] the
rate of flame-front advance (Fig. 5).

Product oil and water are condensed on the cooler
unretorted shale at the bottom of the retort chamber
and pumped to the surface. Off-gases are exhausted
through blowers to a scrubber system above ground
where the gas is contacted with a circulating water
stream to remove entrained dust and oil particles.
The scrubbed gas is purified by removing the oil
and water by compression and the sulfur com-
pounds by a Stretford or similar process. Purified gas
is then used to fuel low-Btu/Ib boilers for steam
production and possibly gas turbine electric power
generators.

BASELINE AND DEVELOPMENT
MONITORING

Many of the statistical problems in developing
and operating the production monitoring program
can be anticipated from review of the data gathered
during the baseline monitoring program. The lease
required the lessees to conduct a two-year baseline
program before beginning any construction. While
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the two-year baseline program was intended to
establish *“baseline conditions” in the natural
environment from which significant perturbations
could be measured, it has become evident that
treatment-control designs are necessary to separate
development effects from random natural changes.
This necessity is especially valid for dynamic
parameters such as faunal populations. The premise
during baseline data collection was to ensure
sufficiently complete and accurate parameter evalu-
ation so that valid statistical comparison could be
made with data gathered during development.

Conducting a baseline program where many
disciplines (air quality, meteorology, hydrology,
geology, biology, etc.) must be interrelated proved
to be a major and expensive undertaking.

The environmental stipulations of the oil-shale
lease state: “The lessee shall conduct the monitoring
program to provide a record of changes from
conditions existing prior to development operations,
as established by the collection of baseline data.™
Conditions for approval of the lease-required
detailed development plan also state: “The environ-
mental monitoring plan shall be revised as needed,
based on the analysis of the final baseline
report—submitted for review and approval by the
Mining Supervisor prior to commencement of
commercial development.” The lessees, in con-
junction with the Area Qil Shale Office, are
attemnpting to develop an effective environmental
monitoring program based on interpretation of
baseline data. One approach being used for design
of the development monitoring program is a series of
matrices. This procedure compares individual
engineering actions against specific biotic and abiotic
parameters in consideration of four main criteria;
(1) magnitude, direction, and duration of impact;
(2) importance (ecological, political, and economic)
of the parameter impact; (3) measurability of the
impact; and (4) cost effectiveness of the measure-
ment effort required. Comparisons are ranked from
high to low based on baseline data analyses and
on existing literature and professional judgment.
Table 1 illustrates a representative part of one
matrix.

oo iy e iy __

2. U.S. Bureau of Land Management. Qi Shale Lease, Tract C-
a, Serial No. C-20046, 1975.

3. Peter A. Rutledge. Area Oil Shale Supervisor, written
communication, August 1977 and September {977,
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Fig. 5. Schematic diagram of a rodified in-situ retort and related air and production mine levels. Source: Ashland Colorado, Inc.,and
Occidential Oil Shale. Inc.. Mining Plan for Ancillarv Developmeni, Ralph M. Parsons Co.. Parsons-Jurden Division, June 1977.

Table 1. A representative part of the commercial stage “‘cause-effect” matrix performed
for the Rio Blanco Qil Shale Project for oil-shale development on tract C-a

Construction®

Affected factor: vepetation Sust Unde P & Comnv i | G Iativ
Mine °onacte Lncergroun uppo onveyer Impoundments Roads Cempressors 1sposa umulative

retorts retorts facilities  belts pile  construction
Productivity 12 212 i1 1/2 172 172 172 172 3/3 5/3
Range condition 172 1/2 1/t 1/2 1/2 1/2 1/2 1/2 2/3 2/3
Community composition 1/2 2/2 /1 172 1/2 1/2 1/2 1/2 3/3 373
Distribution 1/2 2/2 11 172 12 172 172 1/2 3/3 3/4
Trace metal content 1/1 1/1 1/1 1/2 172 1/1 1/1 1/1 1/1 1/1
Cover density 1/2 22 T 21 12 172 1/2 1/2 3/3 4/5
Browse condition 1/2 272 1/1 1/2 1/2 172 1/2 1/2 3/3 3/3

IConstruction rankings were defined as follows:

Importance Severity and magnitude
1. None, not applicable 1. None, not applicable
2. Slightly important 2, Slightly severe. small
3. Moderately important 3. Moderately severe, medium
4. Very important 4. Very severe, large
5. Extremely important 5. Extremely severe, quite large

Source: Gulf Oil Corporation and Standard Oil Company, Rio Blanco Oil Shale Project — Revised Detailed Development Plan for
Tracr C-a, vol. 3, May 1977.




SUMMARY OUTLINE

The above approach resulted in the identifi-
cation of some specific parameters having statistical
problems which are outlined below:

1. Biotic
A. Flora
1. Vegetation type distribution
a. Methology Color infrared; photos re-
peated annually.
b. Buscline data and analysis - To precede

deveclopment.
¢. Statistical tests None proposed to
date.

d. Problems - Should changes be mca-

sured by visual comparison  of
photos:  what constitutes a  signi-
ficant  change: and  what  statis-

tical methods are applicable?

e. Possible

c. Suatistical tests  H.:
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solutions- Not yet de-
veloped.

2. Range productivity and utilization
a. Methodology--Tract C-a will use dou-

ble-sampling mcthod (estimate
and clipped plots) on (en
plots on ten transects on three vege-
tation types annually. Plot is 9.6 ft°:
two of each ten plots arc caged from
April to September. Plant types are
scparated by species and weighed:
correction factors are applied to the
green weight estimates.,

b. Bascline data and analysis- -C-a basc-

linc data for forage production. which
combined all herbage weights for cach
vegetation type, are shown in Table 2.
no significant
difference in vegetative productivity for

Table 2. Standing-crop estimates for major shrub species in each of the intensive study plots. 19767

Plot number

Shrub species

1 2 3 4 5 6
Amelanchier sp.
April 1M1: 24 73: 41 9 101 « 22 118+ 25
September 12t 34 80+ 23 44+ 13 110 2 31 128 + 36
Artemisia tridentato
Anil 1541 » 352 214+ 49 2026 = 375 9015 + 1871 S4: 10 419: 77
September 1653 + 325 229=x 45 2429 = 749 15926 = 3559 65:20 502+ 155
Ceratoides lanata
April 34« 5
Scptember 33+ 6
Cercocarpus montanus
April 211+ 59 49+ 14 BS + 24
September 186+ 53 56+ 12 96 2 21
Chrysothamnus nauseosus
April 116+ 20 287+ 51 s 2 4= 43
September 186 + 40 462+ 98 17+ 4 46: 10 72 69: 15
Juniperus osteosperma
April 25 3 90« 12 4: 1 9. 1 2.
September 19 3 67+ 11 3¢ 1 6= 1 17 3
Pinus edulis
April 46+ 9 702 14 12+ 3 0=+ 8 W 4
Scptember 54: 9 B4: 14 + 3 4712 8 4. 4
Purshia tridentara
April 288+ 68 8+ 21 1+ 0.2 33: 8 2: 05
September 430 88 132+ 27 2+ 03 50« §0 3+
Total
April 2338 : 535 871+ 177 2094 = 390 9079 = i881 326+ 74 624:117
September 2702+ 552 1110+ 230 2508 + 770 16007 = 3575 38193 743 : 214

“Plus and minus values are equal to the standard error of the mean. Values in kilograms per hectare; 1 hectare = 2.471 acres.
Source: Ashland Oil, Inc., and Occidental Oil Shale. Inc.. Oil Shale Tract C-b-Environmental Baseline Program Final Report

(November 1974 through October 1976), vol. 4, 1976.



Source: Gulf Oil Corporation and Standard Oil Company.

4. Partially available; little or no hedging.

Tract Ca, vol. 2. May 1977,
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forage usc within a vegetation type b. Baseline data and analysis  Examples
before or during initial development. of data summaries from the C-a basc-
Analysis by analysis of variance (AOQV). line are shown in Table 3.
Accuracy to be such that sumple means c. Statistical tests— Ho: no  significant
will be within £25¢; of population mean difference in browse utilization within
90¢¢ of the ume, a given vegetation type before or
d. Problems-- During initial development during development. Analysis pro-
significant differences in forage use posed is an AOV. Accuracy sought is
cannot be determined becausc of the £25% of the mean 90% of the time.
many unknown or uncontrollable vari- d. Problems  Determining statistical
ables atfecting animal use of the various tests mest useful for comparing effect
habitats. of a disturbance on {orm and age-class
¢. Possible solutions-- Design the anal- pereentage.
vsis to determine adequate sample size e. Possible solutions - Generally same as
and presence of significantly different for productivity. Browse condition
strata among plant production areas. classes may be compared by chi
.. R square.
3. Browse condition and utilization 4
a. Methodology - Browse condition and
utilization are estimated by the Cole
Method™ on randomly selected transects
consisting of 25 individual shrubs. Tran-
sects are established in cach vegetation 4. G. P.Colc. Runge Survey Guide, U.S. National Park Service,
type. Washington. D.C.. 1963.
Table 3. Condition of seven principal browse species sampled in-two predominant vegetation types
during April 1976 for the Rio Blanco Qil Shale Project”
- Vegetation No.of - Average  Average Form class percentagesb Age class
Species Ty plants  percent percent
YP€  ampled utilized available ! 2 3 4 5 6 7 Scedling Young Mature Decadent
Service- MB 643 1.1 954 76 11 2 11 1 ND ND ND 1 95 4
berry PJ 202 69.1 99.8 15 31 48 I ND 04 ND ND 6 88 6
Saye- MB 352 4.9 100 100 ND ND ND ND ND ND (.2 4 92 2
brush 12 328 7.2 100 93 7 ND ND ND ND ND 0.3 12 69 18
Pinyon MB 17 6.8 94 88 ND ND il ND ND ND ND 23 76 ND
pine PJ 259 12.4 678 42 6 I 37 8 3 ND 4 20 72 2
Rabbit MB 22 9.3 100 95 3 ND ND ND ND ND ND ND 100 ND
brush 12 94 6.2 100 97 3 ND ND ND ND ND ND 8 83 8
Bitter MB 45 +0.9 100 22 44 24 9 ND ND ND ND ND 100 ND
brush PJ 153 73.8 100 3 40 56 D ND ND ND ND 0.6 93 6
Mountain MB S8 47.1 99.4 38 34 24 33 ND ND ND 7 90 2
mahogany PJ 62 52.4 93.3 13 48 31 5 3 ND ND ND ND 98 2
Juniper MB ND ND ND ND ND ND ND ND ND ND ND ND ND ND
PJ 225 6.0 496 29 09 ND 65 2 ND 2 1 12 77 10
“MB. Mixed brush: PJ, Pinvon-juniper; ND. no data.
biorm classes: 1. All available: little or no hedging. 5. Partially available: moderately hedged.
2. All available: moderately hedged. 6. Partially available: severely hedged.
3. All available: severely hedged. 7. Unavailable.

Rio Blanco Qil Shale Project - Revised Detatled Development Plan for
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4, Revegetation of disposal sites—Her- c. Suatistical tests—Ho: no “change in
baceous standing crop standing crop among years atany given
a. Methodology—Double-sampling meth- site; no difference in standing crop in

od of Wilm, Costello, and'Klippie® will given year between sites; and no
be used on each site to estimate and difference in standing crop among
correct standing crop production on years between sites. To determine
fifty 1-m™ plots (one of each ten plots significance of changes in standing
is randomly selected - for clipping, crop among years, sites, and year-site
drying. and weighing). Results will be interactions, AQOV will be used.
given in kilograms per hectare (0.89256 d. Problems—-Enough sites need to be
Ik ’acre). selected on various macrosites to
b. Baseline data and analysis—Lessees determine effects of slope, aspect.
have ten years to demonstrate their elevation, etc. No follow-up testing
capability of restoring disturbed sites procedures are proposed if the null
to “like conditions” as determined hypotheses are rejected.
during the baseline period. Current
studies provide an example of field plot 5. H. G. Wilm. David F. Costello, and G. E. Klipple. “Fsti-
design (Fig. 6) and parameter method- mating  Forage Yield by the Double-Sampling Method.
ology (Table 4). A Soc. Agron. J. 36: 194 203 (1944).

l<" 99 meters = -"-l

53!719'(‘!5 —_——'4
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P9 melers
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AREA = 0.283 HECTARE
PROCESSED SHALE NO PROCESSED SHALE

—————S3melers

TOTAL AREA = 0.975 HECTARE
i

Fig. 6. Generalized layout for revegetation plot (Rs) on oii shale tract C-a, Rio Blanco County, Colorado (initiated in 1976).
Applications of three muleh treatments (Th. Ta Ts) were applied th two conditions for a total of six treatments. These tcatmuents were
replicated six times. Source: Gulf Oil Corporation and Standard Oil Company, Rio Blanco O:I Shale Project—- Revised Detailed
Development Plan for Tract C-a, vol. 2, May 1977.
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Tablz 4. Plant response parameters measured in revegetation experiments on oil-shale tract C-a,
Rio Blanco County, Colorado, 1976-1977

Parameter

Time of measureinent

Taxa involved

Number of emerged seedlings

per plot

Number of surviving seedlings

Above-ground biomass (dry weight)

Percent cover

season)

End of first growing season

End of third growing season

End of each growing season

First spring following fall planting
(i.e., beginning of first growing

Each planted species

Each planted species

Total seeded species, total alien
species, and individual seeded
species contributing bulk of
biomass

Each species

Source: Gulf Oil Corporation and Standard Oil Company, Rio Blanco Oil Shale Project —~ Revised Detailed Development
Plan for Tract C-a, vol. 2, May 1977.

€.

Possible solutions—Show complete
AOQV design with all components of
variance delineated. Set testing level to
at least £25% of the mean at the 0.10
alpha level. Stratify sampling sites into
similar physiographic units.

B. Fauna
1. Mule deer density

a.

Methodology-—Pellet-group counts for
deer onC-a will be made semi-annually
on 25 plots (100 ft*) in at least 60
randomly selected quarter-section sam-
pling units for each of four blocks
(9 sq miles). Sampling for spring and
fall deer use will be done for five
consecutive years.

. Baseline data and analysis—Pellet-

group data for the C-a tract and vicin-
ity disclosed large differences in use
between the summer and winter pe-
riods and also large standard errors
(Table 5).

. Statistical tests—Ho: mule deer density

estimates for the C-a study area are not
significantly different from the sur-
rounding area (DOW game manage-
ment unit 22) on a per-unit basis. Ho:
mule deer numbers and distribution
within the C-a study area are not
significantly different before or during
oil-shale development activities. Analy-
sis will be an AOV, using initial studies
to establish the sample size required to
provide mule deer density estimates

from pellet-group data to within 10%
of the mean 909 of the time.

. Problems—The baseline data analysis

showed a wide variation in pellet
groups found on different study units.
Pellet groups are not randomly dis-
tributed over space, which complicates
testing procedures.

. Possible solutions—If AOV does not

prove suitable because of nonrandom
distribution of pellet groups, some type
of nonparametric analysis may be
usable to detect differences due to
development.

. Feral horse abundance
a.

Methodology—Feral horses on and
within 3 miles of the tract boundary
are counted annually from flights along
designated transects, Aerial census data
are supplemented by opportunistic
ground observations.

. Baseline data and analysis—Data col-

lected from aerial surveys disclosed a
wide variability in numbers of horses
observed among flight dates and
between adults and juveniles. During
late fall and winter, separation into
distinct age classes was difficult
(Table 6).

. Statistical tests—None proposed.
. Problems—Counts vary widely among

transects and between sampling dates.
No valid statistical procedures are
apparent.
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. Table 5. Mule deer pellet groups accumulated over winter and summer,
from 1974 through 1975, on transects located on tract Ca
for the Rio Blanco Qil Shale Project

Transect Pellet groups Pellet groups Period of Pellet-group
accumulation . a
number recorded per acre (days) index
' Winter
1 4 69.7 209 0.33
5 2439 211 1.16
6 11 191.7 208 0.92
7 122 209 0.58
Summer
1 0 0 125 0
2 4 69.7 123 0.57
3 2 34.8 125 0.28
4 1 174 125 0.4
5 0 0 125 0
6 0 0 125 0
7 0 0 125 0
8 3 52.3 123 043
9 1 174 127 0.14
10 6 104.5 125 0.81
11 5 87.1 125 0.70
12 2 348 128 0.27
13 0 0 129 0

%Pellet-group index equals the pellet groups/acre divided by the period of accumulation.

Winter Summer
x (mean) =9.0. x = 1.85.
n (number of units) =4. n=13
SD (standard deviation) = 4.40. SP =2.08.
Sx (standard deviation of mean) = 2.2. Sx =0.58.
90% confidence interval = 9 ¥ (2.353 X 2.2) 90% confidence interval = 1.85 = (1.782 X
975852, 0.58)=1.85 7 1.03.

Source: Gulf Oil Corporation and Standard Qil Company, Rio Blanco Oil Shale Project —
Terrestrial Ecology Baseline Studies, Annual Report for Tract C-a, March 1976.

Table 6. Number of feral horses observed during six aerial
surveys conducted for Rio Blanco Qil Shale Project
from November 1974 through August 1975

Number observed

Date
Total Adult Juvenile Unidentified
Nov. 8, 1974 108 24 15 69
Dec. 30, 1974 86 8 2 76
March 4, 1975 41 16 4 21
April 14, 1975 74 69 5 0
June 26, 1975 93 69 24 0
Aug. 18, 1975 63 55 8 0

Source: Gulf Oil Corporation and Standard Oil Company. Rio Blanco Oil
Shale Project — Terrestrial Ecology Baseline Studies, Annual Report for Tract
C-a, March 1976.
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C.

38

d,

. Statistical tests

Potential solutions  Nonce apparent.

maull mammal abundance

Mcthodology  Live wapping on C-a
will be done with baited Shermun
traps. set out in five trap groups
consisting of two lines of ten traps per
sampling arca. Approximately ten pit-
traps  will be established in  cach
mammal sampling area. An index of
abundance will be calculated from
nambers of small mammals trapped
per 100 wap days.

Baseline data and analysis  Shannon-
Weiner Diversity  Indices (H”)
shown in Table 7 for seven vegetation
types on Tract C-a for nine sam-
pling periods (October 1974 through
September 1976).

are

Ho: small mammal
population levels are not significantly
changed by habitat modification or
revegetation. Analysis of variance will
be determined on an index of abun-
dance.  Regression analysis is  also
under consideration.

Problems The index of abundance
may  be valid only for those most
abundant species. Small mammal popu-
lations are very dynamic and within
treatment varianee may be very large.

For small mammal studies, itis ditticult
1o determine reasonable precision and
accuracy and how much replication in
time and space is adequate,

4. Breeding-songbird densities

|~

d.

(o2

d.

Mecthodology  The study area will be
mupped and dnided into 2.47-acre
subunits. Study units will be replicated
in control and treated areas.

Baseline data and analysis  No data
were collected on breeding-bird activity
durning the two-year baseline monitor-
ing because the Emlen Strip census
technigue was used.

. Statistical  tests  Ho breeding-song-
bird densities are not significantly

changed by habitat modification re-
vegetation. An AOV will be used to
compare control and treated arcas.
Terrtory size and reproductive effort
of breeding birds will be
qualitatively.

Problems  Sampling intensity must be
determined tor the number of subunits
and replicates before the final design
can be done.

Potential solutions  Possibly an accu-
racy and precision of £25¢¢ of the mean
D0 of the time will be a reasonable
and achievable objective. Possibly the

assessed

Table 7. Shannon-Weiner diversity indices (H') for all small mammal
grids during nine sampling periods. from October 1974 through September 1976,
for the Rio Blanco Oil Shale Project

Sampling period

V°i";']‘)‘e“°" 1974 1975 1976
Oct. Dec. May July Sept. Dec. May July  Sept.
Bottomland meadow 0.349  0.803 0.908 1.500 0.000 0.000 0.000 0.892 114
Upland sagebrush .687  0.000 0967 1.047 0.718 0.693 0401 1.185 0.986
Rabbitbrush 0.745 0440 0.894 0.619 0455 0000 0.625 0.678 0.692
Pinyon-juniper 0.980 0.000 1.001 1038 0971 0.000 0860 1.141 0.871
mixed brush
Mixed brush 0.665  0.693  0.642  0.683 0.655 0.000 0.540 0.942 0.469
Pinyon-juniper 0.673  0.000 0.935 1.133 0.295 0451 0.730 1.189 1.143
sypebrush
Bald 0.349  0.000 0.500 0.520 0.000 0.000 0.000 0510 0.826

Source: Gulf Oil Corporation and
Final Environmental Baseline Report for Tract C-a and Vicinity, vol. 2, May 1977.

Standard Oil Company,

Rio Blanco Oil Shale Project —



chi-square test can be used tor com-
parison of territory size and repro-

Qil-Shale Development 101

disclosed o considerable  ditference
among samphng stations and sampling

ductive dy namics. periods i both fish numbers and
species (Table 8).
5. Fish populations ¢ Statistical  tests Ho no ditlerence
a. Methodology  Estimates will be made occurs between tish populations during
ol fish population size. length, weight, the buscline period and during de-
age. condition. and reproductive con- velopment owing to mine operations.,
ditton. Capture will be by clectro- Fests proposed are chi-sgquare. AOV,
fishing on selected stations on Piceance and correlation. Specitic details have
Crecek. not been provided.
b. Baseline data and analysis  Data col- d. Prablems  Detailed statistical testing
lected on fish in the vieinity of tract C-b procedures are still to be designed.
Table 8. Numbers and species of fish captured, marked, and recaptured at Piceance basin stations
from September 1974 through fuly 19757
Rainbow Mountain Flannelmouth Speckled
Brook trout Brown trout Lotals
Station trout sucker sucker dace o L
C M R C M R C M K C M R C M R C M R C M R
September 1974
Pl ND ND ND ND ND ND ND ND ND 103 39 ND ND ND ND 2§ 27 ND 31 86 °ND
p-2 ND ND ND ND ND ND ND ND ND 24 19 ND ND ND ND ND ND NL 24 19 ND
p-3 ND ND ND ND ND ND ND ND ND 3 4 ND ND ND ND ND ND ND 4 4 ND
P-3 ND ND ND ND ND ND ND ND ND I ND ND ND ND ND ND ND ND 1 ND ND
p-5 ND ND ND 1 ! ND ND ND ND 3 3 ND ND ND ND ND ND ND 4 4 ND
P-6 ND ND ND ND ND ND ND ND ND 18 {6 ND ND ND ND 6 5 ND 24 21 XND
pP-7 ND Nb ND ND ND ND ND ND ND 2 2 ND ND ND ND 8§ 8§ ND 1o 10 ND
W-3 1 I ND ND ND ND ND ND ND 1 1 ND ND ND ND 1 1 ND 3 3 ND
LS.L. 78 534 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 78 54 ND
Totals 79 55 ND 1 1 ND ND ND ND 56 104 ND ND ND ND 43 41 ND 279 201 NDB
November 1974
Totals 18 17 1 ND ND ND 1 1 ND 114 111 3 1 1 ND 9 4 ND 143 134 4
January 1975
Totals 79 ND ND | ND ND ND ND ND 8% ND ND ND ND ND 17 ND ND 1i86 ND ND
March 1975
Totals 88 3 3 1 1 ND ND ND ND 36 6 ND 6 6 ND 17 ND ND 148 16 3
May 1975
Totals 19 120 ND ND ND ND ND ND [ 1 ND ND ND ND 5 ND ND 30 113 ND
July 1975
Totals 23 19 2 1 1 ND ND ND ND 75 8§ 1 ND ND ND 52 ND ND 15t 28 3
Grand 306 106 6 4 3 ND 1 i ND 476 230 4 7 7 ND 143 45 ND 937 392 10
totals

aC, captured; M. marked; R. recaptured; ND, no data.

Source: Ashland Qil, lnc., and Shell Oil Company, Oil Shale Tract C-b — Detailed Development Plan and Related Materials, vol. 2,
February 1976.
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Establishing a reusonable accuracy;
precision level for fish sampling in
small streams is desirable.

. Potential solutions-- A detailed statis-
tical design is required before develop-
ment monitoring is implemented.

6. Benthos and periphyton dynamics

a.

Methodology-- The Surber sampler
will be used to sample benthos. Specics
diversity and abundance will be com-
pared for long-term fluctuations and
seasonal changes. Periphyton will be
collected from artificial substrates to
determine productivity and species
diversity.

. Bascline data and analysis—Diversity
indices for benthic invertebrate species
in Piceance Creek iust north of tract
C-b are given in Table 9.

. Statistical tests—-Hu: no change in
benthos and;or periphyton commu-
nities will occur as the result of de-
velopment, Statistical tests proposed
by the lessees include analysis of
productivity during mounitoring vs
baseline by analysis of variance or co-
variance, by correlation, by diversity
indices, and by some unspecified non-
parametric tests.

. Problems—A study of the baseline

data disclosed the need for good qual-

I1. Abiotic

A.

Air

1. Gaseous

iy assurance programs in using aquatic
sampling instruments and procedures.
All statistical tests must be carefully
and fully detailed prior to collection of
data.

. Possible solutions— Suggestions are

solicited for achieving a reasonable
monitoring program.

constituents (sulfur dioxide.

oxides of nitrogen, nitric oxide, hydrogen
sulfide, and carbon monoxide)

a.

Methodology— Monitoring is done con-
tinually with automated instruments.
both intermittent samplers and con-
tinuous analyzers, in environmentally
controlled shelters.

. Baseline data and analysis—Typical

average monthly and ambient air
constituent concentrations of gases and
particulates were monitored during the
two-year baseline period (Table 10).

. Statistical tests’—The more commonly

used statistics are those which describe

6. Charles E. Zimmer, “Air Quality Data Handling and
Analysis,” pp. 453-84 in Air Pollution, Arthur C. Stern. ed.,
Academic Press, New York, 1976.

Table 9. Benthic invertebrate species diversity indices for Piceance Creek
from September 1974 through November 1975

Month Station

P-1 p-2 P-3 p-4¢ P-5 P-5A P-6 P-7

1974
September 1.66 2.08 2.59 2.75 3.26 1.44 1.00
October 1.49 1.59 2.05 1.36 2.40 159 1.19
November 2.21 1.40 247 2.46 2.20 1.29 0.44 1.42
December 0.67 1.47 2.37 2.12 1.16 2.02 1.84

1975
January 1.76 1.82 1.58 2.35 1.06 1.27 1.76
March 1.75 1.77 1.65 2.24 2.08 1.16 1.49
May 1.62 1.99 2.00 1.65 2.80 1.44 0.97
Tuly 1.74 1.76 2.01 1.84 1.61 1.82 0.86
September 2.31 2.40 1.96 2.18 1.55 1.33 1.52
November 1.55 1.10 2.86 2.65 0.84 0.70 0.35

%Station P-4 was relocated to P-SA in November 1974,
Source: Ashland Oil, Inc., and Occidental Oil Shale, Inc., Gil Shale Tract C-b — Environ-
mental Baseline Program Final Report (November 1974 through October 1976), vol. 4, 1976.
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Table 10. Monthly and annual average ambient air constituent concentrations
of gases and particulates

pp/m® = 6,244 x 107! /63

1974-1975
Trattor tom ey Annsai
[ e - et trar fior tay Surd iy ) ept [y
020 | . N 19 07 34 "G4 03 [ 178 ¥ cq 91f e12 3 N
023 | ROL-g/m™ m 28 147 04 12 o6 o1 03 06 14l os o3f
020 [ b fuaimd 28 68 4s 25 12 27 41 =03 17 47| <10 NI EER
023 2 (=3/m) 24 "®7 74 02 *04 09 0s 00 15 1o} 01 o7 1
020 1 5 1 o3, 80 23 533 1053 830 71 7ns 891 746 cxe| a1 28] -
023 | O3 4 20 a4 858 856 905 873 22 &1 eto] x4 a3} e
020 734 974 757 234 26 12762 389 528 258 19| ses ~tal -
023 | MNonMethemeHC bamd b i Loaisgtn | veeret] 323 171 491 a33 K64 (2202 1ase| 922 | mmal -
020 fi (o p3 £76 1 s186 | -enn 6794 £i98 sscel2i| e336 8212 {6259 9. 8] 9an3 | oa3eel s
023 lem) e5 s icex st sagz ¢t} ~a337 g9 8 833 | 8M3 El47 | Tae? orz7| 9338 | a4y
020 { 5 uumd 5538 6769 93z | 120820 14986t | sgs3 ot |1s1s o2 1092 18 J2ce s it s ts 3 | ssbaef i s
023 “m 3703601 § 2439 341 | 1786 28] 301 4 5045 4858 99 570 4655 SIS I AART [ R
020 o 18 [ 0l 11 01 [ 10 16 oe| o7 14 '
021 13 17 oe o8 06 12 11 21 13 19f 17 18| 1
022 § 503 (eg/m3) 26 3] 0 02 0 o 05 17 04 osf 0 06 d
623 0 64 33 a1 06 a5 o oo 06 2o} o9 ez2f -
024 02 17 13 55 09 3} 07 06 01 osf 07 2|
020 0 [ [ [ [ T] [ [ 02 [ 0 01 [ B
021 16 [ 02 08 04 02 04 07 02 o4) 07 08 .
022 | HpS Lag/m®) 02 12 0 02 03 07 0 04 02 cx| o4 0z .
023 0 52 25 07 27 05 03 48 24| 21 0 v
02¢ 0 01 [ 02 04 1o 03 tl ot o1f o 10 s
020 *367(3) 43 33 38 65 e 124 107 142 128 12y
021 “204 54 40 45 69 137 132 123 156 12a 124 n
022 | Parucubite {wg/m3) *353 42 29 32 53 e 112 95 146 128 97{ 1
028 *180 *68 28 42 ns 154 19.3 183 144 11 K51 I
024 1170 29 23 38 49 102 14 87 s 98 124
1975-1976
naatlee Item T
oy, el Jan, fen, Mar, Apr, Mav June Suiy L sept. fant. Wil e
am W ( armd 2.6 3.2 12.5 5.7 (&) &) 13) 3) | a0 i3] 3500 R et
0l Laim) RS 0.0" 3] 2.0 ‘ L5 2.2 vz Jae |3e s 1
nin ) 8.5 2.2 4.8 21 [¢)] (3) ) (3) 3 )} 7.4 (] s
53 < .8 2.6 m 3) .1 0.3 1.3 1.8 .2 1.6 2.2 5.4 1.3
wa Lo e’y 30.9 2.7 35,7 50,7 [sa.2 6.5 72.7 6.3 9.8 3.4 5.0 52t
nis 3 30.2 38.2 371 4.1 fas2 £8.0 78.4 728 81.5 58 5 V7.4 56 %
“on Methane H.C. %o Data 6.4 20.5 3} [&)] £31) Ml 7.6 6.5 2 (S
tug/n) 63,8 [ 153 1.0 | 87 s 818.3 [1104.6 |t 3) 1532 § 571
o u/ad) No Data | 5705 | seas m 3 3] s | sae o 0 | 62Y
920.6 2036 $52.5  J1n96.6  1nae.e  f2007.2 948.0 974.5 o1l.l | .«
ace 0 Logred) ko [ata 13) § 2085, (3} (3} (3}]1294.8 5628 215 o 526.4
w3 1847.3 (3) [1757.3% |ner.8 {12718 ©52.0 (31{182i.¢ (&3] 3 & [
0 .0 .0 .0 .0 .0 .0 1.1 1.1 K .9 -
02l ‘ s 9 .a 1.7 2 .6 8 1.3 3 (3) R 13 .-
ar} N0, {up/e”) B 1.4 Lol 17, )4 1.0 0.5 .0 .7 R .2 .8
s 2 0 2 11 A et g 0.6 3 1 al o .u
aly 1. .8 2 .1 .2 .3 0.8 1. K] 62 [$] 12
n .1 .0 .0 .0 .3 3 .0 .0 .0 K .0
w3y ) 8 0 2 02 wol 6 8 0 N
vl LN ] .0 2 .0 .0 ° .8 2 B [#3] 2% 8
ni - A .9 13 .9 4 3 6 7. -1 - "
uld .0 .1 . .0 0 .0 .0 .0 1 7 .5 N
. 5.0 2.8 1.2 3.2 7.5 1.7 19.5 1.8 bR s | oy .
. 3 a3 L7 3.4 2.7 6.9 10.0 10.3 1. e 1.2 |92 bk
Particulate (ug/e’) 4.6 2.8 3.3 2.6 .7 12.5 2.6 10.5 [ i1e 8.4 |18 -
3.9 2.3 2.8 2.4 5.8 5.8 8.9 n.e s sy | 12 -
5.3 2.5 33 30 7.8 1.4 10.2 13.2 |1ea [T N N

1Reportev:l data are incorrect becausc of contaminated manifold.

2Reported data may be incorrect because of possible malfunctioning instrument.

3Few or no data collected because of instrument malfunction.

4Side-by-sidc monitoring of H,S in trailer 023 and of SO, in trailer 021 was initiated as a data reliability check for three
months beginning January 1, 1976. Therefore, no SOz analyzer at 021 are reported in the row for 023 for January,
February, and March. Data from the second H,S analyzer at 023 are reported in the row for 021 for January, February, and

March.
*50% or less data,
** 0 indicates below limits of detectability of the instruments.
Source: Ashland Oil, Inc., and Occidental Qil Shale, Inc., Oil Shale Tract C-b—Environmental Baseline Program Final

Report (November 1974 through October 1976}, vol. 3, 1976.
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location and those which describe
dispersion. Statistics which identily a
point ol cluster are arithmetic mean.
median, and geometric mean. o in-
dicate the extent of data variance about
the mean, the stundard deviation and

standard  geometric  deviation  are
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¢. Stausucal tests
d. Problems

Nane given.

Will enough information
be taken to (1) assure compliance with
regulator standards: (2) cevaluate the
cffectiveness of fugitive dust control
measures; (3) determinc traffic patterns
to minimize airborne particulates: and

used. (4) aid in evaluating the effect of dust

d. Problems  How to distinguish the deposition on tract vegetation and on
pollution sources, which may be a water surfaces?
point source (stack). line source (a linc ¢. Possible solutions  Idenufy develop-
of traftic). and an arca source (distant- ment-related perturbation from natu-
source pollution from arca cities or ral occurrences by positioning high-
local source [rom shale storage piles). volume samplers at points of maxi-
How to determine. from the air quality mum concentrations: other samples
data. whether baseline and monitoring upwind of development could provide
levels differ. How to assess natural control. Possible null hypotheses that
changes when comparing bascline duta could be tested are like those for the
1o development data. gascous constituents,

¢. Possible solutions  Locating air-qual-

ity stations in arcas ol (1) most likely
pollution and (2) least likely pollution.
Emission data should also be wken at
the stacks, and all of the data should be
compared with the baseline  data.
Specific procedures must be estab-
lished for handling and analyses of daw
to provide information in required
format and at the appropriate time.
These procedures showld include all
aspects ol data recordings. validating.
storage and retrieval, presentation, and
statistical  methods  of  analysis, A
possible null hypothesis that could be
tested  would  be Ha there as no
significant difference between the con-
centrations  of  gascous  constituents
during the bascline period and during
the development period. 1t the fivst null
hypothesis s proven [alse. o second
null hypothesis that could be tested

B. Hydrology
I. Surface water
a.

Mecthodology  Standard  techniques.
including conercte controls at most
stations to ensure a stable rating curve.
Sceps und springs arc also measured.
because hydrologic studies and analysis
of the two-ycur bascline data indicate
that some of the springs and seeps are
hydrelogically connected 10 the upper
oil-shale aquifer.  Perturbutions  to
springs and sceps will be detected by
analysis of ow and water-quality data.
Some  water-quality  information s
collected at springs and seeps quarterly
or semi-annually. Continuous data arc
collected at most of the stream-gaging
stations on several parameters. in-
cluding flow, temperature, conduc-
tivity, sediment, dissolved oxvgen, and
pH.

. Lo . b. Basclinc data and analysis  Tables 1]
would be Hi: all of the increase in . Lo
. ; and 12 give typical data collecied
gascous constituents during comymer- . y . .
. . . during the two-year baseline period.
cial developmenmt s duce o stack e o .
c. Statistical tests- The nature of the

Cmissions.

2. Paruculates

.

Methodalogy A high-volume sam-
pler at cach of three air-quality-
monitoring sites collects samples 20 fi
above ground clevation near planned
site development activities.

data will determine statistical methods
to be used for data analyses. The
following hypothesis will be tested on
the chemical and physical parameters:
H.: there is no significant difference in

7. Ralph L Larson. A Marhematical Model for Relating Air
Quality Measurements 16 Air Quality Standards, U.S. Govt.
Printing Office. Washington, D.C., 1971,

b. Bascline data and analysis - Table 10

gives the two-ycar monitoring data.
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-
Table 11. Summary of the mineralogy of seven samples from the streambed at the
Evacuation Creek gaging sites
Percent composition
Mineral Standard . L
Mecan - Maximum Minimum
deviation
Quartz 33 8 44 21
Potassium feldspar 6 1 8 4
Plagioclase feldspar 7 2 8 4
Calcite 14 3 18 11
Dolomite 17 5 27 12
Clay minerals 14 2 15 10
Analcime 2 3 3 1
Source: Phillips Petrolenm Co.. Sunoco Energy Development Co., and Sohio Petroleum Co.,
First Year Environmental Baseline Report for Tracts U-a and U-b. Utalt- White River Shale
Project, VTN Colorado, Inc., vol. L. May 1976.
Table 12. Results of regression analyses from Evacuation Creek water-quality
data collected during the two-year bascline period
Accuracy
Variable? epression line y T :
ariable Regression line No. of Correlation Standard error /
Independent Dependent Intercept Slope pairs coefficient of estimate :
Specific Dissolved solids 98 0.83 74 .85 3710
conductance
Dissolved solids Calcium 48 0.03 73 0.68 210
Dissolved solids Magnesium 6 0.04 75 0.91 13.0
Dissolved solids Sodium ~33 0.20 75 .97 36.0
Dissolved solids Chloride -2 0.013 <73 0.70 5.1
Dissolved solids Sulfate 1964 0.030 73 0.05 563.0
Dissolved solids Copper 29 —0.0001 44 0.01 93.0
Dissolved solids Iron 118 -0.021 44 0.19 42.0
Dissolved solids Molybdenum 9 0.007 45 (.25 12.0
Dissolved solids Selenium 4 0.0003 43 0.008 3.7
9Specific conductance in pmhosfcm: | pmhofem = 2.54 X 107'? mhosfin. All other variables in mg/liter; 1

myg/liter = 8.343 x 107 Ib/gal.
Source: Phillips Petroleum Co.. Sunoco Energy Development Co., and Sohio Petroleum Co.. first Year Environ-
mental Baseline Report for Tracts U-a and U-b, Utah — White River Shale Project, VTN Colorado. Inc., vol. 1. May

1976.

the chemical composition or physical
parameters of the surface waters
studied during bascline and develop-
ment periods at each monitoring
station.

Problems—(1) How to obtain, from
the observed two-year bascline hydro-
logic data and sparsely available long-
term data, a truc picturc of the
hydrologic regime f{or determining

cffects during oil-shale development:
(2) how many data-collection points
must be operated during development
to obtain a statistically valid picture of
impacts on surface waters; (3) how to
accurately gape and cvaluate the
required surface-flow augmentation to
protect existing water rights; (4) how to
evaluate the efficacy of mitigating
mcasures, if required. 1o protect the
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cenvironment: and {5) how to determine madc quarterly or semiannually. Re-
when modified  in-situ retorts have cording flow mecters will be used in the
rcached a state of stability so as to dewatering wells to deterrine dewater-
release the lessee from further environ- ing rates. Water-quality monitoring
mental lability. will concentrate on dewatering well
¢. Possible solutions A sound statisti- discharges.
catly based network design should be . Baseline data and analvsis  Table 13
established to show how the surface- gives typical ground-water quality data
water flow and quality will be affected collected during the two-vear bascline
by the modified in-situ development. testing. Modeling techniques also simu-
Monitoring surfacc-water flows down lated ground-water flow.
established channels will be relatively . Statistical tests - The major ions found
casy: complications arise because the during basclinc studics were plotted on
ground-water surface-water  systems trilinear diagrams. Water will be
are intimately connected. catcgorized by the relative concen-
tration of calcium. magnesium. sulfate.
2. Ground water chloride, potassium. bicarbonate. car-
a. Mecthodology - Ground water is moni- bonate. silicon dioxide. and fluoride,
tored by observation wells in the The following hypothesis will be tested:
afluvium and in oil-shale aquifers. H.: there is no significant difference in
Water levels are mecasured contin- chemical composition or physical pa-
uously in several holes and monthly or ramcters of the ground water between
quarterly in others. Samples are col- baseline and development periods.
lected semiannually. guarterly. or more . Problems- - The problems in testing
frequently. and analyzed foralkalinity, ground-water data are similar to those
pH. silica. fluoride, conductivity, tem- for testing the surface-water data.
perature, and the major ions. Analyses . Possible solutions - The approach will
for trace clements and organics are be similar to those used for surface
Table 13. Summary of ground-water quality data collected from the Birds Nest
aquifer, Parachute Creek member of the Green River Formation, tract C-a,
from November 19, 1974, through November 14, 1975
Description :3;;: Mean d;:il:ﬁ?c:i Maximum Minimum
Conductance {(zmhos)® 34 4459 1208 6070 1130
Bicarbonate (mg/liter HCOg)b 31 643 319 2010 26
Carbonate (mg/liter CO5)? 30 4.2 21 117 0
Nitrite + Nitrate (mg/liter N)b’c 32 1.8 6.1 30 0.00
Hardness (mg/liter Ca. Mp)® 31 957 381 1400 22
Calcium (myfliter)>© 31 131 64 210 5.7
Magnesium tmg/liter)?€ 31 153 64 240 0
* Sodium (mg/liter)?€ 31 807 293 1500 72
Potassium (mg/liten)>r° 31 6.8 2.8 13 2.3
Chloside (mgliter)>"° 31 70 22 140 36
Sulfate (mg/liter)b’c 31 2009 843 3000 180

4] umho = 2.54 X 10”® mhos/in.

by mgfliter = 8.343 x 107° Ib/gal.

“Elements analyzed only for dissolved fraction.

Source: Phillips Petroleum Co., Sunoco Energy Development Co., and Sohio Petroleum Co., First year Environ-
mental Baseline Report for Tracts U.a and U-b, Utah ~ White River Shale Project, VTN Colorado, Inc., vol. 1, May
1976.



water,  with more

frequently.

modeling  used

11, Interrelationships

The lease requires the lessee to study and report to
the Mining Supervisor (Area Oil Shale Supervisor)
on ccological interrclationships including migratory
patterns of birds. mammals. and fish, and plant-
animal relationships. This very general requirement,
which allows wide latitude in interpretation, could
mean as much as a complete ccosystem study. or as
little as a qualitative description of some two-factor
comparisons.

Not surprisingly, the lessees have monitored
interrelationships differently. The C-b lessces are
using an International Biological Program (IBP)
systems approach. This program, much oo complex
to present here, is described in the C-b Environ-
mental Baseline Program Final Report.” Essentially,
the program proposes an ecosystem modcl where
driving variables (precipitation. wind direction and
veloeity, sulfur-compound cmission, ozone, trace
metals. fugitive dust, noisc and activity disturbance,
cte.) are monitored for their effeet on five ecosystem
response units. These units were formed from
13 plant community, habitat types based on similar
vegetation and topographic characteristics. For
instance. “Gencral Upland™ consists of chained
pinyon-juniper rangcland, bunchgrass, sagebrush,
and mountain shrub. A wide varicty of “State™
variables are measured on the responsc units such as
animal numbers and weights, plant standing crop,
and luer. Time-serics graphs show functional
equations over time and space. Impact-response
matrices are developed to select the more important
cause-and-cffect relationships for monitoring and
also 1o provide a mathematical modcl.

METEOROLOGICAL
CONDITIONS

Precipitation
Quantity

Temperature
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In the more simplistic C-a method. a series of
matrices provides the basis for the interrelationship
monitoring program. The first matrix compares
individual engincering actions against specific biotic
and abiotic parameters for (1) magnitude, direction
and duration ol impact, and (2) importance and
measurability of the impact. Another matrix s
prepared using the medium- to high-ranked
parameters from the previous matrix to form a
“mirror image™ where biotic and abiotic parameters
arc compared for relationships among each other.
This intra- and interrclationship matrix assures
that interdisciplinary studies arc coordinated in
time and space so correlation-regression and other
analyses can be performed. This matrix also provides
the basis for causc-and-effect computer models.
[mportant sources of mining impact are expected
10 be underground retort constructions. cumulative
construction activitics, dewatering, surface dis-
charge. reinjection, atmospheric venting. storage
of raw shale and topsoil. habitat modification.
revegetation, and increased human activity.

The major interrelations on wvact C-a are
abiotic. abiotic. abiotic biotic, biotic- abiotic. and
biotic. biotic. An example of high-level relationships
expected among precipitation, vegetation, and mule
deer on wract C-a is depicted in the Fig. 7. A
diagrammatic presentation of major soil-vegetation
topography interactions is shown in Fig. &,

VEGEIATION

8. Ashland Oil. Inc.. and Occidental Oil Shale. Inc.. Oil Shale
Tract C-b  Environmental Bascline Program  Final Report
(November 1974 through Octoher 1976). vol. 5. 1976,

MULE DLER

Migration

Fig. 7. Diagram of high-level relationships on tract C-a.
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Erosion Potentiatl

[
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Production

TOPOGRAPHY I

Slopefhspect

Fig. 8. Diagram of major soil-vegetation topography interactions.

The principal influences of abiotic parameters on

other abiotic parameters that are rated as high-level
relationships are

precipitation (quantity) on ground water (quality,
guantity, flow movement, level, recharge/dis-
charge, availability):

. precipitation (quantity) on surface water (quality,

quantity. flow. velocity, drainage basin, sediment
load, stream bed, springs, and seeps);

. ground-water quantity on surface-water quan-

tity:

. pround-water quality on surface-water quality;

. ground-water quantity on quantity of water in

springs and sceps:

. ground-water quality on quality of water in

springs and sceps;

. surface-water flow on surface-water sediment

load:

. soil crosion on surface-water sediment load; and

. soil chemistry on sediment chemistry.

Nine abiotic-biotic relationship influences of the

tract C-a arca were ranked as high level:

I

precipitation quantity on vegetation production;
precipitation guantity on vegetation cover and
density:

precipitation quantity on mule decr migrations;

. ambient air temperature on large mammal

migrations;

. soil chemical characteristics on plant community

distribution;

6. soil trace metals on trace metals in plants;

7. soil chemical characteristics on plant community
composition;

8. soil physical characteristics (e.g.. depth) on plant
cover; and

9. slope/aspect on vegetation cover or composition.

Of the number of influences on the abiotic system
by biotic components. only onc such relationship was
considered by the lessee to be highly important-—the
effect of plant cover and density on soil erosion
potential. Moderate-level relationships identified
include the influence of
1. vegetation (distribution and cover) on atmo-

spheric particulate levels;

o

. plant community composition on soil chemical

characteristics;

3. rclative abundance of invertebrates on soils
(erosion potential, physical and chemical charac-
teristics): and

4. vegetation cover on soil erosion potential.
Relationships among biotic parameters that were

ranked as high level include

1. vegetation community composition and cover on

small mammal abundance:

o8]

. relative abundance of small mammals on the
relative abundance of predatory mammals;

(9]

. vegetation production on mulc deer migrations;
4. vegetation cover on mulc deer migrations; and
5

periphyton abundance on periphyton
productivity and on benthos relative abundance.



A workable mathématical model must be
developed to track only the more important
parameter interrelationships. utilize the most
appropriate statistical methodology. and adapt to
changing objectives and methodology.

In conclusion. several statistical problems becorae
evident after a parameter has been selected for
monitoring;

1. After a null hypothesis is established, what level of
resolution (probability or alpha level) is
reasonable for rejection or failure to reject?

2. 1s onc standard critcrion acceptable, such as
means will be within one sigma 806 of the time, or
should the alpha level vary according to the
variahility of the parameter?

3. How much latitude can be accepted in départure
from the usual statistical assumptions (normal
distributions. equal variance of populations,
independence of mean deviations)?

4. Becausc two years does not constitute a basis for
premining calibration of dynamic parameters,
how can this limited information be used to adjust
differences among control and treatment sites?

5. For the most part, interrelationships among
variables could not be detcrmined from the
baseline data, because of temporal and spatial
differences (parameters were measured
independent of each other). What procedure
should be used to select the most important
correlations and regression analyses during
production monitoring?

6. The baseline data collection program for air and
water parameters addressed mainly the quality
control and a comparison with parameter limits
established by State and Federal law. Moderate
attempts have been made to establish statistical
procedures for detecting significant differences
among stations, years, seasons, and daily periods.
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How can statistical tests be used to detect
differences due to deveiopment as compared with
natural effects?

7. There is a need to predict when a level of poliutant
or disturbance will result in a significant
perturbation in one or more parameters and or
their interrclationships. How can statistics be used
to predict these disturbances?

8. Environinental damages must be mitigated. What
statistical procedures can best be used to test
cffectiveness of mitigative efforts? What would be
a reasonable level of statistical probability?

9. The assessment of interrelationships probably
require some type of modeling efforts. What type
of cause-and-cifect modeling can be used to track
the major componcents of the tract ecosystem
during production: How can this model
accommodate statistics and be a decision-making
tool?

SUMMARY AND CONCLUSIONS

The problems of monitoring are reduced to the
need to correlate environmental parameters with
forthcoming conceptual and detailed engincering
plans and material balances. Emphasis will be
placed on physical and chemical properties of
gases, liquids. raw oil shale, and various waste
products that will emanate from shale-oil pro-
duction. Transport mechanisms arc generally
known, but detailed pathways of pollutant trans-
port are little known, Estimation of these factors
now will aid in dutermining anticipated pollutant
levels that can be translated into likely stress
conditions on the ecosystem.

A statistical design for the monitoring program
must include features that will effectively analyze
the development. biotic. and abiotic parameters
and all important interrelationships.




Problem Discussion 1, Part 1: Assessment of Oil
Shale Development—a Problem in Statistical Design

Donald R. Dietz, U.S. Fish and Wildlife Service
Eric Hoffman and Lawrence Barker, U.S. Geological Survey

Donald Dietz: Yesterday, we got cut off a little
before we gave our complete conclusions or were able
to present a statistical problem that we are concerned
with and want help with. 1'd like to finish this
summary now. After the null hypothesis is estab-
lished. what level of resolution is reasonable for
rejection or failure to reject? Also, we had some
comments vesterday about a better procedure than
the use of null hypotheses. We would like to pursue
this further and encourage your comments. A lot of
the lessees or environmental contractors have been
using one standard for their criterion for acceptance
or rejection. such as, the mean should read within
one sigma 809 of the time. Should the alpha level
vary according to the variability of the parameter, or
is one standard enough? How much latitude can be
accepted in departure from the user’s statistical
assumptions, such as normal distributions, etc.”?
Most of the biological samples with which we work
aren’t really neat, agronomic parameters, The areas
are highly heterogeneous: populations are very
dynamic. It’s difficult to find areas to replicate that
are similar. Because two years does not constitute a
basis for premining calibration of dynamic parame-
ters, how can this limited data base of only two years
be used to adjust differcnces among control and
treatment sites in trying to determine the impacts of
oil shale development? For the most part, inter-
relationships among variables could not be deter-
mined from the baseline data simply because of
temporal and spatial differences. What procedures
should be insisted upon when we go into production
monitoring so that the important correlations and
regression analyses can be made between the disci-
plinary arts? The baseline data collection program for
air and water address quality control and how well
these parameters meet established state and federal
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standards. No attempt was made to employ sta-
tistical design. null hypotheses. or any other statis-
tical testing with most of the air and water parameter
data.

How can statistical tests be uszd to detect dif-
ferences in air and water qualities due to project
development as compared with the natural effects?
There is a need to predict when a level of pollutant or
disturbance will result in a significant perturbation in
one or morc parameters and their interrelation-
ships. How can we predict these disturbances?
Environmental damages must be mitigated. What
procedur-s can best be used to test the effectiveness of
the mitig tion effort? What is a reasonable level of
probability to strive for? The assessment of interrcla-
tionships requires some :pe of modeling effort. Will
some form or type of cause-and-effect modeling
enable us to track the major components of the eco-
systems and their intcrrelationships? How can sta-
tistics be built into these models? Can a mode! be
constructed that would be flexible enough to be a
decision-making tool for a mining supervisor? These
and many other statistical problems confront us.and
being nonstatisticians, we hope you will bear with us
in our attempt to express what we feel are statistical
problems with this huge, essential environmental
impact. So, we solicit comments from the audience.

Gary Tietjen, Los Alamos: [ would like to make a
few rash comments, a few of which 1 may later regret
having made. I think thedecision as to whether the oil
shale facility will be constructed will not depend upon
your study but will be dictated by the demand for
energy. It would take a decade or more of studying
the environment to encounter all the sources of
variation that one might encounter in the few years
after the study was completed. You can’t take that



length of time because the environment will change
before you can finish the study; the process of
studying it will change it! The amount of rainfall and
snowfall will be major perturbations in the environ-
ment.

There is absolutely no question in my mind that
construction of this facility will alter the environ-
ment; thus, one doesnt really need to ask that
question. Rather, you should ask. whether the
wildlife will adjust to the altered environment. The
answer is very probably res/ The coyotes certainly
will adjust: you can’t keep them fromadapting unless
you hire an armed guard.

The whole community of Los Alamos has not
disturbed the deer or fox populations seriously; there
are enough of them around to disturb the gardeners
sufficiently anyway. Bears may be disturbed some-
what, but no one there is trying to encourage a larger
bear population. And the skunks will love the place!
If the lessce were to irrigate a small ficld there, he
would attract large numbers of deer at night. With the
construction of a little cover and some feed, he could
attract more birds. Thus, the question should be, *1s
the lessee reasonably committed to conservation?”
and if so. then he can probably operate, I think, with
little concern.

Water supply needs a little different treatment. If
the water quality is being degraded. how will vou
know if it’s a serious degradation or whether it may be
coming from somewhere upstream of the plunt? One
way to know positively is to run the plant water
through a tank in which youkeep trout. If the fishare
okay in that tank. I think it is safe to dump the plant
water into the stream. What 'm suggesting is that you
put less effort into this base study and that you put
more cmphasis on continuing concern during and
after the construction,

Lee Eberhardi, Baitelle: 1 agree wholcheartedly
with Gary in the sense that what he has said is partly
summarizable as simply. “Let’s use common sense.”
But I'm not sure if the audicence asa whole isaware of
the amount of effort that’s gone inio this kind of
survey around the country with nuclear power plants
and the outer continental shelf studies. 1 guess |
shouldn’t try to speak accuratciy about the require-
ments of NEPA as to what we should be studying, but
it’s pretty clear that a lot of the money is being spent
on baseline studies and on after-the-fact construction
studies. Also a lot of time and elfort is going into
some sort of experimental design: my reaction is that
we ¢ ten have a single experimental site- a nonrai-
domly selected, treated site, for which you can pick

[
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your controls at random out of the surrounding arca
if you like. But 1 am not sure what you do with thatin
the experimental design. The keynote speaker
vesterday talked about a time series problem in which
he felt that 100 observations was really not quite
enough to do the kind of things he'd like todo. We're
being asked here to have three preoperational and
perhaps three postoperational samples with a series
of six and to do much the same sort of thing. I would
appreciate hearing some philosophy from some of the
statistical people as to what constitutes a reasonable
sort of statistical treatment here, I'm not sure whether
all the statisticians are aware that we are talking
about single years as single data points. Most of the
more important ccological species or situations
almost have to be dealt with annually. For the more
complex species, the mule deer for example, we
have pretty strong evidence of autocorrelation. For
small critters like plankton, probably autocorrelation
between vears is only that that’s forted on them by the
physical system. So we have a strongly correlated
series. a very short one, and I simply do not kgow

what todo withit. I can only statc that my philosophi-«._

about the use of statistics is correlated to understand
what is going on in particular segments of the
problem. I guess I return to Garys comment. “Let’s
usc common scnse.” but Lwould argue with each item
he suggested. if | had 1o do it actually in the field.

Larry Barker: The lessees are required to take this
data whether it is important or not. Becuuse they
must take it. we want something that we can use later,
The problem is how to tike the data, and what to do
with the data after it’s been collected. I'm not sure
that we made that clear. but I want to make that
emphasis right now. :

Corwin L. Atwood, EG& G ldaho: 1 was onc of the
people who was bothered yesterday about framing
everything in terms of testing hypotheses. We know
that there is going to be an effect; so why ask the null
hypothesis: Is there an effect? If vou took enough
data you'd find the answer. | was then wondering
what to do about this, not in the simple case where
you've just got onc quantity of intcrest. Then you can
get a confidence interval and visualize what’s
happening. But what about the harder to visualize
casc, when you have to keep track of several things at
once? | can only draw three dimensions on a two-
dimensional piece of paper (Fig. 1). These three
things that you are considering might be deviations
from an overall mean and an analysis of varying
situations. | would like to hcar what other people
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think ol one thing that | do: I consider the following:
what do the data say about the null hypothesis? what
alpha level is wanted? what is the smallest alpha level
which could be used and still be able to reject the null
hypothesis”? But o ideatily other hypotheses of
iterest may be one of the various wavs that you
could get away from the null hypothesis and be just
barcly unacceptable. There might be a number of
these hypatheses, and 1 would check the data as if |
were testing cach of these as a null hypothesis. That
would give me a ranking among the different
possibilitics of interest if [ could single out a fairly
small number of them, Maybe if  don't have much
data. my data would accept all of these hypotheses at
reasonable alpha levels. and then I'd realize 1 can not
distinguish between them. Maybe the data would
reject some of these worrisome ones and accept the
null hypothesis, and that would tell me something.
There are lots of things that could happen. but this
ranking might give mea feeling for what is going on.
[tisn't intextbooks. [ don't know if other people have
ideas on this, )

Dave  Gosslee, Union  Carbide Corporation,
Nuclear Division: 1 would like to make two very
general points, One is partly a guestion. To what
extent do you intend to involve a statistician with the
project, oris a statistician already involved? Second. |
have the feeling you can’t look at things like species
individually. 1 think you nced to look at things like
species from a multivariate point of view 1o get more
powcr into your testing estimation.

Don Dietz; We have a statistician available to us
out of CSU, butso fur we huven't beenable to use him
much. We also have the expertise from the Fish and
Wildlife Service. Irom their Biological Services
Division: they have done a lot-of work with, small
mammals. We are hoping to get a statistician on
bourd with us. Although we have a systems analyst

and a computer speciabist now, wesull do not havea
consultng statisticin, and we teel that s our magor
need right now. We will be working hopetully with
some multivarate analsses as we get into more
species work. The lease that the ot companies agreed
1o reguires certann things, But once we get the data
into a data base, then we will beable toselect ourown
statistical pachages and run any analysis that seems
uappropriate and worthwhile, Right now this isaven
simplified approach, and the program s quite
dynamic: we stll have a few yeurs to consider
anything we can get i lead on. One thing | nught say
about Dr. Tietjens comments, “As i biologist, he
makes a good statisticiun.™

Peter Bloonilield, Princeron: 1tseemsto me m this
context it’s i little diangerous to talk about our hmus
of things. for example. one and two signwa linus, |
think these are numbers that can be deternned trom
the bascline studies and then sort of written nto Law
and used in a rigid way. As Gary pointed outo s
most unlikely that the buschine study will reathy come
up with enough datta to determine those guantitics i
any aceuracy. The baseline study penod s 1o
determine good pliaces to use as control sites, and the
ongoing monitormg should really be @ continuing
process torcarry ing out inlormation from the control
site 1o decide, well a basis o use for comparison in
the development sites.,

Frosey Miller, Union Carbide  Corporation,
Nuclear Division: To vy and sample the whole
environment at once and determine, shall we sy,
tolerance levels for change due to an“innovation™in
epvironment is a very diflicult problem. [here are
some ideas to be picked up trom other technologies.
Chang al Berheley has o bealth index which he has
proposed. Periodically. he samples people and ashs
them about their health: what he gets s a high
variance on an individual observation that’s sort of a
control chart idea of the generai health of a
community over a long period of time. ft seems tome
that ideas like this are what you need. | didn™ hear
any discussion vesterday concerning where vou were
going 1o place your transects. Vis-u-vis the expected
changes or degradations in the environment that
would inevitably ensue f'rom changing the water How.
That will certainly alfect the flora. and | would think
that the fauna would go where the water is. ut least o
a limited extent. Thus. il you plan your transccts so
that you can discriminate between various hypoth-
eses about what will happen to the water or what
will happen to the dust burden from the site in the




uncovered arcas, vou may have a better chance of
detecting things than it vou merely sample random
transects across virious alnade zones.

Frank Anscombe, Yale University: 1 have the
notion that whenever one is planning an obser-
vational study of any sort, it’s a good idea to begin
with an exercise. which may seem a little silly, but 1
believe is really rather sensible: to consider what you
would ask for if vou were able to ask Tor absolutely
anvthing whatever, without cost. In this matter of
surveving the environment. suppose vou could have
an army ol invisible demons observing absolutely
anyvthing that vou would like them to observe at
whatever frequency vou like and suppose that you
could have them doing this not merely for two years
but for twenty vears or two hundred vears. What in
that case would vou like them 1o observe? But
suppose that vou arc exposed to the risk that you
might be expected to process that data when you get
it: therefore, it would be foolish 10 ask for complete
information about evervthing - onc should never ask
for that! Thus, what would one rather like to sec and
know about? The difficuity when one is thinking
about any actual observational study is that one is too
much constrained by what one thinks is practical
of course, one has to be constrained by what is
practical--but sometimes considering what could be
had in some magic way for the asking will sometimes

make very clear that only some featurcs arc really of

interest, and rhar might help somewhat redirect what
one does with the resources that are actually
available. Undoubtedly. if one could observe this
area in great detail over a long period of time. one
would see all sorts of changes going on. and the
baseline would be a very wobbly baseline, I think. It
would have slopes to it, all sorts of things like that,
and to try to think out what sort of summarization
would make a tremendous amount of data available
will help a good deal in pinpointing the things that
would be worthwhile trying to observe and practice.

Lee Eberhardt, Barielle: 1 think that’s a particu-
larly important comment by Dr. Anscombe. The
trouble 1 have personally is that I see reasons to
believe that most details of -ecosystems are very
rigidly controlled, but the systems themselves can be
likened to a living animal. Things go precisely in a
particular form, which I think one appreciates more
or less on a philosophical basis and somewhat on a
theoretical basis and more strongly on some under-
standing of evolution. In practice in the field, though,
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as a sort of a working rule, we use the coefficients of
variation of about 1004 on things we measare. 1
don’t believe thats purely a stochastic process I'm
looking at. but it’s very difficult for me 10 get that
variability for things that are measured much below
that. Another thing that 1 think needs to be said here
is that we are talking about something that tarns out
to be a sort of an adversary process in theend  and
perhaps in the beginning. We are told in designing
studies for environmental impact evaluation that we
can expect, sometimes literally, 1o be put in the
witness chair in a court. and the situation then
becomes one of legal manuevering. The most obvious
thing for the prosceution to ask is. “Well, would you
look at this and this and this and this”™ To be
protected against this sort of thing. the people who
have todesign the general survey insist that we look at
every ittle item in sight, and in a sense, that’s great.,
but in practice, it compounds the effort hopelessly.

I'll slip in one more comment for Gary. if | may.
Many plcces. such as Los Alamos or Hanford.
constitute areas that have been a tremendous bonus
to the wildlife - to the ecology, if I may use that word
in a way 1 shouldn. Therefore. Los Alamos knows
that not much damage has been done 1o the environ-
ment there. that they have really improved ii
considerably as far as deer. coyotes. skunks. and all
those things are concerned: however. these other
situations were talking about here are going to do a
lot of damage. Strip mining will do a lot of damage:
the oil spill off the coast clearly will do a lot of
damage. There’s no doubt we’re going to see an
impact. The question is how do we dcal with the
adversary situation and how do we usc what tools we
have cffectively.

Eric Hoffman: 1d like to thank you for those
remarks. 1t’s kind of a happy position we sud-
denly find ourselves in. In fact we have a mass of
information on each of the oil shale tracts. Here is just
the final bascline data report for tract C-b. It
encompasses five volumes and a package of matrix
tables which are kind of mind boggling. Therc are
similar reports to the other tracts. Behind that stands
about ten bookcases full of detailed statistical and
probed-type data that has to be weeded through, and
somehow a system has to be designed tocompare that
mass of information with the data that the lessee is
required to obtain during development. Qur problem
at hand is how can we read through all of thatina
statistically sound manner and decide what really
would constitute a realistic environmental monitor~
ing program that is statistically defensible. Any ideas
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or thoughts along that line would certainly be
appreciated.

Tony Ofsen, Bantelle: 1'd like to add one specific
comment to what Dr. Anscombe said. In addition to
deciding what you would like to take. I think youalso
nced to emphasize what size of impact is really
important. And then il you are really Interested in a
hypothesis-testing situation, what vou should do is
make all of the nice assumptions that one gencrally
likes to make, look at the size of the impact that you
want to deteet, and find out whether you can detect it
at all. I am familiar with an example in the weather
modification field: il you make all those nice
assumptions and want to detect whether you havean
increase in rainfall overan area. you find out that vou
have to do approximately ten years of experimenta-
tion to detect a 50% incrcase in rainfall when
theoretically the meteorologist may not be detecting
eftective rainfall more than 106 at most. Maybe one
would very quickly get away from the idea of testing
hyvpotheses.

Jolm Thomas, Battelle: 1f you are really going to
move away from the idea of testing hypotheses. and
we're really going to admit thatthere s going to bean
impact whether we can detect it or not. and we are
really committed to doing more work past this
bascline thing and we really are going to finally
involve a statistician, and we really do have a lot of
rescarch guestions. it seems to me you have a golden
opportunity to do some real rescarch in conjunction
with the monitoring.

Lincoln Moses, Stanford University: It seems 1o
me that if you have several hundred pounds of facts.
yvour primary job is to view the problem as a
descriptivc one, What is it that needs to be described?
Several hundred pounds of paper defies description.
How would you describe the condition of the
environment now; how would vou describe changes
in it? Hypothesis testing is alnost extraneous, and
sometimes biological insight would seem to be of
primary importance in order to get a dozen, five
dozen. 1 dont know. some number of descriptions
that we can monitor there and in ncarby areas.



Statistical Aspects of Nuclear Safeguards

Gary L. Tietjen

Los Alamos Scientific Laboratory
Los Alamos., New Mexico

ABSTRACT

A nuclear lued reprocessing eyele s used to illustrste problems encountered by a statistician when trving o
reconcile total amounts of an clement at ditlerent stages in the recovery evele Caleulation of errors are discussed along

with problems ot biases, hotdup. and simulation,

INTRODUCTION

Each of the DOE laboratories and contractors is
already. or soon will be, deeply immersed in nuclear
safeguards and accountability. As [hear the problem
discussed from a political viewpoint, therc are
frequent ofticial references to a “malevolent act,” but
the term seems to refer more to black mail threats toa
civilian population than to the use of weapons in war,
though the latter possibility is always present. The
questions are: How can we keep unauthorized
persons {rom getting nuclear material? and how do
we tell whether some of it is missing? A wniform
system of keeping track of our inventory will be
necessary because some international control seems
imminent and perhaps desirable.

The task is of enormous proportions. Some of the
reactors going on-line will process or reprocess 50 kg
of plutonium per day. Every item, every drop of
solution, every piece of scrap metal, and every whiff
of powder will have to be accounted for. Moreover,
the transactions from one place to another or from
one form to another will take place rapidly, so that
the accountability will have to be automated on the
computer. There will not be time to mull over
decisions on a case-by-case basis as we have hitherto
done.

When one mentions the word sqfeguards, he may
be completely misunderstood. There are many who

think of safeguards wholly in terms of physical .
security. At the new plutonium facility at Los
Alamos, there probably will be a computer check of
your badge, your signature, your fingerprints, and
perhaps of your voice before entering the facility. At
the samec time, you would be monitored for
radioactivity. of course. The chemists think the
problem of safeguards solved if they have devised
accurate and precise methods of analysis for minute
quantitics of material. The physicists think of
safeguards problems in terms of very rapid nonde-
structive methods of analysis not requiring lengthy
sample preparation. (In all of their methods they
either count the radioactivity in the sample directly or
irradiate the sample first and then count it.) The
computer people believe they have solved the
problem of safeguards if they are able 1o get the
numbers quickly onto a data base with rapid retrieval
capability. It is left for the statisticians to try to make
some sense of the thousands of numbers that will be
generated.

I have chosen one small segment of an actual
reprocessing cycle at Los Alamos to iflustrate the
problems faced by the statistician. 1 shall try to
neither exaggerate nor minimize the difficulties. Of
course, material /s lost during processing. The public
and the press don’t seem to understand this and have
not been sympathetic. The lossesare not so targe asat
first they seem. Losses of uranium at Los Alamos

ts
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over the last 25 vears.if put in metallic form, could be
placed alady s purse. Of course. evena weight hitter
would have ditliculty walking out with it.

The sttuaation s somew hat like making cookies.
Suppose that vou were ginen a certain amount of
flour, sugar, cte.. tor this purpose and that the
ingredients were weighed out to vou. After the
coukies are buked. they are weighed. Youarealiowed
a certam loss for evaporation, but sull there is
material missing. Where is 1?7 On the beaters, the
spoon, in the bowl, and on the dishrag that wiped up
the spillage. Taking all this into account, one stifl has
o decide whether the kids running through the
Kitchen have licked the spoon or made off with a
coukie.

Let me get into the example (Fig. 1), We start out
with a uranium metal allov. The concentration of
uranium in the metal is determined chemically, and
the metal is weighed. A part is then machined from
the alov. and this part is weighed. The ditference in
the two weighings iy the weight of the serap that is
gathered up and putinto cans, The scrap itself cannot
be weighed because it is oily; it can neither be
dissolved safely noi stored safely because it is
pyrophoric (L., it will cateh on fire spontancously).
Consequently, the scrap is burned toan impure oxidc
and stored in cans in a vault until such time as there is
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« » « = = conc (BY NDA = USAS)
eaNt oM Mg vol (BY TANK}
AN l “ TOTAL = = {vol} {conc) B==
\ ! \
\ |DISSOLVED
oL T i
PRECIPITATED
i ) ¥
SOLIDS (90%) LIQUIDS (9%} RAGS (1%}
cone (ANNUAL conc (USAS) TOTAL BY
FACTOR BY vol (TANK) RANDOM
CHEMISTRY) TOTAL = vol x conc DRIVER

WEIGHT (BY SCALE)
TOTAL = wt x conc

(FOR MONTH}

SOLN. TOTAL = SOLID + LIQUID + RAGS

MONTHLY TOTAL = £ (SOLN. TOTALS} *—m !

Fig. 1. Metal scrap reprocessing.

cnough of it accumulated for a batch to be
reprocessed and until the acilities are ready. Then
the ash is dissolved in an acid. The volume of the
solution s measured and the concentration deter-
mined by an NDA (nondestructive analvsis) device
called the USAS (uranium solution assayv system). At
this point we make our first check: concentration X
volume = total uwranium. The towal uranium in
sofution should be equal 1o the weight of the scrap
metal times the concentration of the metal.

Next, something is done to the solution to
precipitate the uranium oxide. About 907 of the
uranium 1s precipitated, 9 remains in the filtrate
solution, and ¢ is on the rags used for cleanup. The
precipitate is weighed. and its concentration deter-
mined chemically. (For obscure reasons, the concen-
tration of the baich is not used directly. Not every
batch s assaved. Instead. the annual average
concentration is used. Becausc of the chemistry
involved. this should be quite close to theanalysisfor
any once batch. I is the 90 figure that will vary
considerably.) The filtrate solution has its volume
measured and its concentration determined by the
USAS device. Finally. the collection of rags for an
entire month (rather than a batch) is burned. and the
amount of uranium in them is determined by un
instrument called the Random Driver. Unfortunately
the Random Driver has a much larger error than the
USAS, but fortunately the amoum of material
involved is small.

We then add up the total uranium in the
precipitate. the filtrate, and the rags, and it should
check with the amount found in the solution before
precipitation. The differences in the consecutive
totals are called MUFs(material unaccounted for) or
BPIDs (book physical inventory difference). Each
point at which the total uranium may be checked is
called an “account.”™ There may be 75- 100 such check
points at an R&D facility such as Los Alamos,

Although we close the books on the scrap metal at
the end of each month, it may be some time before we
have all the figures with which to reconcile the totals.
What error shall we associate with the three totals we
now have? Certainly the towals have different
variances. We can enter the figures as shown here
(Fig. 2) in a system of multiple entry bookkeeping,
but we must allow an extra column for the error or
variance of each figure. With the aid of the error
column, it is our job to decide whether the books
balance. If they do not, there has been anarithmetical
error or a diversion of material, and an investigation
cnsues. This system we might refer to as siatistical
bookkeeping with the statistician acting as the
audiior.
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Fig. 2. A statistical bookkeeping system.

How do we calculate these errors? Each entry is a
product: concentration times volume. The variance
of the product ¢v is

2_2 2_2 2_2
Me Ov + My T¢ + 0. 0" .
If we replace variances with sample variances and
means with sample means, we have one estimator of

the sample variance of c¢v, but it is biased. An
unbiased estimate is

st VisE - sAsM —1m —1n) .
The propagation of error estimate is

A5+ visd

and it, too, is biased. Which do we use? There is still
some argument among statisticians. No minimum
mean square estimator seems available, the problem
being seemingly intractable.

These estimates, however, do not take into account
the error in fitting the calibration lines, which can be
considerable. To be more explicit, there is a linear
calibration line set up for the USAS device (Fig. 3),
and the equation of the regression line is y = a + bx
where the x’s are regarded as fixed (they are known
standards). We use this regression line in reverse: that
is, we observe y and solve for the corresponding x
value: x = (¥ — a)/ b. This gives us the concentration.
We multiply this by the volume v of the solution and
sum over the several solutions processed during the
month to obtain the total uranium X vi(y;—a)/ b. For
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Fig. 4. Calibration line for the chemical results.

the precipitates, we have another calibration line for
the chemical results (Fig. 4) with equation z=c¢+dXx.
Again this is used in reverse: x = (z — ¢)/d. In this
case, though, we observe a large number of z’sand get
an annual average, x, of the corresponding results as
the concentration factor. Multiplying this average

concentration by the weight w of a particular
precipitate. we obtain X w{z —c) d.Forthefiltrate.a
dilferent calibration curve is used with the USAS
device (a different set of standards) and we obtain
¥ gdr, — e).f where the g, are volumes and the
regression line is v = ¢ + fx. Finally, for the rags. we
use still another line. 3 = g + /v, and we use the single
figure x = (r — g) A. The difference between the two
sums that should balance is then:

O=Xv{n—u) b— X wiz = ) d

—Xqgn—e)f—(-g h:
that is,

MUF = solution — precipitate — filtrate — rags .

We could, by propagation of error. find an
approximate variance sg'. If Q is unbiased. we would
like 1o test whether it is zero. and if we had enough
faith, we might assume asymptotic normality and
look at the ratio Q' so. If Q has estimated bias B, we
might form the ratio (Q — #) (50" + s5°)'° and
compare it to a normal distribution. Is propagation
of error the proper tool here?

Some of the sample variances needed for s¢” may
be difficult to obtain. The statistician will have 10
obtain the calibration results and obtain variances for
each piece of equipment used. He will need to
familiarize himself thoroughly with each step in the
process, which will be time-consuming. The variances
for volumes can be a real headache. The volume of a
tank is calibrated by making marks on the side of the
tank to correspond with given volumes. I had always
thought that a tank volume, once calibrated, would
stay calibrated, but that is not the case here. The
calibration is constantly drifting. This tank has to be
filled with hollow boron glass cylinders that act as
moderators to keep a solution from going critical.
The acid solutions eat the glass away, causing the
volume to continually increase until recalibrated.
Thus we get a curve somewhat like this (Fig. 5). It is
not trivial to recalibrate some of these tanks. Even if
you {ill a tank with a measured container of water,
how much air is in that water? What is the density of
the water? Some large tanks have to be shielded and
are sometimes calibrated as follows: Pour a known
volume with a known concentration of strontium
into the filled tank. Observe the concentration of the
dilute solution. The ratio of the two concentrations is
proportional to that of the two volumes, and you can
solve for the tank volume. Not even the weighs of an
object will stay fixed in this business. We had some
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Fig. 5. Curve showing volume of a cylinder before and after
recalibrations.

uranium foil in storage and each time it was weighed.
the weight was greater. It was assumed that the
concentration was unchanged, and the resulting
apparent change in total uranium gave the auditors
fits until it was realized that the foil was oxidizing in
the air!

You can get real increases with “holdup™ in the
tanks. Depending on the acidity, some of the
uranium may adhere to the glass cylinders. When a
more acid solution is used. vou flush this off and get
more uranium than you started with. A common case
of holdup occurs in glove boxes. A little uranium
oxide may be spilled during weighing and left in the
glove box. Eventually, perhaps months later, the
glove box is thoroughly cleaned, and this buildup
added to the account. The result can be observed by
watching the account as a function of time. Nearly
cevery loss or low value is followed by a high value in
the succceding month. How do we model this
holdup? How do we take it into account?

Another approach we have tried is simulation. We
need a confidence interval for the MUF. We do not
wish to rely either upon normality of @ nor upon the
propagation of crror approximation for the variance
of Q. To do simulation, however, we shall have to
assume certain distributions and parameter values
for the random variables involved in Q. Mark and
Myrle Johnson at Los Alamos have done some
simulation work on this problem. To keep the results
from being overly dependent upon a given distribu-
tion, one needs a family of reasonable distributions
for the random variables. They have come up with a
family, each member of which has mean zero, unit
variance, and zero skewness (ie., they aie all
symmetric). There is a parameter « that governs the
kurtosis (Fig. 6). The family includes the uniform
distribution at one extreme (82 = 1.8), the normal
distribution (82 = 3), and a very peaked distribution
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with 82 = 5.4. A single algorithm permits casy
generation of the variables for any member of the
family, They first decided to call these new distribu-
tions the NEW DIST family until somcone pro-
nounced the acronym too rapidly. By varying the
kurtosis, we can study the length of the resulting
confidence interval on @ (Fig. 7). This is donc by
generating a large number of MUFs from a given
distribution. sorting them, and picking off the
percentiles. We can then choose the longest interval
for which we think the kurtosis is reasonable. Of
course, one could study a family of asymmetric
distributions by exponentiating the random variable
we generate.

The simulation approach requires the same
amount of work in gathering parameters and
variances but has seemed a bit more reasonable and
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flexible 1o us than the straight propagation of error.
We are looking for further suggestions along these
lines.

The picture may be still further complicated by
frequent (say. weekly) calibration, which will be
insisted upon at the new plutonium facility at LASL.
Then we will have to add afew more butsimilar terms
to our expression for Q.

A more disturbing problem is bias. What is bias?
Some ol vou were raised on the concept that the bias
of an estimator § is £(0) — 6. That, by definition,
seems to make the bias a consans. In a scries of
influential papers, Churchill Eisenhart at NBS gave a
very similar definition, but he has replaced £(0)with
the fimiting mean u of a set of measurements (under
identical circumstances) on a quantity. He then says
“the systematic error or bias . . . of a measurement
process will ordinarily have borh constant and
variable components.”™ That makes btas 4 random
variable. He illustrates by considering a distance
muasured with a steel tape. The temperature on the
day on which the measurcments are made adds a
random variable into the limiting mean, hence into
the bias. The term “limiting mean™ is not so well
defined, and thus the concept has expanded into
“long-term™ and “short-term” systematic errors,
which may be either constants or random variables.
Not understanding cach other, there have becn
vociferous arguments among statisticians within our

DOE community about bias and systematic error
and how to correct for them and when not to correct
for them. ete.. with everyone using his own
definition of bias. May | give an example of what
confuses us as statisticians, and even more confuses
the experimenter? It is to get a form like some we see
from the EPA and NBS asking for a series of
measurements to be used, say. in standardizing a new
method. Here are the questions the experimenter is
required to supply under the heading of Calibration
Resulrs: (1) What is the overall uncertainty on the
value of the activity? (2) What is the standard error?
(3) Give a 99% confidence limit. (4) The total
estimated systematic error is ., comprised of _&;
duec to __ and _¢ due to _. ete. (5) How are the
systematic errors combined? (6) How are the random
and systematic errors combined? To fill out such a
form requires agreement on what the terms mean.
and | don’t think we have vet reached that agreement
among ourselves. We need to do some housecleaning.
Indeed, we may be a little disturbed about filling out
the form because we think they might misinterpret or
misuse what we say. | am trying 10 say that this
chemistry business is swarming with biases and
systematic errors. The Random Driver, for example,
has large errors for small amounts of uranium,
moderate errors for moderate amounts of uranium,
and large biases for large amounts of uranium. 1
would like to get a colloquium started on that issue.



Problem Discussion 1, Part 2: Statistical Aspects

of Nuclear Safeguards
Gary Tietjen, Los Alamos

.Gary Tiegen: 1 described yesterday a system of
multiple entry bookkecping which I called a statis-
tical bookkeeping for accountability with an added
error column. One of the questions was how do you
calculate that added error column and do you use it to
reconcile the total. 1 suggested several ways of
calculating a variance therc and asked which one of
those we should usc. 1 gave a’ mathematical
cxpression for the MUF in one particular case, MUF
being the material unaccounted for, and asked if we
should try to propagate the error on this MUF to test
a hypothesis set at zero. Shall we use simulation to
accomplish that purpose or is there something better.
How shall we handle changing calibration on
volume; how shall we model holdup; and finally, how
shall we handle questions of bias in deciding whether
this MUF is zero. Let me just make one remark about
the holdup. The situation frequently appears some-
thing like this(Fig. 1): as we observe the MUF, it will
first go below the line and then above the line; the
next month there will be a compensating factor, and
one will get a curve something like this. There seems
to be a type of regularity about this discrepancy as
you get one high value, then followed by a low value,
and so forth. Perhaps one could do something with
that by plotting the values that fell below some line

MUF

v

TIME
Figure 1

(perhaps zero) against thosc that fell above that line
(Fig. 2) to sce if there was perhaps some relationship
between those points that fell below and those that
fell above the line (with a lag of one month say or
several months depending on the process). If there
was, then maybe one should infer something about
modeling the holdup. Now with relation to the bias, |
was just going to say this: Eisenhart gave the example
of a steel tape that was calibrated. and 1o calibrate a
steel tape you need to take the temperature of the day
into account. He talked about using a steel tape to
measure a distance. On a particular day. however, il
repeated measurements were made at a temperature
below the temperature at which this thing was
calibrated, then you would get a kind of bias on that
particular day, and that would be a random variable
in the sense that it would vary from day to day. So
there he’s talking about bias that’sa random variable,
and we as statisticians usually talk about a bias as
being something that is constant. Jim Lechner said
that his boss at the National Bureau of Standards
would like to reserve the term “bias™ for that which
was characteristic of the measurement process and
could not change from day to day. It wasa long-term
kind of thing, and I would like to talk about perhaps
claiming some other terminology or something on

POINTS . .
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which we could agree and which would help us to
describe those sorts of situations.

Sytvester Suda, Brookhaven: 1 have two examples
of the variable components of systematic error that |
can identify. Onc of them involves any calibration
line. Since Gary has already brought up the problems
of volume calibration, I'll start with that as an
example.

The typical way to calibrate 4 1ank is to start with
two known quantities- -a tank and a response system.
You don’t calibrate the tank; you calibrate the
system. Typically in a larger facility, your tank
doesnt seem to change. What you really want to
worry about is the sensing instrument changing, The
typical way is to advance, collect data, and have one
calibration line; and you do it again. This is
cxaggerated. but you do have, if you repeat the
calibration so that you get enough data, 1o assess the
uncertainty associated with the calibration process
here. There arc techniques that are used in the
analysis of covariance, which are in Brownlee and
have been deseribed in the first paper that John
Shepherd and | put together, of looking at this data
and deciding whether these calibration lines, in fact,
are similar. If they are similar, you can then combine
the data and get one average calibration line.
Although this calibration line has some uncertainty,
vou canset confidence intervals on this thing, and we
know that the confidenceinterval tells us that the true
line lies somewhere within the band. The calibration
line will have some bias associated with it, as, for
example, it will be 2 liters too high or too low, and
every time we use that value, we won’t know. So here
we have this variability, this uncertainty associated
with the calibration line where, in fact, it is a
systematic error that has to be included in the
uncertainty associated with that volume determina-

tion. Then. of course. you do have operator error.
and a lot of things could happen at the time of
measurement; therc are ways of determining that
random error.

You have a similar situation with a weighing
system if you have some nominal value. xa. that
you're using as a standard; it is a very good standard.
and you get it from the Bureau of Standards. It will
have some limit of uncertainty associated with it,
however. If you run all month and record observa-
tions associated with this thing so that you're
measuring a complete program. at the end of the
month. first of all, you can look at the distribution of
the xs—x and some s, (Fig. 3). You have the
distribution of X and s.. and we can define, in this
case, this distance here. as an estimate of the bias,
which is equal to ¥ — xu. | can well attest or determine
whether, infact. that bias is significant or not, Ifitis,
want to make a correction for it, Let’s assume 1 do
make this correction, I have some uncertainty in the
way that this 8 was determined. I can take the
variance of both sides here, and if I assume they are
independent, 1 now have something that I define as
the constant complement of systematic error and the
variable complement of systematic error. I'd like to
hear people’s reaction to this.

Jim Lechner, National Bureau of Standards:
Having had my name taken more or less in vain by
Gary a few minutes ago, | think I need 1o come up and
make a correction here. Apparently, I didn’t make
myself clear, Gary, on the bus the other day. I would
not like to have you quoting me misquoting my boss.
That’s not healthy.

The term bias (as learned in elementary statistics
courses) is the difference between the expectation
(that’s the statistical term) of an estimator and the
quantity that you would like to be estimating.
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Therefore in order to define a bias, you not only need
an estimator of statisties (which was defined). which
might be the sample mean, the sample standard
deviation, the median, or who knows what else. but
also vou have to know what quantitics you're
estimating: or wishing vou were estimating. Then
vou can define the bias: it is not so much that my boss
would like to have the bias be a permanent
characteristic ol the measurement process as that it be
this mathematically defined quantity depending on
both what youare calculating and what you hope vou
arc estimating. This will change cach day if the
quantity you're calculating is calculated different-
Iy for example, by a different calibration line or for
day-to-day cffects (operator, instrument, or other)
that creep into your process. So indeed, the biasdocs
change day to day if there are thesc effects, as there
almost always are. On the other hand, the term
“systematic error™ has been bandied around in many
different directions by many different people  John
Jacch referred to this lastnight. The feeling | get from

talking to a lot of people (F must admit that most of

them arc at NBS) is that the term “systematic error™ is
one they would like 1o see reserved for a permanent
kind of unusable. unchangeable characteristic of a
measurement process. Now., anvtime you get the
measurement, there are components of the error in
that measurement. some of which are fairly randam
in the sense that you can repeat the measurement six
times and have six truly independent observations on
that component of error. Other components are
random, but they only vary every month or with a
change of operator or something of that sort. These
latter kinds of random components are often

included in systematic crror, and I'm “guilty™ of

having done this oftentimes myself. | talk about
systematic errors that vary over long periods of time.
and then [ think 'm not being really careful with my
language. | don’t know what term to use for these
components, other than just calling them compo-
nents of the error variance. Now that’s a precise term
that has a well-defined meaning; people know what it
says for the most part, I believe, and you don't get
into the problem that a lot of us have with the term
“systematic error variance.”™ If systematic error is a
life-long constant. then it can’t have a variance as do
the components of error which are like systematic
errors for an entire run (maybe all week long or
whatever); therefore, we don’t like to call them
systematic errors. Last night John Jaech said that we
should educate people to expect statisticians 10
disagree. The interpretation of data is something
where there’s much room for disagreement, more so
than we like to see many times, but on terminology we
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ought to be able to come to an agreement. I say red,
| hope other people know what I mean: and if | say
bias. 1 would like them to know what | mean: and il
they say bias or systematic error. I'd sure like to know
what they mean. | really think we ought to have some
terminology we cun all agree on, even il we do
disagree on how to interpret data.

Gary Tietjen: 1 would like to thank Jim for that,
and | did misquote him  I'm glad he got up and
corrccted me on that. | wonder if he could make an
additional comment or two about combining these
types of quantities and what theyv, at NBS, feel should
be done.

Jim Lechner, National Bureaw of Stwendards: Most
of my practicing career. which has been longer than |
care to admit, has been spent asa probabilist. and not
too much as a statistician. 1 don’tspeak fromlots and
lots of experience computing dati: however. Fve had
some. As a gencral rule, NBS strongly pushes the idea
of stating your systematic errors separately [rom vour
random errors, not trying to combine the two,
because the way they should be combined depends on
the use to which you are going to put the results,
There is one particular case | will mention. A scientist
at NBS came up with a value for, not a basic physical
constant. but a definite something that has a true
value  however you want to define true value  of
two orders of magnitude better than had been known
before. | got his paper. which had a discussion of the
systematic and the random errors. for review, and we
had to knock some heads together before we could
came up with something we both could agree on. In
there he had random errors of which he could
estimate the variance by his internal repetitions, He
also had random crrors which were constant
throughout his entire experiment. Nevertheless, they
are random crrors. and he knew the variance in this
case because he had worked with the same apparatus
so many times and in so many different ways, He
knew there were components of error in there, but he
knew how they varied from experiment to experi-
ment. so he could say., | have in here one component
of error; | have only one: if it in there. its in the
whole set of experiments. so 1 can’t have any hint
internally on what it is. However. there’s a random
draw from the distribution which is cssentially
normal between zero and variance, so he should
include that in his random crror. You can have
random crrors which look like systematic errors for
your entire set of runs. but you've got to know what
you're doing. Basically, vour answer for thatis don't
try to combine the systematic and the random crrors,
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L.et the reader combine them the way he knows is best
for his usc.

Keitlr Zicgler, Los Afamos: T want o get away
from the subject of bias and systemadc errors,
because 1 don’t understand them. 1 would like to
discuss the caleulation of the uncertainty associated
with the MUF. Once of the things Gary talked about
vesterday was the calibration curve. In the ordinary
sense, the calibration curve is written as = ¢+
by = ), because that is the way 1 like to write it. But
you never use the calibration curve in that sense: you
always fall for x as equal to something in terms
of v In a rather controversial paper that was
published in Technomerrics not too long ago by
Krutcholf, he advocated that you can get a smalier
mean square error it you will not do this type of
calibration but actually sct v = ¢+ d(v — 1): proceed
as though y were the independent variable and x were
the dependent variahle, ard complete the caleulation.
I would like to suggest that people look at this very
strongly when they are caleututing their MUF.
beciuse it is much casier to caleulate the variance on
this quantity. and it does seem to give a smaller mean
square error. As | have said. this particular paper
created quite a controversy when it came out. There
was lots of rebuttal and argument as to why this
wasn't a really good method. However, when the
simulation is studied. it is a pretty good method.
Because of all the other approximations that go into
calculating the MUE 1 think that this would beaven
minor perturbation on the total caleulation.

Now we will not fead the audience to believe that |
do not talk to Gary, Fknow thatGary is fudlv aware of
my views on this, and so he has indicated these ideas
at Los Alamos Scientific Laboraiory.

Lincoln Moses, Stanford University: lnher Ph.D.
dissertation, Katherine Lamborn considered two
problems. One of them was the Krutchoff paper. She
had theoretical arguments indicating that the results
he had arranged to be published were quite true, but
if vou reached outside that range (her analytical
results conlirmed her simulation was lor the range
she chose), everything went o hell in a handbasket.

Svivester Suda, Brookhgven: 1'd like to comment
on Keith's statement regarding the smaller mean
square error. in this propagation of error and
LEMUF analysis you've got to be careful about
actually secking the smallest mean squarc error,
becausce these numbers will be used against youif you
claim your measurcments are too good, and the
inspection facility shows up and samples one of the

kinds of things that you measured. We are going to
have 1AU inspectors in U.S. facilities shortly: the
determination of whether vou have made an
inaccurate statement of your inventory will be based
on how many of these dil(erences they discover.
Therefore, it is not the small or mean square error
that is something you look for. What vou need is a
realistic estimate of how well vou arc measuring, so
that you are not being cooked in your own juices
because you've claimed a smaller limit of error than
you really havc.

Reith Ziegler, Los Alumos: 1 guess that I am a
little bit in disagreement with the other statistieian. 1
would like to come up with the best estimate but the
smallest mean squarc error. Part of the purpose of the
whole safeguard program is to attempt to dctect
diversion if there is diversion. So vou would like to
have the smallest reasonable mean square error that
you could get, if you're really going to be looking at
diversion. It’s not the statistictan’s role. as I'see it. to
come up with a wide error just so you can explain the
MUF.

Carl Bennett, Barrelle: 1 just want to say to Keith
that my problem with MUF’s over the years has not
becn with the lack of significance. My problem has
been to explain the fact that almost 50% of them
usually turn out to be significant. In other words. |
gucess what happens in this business of using MUF as
an index of diversion is trying to climinate the things
from that-- particularly biases, and frequently other
sources of error and variability —that tend to make
the rather synthetic variances we create so the use of
things like LEMUF and so forth are considerable
underestimates (and this may be what Syl was talking
about) of what the true variability in a measurement
is. You can go through life as a statistician ina chem-
plant trving to explain why we had significant MUF
and why we had MUF that was not consistent with
the errors that should have been assigned. Thereare
many notable cxamples of fairly significant chemical
advances and process advances that have comc out of
the analyses of these significant MUF, particularly
MUF which persisted in being significant for lets say
12 months or 24 months in succession. It is this kind
of information from the data that says, “Yes, you do
need a consistent error of cstimate; you need a
consistent error, or you need a good knowledge of
what your measurement error is and how well you
can trust these things.” From then on you have to
explain all of the other sources of both variation and
bias which cnter into that index.



Generation of a Typical Meteorological Year

I J. Hall and R. R. Prairie

Sandia Laboratorics
Albuquerque, New Mexico

ABSTRACT

Technology in solitr encrgy is moving very rapidiy. I-orany given solar energy system an important consideration
is its performance. There are nmuny methods available for assessing performance, all of which require meteorolagical
input. Thus. a question that is asked is how well will a given sokur energy sy stem perform over a typical year lora given
focation. Our probient is 1o develop a typical year. A typical year will not be an average but will be a profile ol typical

fluctuations that occur in weather over a period of time.

There are data available from twenty-six different locations. Each location has bourly data on six different
meteorological variables over a number of years. Qur intent is to develap a model that represents the joint behavior ol
the six variables and that can be used for generating a typical year. A set of criteria will be developed based upon the
data, and the generated typical year will be checked according to the eriteria.

SANDIA ENERGY ACTIVITY

The management structure at Sandia has scven
vice-presidents. Underthe Vice-President of Rescarch
there isa Directorate of Energy and Systems Analysis
which has most of the nonnuclear energy work. This
Directorate is made up of three departments (Fig. 1):
the Solar Energy Department, the Geocnergy
Department, and a Systems Analysis Department.
The projects in these departments include a total
energy program generating both electricity and heat;
a solar thermal test tower; wind turbines; and
research in the areas of photovoltaic technology.
geotechnology, oil shale and drilling technologies.

DIRECTOR OF ENERGY PROJECTS
AND SYSTEM ANALYSIS

® SOLAR ENERGY DEPARTMENT

® GEOENERGY DEPARTMENT
® SYSTEMS ANALYSIS DEPARTMENT

Fig. 1. Sandia energy directorate.

and technical management of DOE's solar irrigation
efforts. About 350 people arc working in these
areas.

SANDIA PARTICIPATION IN DEVELOPING
A TYPICAL METEOROLOGICAL YEAR

A few years ago, a colleague in the Solar Energy
Department discussed with members of the Statistics
Division some of the statistical problems that he saw
in the solar energy area. Onc problem was the lack of
direct normal (DN) radiation data. Direct normal
radiation is the energy that is received directly from
the sun and does not include the diffuse radiation—
radiation received from the clouds, for example.
Twenty-six weather stations had collected total
horizontal radiation data. Total horizontal (TH)
radiation (DN plus diffuse) is the energy received ona
flat plate horizontal to the earth’s surface. The
majority had not collected DN; however, a few
weather stations (Albuquerque, New Mexico; Bilue
Hill, Massachusetts; and Omaha, Nebraska) had
both DN and TH radiation data. The availability of
these data allowed us to establish an empirical
relationship between the TH and DN values for these
three locations. This empirical relationship made
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possible the construction of maps like the one shown
in Fig. 2a. Figure 2b shows the isopleths of TH
radiation for January. For some time, TH maps of
this nature have been available. Examination of the
TH map shows that the isopleths have a tendency to

bc in an cast-west direction across the United
States. As shown in Fig. 2a, some of the DN isopleths
have a tendency 1o lie in a north-south direcuon. The
map indicates that the northern latitudes receive
:nore DN radiation than one might expect by looking

A2

Sead
= f
T
f‘ 3.5

v

®) 3.0

radiation.

]

Fig. 2. Solar radiation for January (kilowatt-hours per square meter). () Mean daily direct normal radiation; (&) Total horizontal




only at the bottom map. The large amount of
northern DN radiation was somewhat of a surprising
result 1o us.

Contact with personnel in the solar energy group
continued after the above-mentioned project was
completed. Earlier this vear our colleague in this
group suggested that we submit a proposal to the
DOE 1o generate a typical meteorological yvear
(TMY). The proposal was aceepted. and we are now
in the process of selecting a method to generate a
TMY. The motivation for a TMY comes from the
need for a common weather data base for cach ot the
26 stations so that energy systems can be sized and
compared.

DATA BASE

The existing data base, 10 be used for the genera-
tion of the TMY. cousists of hourly meteorological
measures on five variables—dry-bulb temperature,
dew point, TH radiation, wind sjeed, and wind
direction. There are [2 years of hourly data available
plus a few years of 3-hrdata. The data areavailable at
26 weather stations. The map in Fig. 3 shows the
locations of the weather stations. A TMY is to be
generated for each of the stations.
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The Nadonal Climatic Center m Ashelie. North
Carohina, has had the responsibility of “rehabih-
tating™ the duta from cach ol the locations o we do
not have the job of “cleaning it up.™

CRITERIA FOR SELECTING A TMY

One of the problems 1o be faced in developing a
TMY is to decide on what indexes might characterize
a typical year. Asa first step. some summary statistics
were obtained. For the dry-bulb temperature. dew
point. and wind velocity variables, the mean and the
variance were calculated. Also caleulated were daily
minimums. daily maximums, and daily ranges. Dis-
tributions of these variables werce determined. an
example of which is given in Fig. 4. This figure shows
the distribution of the dry-bulb daily maximum
temperature for January 1953 at lLake Charles,
Louisiana. The data consist of 372 readings- -the
daily maximum temperature for 12 vears. The per-
centages are also given and are shown in Fig. 4.
Distributions for the other variables and other
months are being gencrated for all the Jocations.

For the solar radiation variable. daily total
radiation is calculated and its distribution and
summary statistics are determined.
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Fig. 3. Solar radiation rehabilitation stations,
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Fig. 4. Distribution statistics of January daily dry-bulb temperature maximums for Lake Charles, Louisiana, for 1953-1964.

In addition to these statistics, persistence was also
determined. Persistence refers to consecutive days
possessing a given characteristic, such as five
consecutive days of cold weather. A solar engineer
has to worry about such strings in designing a solar
system. How much storage he needs to build into his
systemisaffected by such strings. Persistence has been
measured by runs of days possessing a certain
characteristic. Figure 5 gives the number of runs of
“cold days™ for the years 1953-1964 for Lake Charles,
Louisiana, in January. Here, a cold day means that
the daily minimum temperature is less than the 25th
percentile over all 12 years. Figure 5 shows. lor
example, that twice in January 1961 the minimum
temperature was less than the 25th percentile for two
days in 4 row and once it was less for three days ina

row. From the information in the figure. we cun
calculate the average number of runs peryvearand the
average run length,

Figure 6 gives similar information on the number
of runs in which the maximum wind velocity
exceeded the 75th percentile of the maximum wind
velocity distribution.

In addition to single-variable persistence, two-
variable persistence is important. Figure 7 shows a
two-way table for temperature and radiation. The
blocks with X's are the pairs which are of primary
interest, The lower left X indicates days in which both
the temperature and radiation is low—a cold and
cloudv day. ’

Figure 8 gives the number of “cold and cloudy™
days. Here cold means the minimum daily tempera-
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Fig. 5. Run length frequencies of January daily dry-bulb
temperature minimums less than the 25th percentile for Lake
Charles, Louisiana.
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Fig. 6. Run length frequencies of January daily dry-bulb
temperature maximums greater than the 75th percentile for Lake
Charles, Louisiana.

ture was less than the 25th percentile. and cloudy
means the daily radiation was less than the 25th
percentiie. The figure shows that there was one two-
day period in which the weather was cold and cloudy.
Figure 9 gives the number of runs of sunny (daily
radiation greater than the 75th percentile) and cold
(daily minimum temperature less than the 25th
percentile) days.
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Fig. 7. Joint persistence of dry-bulb temperature and solar
radiation,
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Fig. 8. Run length frequencies of January joint minimums of
solar radiation and dry-bulb temperature less than the 25th
percentile for Lake Charles, Louisiana.

METHODS FOR GENERATING A TMY

To understand what is to be done, it is useful to
look at some data in terms ofa time series. In Figs. 10
and 11 two such plots are shown.

One approach for constructing a TMY is purely
empirical. “Empirical” means that existing segments
of data are selected according to some criteria and
then pieced together to form a year. For example, the
month of January 1963 may be typical for all the
Januarys for which we have data, which is mated with
February of 1955, etc., for a given location. This
approach has the advantage of using actual data and
of avoiding the mathematical difficulty with the
correlation structure.
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Fig. 9. Run length frequencies of January joint minimums of
solar radiationand temperature greater than the 75th percentile for
radiation and less than the 25th percentile for temperature for Lake
Charle., Louisiana.

A second approach is to fit the data with auto-
regressive-type models and then generate weather
data based on the model. Figure 12 shows two models
which have been tried for the temperature data. The
H.(i=1,...,24) in the model 1 isan hour effect, and
the rest of the model consists of autoregressive terms
which attempt to relate the present temperature to the
temperature of (¢} 1,2, and 3 hrago, () 23, 24,and 25
hr ago, and (c) 47, 48, and 49 hr ago. Model 2 in the
figure contains trig functions to account for the daily

cycles. Both models have been used to fit the Lake
Charles temperature data for all vears. The fits have
been very good, R =098, o =0.8. Model 2 contains
fewer parameters than the other model. Figures 13
and 14 give examples of simulated results from both
models. The models were based on 1957 Lake Charles
temperature data. The simulated results do not
appear to be unreasonable.

PROBLEMS

1. What criteria should be used to determine when a
reasonable mode! has been determined? In Fig. 15
one method is shown,

2. If a model is selected. how should a typical year be
selected? In Figs. 16 and 17 some ideas are given
for comparing generated radiation and tempera-
ture data with actual data.

3. Wind direction: How do we handle the variable in
which a wind direction of 2° and 359° are almost
the same but yet are numerically quite different?
Figure 18 shows a summary of wind direction for
Lake Charles in July. This tvpe of summary may
or may not be useful.

4. Multivariate time series: We have five simulta-
neous weather measurements or a multivariate
time series. How do we correctly model these data?

5. Howdo we know when we have a typical year? We
need to know what parameters will characterize a
T™MY.

6. How do we combine data over years? Do we take
averages or should we do something else?
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Fig. 10. Plot of dry-bulb and dew point temperature for January 1953 at Lake Charles, Louisiana,
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7. How do weuse 3-hrdata?Our TMY mustbconan 8. How do we adjust for long-term cycles? Perhaps
hourly basis. One possibility is to use the 12 vears 12-15 years of data are not enough to detect any
with hourly data and forget about the 3-hr data. long-term cycles.
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Fig. 11. Plot of solar radiation for January 1957 at Lake Chatles, Louisiana.

Model 1: Xy =+ Hj +B1Xs_q + faXe_2 + B3Xr—3 + faXr_23 + B5Xr—24 + B6X¢—-25
+B7Xe-47 +BaXr—ag + BoXi—ag + €, fori=1 {mod 24) .
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]
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Fig. 12. Autoregressive models used to fit temperature data,
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Fig. 13. Simulation results from model 1 based on Lake Charles 1957 temperature data.
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Fig. 14. Simulation results from model 2 based on Lake Charles 1957 temperature data.

3
(Model 2: X,=a+ T {a cos wia + b, sin wy) + BiXew + foXi2 ¥ Bz + BaXen + BiXean + Bukiw + &,
i=1

where wy = 27,24 , w2 = 2my12 Land wi = 2/6 )
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¢ GENERATE 12 YEARS OF DATA

® CALCULATE SUMMARY STATISTICS AUTO-
COVARIANCE AND PERIODOGRAM

¢ COMPARE WITH 12-YEAR DATA SUMMARY
STATISTICS AUTOCOVARIANCE AND
PERIODOGRAM

¥p = DAILY MEAN; Y () = DAILY MAX
Y1) = DAILY MIN; B =Y ) — Y(1)

FOR OUR TMY CALCULATE
Vin). 5% ). HISTOGRAM OF ¥y

AUTOCOVARIANCE AND PERIODOGRAM OF
DRY-BULB TEMPERATURE

NUMBER OF RUNS OF Yy ABOVE £g 75
AVERAGE LENGTH OF THESE RUNS

DO SIMILAR CALCULATIONS FOR OTHER
VARIABLES
COMPARE WITH DATA VALUES

Fig. 15. Criteria to check adequacy of model.

Y = TOTAL DAILY RADIATION
FOR OUR TMY CALCULATE

¥,s2, HISTOGRAM OF Y
AUTOCOVARIANCE, PERIODOGRAM

NUMBER OF RUNS OF Y ABOVE £ 75
AVERAGE LENGTH OF THESE RUNS

NUMBER OF RUNS OF Y BELOW & o5
AVERAGE LENGTH OF THESE RUNS

COMPARE WITH DATA VALUES

Fig. 16. Criteria for selecting simulation results from solar
radiation.

Fig. 17. Criteria for selecting simulation results from dry-bulb

temperature.
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Fig. 18. Wind direction frequencies for July in Lake Charles,

Louisiana.



Problem Discussion 2, Part 1: Generation of a Typical Meteorological Year

Irving Hall and Richard Prairie, Sandia Laboratories

frving Hall: 1 don’t have very much to say that |
didn™ say vesterday. Therc is one thing that I want to
emphasize: I mentioned that our data base is from 26
sites. Now we visualize making a standard meteoro-
logical year for cach of these sites; we aren’t going io
make one for an entire year for the whole country or
something like that. There will be one data-base vear,
typical year, or whatever you want to call it, for each
of the 26 sites. If you have your handout, [ had a view-
graph of that.* but I didnt have one of a specific
problem that we are interested in. The first one is
wind directions. Somebody did mention a possible
way of handling this problem yesterday. We thought
that we understood it at the time. but then we got to
looking it over afterwards; either we misunderstood,
or I'm not sure it is going to work! But if somebody
has some apt comments on any of these things—this
multivariate thing—1 don’t know exactly how they
are going to handle it, but maybe there is a
straightforward way. Just a little aside here: |
mentioned yesterday that I talked to a meteorologist
who has done some work for the State of California.
One thing he told me was that a statistician couldn't
do tiis job.

Dave Gosslee, Union Carbide Corporation,
Nuclear Division: In handling meteorological data or
other data that are in a similar form, we want to
look at two-dimensional space. There has been
quite a bit done with the circular normal distribu-
tion, and I think you came up with uniform circu-
lar distributions too. 1 haven’t done this since 1
left some work I did with some climatologists quite a
few years ago, so | don’t have anything up to date on
that. But there certainly are things that can be done,
and there is considerable literature about circular
normals; whether these would be normally dis-
tributed circular-or not, 1 would have no idea.
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Francis J. Anscombe, Yale: In the presentation
yesterday, I think there was not really any discussion
of the purpose of simulating a standard metcorologi-
cal year. 1 suspect that if a standard vear has been
chosen, it will be used for a variety of purposes.and 1
suppose that these purposes would indicate -ather
different criteria for what would constitute a suitable
standard. [ could imagine that one use of the standard
meteorological year would be for testing various sorts
of theories. For that sort of purpose, I think one of
the requirements should be that some few important
variables should average out right for that site. 1
could imagine that it would be desirable to average
the total amount of solar energy received. which
should come up about correct, and the average
amount of rainfall in that year should come out to be
about the average rainfall for the region. However, if
one were to define a standard meteorological vear in
which every possible variable was averaged, let’s say
for the date October 28, you have the average rainfall,
average amount of sunlight, average speed and
direction of the wind, and so on like that, over many
years. In that way, you will altogether compile a year
which is fantastically untypical! As I said there will be
no storms and none of the variability which is
ordinarily perceived. If the purpose of a standard
year is meant to be typical weather, it certainly can’
be the mean weather. More than a hundred years ago,
there were very intense discussions about what is the
average man—the mean man, and it was pointed out
that if you average all the physical dimensions of a
man you may get a description which doesn’t cor-
respond to any real man at all. There is obviously a
conflict between means, or averages, on the one hand
and modes on the other hand. I would suppose that

*1. J. Hall and R. R. Prairie, these Proceedings, Fig. 2.




the objective should be to have a year that in some
ways is more or less the mean for certain important
variables. but otherwise it is much more the mode
than the mcan, The mode for the joint distribution
for all these variables may casily be quite a long way
from the mean.

Corwin L. Anwood, EG&G Idalio: The fact that this
vear will be used for different purposes will be
another rcason for trying to persuade the funding
agency 1o accept a collection of several typical years
and a couple of extreme years cold ones or
wet ones or something.

Ram  Upputuri, Union  Carbide Corporation,
Nuclear Division: Many questions went through my
mind when I heard the talk vesterday. and 1 was
thinking about this important problem of standard
meteorological data and about defining the concepts
like typicul meteorological year. The first question
that went through my mind was “Is it as hard 1o
define a typical meteorological season as 4 meteoro-
logical year?” Maybe that is a helpful question for the
people who are involved in policy decisions and
might lead to the concept of a typical meteorological
vear. When we start thinking like this, I would liketo
break it down further: “*Ata particular site, is therea
typical meteorological day?” Maybe we should try to
build it up from information which we have. If you
persist and try to usc the p.d.f. runs, you may run
into the problem of independence and dependence.
People have to handle these ‘problems using finite
Markov chains to look for the transitions or for peak s
of a different nature when you are looking at
problems about persistence.

More than anything else, the concept of a typical
manner of year needs to be defined. It is not clear to
me how one defines a typical meleorological
timespan (whatever the unit of time may be). Does
this mean that we are thinking of particular plus or
minus sigma limits? or does it mean, as Professor
Anscombe pointed out, the modal frequency of a
particular variable? Perhaps a greater effort should
be made to define the terms; depending on the
definition, we have the kind of tools we're looking
for. If you want to use tools like quality control,
maybe vou can define the mean—or perhaps make a
lot of pictures around these 26 sites. [ imagine we can
define *5-10% of the A involved. 1 suppose the
definition has everything to do with the kind of tools
we are willing to get into.

A typical meteorological season is more appropri-

. ate because we will be eliminating, at least, the
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problem of seasonal variation. as well as other types
of complications. More often than not. 1 hear people
trving 1o look at the whole problem at one time and
trving to get a spectral analysis and getting lost a little
more.

Dick Prairie: We are really having great difficulties
with the criteria for deflining a tvpical year. We
thought about mcans and modes and runs and ups
and downs. and we have charts all over the office
trying to look at all these things. We talked to the
energy systems people. and we talked to meteorolo-
gists  hoping we could get some sort of help in
defining what the criteria are. Regarding the typical
vear, we're really thinking now in terms of a typical
month possibly going to a typical scason, which 1
would call the weather season (e.g., summer: Junc.
July. and August). One of the problems we are having
with this whole thing obviously is what’s written. In
one sense we've got too much data., and inanother we
don’t have enough. We've got twelve years of hourly
data. In reality, we look at a simple thing like
temperature, and it varies all over the place from year
to year fora given month and a given location. On the
other hand, there are not really enough years to look
at scasonal variation. In terms of what we're going to
use it for, as Irving pointed out yesterday, people are
sizing various energy systems allof the time. and what
they would like to do is to feed this “typical year™in
the little black box and compare various systems that
different groups have proposed. So that is really the
primary purposc of it. Also this business about upper
and lower bounds of some sort is useful, but 1 don’t
really know what to do there. Suppose we put in a
lower bound of a bad year. but “bad™ has to have
some specific context, that is, it must be bad with
regard to temperature or radiation, for example.
Thus. we have to come up with some sort of
combination of bounds on badness.

The measures we are using include one measure on
solar radiation, two on temperature, and two on
wind - velocity and direction. [ would say, however,
that the biggest problem we have to grapple with right
now is actually 1o set up these criteria (which will in
fact satisfy some people) forwhata really typical vear
is. Obviously it is a problem we will never win
because, no matter what we come up with, somebody
is going to say that it is not typical. One other
thing—-on the modcls that we are trying. the fits that
we're getting are looking pretty good. The standard
deviation that weare coming up with about the model
is like three-quarters of a degree right now, and we've
had some models that we then simulate from and get
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what looks like reasonable results to us. Of course
weve had some where we've found out that Louisiana
gets down o —250°C - which we feel is probably
slightly atypical at this time.

Dave Gosstee, Union  Carbide Corporation,
Nuclear Division: 1 just want to comment on some of
the problems that 1 was involved in some time ago.
With respect to the work of your people in Ashe-
ville  now be sure that you don’t read that as Nash-
ville; Nashville, Tennessee, has a lot of records too
hes talking about Asheville, North Carolina, where
the weather burcau has stored a lot of data. H. C. 8.
Thom (Herb Thom) is a statistician-climatologist,
and he laid down a lot of methodology for some
regional, chronological studies. His typical wecks
went from March | to March [ to avoid the leap year
and the short week: thus, the first weck of the year
was March | through March 6. There is certainly
nothing wrong with thinking in terms of other thana
chronological year. We were talking about the rain
vear yesterday, which 1 think they said went from
October | to October 1. We would try to establish
distributions for these observed variables, whether
they be heating-degrec days, cooling days, maximum
temperatures, and so forth, and this will give you the
transformation. We need to try to put out totals of
means, medians, and various percentiles. Now 1 don't
know whether this kind of thing really is what we're
looking for or not, but there certainly is a lot of work
that can be leaned on there and used as a starting
point. Dr. Uppuluri brought up a point of persis-
tence. Does anyone have a comment on how to
handle that?

Lincoln Moses, Stanford: This idea is not really
fully bakcd: but suppose that one chose an interval
likc a month or [ike ten days (one must make a choice,
and I can’t say anything about what would be smart)
and then chosc from the 12-year battery a random
choice for January and a random choice for February
and so forth. Now this will not bea typical year. butit
can’t help but be more or less representative of the fast
12 years’ weather. It will contain most of the
persistence; you get breaks at the month intervals;
and if it were casy to do (as it might be), all kinds of
guestions of multivariate things will have been solved
simply by the way the weather gets made in that area.
You can do lots of these “representative” years and
get an idea of what the variation was with very little
theorizing. However. you would be bound by your
12-year period, and in the case of a drought interval
or something, it would not show up, but it would be
there.

David Rubinstein, Nuclear Regulatory Commis-
sion: Essenltially onc can establish distance functions
between ycars or months, whatever is regarded as
suitabl: -months appeal to me more than vears, The
distance function would combine. let’s say. the
difference of the mean temperature or difference of
the number of runs. whatever value we are concernced
with, Once thedistance function is established, we can
compare each year in terms of the distance function
with every other year and pick the year that was the
smallest sum of the distances or something of that
sort.

Ronald Thisted, University of Chicago: One of the
nice things about these discussion sessions is that we
can make suggestions and then leave. I'm very
sympathic to the remarks of Professor Anscombe.
Dr. Atwood, and Professor Moses. Already over-
month boundaries persistences are ignored. [ think
that is right. Look at January: if there is a cold spell
that runs from January 28 to February 3. that’ not
picked up. So, there’s no real loss in picking random
months as far as persistence. because that's already
considercd minor. It seems to me that one of the
problems you're facing is that you have a program
which simulates years fairly well. It's consistent with
the data you have, and you want to know which of
these to pick out asa typical year. Germane remarks
have been made to the fact that typical years are not
things that we should fix on. If we buy a house for the
energy demands of a typical year, we may face the
same problems that would occur if we built houses for
typical families which have 2.3 children. It is very
hard to find housing that fits a seven-member family.
We may be in the same position of having houses that
might withstand extreme weather or be overbuilt for
nonextreme weather, which aren’t really atypical—
just not near the middle. First of all, I think the
statistician has an obligation to inform the contractor
that what he is asking for may not really be what he
wants. Sccondly, you have very good programs,
apparently, that simulate years; why dont you
provide the contractor with a program which would
generate typical years, that is, generate a year's worth
of data which is consistent with the last 12
years-- that’s very much the spirit, 1 think, of
Professor Moses's remarks---where your data actu-
ally follows from the 12 years but is not tied to any
one. Pcople could use this information. Because
everybady wouldn't be looking at the same year,
cvery so often, somebody will get something that’s
just atrocious, like last winter perhaps. I think that’s
good.



W uliam Conover, Texas Tech: My suggestion is
just a political one, because everyone has agreed that
there is no such thing as a typical meteorological
year. | think it might be a good idea to avoid thosc
words. No matter what you come up with. people are
going to attack you and say, “That’s not a typical
meteorological year.” There is no such thing; we've
never had a typical day in weather anywhere that I've
been. You might want to decide upon another name
and that may solve a lot of your problems. You may
want to call it a random meteorological year. a modal
meteorological year, a mean meteorological year, or
a computer-generated meteorological year, and each
of these would have different purposes. If you are
going to decide whether to fund a solar evergy
project. nobody will make that decision on a
computer-generated meteorological year or a ran-
dom meteorological year. Funding agencies want you
to use something more stable, beeause someone will
say that it wasn’t fair to use that vear to compare their
site with somebody else’s site. That year had a bad
storm in it, and it’s not something you can expect
each year. Your purpose will determine the name you
ought to use; then decide what parameters you want
to work with, and define these parameters. Do you
want first-order serial correlation to be one of your
parameters. Take an example from the Rand
Corporation random normal deviates. They don’t
make any claim that there's no serial correlation, and
to people who come up and say, “Oh, there’s a serial
correlation in these normal deviates,” they say.
“That’s all right; we didn’t say therc wasn’t. We just
said that if you plot them out, they plot like a normal
distribution.” So make your foundation fairly firm,
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and then vou'll withstand any criticisms that may
come around.

Wes Nicholson, Battelle: 1'd like to recmiphasize
what Conover just said and possibly relate it a little
bit to what John Jaech said the other night in his
clegant comments. This reminds me a little bit of the
problems that you're faced with when you consult
with metallurgists, and they can only take a few
samples. and they want you to find them a
representative sample which has all the different
kinds of properties in it that they may face when they
look out in the real world. They would like to test a
few representative samples and find out the strength
of the materials. It’sthe same problem that is fuced by
the biologist when it is very expensive to prepare
sections; therefore. the biologist wants to find that
sacred section which will allow him to scan across it
with his microscope and find all the different kinds of
anomalies that there could be in the material. This is
not a new problem. It’s just phrased in a new area,
and I'm wondering if maybe this isn’t one of those
points where we have to bite the bullet, stand up.and
say “Well, folks, if what you really want to do is
simulate what’s going on, you cant do it with
something on the average, and vou've got to look at
the problem as being a distributional problem first of
all.” We know how to give you good estimates of
distributions, and we can tell you how to play games
with these distributions, depending upon the ques-
tions that you want to answer, but you can’t really
answer very many real-world questions by looking
for things that are typical.
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ABSTRACT

The statistical analysis of environmental data presents many interesting problems when the data are taken under
field conditions where it is difficult to control fuctors that may have an effect upon a particular response variable. This
pueper presents different approaches to the analysis of data froma field experiment that examined the influence of adult
density on production of a calanoid copepod zooplankier, Problems are presented involving the analysis of these data

using regression and principal components regression.

INTRODUCTION AND SUMMARY

There are many difficulties associated with the use
of regression techniques to analyze data from
undesigned experimental contexts. For example, the
parameter estimates may be unsatisfactory, or mean-
ingful inferences may be difficult to make. The
problem to be considered in this paper resulted from
a collaborative effort of the authors to analyze data
from a field experiment that examined the influence
of adult density on reproduction of a calanoid
copepod population. The data consisted of observa-
tions on clutch size, female size, adult density, and
water temperature from samples collected in a pond,
representing a closed ecosystem during a full repro-
ductive cycle. The next section of this paper contains
a detailed description of the experimental back-
ground and a statement of the objectives or goals of
the original experiment.

138

Preliminary data analysis made use of regression
techniques to study the population dynamics of the
zooplankter. Starting with a complete second-order
polynomial regression model in terms of factors
related to female size, adult density, and water
temperature, the variation in the observed clutch size
(i.e., number of eggs per brood) was reasonably
explained by a linear model containing ten terms. In
addition, heterogeneity of variance and lack-of-fit
tests were performed to conclude that it was reason-
able to assume the observed number of eggs per
brood was a Poisson random variable. The regression
analysis was then done on the second-order model
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contract W-7405-cng-26 with the Union Carbide Corporation.
ESD Publication No. 1108, Environmental Sciences Division,
Oak Ridge National Laboratory.



using weights appropriate for Poisson-distributed
data. This type of analysis made it possible to test for
the adequacy of the polynomial approximation and
the assumed Poisson distribution. The details of this
analytical approach are presented later.

As an alternative to the regression analysis de-
scribed above, principal components regression was
used for analyzing the relation between clutch size
and the factors related to female size, adult density,
and water temperature. This procedure involved
obtaining the principal components of the set of
standardized explanatory variables and then cal-
culating their regression upon the clutch size variable.
Correlations of these principal components with the
original explanatory variables assisted in yielding
physical interpretations. A total of nine explanatory
variables were used to obtain a new set of nine
principal compcnents. Various selection procedures
were used to reduce the number of components in the
final regression model and also to reduce the number
of original explanatory variables without sacrificing
the ability of the regression model to explain the
observed variation in clutch size. The details of this
procedure are presented later.

The results of the regression analyses are presented
and compared, and in the last section, conclusions
from the analyses are summarized. In addition,
problems resulting from the analysis are stated, and
alternative methods of analysis are solicited.

BACKGROUND AND OBJECTIVES

Zooplankion are an important component of lake
and pond ecosystems. serving as an intermediary in
energy flow between algae (e.g., phytoplankton) and
fish. One group of zooplankton, calanoid copepods,
is extremely important in large bodies of water, with
the genus, Diapiomus, often being the most
abundant of the microcrustacea.' These organisms
(diaptomids) are primarily herbivores (ie., eat
plants—in this case algae) and detrivors (i.e., eat
decomposing organisms), and in turn, they are
consumed by larval and juvenile fish. Changes in
diaptomid populations, consequently, could quite
possibly affect the type and quantity of fish found ina
lake.

Their vital role notwithstanding, knowledge con-
cerning the general biology, environmental require-
ments, and interrelations of this group within the
ecosystem is woefully inadequate. It has not been
possible to state what role past changes in water
quality have had on these organisms, and hence, no
prediction can be made concerning what might occur
as a result of future changes in water quality.
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A substantial research effort was conducted from
1969 through 1972 to gain insight into the ecology of
one diaptomid. Digpromus clavipes. This study made
use of laboratory and field investigations and was
designed to determine what role various factors suck
as water temperature, food, pH, alkalinity, etc.,
played in regulating populations of these organisms.
Additionally, such organismic and population vari-
ables as age class distribution, reproductive rate,
female size, and adult density were analyzed for their
roles in regulating the populations.”

The field study was conducted over an entire
reproductive year (February through October) with
random samples collected on each sampling date.
During the colder months of the year the population
is composed only of adults with no immature stages
present. Consequently, it was relatively easy to
determine how many young were being produced and
how they were developing. During the course of the
vear five distinct generations were produced.’ The
major concern in this study was with those animals
that reached adulthood during this one reproductive
year. From previous knowledge, it was realistic to
assume that the first of these animals reached adult
form in early April. Consequently. while data from
February and March were available they have been
excluded from this study.

Preliminary evaluation of data showed that clutch
size was the most important determinant regulating
population size” and that water temperature, adult
density, and female size were the three primary vari-
ables affecting clutch size. The purpose of this study
was to determine to what level these three variables
explain changes in clutch size and what is the relative
importance of each of these variables as a deter-
minant. With the goal and purpose of the experiment
formulated, the objective of this paper is to describe
the ways used in attempting to elucidate the role of
these variables or factors in regulating clutch size in
Diapiromus clavipes.

In the statistical context, this problem involves
exploratory analysis dealing with interrelations
between variables. More specifically, the purpose is

1. Andres Robertson, Carl W. fichrs, Bryan D. Hardin, and
Gary W. Hunt, Culnuring and Ecolog: of Diaptamus clavipes and
Cyclops vernalis, Report EPA-660. 3-74-006. U.S. Environmental
Protection Agency. 1974,

2. C. W, Gehrs, Aspects of the Population Dynamics of the
Calanoid Copepod, Diaptorrus clavipes Schacht. Ph.D. thesis.
University of Oklahoma. Norman, 1972,

3. Carl W. Gehrsand Andrew Robertson. * Use of Life Tables in
Analyzing the Dynamics of Copepod Populations,” Ecology 56(3):
665 72 (1972).



140 J. J. Beauchamp

to explore ideas for analyzing the relation between a
response variable (clutch size) and a set of explana-
tory variables (female size, adult density, water
temperature).

ANALYTICAL APPROACHES

Description of Data

At cach sampling date the following variables were
recorded:

* Wuter temperature. In addition to the actual water
temperature at the sampling tine, estimates of two-
and four-week delayed water temperatures were
recorded. These delayed water temperatures might
affect development (ultimate animal size) during
the carly formative stages. An average water
temperature for the four-weck period prior to the
time of sampling was calculated by fitting a
quadratic function 10 the sampling, two-weck
delayed and four-week delayed water temperatures
and then calculating the average value of this
function over the four-week period.

e Adult density. The adult density was the average
number of adults per liter recorded from the
samples at cach sainpling date, and the log of the
density was used in all subsequent analyses.

e Female size. The average length of the sampled
temales was used as the measure of female size.

In addition. for cach of the sampled females with
clutches, the number of eggs in cach clutch was
recorded. Tahle | contains a complete listing of the
explanatory factors and response variable. Because
the main objective of this study is concerned with the
dependence of the average number of eggs per clutch
(response variable) on the explanatory factors, a
regression equation relating the response variable to
the explanatory factors appeared to be a logical start-
ing point in analyzing these data.

However, before the regression analysis was
performed. testing determined if it was reasonable to
assumc that the observed number of eggs per clutch at
cach sampling date followed a Poisson distribution.
The first test was a heterogencity of variance test and
used the following statistie to detect extra-Poisson
variation: ‘

(= 1y LR (H

where

= number of clutches obscrved.

i

- = sample variance of observed clutch sizes,

b2

r=sample average of number of cggs per
clutch.

Under the null hypothesis assuming Poisson vari-
ability, Eq. (1) should have a chi-square distribution
with (s7 — 1) d.f. The results of this test are sum-
marized in Table 2. Although the results of this test
were not significant (£ > 0.05) in 21 of the 25 sam-
pling dates, the overall pooled test indicated the
presence of extra-Poisson variation that should be
considered in subsequentanalysis. In fact, when some
“suspect™ observations in Table 1 arc omitted, the
overall chi-square value reduces 10 156.06 (d.f. = 149)
which is not significant (£ > 0.05). The second test
was a goodness-of-fit test assuming an underlyving
Poisson distribution and was applied only to those
samples having at least ten observations. The results
of this test, and the pooled chi-square value, are
summarized in the last column of Table 2. None of
these tests was significant (£ > 0.05). Therefore, the
Poisson assumption will be used in subsequent
analysis.

Regression Equation

Since no model previously had been derived to
simulate the change in clutch size as a function of the
cxplanatory variables. a second-order polynomial
function of the explanaiory variables was the first
approximation. That is, the expected value or
average value of the response variable was approxi-
mated by

E(r) = Bo+ Buvy + Baxvs 4 Bavy + B,
+ BJZ-\%' + B?.‘h\'%l + Bl}“ll-“.‘l
+ Biaxpysy + Baavava . )

where

average number of eggs per clutch observed
on the /th sampling date. ;

.‘.’

N1, = average water temperature over the four-
week period prior to the ith sampling date.

xy = logarithm of the adult density on the ith
sampling date,

x3 = female size observed on the ith sampling
date.




Table 1. Experimental data

Sampling Water temperature, Aduit density,” Female size,” Number of clutches Number of eggs Avu:."%? r?unjbcr
date x; CC) X3 X3 observed, i per cluich (’cl:“:ﬁ;‘l;r
1 7.26 1.54 102.53 6 38,36,32,31,37,34 34.67
2 7.60 0.81 101.20 2 30,38 34.00
3 7.63 1.44 101.42 7 52,34,40,30,23,34.38 35.86
4 7.10 2,03 100.75 3 35,33,43 37.00
5 9.69 2.69 106.00 4 43,15,38,26 30.50
6 11.30 2.41 102.67 3 20,18,22 20.00
7 11.38 3.72 102.10 9 20,20,18,15,19,18, 18.56

15,19,23
8 11.53 3.53 101.00 3 11,18,19 16.00
9 11.87 1.76 102.00 4 15,28,26,14 20.75
10 10.22 4.87 100.40 7 23,25,24,25,19,7,21 20.57
1 13.55 4,19 99.56 3 25,27,26 26.00
12 17.46 8.11 97.80 4 15,18,20,22 18.75
13 17.78 2.32 100.00 2 11,17 14.00
14 19.98 1.19 95.73 16 15,13,13,15,17,15,11. 15.38
17,16,16,19,15,16,17,
14,17
18 21.95 2.72 99.86 9 28,28,23,34,25,26,26, 26.22
29,17
16 24,44 6.12 99.79 5 19,18,22,12,20 18.20
17 26.10 6.65 96.17 12 12,11,20,11,26,12,14, 15.00
16,13,13,18,14
18 25.18 17.09 94.50 9 13,17,10,25,30,18,10, 16.00
9,12
19 26.84 11.37 93.45 8 12,13,14,11,17,13,17, 13.50
11
20 28.32 11.00 92.53 27 9,12,9,14,12.7,31,11, 10.30
8,8,11,8,8,17,8,8,5.
12,8.10,8.8.10,12,12,
6,6
21 26.09 7.57 89.43 16 16,12,20,12,4,10,11,14, 12,38
15,10,15,16,15,6,15.7
22 23.95 7.20 88.63 6 12,13,14,13,9,17 13.00
23 21.47 2.09 88.33 6 8,14,10,14,14,12 12.00
24 20.59 1.38 94.00 3 21,17,10 16.00
25 17.77 0.39 99.57 2 30,30 30.00

9x, = Inadult density) in text; however, values in the table are the average number of adults per liter.

BUnits are such that itx3 =100, the female size is 2.4 mm,

Say
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Table 2. Analysis of Poisson Variation?

Guoodness-of-1it

S T ¥ mosth < d
1 6 7.87 34,67 1.13
2 2 32.00 34.00 0.94
3 7 81.48  35.86 13.637
4 3 28.00 37.00 1.51
5 4 157.67 30.50 15.51¢
6 3 4.00 20.00 0.40
7 9 6.28 18.56 2.71
8 3 19.00 16.00 2.38
9 4 52,92 20.75 7.65
1C 7 40.62 20.57 11.85
1 3 1.00 26.00 0.08
12 4 8.92 18.75 1.43
13 2 18.00 14.00 1.29
14 16 3.85 15.38 3.75 13.88 (6)
15 9 21.44 26.22 6.54
16 5 14.20 18.20 3.12
17 12 19.64 15.00 14.40 1.46 (4)
18 9 53.50 16.00 26.75°¢
19 8 5.7 13.50 2.96
20 27 24.22 10.30 61.13¢ 5.57(4)
21 16 17.85 12.38 21.63 8.83 (4)
22 6 6.80 13.00 2.62
23 6 6.40 12.00 2.67
24 3 31.00 16.00 3.88
25 2 0.00 30.00 0.00
Pooled x? 209.96” 29.74
d.f. 151 18

p = number of clutches observed: 52 = sample variance of clutch sizes; and y
= sample average of number of eggs per clutch,

50.01 < P < 0.05.
‘P < 0.01.

The first step in applying Eq. (2) to describe the
variation in the observed clutch size involved obtain-
ing the iterative weighted least-squares estimates of
the ten 8% in Eq. (2) using the {ollowing weights:

W= n/([EQ)] . 3)

for the ith observation where »; is the number of
clutches observed on the ith sampling dateand i=1,
2. ..., N. The details of the iterative procedure are
presented in the paper by Frome, Kutner, and
Beauchamp.® Various variable selection procedures
were also applied to regression Eq. (2) in an attempt
to reduce the dimensionality of the estimation pro-
cedure. After obtaining the weighted least-squares
estimates of the B%, the following statistic was
partitioned and used to test for the presence of extra-

Poisson variation and the adequacy of the regression
model:

N om

o= E E _f'nvl(l'u - ,lA'i): .

=1 y=1

4

where
¥y = the observed number of eggs in the jth clutch
on the ith sampling date,
7. = predicted average number of eggs per
clutch on the ith sampling date.
The details of this test are also shown in the article by
Frome, Kutner, and Beauchamp.®

4. E. L. Frome. M. H. Kutner, and J. J. Beauchamp, **Regres-
sion Analysis of Poisson-Distributed Data.” J. Am. Srair. Assoc.
68: 935-40 (1973).



Principal Components Regression

An alternative exploratory approach was applied
by obtaining the principal components of the set of
standardized explanatory variables in Eq. (2) and
then calculating their regression upon the clutch size.
The objective for using the principal componentsis to
find a linear transformation of the explanatory vari-
ables into a new set. which has desirable properties.
Some of the rationale for using the principal
components are (1) the principal components are
uncorrelated with each other. and (2) cach principal
component, progressing from the oncassociated with
the largest eigenvaluc of the correlation matrix of the
explanatory variables to the smallest. accounts foras
much of the combined variance of the explanatory
variables as possible, consistent with being orthog-
onal to other principal components. Massy™ gives a
discussion and development of the necessary statis-
tical methods. In this analysis the principal compo-
nents were calculated from the explanatory variables
standardized to have mean zero and unit variance.

The regression of the clutch size., 1, on the scaled
principal components of the explanatory variables in
Eq. (2) is denoted by

EQ) = vo+ Pyt vaPut 9Py
T yalu + s Pt o Por Ty P
+ "/.\Pm + “/qu . (5)

where

1, = observed average number of eggs per clutch
on the /th sampling date,

P, = pth principal component. calculated from
the correlation matrix of the explanatory
variables, on the ith sampling date, for P=1.
2, ....9%undi=1,2,.... NV

To examine the possibility of reducing the dimen-
sionality of the problem, the following approaches
were considered: (1) the principal components having
the smallest eigenvalues were dropped, since these
would be relatively unimportant as predictors of the
explanatory variables; (2) the components having the
smallest correlation with the observed eclutch size
were dropped; and (3) the principal eomponents
resulting from the reduced set of explanatory vari-
ables in Eq. (2) were used to explain the variation in
the observed clutch size. Weighted least-squares
estimates of the y'sin Eq. (5) orits reduced form were
obtained using the weights of Eq. (3) and the same
iterative procedure. The heterogeneity-of-variance
and lack-of-fit tests were also examined.
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RESULTS
Regression Analysis

In Fig. I plots of the explanatory variables, xi. x,
and xs. against the observed mean clutch size are
shown. Table 3 contains the calculated correlation
coefficients among the explanatory variables and
response variable (clutch size) included in regression
Eq. (2). From this figure and table it is clear that
many of the explanatory variables are highly cor-
related with the observed clutch size. However. it is
difficult to interpret the effect of the explanatory
variables on the response variable because there is
also a high correlation present among many of the
explanatory variables of Eq. (2).
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Fig. 1. Plots of clutch size against explanatory variables.

Table 4 summarizes the results of the regression
analyses using Eq. (2) and reduced forms of this
regression equation. The reduced forms of Eq. (2)
were determined by starting with a single-variable
model, which contained the single explanatory vari-
able having the largest R*-value. This single-variable
model was then expanded to a two-variabic model.
At the next stage all two-variable models are con-
sidered, and the two-variable model is chosen that
gives the maximum R-value for all two-variable

5. W. F. Massy. “Principal Components Regression in Explor-
atory Statistical Research,™ J. Am. Swat. Assoc. 60: 234 56
(1965).
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Table 3. Correlation coefficients among explanatory variables and response variable

Variable Xy X3 X3 xf x-f, x§ X1Xa XyX3 XaX3
Xy 1
X2 0.566 1
X3 -0.778  ~0.415 1
x? 0.989 0.603 -0.778 1
x3 0.671 0.887 ~0.491 0.710 1
x3 -0.783 0416 0.999  —0.783 -0.497 1
X133 0.769 0.934 -0.587 0.816 0.932  -0.590 1
X1X3 0.995 0.558  —-0.711 0.979 0.664  —0.718 0.757 1
X2X3 0.527 0.997 -0.356 0.562 0.868  —0.358 0.912 0.524 1
» --0.758  —0.583 0.681 -0.717  -0.528 0.684  -0.633  -0.741 ~0.561
Table 4. Summary of regression analysis
Tests?
Stage Varjables omitted Nv:;?:;;cff R? Heterogeneity of variance Lack-of-fit Overall
o) * o)
1 Complete 9 0.83 212.03 (151) 2.93(15,151)  273.65 (166)
2 X1Xg 8 0.82 211.96 (151) 2.74(16,151)  273.54 (167)
3 xp and X X, 7 0.81 208.23 (151) 4.03(17,151) 302.64 (168)
4 x3.x3.x,x, 6 0.78 212.24 (151) 3.68 (18,151)  305.45 (169)
5 X2.X3,X3, XX 5 0.78 197.47 (151) 5.68(19,151)  338.56 (170)
6 xg.%3. %3, x3 xx, 4 0.75 199.78 (151) 5.81(20,151)  353.47(171)
7 X3,%3, 83, %1%, X X3, 3 0.71 199.82 (151) 6.98 (21,151) 393.70 (172)
XoX3
8 Xp.X3,X3, %3, X X0, %X3, 2 0.63 192.83 (151) 6.99 (22,151) 389.14 (173)
XaX3
9 X0, x3.%3. 33, %3, x x5, 1 0.58 212.30 (151) 5.23(23.151)  381.56 (174)
X1X3,X2X3

“Value in parenthesis is degrees of freedom. See ref. 4 for details.

models. This model can be thought of as the “best™
two-variable model in the sense of maximizing the
R’-value. This procedure is repeated in subscquent
stages to give the “best " three-variable, four-variable,
etc.. models. Since some variables may be included at
one stage and then omitted at some subsequent stage,
there is difficulty in determining the significance. or
lack of significancc, of terms in the regression
equation.

A revicw of the results in Table 4 shows that the
complete nine-variable model (stage 1) does explaina
reasonably large amount of the variation (83%) in the
observed clutch size. However, the heterogeneity of
variance and lack-of-fit tests from the weighted

regression analysis were both significant (P < 0.01),
indicating extra-Poisson variation as well as a signif-
icant amount of unexplained variation by the model.
Another conclusion from Table 4 and Fig. 2 can be
made by observing the increase in R” from the “best”
single-variable model to the complete nine-variable
model. The first variable, x,. explains more than 699
of the total variation explained by the complete nine-
variable model, and the subsequent variables added
to the model all increased subsequent R” values by
less than 10%. However, a comparison of Figs. 3a
and 3b, which plot the observed and calculated clutch
sizes from the fitted complete and “best™ five-variable
model, respectively, indicate a definite improvement
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Fig. 2. R* and error mean square valucs (EMS) for different
models.

in the explanation of the observed clutch sizes with
the complete model. This improvement is especially
scen for the larger clutch sizes.

Figure 4 shows plots of the residuals from the fitied
complete second-order polynomial against each of
the explanatory variables and the predicted clutch
size. The most obvious conclusion from an examina-
tion of this plot is that there are “suspect” outlier
observations falling outside the 2¢ and 3¢ limits. The
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investigator would now need to examine these obser-
vations closely to determine their influence upon any
future conclusions.

An additional difficulty in this particular regres-
sion analysis approach arises when a partitioning of
the regression sum of squares is done to determinc the
amount of variation auributable to the different
explanatory variables in Eg. (2). Table 5 shows two
different partitionings of the regression sum of
squares for the “best™ eight-variable model. From an
examination of this table, the significance or luck of
significance of the different explanatory variables
would be difficult to determine.

Principal Components Regression

The principal components regression began with
the calculation of the principal components of the
standardized explanatory variables in Eq. (2) and
their correlation with the original explanatory vari-
ables. Table 6 displays the eigenvalues and ortho-
normal eigenvectors from the correlation matrix of
the explanatory variables of Eq. (2). These eigen-
vectors are used to obtain the P'sof Eq. (5). From the
first part of Table 6 it is clear that the first three
principal components are accounting for a majority
(>98%) of the variation in the explanatory variables.
The physical interpretation of the variation of the
new principal components isdifficult merely from the
eigenvectors that are also shown in Table 6. There-
fore, the correlations of each explanatory variable
with each principal component, as well as the correla-
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Fig. 4. Residual plots from complete second-order regression equation.

tions of the response variable with each principal
component, were calculated. These correlations are
summarized in Table 7. As expected, the highest
correlations among the explanatory variables and
principal components exist in the first three or four
principal components. Therefore, the first thought
would be to omit the last five principal components in

the regression to decrease the dimensionality of the
problem. However, the correlations of the response
variable do not follow this ordering. In fact, the
correlation between the response variable and Py was
the fourth largest in absolute value. This would imply
that P, would be relatively important as a predictor of
the response variable. These considerations lead to
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Table 5. Regression analysis for eight-variable model

- a
Sum of squares

Source d.f.

1) )
Xy 1 R(x, { mean) = 953.34 R(x, | all other variables) = 115.79
X3 1 R(x; | xy, mean) = 58.077 R(x ] all other variables) = 17.782
x3 1 R(x3 }xq, x4, mean) = 39.911 R(x3 | all other variables) = 67.787
x} 1 R(x? | xy, x4, x5, mean) = 180.41 R(x?} | all other variables) = 181.492
x3 1 R(x3 | xy, x2, x3, x5, mean) = 37.197 R(x3 | all other variables) = 20.055
x3 1 R(x3 |xy,x2, %3, x}, x3, mean) = 0.00985 R(x} | all other variables) = 64.583
X1X3 1 Rixyxs | xp,x3, X3, xf,x%, x%, mean) = 75.064 R(xx3 | all other variables) = 97.657
X3X3 1 R(xax3 | x1,x3, X3, %3, %3, x3, x,x3, mean) = 22.869 R(xax3 | all other variables) = 22.869
Error 16 291.031 (Mean square = 18.189)
Total 24 1657.91

2R(x | y) = sum of squares explained by x given y is included in model.

two criteria for deleting components from Eq. (5): (1)
delete the components having the smallest eigen-
values, and (2) delete the components having the
smallest correlation between the componentsand the
response variable. Both of these criteria were used,
and the results of the principal components regres-
sion are summarized in Table §. In addition, the
results of the heterogeneity-of-variance and lack-of-
fit tests from Eq. (4) are also summarized in this
table.

The physical interpretation of the principal com-
ponents can sometimes be made by an examination
of the correlations between the principal components
and the explanatory variables as well as the response
variable (Table 7) along with plots of one principal
component against another (e.g., see Fig. 5). An
examination of this figure reveals a clustering of the
high- and low-density values into two disjoint groups
separated by the dashed line. Thus P, and P should
give valuable information related to the influence of
adult density on the response variable of clutch
size,

Additional attempts have been made to reduce the
dimensionality of the problem by calculating the
principal components from the standardized vari-
ables of the “best™ reduced variable models sum-
marized in Table 4. The results of these calculations
are given in Table 9 along with the heterogeneity-of-
variance and lack-of-fit tests.

As expected, the results summarized in Tables 4
and 9 are similar, because the same number of vari-
ables were used in each stage with the principal

components being only linecar combinations of the
explanatory variables. Therefore, the only advan-
tages to the use of principal components regression
has been the orthogonality of the P in Eq. (5) and
the increasing amount of combined variability of the
explanatory variables explained by the Ps as one
progresses from P to Ps, etc. Both of these advan-
tages should be of some assistance in the physical
interpretation of the analytical results.

An additional interesting result is seen from an
examination of Fig. 6, in which the observed and
calculated clutch sizes are compared for three dif-
ferent forms of Eq. (5). The most obvious conclusion
is that using only the prinecipal components with the
largest eigenvalues may not do as well in predicting
the response variable as another set of principal
components that account for a smaller percentage
of the combined variance of the explanatory
variables.

A graphicalaid to the physical interpretation of the
principal components is shown in Fig. 7 where the
components of the eigenvectors, called loadings. are
plotted for each principal component. This figure
shows the loadings using only eight of the original
explanatory variables. From an examination of this
figure, it is possible to easily determine (1) those
explanatory variables of major importance for each
principal component, that is, those explanataory vari-
ables with the largest absolute value loadings; (2) the
relative ordering of the explanatory variables for
their contribution to each principal component; and
(3) the particular explanatory variables being



Table 6. Eigenvalues and eigenvectors of standardized explanatory variables

Value
Proportion
Cumulative proportion

Vector —~
Variable |

Value
Proportion
Cumulative propoftion

Vector —~
Variable {

Value
Proportion
Cumulative proportion

6.70
0.744
0.744

-0.355
-0.317

0.303
-0.362
-0.335

0.305
-0.364
-0.347
~0,303

5.83
0.729
0.729

~0.388
-0.324

0.338
~0.393
~0.348

0.340
~0.379
-0.309

5.27
0.753
0.753

1.61
0.179
0.923

0.232
~0.429
~-0.397

0.196
-0.302
-0.397
-0.239

0.205
-0.466

1.50
0.188
0.917

0.190
-0.488
-0.369

0.154
—-0.359
~0.368

0.162
~0.525

L1l
0.159
0.912

5.18x 107"
0.058
0.981

-0.356
0.176
-0.501
-0.317
0.017
-0.488
0.006
—~0.481
0.145

5.18x 107"
0.065
0.982

-0.355
0.178
-0.500
-0.317
0.019
-0.488
~0.480
0.147

489 x 107!
0.070
0.982

Nine-variable model

Eigenvaluces

1.34 x 107 3.64x 1072
0.015 0.004
0.996 1.000
Eigenvectors
4 S
0.101 0.217
0.319 0.131
-0.007 ~0.031
0.010 -0.430
-0.850 0.256
0.007 -0.058
-0.040 -0.719
0.12% 0.333
0.386 0.231
Eight-variable model
Eigenvalues
1.3 x 107! 151 % 1072
0.017 0.002
0.999 1.00
Eigenvectors
4 5
-0.096 0.261
-~0.309 -0.071
0.006 -0.025
-0.011 -0.840
0.861 0.081
-0.008 -0.069
-0.115 0454
-0.374 0.064

Seven-variable model
Eigenvalues

1.13x 107! 149 x 1072
0.016 0.002
0.998 1.000

3.05 » 1073
0.000
1.000

0.159
-0.103
0.000
-0.731
-0.085
-0.045
0.535
0.324
~0.171

526x 107°
0.000
1.00

0.517
0.348
-0.380
-0.114
-0.005
0.463
-0.356
-0.335

443x 107

0.000
1.000

5.19x 107
0.000
1.000

~0.521
-0.326
0.392
0.081
-0.002
~0.477
0.028
0.380
0.300

1.70x 1074
0.000
1.00

-0.169
0.628
0.320

-0.037

-0.029

~0.311
0.184

-0.585

3.11 %10
0.000
1.000

-5

1.28x 107
0.000
1.000

-0.121
0.653
0.337
0.032

-0.017

-0.316

-0.070
0.102

-0.574

2.79x 1075
0.000
1.00

-0.560
0.099
~0.502
0.042
0.002
0.440
0.469
-0.096

2.62x107°
0.000
1.000

-0.570
0.150
~0.481
0.057
0.003
0.423
-0.016
0.470
-0.135

8r!

dweyonwag [ [



Table 6. (continued)

Vector -
Vdriable ¢

L RRA TR
NI NW -

x3

Value
Proportion
Cumulative proportion

Vector -
Variable |
Xy
x2
x3
X1
Xxyx3
X2X3

Value
Proportion
Cumulative proportion

Vector —
Variable |
Xy
x]
x3
X1X3
.X2X3

-0.419

0.372
~0422
-0.344

0.374
—0.408
~0.289

4.49
0.748
0.748

-0.450
-0.367

0.371
~0454
—0.443
~0.350

4,02
0.804
0.804

~0.473
-0.478
-0.429
-0.471
-0.377

0.090
-0.386
0.050
~0.516
-0.384
0.049
-0.652

1.15
0.192
0.940

o

~0.246
0.584
0.339
~0.205
~0.231
0.623

8.45x 107!
0.169
0.973

0.341
0.284
-0.479
0.345
-0.675

-0.365
-0.462
-0.314

0.173
-0.451
-0.487

0.291

3.42x 107"
0.057
0.997

0.236
-0.110
0.853
0.200
0.402
-0.053

1.13 %107
0.023
0.996

0.080
-0.007
-0.760

0.112

0.635

Eigenvectors
4 5
0.076 0.263
-0.024 -0.022
-0.006 -0.843
-0.761 0.082
-0.008 -0.067
0.089 0.456
0.638 -0.007
Six-variable model
Eigenvalues
1.60x 1072 423x10™
0.003 0.000
1.000 1.000
Eigenvectors
4 5
-0.275 -0.375
0.057 —-0.638
0.096 -0.076
0.832 0.132
—-0.455 0.223
-0.109 0.616
Five-variable model
Eigenvalues
1.90% 1072 3.25% 1073
0.004 0.001
1.000 1.00
Eigenvectors
4 5
0.103 —-0.802
-0.774 0.303
0.090 -0.015
0.618 0.515
-0.022 —-0.005

-0.561
0.462
0.084

-0.009

-0.533
0.424
0.008

1.58x 107*
0.000
1.000

-0.682
0.321
~0.068
0.036
0.576
-0.307

-0.542
-0.534
0.050
0.006
0.470
0.445
-0.003
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Table 7. Correlations between explanatory variables, response variable,
and principal components

Principal component

Variable et T T o

P, Py Py P, Ps P P, Py Py
Nine-variable model
X -0.919 0.295 —-0.256 0.037 0.041 0.009 -0.012 -0.001 -0.003
X3 -0.820 -0.545 0.126 0.1t7 0.025 —-0.006 —-0.007 0.007 0.001
X3 0.785 -0.504 --0.360 -0.003 -0.006 0.000 0.009 0.004 -~0.002
.rlf -0.937 0.248 ~0.228 0.004 -0.082 ~0.040 0.002 0.000 0.000
.\'% -0.868 -0.384 0.012 -0.312 0.049 -0.005 0.000 0.000 0.000
.\'g 0.789 -0.504 —0.352 0.002 —-0.011 —-0.002 -0.011 —-0.004 0.002
XX -0.942 -0.304 0.004 -0.015 -0.137 0.030 0.001 -0.001 0.000
Xyx3 —0.898 0.260 —0.346 0.044 0.064 0.018 0.009 0.001 0.002
XXy --0.785 -0.592 0.104 0.141 0.044 —0.009 0.007 -0.006 —-0.001
» 0.759 -0.148 -0.025 -0.278 -0.264 -0.110 0.080 0.052 0.258
Eight-variable model
Xy -0.937 0.232 -0.256 —0.035 0.032 0.012 —0.002 -0.003
Xy -0.783 -0.598 0.128 -0.113 -0.009 0.008 0.008 0.001
- X3 0.816 -0.452 ~0.360 0.002 -0.003 —0.009 0.004 -0.003
.\'f -0.950 0.189 -0.228 -0.004 -0.103 ~0.003 -0.005 0.000
.\'% -0.841 -0.440 0.014 0.316 0.010 —0.000 —-0,000 0.000
x% 0.820 -0.452 —-0.352 -0.003 -0.009 0.011 —0.004 0.002
X1X3 -0.914 0.198 -0.346 —0.042 0.056 -0.008 0.002 0.002
XaX3 -0.746 -0.643 0.106 -0.137 0.008 —-0.008 —0.008 -0.001
¥ 0.773 -0.089 -0.026 0.272 -0.279 -0.081 0.050 0.241
Seven-variable model
X1 -0.961 0.095 -0.255 0.026 0.032 -0.012 —-0.003
X3 0.854 -0.407 -0.323 ~0.008 --0.003 0.010 -0.003
,\'f -0.969 0.053 -0.220 -0.002 ~0.103 0.002 0.000
.\';" -0.791 -0.543 0.121 -0.255 0.010 -0.000 0.000
x% 0.859 -0.404 -0.315 —-0.003 0.008 —0.011 0.003
X)x3 -0.937 0.052 -0.341 0.030 0.056 0.009 0.002
X2X3 —0.664 -0.686 0.204 0.214 —-0.00¢ 0.000 —-0.000
¥y 0.773 -0.027 -0.021 —-0.289 -0.274 0.097 0.217
Six-variable model
X1 -0.954 -0.265 0.138 -0.035 —-0.008 -0.009
X2 ~-0.777 0.627 —0.064 0.007 -0.013 0.004
X3 0.786 0.364 0.499 0.012 -0.002 -0.001
.\‘f -0.963 -0.220 0.117 0.105 0.003 0.000
Xy1X3 -0.938 -0.248 0.235 —-0.058 0,005 0.007
X2X3 ~0.742 0.669 - 0.031 -0.014 0.013 —0.004
y 0.783 0.043 0.093 0.336 -0.017 0.214
Five-variable model
Xy -0.473 0.341 0.080 0.103 —-0.802
X7 —0.478 0.284  —0.007 0.774 0.303
x% -0.429 -0.479 ~0.760 0.090 —0.015
XX3 -0.471 0.345 0.112 0.618 0.515
XaX3 -0.377 -0.675 0.635 -0.022 ~0.005

y 0.742 -0.095 -0.278 -0.124 0.351
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Table 8. Summary of principal components regression using ali explanatory variables

Tests?
Prmuls;;le;o(nl:p;) ments Nm;bf: of R? Heterogeneity of Lack-of-fit Overall
p p variance (x?) () ()
Py, Py, P3, Py, Ps, Pg, Py, Py, Py 9 0.83 211.94 (151) 2,93 (15.151) 273.55 (166)
Py, Py, Pa, Ps, Py, Py, Pg, Py 8 0.83 212.58 (151} 2.84 (16,151) 276.65 (167)
Py, Py, P4, Ps, Pg, Pq, Py 7 0.83 210.71 (151) 3.03(17,151) 281.11 (168)
Py, Py, Py, P, Pg, Pg 6 0.82 210.25 (151) 2.84 (18,151) 281.51 (169)
Py, Py, Py, Ps, Py 5 0.81 209.84 (151) 2.74 (19,151) 282.25(170)
Py, Pa, Ps, Py 4 0.79 211.65 (151) 2.84 (20,151) 291.34 (171)
Py, P4, Pg 3 0.72 211.47 (151) 4.75 (21,151) 351,30 (172)
Py, Py 2 0.65 214.03 (151) 4.93 (22,151) 367.83 (173)
Py, P, 2 0.60 212,42 (151) 4.49 (22,151) 351.51 (173)
Py 1 0.58 220.04 (151) 5.26 (23.151) 396.30 (174)

9Vualues in parentheses are degrees of freedom. See ref. 4 for details.
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compared for each principal component, that is, the
explanatory variables with comparable positive and
negative loadings.

Because the correlation between the principal
components and the explanatory variables, as well as
the response variable, is of major importance in any
principal components regression, Fig. 8 isa graphical
representation of these correlations to aid in the
choice of principal components. In this figure the
correlation between the explanatory variables and
the principal components is shown for each principal

component. In addition, the correlation between
each principal component and the response variable
isalso exhibited. This figure is presented for the eight-
variable model and vividly displays the following: (1)
the decreasing correlation between the explanatory
variables and the principal components as the eigen-
values decrease, that is, as one considers P, relative to
P-. P:relative to Ps, ete.. (2) the explanatory variables
highly correlated with the principal components: and
(3) the principal components highly correlated with
the response variable. A figure of this tvpe is a
graphicalaid in demonstrating the alternative choices
one can make in reducing the dimensionality of the
problem. that is, whether the choice of appropriate
principal components is based on correlation with the
explanatory variables or correlation with the
response variable.

CONCLUSIONS AND PROBLEMS

The regression analysis of the ficld data sum-
marized in this paper has demonstrated the nced for
the coutinued interaction between the statistician and
investigator during the data analysis process. The
original polynomial approximation in Eq. (2) has
done a reasonably acceptable job in explaining the
variation (R” = 0.83) in the observed clutch size. The
regression analysis and the principal components
regression have also provided some plausible choices
of important variables and their relationship from
which the biologists can choose the biologically most
acceptable alternative. From these alternatives, it is
possible to suggest some additional laboratory
studies to quantify the effects implied from the
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Table 9. Principal components regression on reduced models

Tests”
Stage Number of varjubles Variables retained R? Heterogeneity Lack-of-fit Overall
retained of variance 2
2 ™ o3
x*)

] 9 X1, X0, X3, %7, x5, %3, 0.83 211.94 (151) 2.93 (15.151) 273.55 (166)
X1Xg,X1X3, X2X3

2 8 Xy.%9,%3, %3, x3, %3, 0.82 211.99 (151) 2.74 (16,151) 273.59 (167)
X1X3, XoX3

3 7 xg,x3, %2, x3, %2, x,1x3, 0.81 208.26 (151) 4.03 (17,151) 302.69 (168)
X2X3

4 6 X1.X9,X3. %3, x1x3, 0.78 212.24 (151) 3.68 (18,151) 305.45 (169)
X2X3

5 5 X1, X3, %3 x x5, x5%3 0.78 209.23 (151) 4,57 (19.151) 329.58 (170)

%Values in parentheses are degrees of freedomn. See ref. 4 for details.
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explanatory variables. The results of these laboratory
experiments can then be used to refine future field
experiments. This iterative process could be
continued through many phases.

There have been some specific suggestions for
designed laboratory experiments resulting from this
analysis. For example, laboratory studies have been
initiated to examine the effect of adult density and
female size on clutch size when the ranges and values
of the two explanatory variables are investi-
gated under known and controlled environmental
conditions.

The regression analysis did still leave some
problems concerning the adequacy of the model.
However, collaboration with the biologist has re-
sulted in some plausible explanations for the
apparent unexplained variation by the model that
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Fig. 8. Correlations between explanatory variables, response
variable, and principal components from eight-variable model.

may be incorporated with the laboratory studies to
modify future field studies. Some of the explanations
are (1) water temperature was the only water quality
variable recorded and there may bea need to measure
other water quality variables, (2) the use of average
water temperature may need to be refined usingaddi-
tional information about the water temperature
history, and (3) the inherent variability of any uncon-
trolled biological system is always difficult to
explain.

Any suggestions for alternate analytical ap-
proaches or refinements and modifications to the
approach as presented are solicted. These approaches
should recognize the need to assist in providing
plausible explanations and relationships so the
biologist and statistician can interact in solving the
problem.




Problem Discussion 2,' Part 2: Use of Regression Analysis to Evaluate
Environmental Effects: Exploring Methods of Analysis

John Beauchamp, Union Carbide Corporation, Nuclear Division

John Beauchamp: For review, my objectives for
this problem were to determine if the explanatory
variables related to water temperature, adult density,
and female size influence clutch size and if they can be
used to explain the observed variation in clutch size,
In this particular situation. I (and 1 hope the
biologist) am thinking in terms of possibly interpola-
tion and maybe some prediction within the range of
the variables of interest. The approaches that 1 have
used there did appear to be some things that we had
gained from it and also some problems that were still
present both with respect to the polynomial approxi-
mation that was used and also to the principle
components regression approach that was used.
These are some of the things that we talked about
yesterday, and 1 would welcome some comments. |
must admit that for the units on the femalessize, there
is a factor missing. This has been brought to my
attention, and it will be corrected in the final version.
Of course, this factor is not as big as the units given in
the paper. They are only fractions of inches rather
than 4 in. or so as indicated in the table of data given.
1 would welcome any comments, or suggestions to
alternative approaches that you would have.

Donald Gaver, Naval Posigraduaie School: I'm
wondering if an alternative analysis transforming the
clutch size by taking logarithms could not have been
an effectiveapproach, and whether this approach was
tried. It seems to me that that might, first of all,
remove the necessity for weighting in response to
different variances and, second, possibly separate the
interaction terms that appeared in the cross product
of terms that is part of the original model. It might
make those other representations unnecessary.

Ronald Thisted, University of Chicago: Do you
have a viewgraph on which you plot the mearj against

i
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the variance in the different samples? Did vou say
that you found extra Poisson variation—more
variation than you'd expect?

John Beauchamp: Yes, this is the plot I believe
you're referring to (Fig. 1). Yes. there were samples
where we did (ind the presence of extra Poisson

variation. e
i
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Ronald Thisted, Universin: of Chicago: One thing
that comes to mind: the Poisson distribution is
appropriate for counting data: however, these really
arcn’t counts, but are tallics of counts. For c¢ach
female you have a count; one way that vou could
make the problem verv much harder and maybe only
a little bit more realistic would be to say that each
female has its own Poisson parameter and say that
the distributional Poisson parameteris gamma. Then
estimate the parameters that introduce extra varia-
tion. It’s just as if the gamma were a prior distribution
except that it really has physical mean. as opposed to
a suggested belief, but then you could estimate the
parameters of that compound process which could
account for the extra variation.

John Beauchamp: Can | ask for a little expansion
on this with respect to the presently available data?
The individual measurements of iength of the females
have been lost in the reduction of the data; couldn’t
this loss cause problems in the approach that you are
thinking about? Or am [ misunderstanding the
approach that you arc suggesting?

Ronald Thisted, University of Chicago: Well my
approach is a partly baked idea. I think the loss of
these measurements would causc problems because
vou usc that as a covariant essentially on the mean,
right? [ just saw all the individual egg counts in your
data display, and I guess 1 just assumed that all the
other measurcments were thereas well. That could be
the fatal blow to my suggestion.

William Conover, Texas Tech: 1think that it struck
many of us that the asumption of the Poisson
distribution is going to be difficult to prove or
disprove with the data that you havc, wherc the
parameter apparently changes from one day to the
next and there are only a few observations. For
example, on one day you had two obscrvations, both
observations equaled thirty, and you accepted the
hypothesis that this was a Poisson distribution. It’s
very difficult to make a decision on data like that. If
you insist on using this statistic (V¥ — 1)s*; 7 that you
were using, it seems to me that at least it would be
better to use the two-tailed rejection region rather
than the one-tailed, because too small of a variance
would be just as unsatisfactory as too large a
variance. Then when you went through and added the
statistics together, the large statistics canceled with
the small statistics, and the result was an overall
statistics which again to me would not have very
much power in detecting lack of a Poisson distribu-
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tion. So | wonder whether it might not be better to
abandon the whole idca of trying to stick with the
Poisson distribution and follow something like Don
Gaver suggested or perhaps usc rank t:ansformation.
1 suggested rank transformation because you do have
a problem with outliers. The outliers appear to be
legitimate from the biologist’s stundpoint. and yet
they affect the calculations a great deal. By using the
rank. an outlier just has rank one. it doesn’t matter
how far out it is. and it’s not going to affect your data
very much. We've had a lot of success using rank
transformation when there are outliers. You might
try to rank the data and use the same techniques that
you are using to sec if the results are in agrecment.
You can work backwards to sce how well it predicts
what you got, as a backup to the methods vou are
using.

John Beauchamp: In this particular situation,
would you also suggest working with the ranks on the
variables that [ have referred to as explanatory
variables— that is, working with ranks on the entire
data set instead of the actual obscrvations. This
approach would be interesting.

John Jaech, Exxon Nuclear Co.: In thespirit of the
comments madc by the other two gentlemen. 1 think
that 1 would agree. 1 rcally don’t see any basis for even
performing a test of the hypothesis that the data are
Poisson. | think we can reject that hypothesis on the
basis that they are from different females of different
sizes. I they are, in fact, diffcrent sizes, then there is
no reason to believe that anything more than female
size has an cffect; there’s no rcason to belicve that the
data should be Poisson. If memory serves me
correctly. the compound distribution that results
from the fact that the Poisson parameter has a
gamma distribution is a negative binomial distribu-
tion which has a known mean and variance and which
is very easy to work with. I think that youcan geta lot
more insight into what’s really going on if you assume
at the beginning the ncgative binomial and work
backwards and geta feel for how the actual means per
cell are varying according to the underlying gamma. 1
think that is a real good suggestion.

Donald Gaver, Naval Posigraduate School: 1
didn’t mean to imply inany way that we should focus
on the distribution of the cluster sizes to the exclusion
of all else. 1t seems to me that actually the negative
binomial distribution is certainly suggested by the
scatter plots that were shown and possibly by
mechanisms. 1 believe that some form of the
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logarithmic translormation will indeed prove to
remoze the dependence of the mean and the variance.

I think that yvou buy a great deal from this kind of

transformation, at least potentially, because youalso
buy the removal of the interaction that is present in
the model. 1 think theres no hope of determining or
verifving any particular distributional form for these
cluster sizes: that's a false trail to go down.

Lincoln Moses, Stanford: 1 never understood
exactly what the purpose of this study was. Whether
it is to understand causal mechanisms or to
interpolate and graduate data over other variables.
So 1 don’t know whether the following suggestion
helps or hurts. I recall that there was a trend (I forget
whether it was up or down) with a clutch number or
date arranged in order of this trend. At the same time,
vou told us that the temperature of the water exhibits
a trend with that order. Its quite possible that the
density of adults exhibits a trend in order. You might
find that putting in time, or even a quadratic in time.
would capture a great deal of what you are now
capturing against three variables. You could sce if
any of them add beyond that. I do not know whether
it would simplify vour interpretation or give you
better prediction, but time may be what’s underlining
several of these variables in part.

Jolim Beauchanip: The problem that 1 have with
including time 1s that, in any biological mechanism,
the critter or animal is not particularly concerned
with the time mechanism. Time. true. is a conglomer-
ate of many factors, and that was why I was trying to
look at these individual factors—to sec if possibly one
factor or maybe all of them were of interest. I'm not
sure whether the biological significance of time would
be very meaningful even if it did explain a great deal,
which [ think it does. Of course the biologists would
have to have some input on this, That’s the difficulty
that 1 had with the inclusion of time. though I'm not
sure that answers the whole question!

Dave Gosslee, Union Carbide Corporation,
Nuclear Division: 1 thought the point was to look at
time as a random variable, so 10 speak. and then sce
what additional variation could be explained by
temperature, etc.

Lincoln Moses, Stanford: Whether times are
suitable depends on what the purposc is. | really can’t
explain or understand: the biological significance is
exceedingly obscure. If you have three variables that
are just servants for the unfolding development of

this pond. then putting in somiething on time tells you
that you have a problem that is very complicated. |
guess! It might be a useful thing 1o do. If you dont
understand, then it is no help that | can sce.

Chuck  Barne, Union Carbide Corporation,
Nuclear Division: John, | noticed you did a lot of
principal component analysis. and one of the
difficultics 1 always find with principal components is
to try to interpret what they mean 1o the experi-
menter. Now | noticed you were able to put them in
some chart form and to determine whether the
loadings were high or low. Were you able to use these
facts to explain what these principal components
actually represented to the biologists?

John Beauchamp: At this particular point the
principal components approach is still an open
problem. | hope that something may be gained from
these charts when 1 sit down with the biologists. 1f
others have had experience using this approach and
trying to explain it 1o the investigator, | would liketo
hear about your experience.

Rounald Thisted, University of Chicago: 1've been
thinking a little bit about the negative binomial
suggestion. There are no problems really created by
the fact that you haven’t recorded the length of each
female or the fact that that’s gone: this new analysis
would follow exactly the same form as the old onc.
Onc of the problems now is that yvou have two
parameters involved. The two parameters arc the
gamma distributions that overlic cverything as
opposced to the one Poisson parameter. | don’t know
how 1o do the regression analysis 10 get those two
picees. 1 wouldn™t know a reasonable model for that. |
think that’s where the difficulty is, not in the sctup of
the covariance.

Francis Anscombe, Yale: Don Gaver has already
suggested trying to play the transformation game on
the variables, and 1 would just like to reinforce that
suggestion. The regression analysis done here is on
quadratic expressions in the three experimental
variables. Why stop at quadratic? Why not go to
cubic? We all know why not go to cubic; that
produces a very large number of coefficients, and
clearly onc isn’t going to be able to estimate them all
properly. The trouble is, however, that one does not
know that the quadratic expression is adequate. We
don’t know what kind of expression is adequate, and
I’'msure it will be very worthwhile to try playing tricks
on transforming the dependent variable and the three



experimental variables, making transformations to
sec whether one can get apparently good approxima-
tions to simple lincar relations between them.
Although there is no guarantee that playing the
transformations will greatly simplify the expressions
that need to be fitted. sometimes one really does come
off very well that way. I think there is a little internal
evidence in the plots that I was given that cven the
quadratic model is not fitting very satisfactorily. Note
the figures in the written material here which were
labeled Fig. 3.* There are two figures there: onc forall
nine variables fitted and the other for five. Both of
those figures, but particularly the five-variable one.
have some suggestion. | think, of a quadratic trend:
that is. the residuals appear to be positive when the
abscissa value, which is the calculated clutch size, is
either very low or very high. and the residual seems to
be negative when the clutch size is in the middle. Then
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in Fig. 4.% the bottom right diagram there shows
residuals plotted against predicted clutch size. Thisis
another plot of a similar kind. I think. if I understood
that right, and again there’s a tendency for the
residuals to be positive at the left side and the right
side of the diagram and a trend to be negative in the
middle. That sort of curvature does suggest some sort
of nonrelativity in the model that is actually being
fitted and also suggests, perhaps, that some trans-
formation of the dependent variable still would hkelp.
so | would certainly like to support Don Gaver's
suggestion that making various scale changes should
be tried.

*). 1. Beauchamp. these Procecdings, FFig, 3.
+J. 0. Beauchump. these Procecdings, g, 4.



Statistical Methodology for Use in Risk Assessment
of Radioactive Waste Disposal in Geologic Media *

Ronald L. Iman

Sandia Laboratories
Albuquerque, New Mexico

ABSTRACT

The development of a statisties methadology for usc in risk assessment of radioaetive waste disposal in geologic
media poses @ unique and interesting challenge. The models involved in the assessment are sometimes quite long and
invohved. Some of tie models contain many defined but unknown parameters, and in many cases little or no data are
available for parameter estimation. Also. many variables are used, and only a few of them may be of value. Once the
individual models are analyzed, it is necessary that the various models interface properly and that some meaning is
attached to the output, which is a random function of the input and is dependent upon site selection. We hope to
develop the statistical methodology for analyzing such a complex system.

INTRODUCTION

My presentation concerns some of the statistical
problems that are associated with the disposal of
radioactive waste material in geologic media. This
research is done under a contract with the Nuclear
Regulatory Commission (NRC) which requires that
at least one statistician be assigned to the project. Our
group. hcaded by Dick Prairie, is working on a
variety of problems; earlier Irv Hall discussed
Sandia’s approach to energy problems.

PURPOSES AND APPROACH

The purpose of our work on this problem is to
provide insight into the risk associated with radioac-
tive waste disposal and to develop methods and
models that can be used in the repository licensing
program by the NRC staff. Hopefully, this program
would include identification of parameters that
determine long-term safety.

There are two steps in the approach, one of which
would be involved with risk calculations where we
would hope to gain an understanding of the risk of
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disposal in different geologic media. At the current
time there will be a pariicular site for study; different
types of geologic media will have to be considered
later. The second step in the approach is in regard to
the sensitivity studies. We hope to determine the
important site and waste characteristics which would
in turn be used by the NRC staff to assess a particular
site for a disposal site license.

An overview of this problem for a hypotheticalssite
is shown in Fig. 1. (Note the vertical exaggeration.)
There isa lens of salt in which the repository would be
placed. On either side of the salt there is a shale
formation, and above and below the shale there is a
sandstone aquifer, We do not want any water to get
into the repository from theaquiferand thereby carry
the radionuclides to the environment. [ would like to
empbhasize that, while Fig. 1 represents a hypothetical
site, we still hope to make it as realistic as possible.

*In support of a project being performed by the
Fuel Cycle Risk Analysis Division of Sandia Labora-
tories. Work is funded by the Nuclear Regulatory
Commission.
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Fig. 1. Hypothetical geologic cross section. (Verticul exaggeration: X10).

MODEL STRUCTURE AT SANDIA

There are a number of individuals at Sandia
involved in this project (Fig. 2). The site description
indicated in the upper left-hand corner includes such
items as the engincered facilities (shaft and excava-
tion), hydrology, geology, and surface characteris-
tics. The box in the upper right-hand corner
(radioactive waste description) will provide informa-
tion at any one point in time regarding the types and
amounts of waste materials. This information
includes knowledge of the half-lives of the various
nuclides, so in the event of a release at some point in
time the chemical composition of the waste is known.
The boxes in the middle of Fig. 2 represent models
whose development involves at least one person.

METHODOLOGY

P, POTENTIAL RADIGACTIVE
WASTE RELEAS WASTE

DESCRIPTION MECHANISMS DESCRIPTION

RADIONUCLIDE
TRANSPORT

¥
PATHWAYS
T0
MAN

DOSIMETRY
AND
HEALTH EFFECT.

Fig. 2. Problem format.

These models have been developed at Sandia, or on
contract by Sandia witk Sandia personnel involved.
Although these models exist at the present time, not
all of them are developed to the point where we are
ready to do a sensitivity analysis on them. Once that
work is finished, the problem of coupling the models
will have to be addressed. The first box in the middle
(the release mechanism) will output the probability of
release as a function of time as well as the rate of
release. ltems that this model would consider are
those for which a relcase could take place- for
example, an earthquake, undetected faults. a shaft
that might fail to seal properly, or something as
remote as a meteorite striking the site.

The transport model represents probably the
biggest single task because it is a very complicated
model with many, many variables. One of the
problems associated with this model is that there are
little if any data available that pertaintoit. Therefore.
a lot of the variables are going to requirc estimates
just to determine a physically reasonable range. This
type of problem occurs throughout this project.
There are so many variables in the transport model
that for the last few months two people at Sandia
(including a geologist hired in from the outside) have
been attempting to reduce this model to a workable
size. That work is progressing now, and the sensitivity
analysis should soon start on the transport model.
When the transport model is coupled into the system,
it will provide the rate of discharge of the radionu-
clides to the environment. Given that there has been
a release at some point in time, the nuclides are
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transported to the underground water system from
which they will eventually reach the environment.
Once they have reached the environment, the
pathways model is used. The pathways model uses
the input of the transport model to calculate ingestion
and inhalation rates of radionuclides in curies per
year for maximum and average diets. This analysis is
done with respect to the types of food consumed by a
particular individual and with respect to whether or
not the individual consumes irrigated food. There are
two basic parts to the diet: (1)a water-based diet with
foods that come from water sources, and (2) a land-
based diet that comes from land-tvpe sources. Also, a
combination of these is possible. The dosimetry and
health effects model uses the ingestion rates output by
the pathways model to calculate the probability of a
latent cancer fatality as a function of time.

DEPENDENT VARIABLES FOR THE
PATHWAYS MODEL

1 have attempted to simplify this problem. For
instance, there are many isotopes that could be
ingested. but we have looked at only one. Therefore,
everything that you see with respect to ingestion rates
is only for one nuclide. Also, there is a problem of
ingestion rates changing over time. I will show some
predictions for a model that uses only one time
period, but I do have several plots which indicate that
time probably will be a consideration. Next there is a
concept of a zone. The pathways model uses the
concept of a homogenous zone along some water
source with nuclides in it, such as a river. For
example, there may be a large area where all the food
is irrigated—which would determine one zonc. If a
dam were put on the river, another zone would be
created because of the sediment of the nuclides, There

INDIVIDUAL
AVERAGE Max iMumM
YlN (WaTER) Y3N
=2
§ YlL (Lanp) YZL
=
=2
5 You Vi
£
Yo Yo

Fig. 3. Dependent variables: ingestion rates of radionuclides in
curies per year.

would be yet a different zone below the dam. There
could yet be other zones where there is no irrigation.
Initially we consider only one zone.

The *“average™ and “maximum™ classifications on
Fig. 3 come from the WASH-1400 report descrip-
tions given for an average individual and a maximum
individual. The other classification in the two-way
table is for individuals having either irrigated or
nonirrigated food. I consider that there are basically
eight dependent variables with the subscripting
notation explained as follows. The subscripts 1, 2, 3,
and 4 refer to the individual and irrigation combina-
tions. The second part of the subscript uses ¥ to refer
to ingestion from water sources (possibly something
as simple as drinking water, but could include sources
like invertebrates and fish). The subscript £ refers to
basically a land-type diet such as plant, milk, or beef.
Therefore, in block 1 if there is noirrigation involved
with a land-type diet, the ingestion rate is going to be
much smaller than it would be where irrigation is
involved. The difference in the dependent variablies
Yi. and Y3 is in the magnitude of the intake;
therefore the independent selected variables for these
diets should be very similar. Due to the complexity of
the pathways model, I attempted to fit a response
surface to the output to determine the important
independent variables associated with each depend-
ent variable.

INDEPENDENT VARIABLES FOR THE
PATHWAYS MODEL

A few comments need 1o be made with respect to
the independent variables (Fig. 4). First, 1
conveniently refer to these variables as X, 1o X¢and

192 < yp < 10°
2,6 x 10°< X < 2,6 x 108

2.2 x 1095 X3¢ 2.9 x 1012

N

6.0 x 105 X, <6.0 x 108
3.6 x 109 < Xg = 3.6 x 101!

1.8 x 109 < ¥g < 1.8 x 101

Fig. 4. Ranges on independent variables,



have not attempted to attach any names to them, as 1
felt in the format of this meeting it would be just as
well to exclude them. However, these variables were
carefully selected by the individual who developed
the model. He also selected ranges for these variables
that he felt were physically reasonable (Fig. 4). A
major point with respect to these variables is that
there is no probability distribution given with them,
which is the case throughout the pathways and
transport models. About the best information
available are the ranges associated with the different
variables. These ranges are relatively broad and are in
terms of orders of magnitude.

LATIN HYPERCUBE VARIABLE
SELECTION TECHNIQUE

To fit a response surface, it is necessary to run the
program for the pathways model several times using
various combinations of the independent variables as
input. For variable selection I used the Latin
hypercube variable selection technique. This
technique was presented at the first ERDA
symposium in Los Alamos, and Mike McCay, Jay
Conover, and Dick Beckman will soon have a paper
in Technomerrics explaining its advantages. Very
briefly the Latin hypercube variable selection
technique works as follows. Assume there will be N
observations used as input into a model. The range of
each one of the input variables is divided into exactly
N nonoverlapping pieces. The procedure for selecting
the pieces may be something as simple as using a
uniform distribution which makes all pieces the same
width. If the probability distributions associated with
these variables is known, the pieces could be selected
based on equal probability. Once each rangehas been
divided into N pieces, a value is selected at randomin
the ith interval for say Xi. Likewise, for X; select a
value at random in the jth interval. Continue in this
manner for each independent variable until each
interval has been used exactly once. Next obtain a
random mixing of these values as input. A question
associated with this technique is what type of
distribution should be assumed for these
variables—or does it make any difference?

PARTIAL CORRELATION PLOTS

I first assumed a uniform distribution for each
of the input variables, as indicated in Fig. 5. For
example, on X, the range should be divided in
exactly N nonoverlapping pieces all of the same width
from 10? to 10°. For N = 50 this procedure gives one
point between 10® and 10°, four points between 10°
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Fig. 5. Partial correlation plots for X, and Y,»—uniform

distribution.

and 10, and the remaining 45 points between 10" and
10°. The pathways model was run with these 50 input
observations and the partial correlations plotted as a
function of time as the pathways model outputs
ingestion rates as a function of time. The horizontal
axis in Fig. 5 has ten points with the time scale in
hundreds of years, so the first point is ingestion rate
after 100 years, then 200 years, and so on to 1000
years.

The top portion of Fig. 5 indicates results when
using the raw data. The bottom of Fig. 5 indicates
results when using the rank transform on the data
(partial rank correlation). Clearly, there is a large
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disagreement with respect to the importance of Xi.
The ranks indicate that X is extremely important as
the partial rank coordination remains constant
around —0.8. The raw data partial correlation
changes over time, starting around —0.45 and getting
close to —0.2.

In Fig. 6, a log uniform distribution is used on the
independent variables. Taking the logio on 10” and
10° will give a range between 2 and 5 for X,. Divide
this range into 50 equal pieces; then one-third of the
points will be between 10” and 10*—rather than only
one point obtained using the uniform. There will be
another one-third between 10° and 10". The net result
of the log uniform is to give more observations
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Fig. 6. Partial correlation plots for X; and Yi»—log uniform
distribution.

803 1.80 3.00 4.20 3.40 s.80 7.80 .00 10.2

toward the lower end of the range on the independent
variables. A comparison of the raw data graphsat the
top of Figs. 5 and 6 indicates a slightly different story
with respect to change over time. Therefore there are
going to be some difficulties in determining the
important variables with respect to time, depending
on the type of distribution that is assumed on the
input.

Figure 7 indicates the results of pooling the 50
points from Fig. 5 and the 50 points from Fig. 6. As
one might guess, the result is a compromise between
Figs. 5 and 6.
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Fig.7. Partial correlation plots for X;and ¥,»—mix of uniform
and log uniform distributions.
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The uniform distribution is shown again in Fig. 8,
but now the dependent variable has changed to Y.
(land-based diet, no irrigation). The reason for
considering Y, is that there is no irrigation involved
and, since the nuclides are in the groundwater,
chances for ingestion of radionuclides are reduced. It
would be reasonable to expect different variable
selection in fitting a response surface to the land-
based diet compared to the water-based diet. One
might expect the relation of X, with Y. to be
different from what it was before with the Yy
(Compare Figs. 5 and 8.) The raw data indicate a
partial correlation that is essentially zero in Fig. 8,

—
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Fig. 8. Partial correlation plots for X; and Y,,—uniform
distribution.
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whereas in Fig. 5 the raw data indicate a slightly
negative correlation. The analysis on ranks shown on
the bottoms of Figs. 5 and 8 changes considerably.
Next, I would like to compare Figs. 8 and 9 where
time seems to become very important. The raw data
indicates the time dependence as the importance of
this variable is diminishing across the time axis. For
ranks, the correlation starts around —0.6 at time step
1 and is 0.2 at time step 10. This is an interesting
point. We are trying to explain the effects of X, on
Y1, and at time step 10 the raw data indicates a
negative correlation while the ranks indicate a
positive correlation.
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Fig. 9. Partial correlation plots for X; and ¥i,—log uniform
distribution.
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Figures 10-13 can be gone through very quickly.
The mix on Figs. 10 and 13 again represents the
pooling of the 100 points from the previous two
figures. In Fig. 11 the independent variable has been
changed to X; while still using Y,. The two graphsin
Fig. 11 are roughly in agreement indicating that X;
does not seem to be very important. However, in Fig,
12 where the log uniform was used, the importance of
X has changed considerably from Fig. I1.

Problems for consideration would include the
following: (1) What type of distribution should one
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Fig. 10. Partial correlation plots for X, and Y. —mix of
uniform and log uniform distributions.
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*Fig. 11. Partial correlation plots for X; and Y,;—uniform
distribution.

assume on the input variables? Is there a “good”
distribution to assume or should one use a sequential
procedure such as starting with something like the
uniform, finding points where the ingestion rates
seem to be quite high, and obtaining more
observations in this area by using a distribution
something like the log uniform. (2) There is some
evidence indicating that different response surfaces
are nceded. As time changes, how serious is the
consideration? (3) Lastly, what type of transforma-
tion would be appropriate? i
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RESPONSE SURFACES

The response surfaces were fit by using the six
independent variables indicated in Fig. 4 plus the
squares of each and all possible cross products which
were put into a forward stepwise regression program.
Initially, the raw data was used to see what variables
would be selected as important. What was learned is
best explained by referring to Fig. 3. Every time the
dependent variable changed, a different selection of
input variables was noted. That is, there didn’t seem
to be any consistency of selection, whereas from
knowledge of the situation there should be some
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consistency. In particular, if the water involvement is
considered (all dependent variables having subscript
W, then the only thing that changes is the magnitude
of the ingestion rate. Likewise, the variables Y-, and
Yoo will act much like those variables having
subscript W, due to the effeci of irrigation. In other
words the independent variables selected in fitting the
response surfaces to these six dependent variables
should be similar, and this was not the case when
working with raw data. When there is no irrigation,
Yiz and Y., and only the magnitude of the food
intake is involved, the same independent variables
should be selected for the response surface fit. Again,

o
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this was not the case on raw data. The response
surface fits were made forall the dependent variables,
and even though they had different variable selec-
tions, each fit was used to make predictions for an
additional 50 test puints, The manner in which the
test points were selected is best explained by
considering X, (Fig. 4), which has a range of 10" to
10°. Sort of a compromise betweer the uniform and
log uniform was used with ten points selected
between 107 and 10°, another ten points between 10
and 10", and the remaining 30 points sclected from
10" to 10°. The response surface based on raw data
predicted negative ingestion rates for 21 of the 50
points for Yy, whercas zero is the minimum
ingestion rate. The remaining 29 ingestion rates were
simply nowhere in the ball park. The same thing
happened for the other dependent variables.

The next attempt to {it a response surface used
stepwise regression on ranks, Jay Conover and 1
presented a paper on this technique at the ASA
meeting in Chicago in August. [tis very simple to use,
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as the regression program is run on the ranks assigned
to the variables and the variable selection noted.
The first thing noted with respect to Fig. 3 was a
consistency in the selection of the variables where it
should have been consistent, that is, on the four
water-type dependent variables plus the two irrigated
land situations. The two nonirrigated land situations
selected different variables from the other six. but the
two were consistent in selecting the same variables.
Based on the response surface fit from ranks.
predictions were made for the 50 test points. These
predictions are given in Fig. 14 for Y,u. Logu
of the points was plotted just to make a little nicer
graph, and the same scale was used in Figs. 14-16 for
ease of comparison. The vertical axis represents the
actual ingestion rate. and the horizontal axis
represents the predicted ingestion rate. The zeros
plotted on these graphs aid in drawing in the line
where logiY = logwY. The lines on either side
represent a one-order-of-magnitude shift. In Fig. 14
the observations vary over the entire range, and the
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Fig. 14. Log-log plot of actual ingestion rate vs predicted ingestion rate for diet ¥yu.
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predictions are pretty well inagreement. In Fig. 15 we
have Yy, (average individual. no irrigation) with a
lower ingestion rate than noted for ¥y, as indicated
by the points in the lower left-hand corner, There are
no points in the upper right-hand corner, so it scems
that the fitted response surface for Yy, worked well
for low ingestion ratcs. On the other hand. when
considering Fig. 16 for variable Y, (maximum
individual, irrigated food, land source), the ingestion
rates arc going to be higher. This {act is indicated by
the absence of points in the lower left-hand corner.
and it seems the response surface for Yi is also
predicting well for high ingestion rates.

We  might consider what happens if a
transformation other than the rank transformation is
used—Tor instance, a log transformation. The log

transformation was tried. and it scemed to work
pretty well with respecet to variable selection. It was
also considered in terms of the predictions and in
particular with respect to the variance associated with
the predictions. For comparison purposes some
arbitrary parallel lines wercadded to Fig. 16 on cither
side of the line log e ¥ =log, Fabouta quarterinch to
three-cights of an inch away from it, The number of
points included in these bounds was counted lor the
upper half of the graph becuuse these represeant high
ingestion rates and as such are very critical, I counted
29 of the predicted points between these lines, while
the log model had 16 points between the same lines:
that is, therc was a much greater variability
associated with the predictions from the log model, so
it was felt that the ranks were doing a little better.
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To summarize some of the problems, how does one
go about fitting the response surface to these
dependent variables-—in other words, is there a need
for some sort of a transformation? Should an
argument be made for some sort of nonlinear model?

I believe that examination of the rank transform
procedure will show that it is circumventing some
of the problems associated with fitting nonlinear
models.




Problem Discussion 2, Part 3: Statistical Methodology for Use in Risk
Assessment of Radioactive Waste Disposal in Geologic Media

Ronald Iman, Sandia Laboratories

Ronald Iman: The purpose of this problem is to be
able to identify the important sites and waste
characteristics that would in turn be used by the NRC
stafl in evaluating the potential applicant for a
repository before granting a license to him. The
problem over the next few months will become quite
large: there are a number of models which have been
developed. Presently we are in the process of doing a
sensitivity analysis on these models. The pathways
model is the only oneat this point that is on line ready
to go: the others will be ready shortly. We will have
some common problems in putting a response surface
to the various models to help determine what the
important variables or combination of variables
might be. Some insight will be needed for proper
approach when working with the individual models.
Then big problems will come up in tying these various
models together to get some sort of a meaningful
output fora given scenario. Yesterday, onsome of the
graphs, 1 indicated with respect to the partial
correlation the types of distributions that are
assumed here. | point this out because I know that
there are individuals at NRC that seem to feel rather
strongly about this. I would like to get your feelings
on whether a person should assume some sort of
sequential procedure like I've done or whether there
is really some distribution that could safely be
assumed in all cases.

Gary Tietjen, Los Alamos: Ron, 1 think you
mentioned yesterday that one of your even longer
range goals in selecting the site was todecide whether
there were any health effects due to injested nuclides.
The effect of ptutonium on the human body has been
studied more extensively than the effects of any other
known substance, and the literature is so extensive
that people frequently overlook significant previous
studies. 1 read one article which declared that

|

plutonium was the most toxic substance known to
man --worse than cobra venom. That phrasc caught
the public’s fancy. and a lot of people belicved it.
Some 25 years ago. Langham {rom Los Alamos
performed a spectacular cxperiment with plutonium,
which can never be duplicated. You never hearabout
it except in terms of condemnation on cthical
grounds. Yet I regard it as the most important picce
of data we have. He took elcven patients (I believe)
who had terminal illnesses of various kinds, and he
obtained permission from them to inject really large,
almost massive, doses of soluble plutonium direetly
into their blood. Now the effect of this is quite
different from inhalation of the insoluble oxide, but
the surprising thing was that there were no medically
discernible effects. Four of these patients with
terminal illnesses lived quite a while. I believe two of
them are still alive after 25 years. and thereare still no
discernible effects. So much for the cobra venom
theory! With that in mind, it will be an exercise in
futility, 1 think, to try to pick up health effects caused
by small amounts of injested plutonium. One reason
for this is that the plutonium goes through the Gi
tract so rapidly that it has very little time to do much
damage.

Michael Mc¢Kay, Los Alamos: Y've worked with
these correlation coefficients, and 1 think it is very
helpful to the investigator to see plots of the
distribution of the response variable over time. If you
find that you have to change your data which have a
small range of variation, then what your partial
correlation coefficients or partial-rank correlation
coefficients seem to tell you can be influenced quite
drastically. A correlation very close to 1 with an
extremely small range of yariation—standard devia-
tion, say—might imply that this variable is extremely
important but doesn’t do a whele lot. Let me go now
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to something on the magmtudes of the correlation
cocttictents. ©think Ronoas the tiest person that e
seen get eaarted  thout a correlation of 0.2 and
whether or not s ditterent trom one thats 0.34. 1
have hind of a rule of thumb: 1 just put my hand over
0.5 Tdon'tknow what you cain say abont them. We
did o tew hude studies o get some adeas of the
distitbutions, and it seems that if vou don’t get
around 0.5 vou can’t mdicate what’s important, 1f he
had showed us plots ol the partial correlation
coctticients for all ol the A varnables on a single
graph. 1 think it could have been sery helpiul. 1
wonder (It vou found ansthing realls outstanding
(there was & 08 that was displined {or us) and (2)
whether you tound all of the correlation cocetticients
kind of huddled around sero. Finally 1 have a
question about the ranked  correlation vs  the
corrclation with the unranked data. You have veny
micely plotted their display for us. and 1 have also
occustonally managed to get nice smooth plots:
however, more often 1 find that the partial-rank
correlation coelticients tend to jump up and down.
| hie response variables, which tend to cross over on
the ume axes, seem to play havoe with the runk
correlations, and 1 think it'’s reasonable to expect this,
I would also ash whether or not we managed to see
anvthing like that in your data. Again this is tied te
how much ~ariations yvou obtained when vou did the
study,

Raonald tman: 1 didn’trealize to what degree 1 was

being carried away here with the magnitude of

correlation. It must have been a tit of passion! Lagree:
0.2 doesnt really excite me that much either, so
mayvbe we can get that cleared up in the record. 1 do
think that one of things that [ was concerned about is
determining which of thesce variables are important
and what would be the magnitude of their effeet. § feel
thet the effect of these various variables. as I have
indicated here working with the raw data, seems to be
disgutsed: the reuson for that could be shown by
making some sort of plot of the response variable
over time to get some idea of the magnitude of the
response variable, What it would indicate is that there
arc some combinations of independent variables that
arc giving us very high response rates and this is
obviously what’s making up the corrclation; that is,
we need some sort of transformation on it.

I might give you plots of all thesc indcpendent
variables.* In my selection of plots here, 1 tried to go
to ali the extreme cases that 1 could find. Forthe first
case, Xi. Y. the raw data were indicating that you
have raw correlation to partial correlation in the

0.3 whereas the rianhs were
0.5 Now this i
abso true for two more of the six vanbles, sotor g
total ol three variab'es, the story s different Raw
indicated reasonabhy weak and the other indicated
reasonably strong. Note also’ the plot of 4 s the
second dependent vanuble, which is realls Y oo the
correlstion seems to change considerably over nme, |
wondered 1l there was o time etfect. The raw data
indicate there is same reasonably mild change. but
the rank seems to indicate @ rather severe change. In
putting the response surtace at ditterent points of
e, 1 owant 1o know other ditterent variables at
ditterent pomnts of time that 1 oeed to consider: thatss,
the role ol a particular vanable change over ume. So
it 'm trying to make these predictions at some pomt
in ume, exactly what combination of vanables do |
need? 1 think that I'm getting difterent stories from
these, which may have been the cause of the
enthusiasm. But ranks tell me “positiy e correlation™
and the raw data tell me “negative.” and they do hase
some bit ot ditference there concerning the number of
obsenvations.  although it might be difficalt to
establish that it is & sigmficant difference. 1 guess the
only other point was with respeet to the distribution
thatis assumed on here. 1 know that Mike has worked
with the Latin hypercube technique as much as
anvone. and I would appreciate a comment here with
respect to distributions. and again 1 plead for that.

neighborhood of - 0.4 1o
idicating this was fiarhy stable at

Chuck  Bayvne, Union Carbide Corporarion,
Nuclear Division: 1 would like to disagree with the
author a little bit: he pointed out that the variables he
had to work with werc given to him by the
experimenter. It seems to me that the most important
contribution that we could make as statisticians is
usually arguing the problem with the experimenter.
We should not accept that the variables they give us
are what we have to work with; I found in my
experience that many times the engineer or chemist
gives you variables on a basis that this is what has
been done in the past. One of the advantages that we
have is that we can take a fresh look at these variables
and point out where they may not be applicable to the
problem. One other comment: the range of the
variables seems quite large and quite variable. For
example, there are some ranges to 10° and also some
to 10% it seems to me that if you're using quadratic
variables where you are squaring or taking the fourth

*Ronald 1. Iman, these Proceedings, Fig. 5.
*Ronald 1. Iman, these Proccedings. Fig. 9.




power, that You may need to dosome type of sealing
on these vanables.

Judy Mahatiey, Paciyic Nortlwese: One ot Garny's
comments bothered me. He was tilhing about one
missive exposure, Our experimental work concerns
animals, not humans certanly, We've given repeated
mid-level and low-levelexposures which indicate that
we get ditterent results than when we give them one
single exposure and never repeat it

Frandis Anscombe, Yale: 1 would like to ask for,
perhaps. an atem of clanfication. 1 tound myself
rather puszled about just what was being done. My
understanding is that regression analysis s being
done on something thats called dataz however, the
data refated 1o o thousand years of experience is not
observational data at all, | think, but the output of
mathematical model which is predicting what will
happen. Now it that’s so. | wander why regression
analysis on presumably some simulated output ts
done. rather than perhaps a direet study of the
consequences of  the mathematical model. Why
regression rather than a direct study of the model
iselt, 1 mean. if the mathematical madel is reason-
ably intelligible-looking, I would have thought it
would be possible to infer what properties its
solutions would have without really generating some
random output and then doing a regression analysis
which somehow is probably not particularly related
to the form of the mathematical anualysis. I haven™t
seen the madel. so Fdon't know. Maybe the models
are too complicated for direct theoretical study.

Ronald Iman: The models that we're working with
arcextremely complicated  differential equations ull
through the place. It isn’t something that simply can
be identified immediately, so this is the reason for the
choice of trying to fit itto a response surface to help to
determine what might be important. The first model.
the pathways model. is a little casier to getto as faras
the choice of the variables. | worked with the
individual who developed the model and relied upon
his choicc of what he felt would be the important
variables to consider.

With respect to Chuck’s comment that it is my job
to work with thisindividualand indicatc to him that 1
can help him select the variables. First of all this
presupposes that I know a lot about geology - which
I do not. We're talking about variables such as
suspended solids and things of this naturc. After long
consideration, we did choose those particular
variables, Now some of the other models, for
example, the transport model that’s coming out, arc
many times more complicated than this pathways
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madel. In lact the pathways model s gomg to look
simple alongside this, As T indicated yesterday . since
June. there’s been a group of mdinviduals working on
that particular model pust to tear it down to a usable
size. In other words, they are wlhimg in terms ol
thousands of vanablesand are trving to getitdown to
a handful. There sn't any mice formulation.

Viichae! Mo Rav, T os Alumos: Td just ke to throw
my support bebind Ron when he asserted  the
importance of using the correlation coetficients
terms, 10 fact any sensitvaty measure. i dentifving
important time regrmes i the model. Fthimkoatean be
extremely beneficiad to the researcher to beable to el
him, ~1think variable Vs important tors - 20" tor
example, and " There doesn seem to be much for
O 7 207 Weetound in reactor safets studies that
it has been of benetit.

Dave  Gosslee, Umon Carbwde  Corporation,
Nuclear Division: I'm aot surprised that whenyou (it
this entire model to cight  diflerent dependent
variables having correlations among the independent
variables that vou dont get the same best model in
some sense by vour stepwise procedure, In doing this
correlation, could vou substitute one vanable for
another variable that is highly correlated with it 10
end up with cight or four or some set of regressions
that have some consistency.

Robert Lasterling, Sandia: Tuseems to me that this
may be another case of when we need to tell our
funders that they are asking us to face the wrong
problem. My particular problem is with these known
distributions. I've encountered in problems like this
that there are multiple sources of error. sources of
variations. sources of uncertainty. ete. To pretend
vou can somchow simulate all these and put them
together and come out with « distribution. such as
log-normal or log-uniform. is terribly naive. I've
never known a distribution. and 1 don™t expect to
know any. yet we're being asked to work these
problems as though we do. I think that this fate will
be another situation where we should suggest to the
people proposing these problems that mavbe the
problem should be stated differently.

Dave  Gosslee,  Union Carbide  Corporation,
Nuclear Division: Let’s go back to the other papers or
all three of them. 1 want to say one thing about the
first paper. There has been a lot of looking at the
persistence of one metcorological variable, I was
quite intrigued by looking at the persistence of
combinations of cxtremes of two variables simulta-
neously. I think this is a very important approach.
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Richard Hooper: Most of the decisions in
formulating a national energy policy have been
heavily impacted by consideration in areas such as
health effects, nuclear reactor safety, and nuclear
materials safeguard. Each of these areas is almost a
macrocosm in statistics in that each involves
measurement problems, data problems, modeling,
and evaluation. I'd like to begin the panel discussion
with a question — to obtain from the panelists their
views on the role of statisticians in these areas and on
the kinds of things that can be done to enhance the
statistician’s role.

Carl Bennett: We've been presented with a very
broad subject, and I think that what happens when
presented with a subject like this is already apparent
from some of the brief discussions we've had together
earlier this morning. Each individual tends to tie this
role and his response to it to his own role as a
statistician and to his own background and
experiences (which I think is probably best under
these circumstances). I, in particular, have been
involved with the energy problem in a somewhat
narrow point of view: first of all from the point of
view of nuclear energy and more recently from the
point of view of safeguards. On the otherhand, we all
realize that the adequacy of safeguards is one of the

Fred C. Leone

American Statistical Association
Washington, D.C.

John W. Tukey

Princeton University
Princeton. New Jersey

more important elements in gaining acceptance of
atomic energy or nuclear energy as the power source.
Safeguards in a sense are supposed 1o establish some
kind of control — first of all, over the possibility of
misuse of nuclear materials, but in addition to
helping establish that control, they also need to help
establish the credibility of that control or the
credibility of the existence of that control. In the brief
period I’'m supposed to talk to you, I want to look at
two examples which deal with the subject from these
two viewpoints in terms of what the statistician’s role
could be. It is rather interesting to compare the term
“safeguards” in the international context with the
domestic context. The term is used in this country to
indicate the first of the rather expensive procedures
that must be carried out either under regulatory
standards or under contract to maintain control and
accountability for nuclear material. In the
international context, the term safeguard is
concerned almost entirely with (1) the verification
and audit of such control to establish credibility in its
existence and (2) the fact that material has not
escaped such control. These two completely different
aspects of the subject, in my opinion, may call for two
somewhat different uses of statistics. The first
problem, the problem of control, evidently involves
statisticians who become heavily oriented with the
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production of data. with measurement. with the use
ol those meuasurements 1 a control function for the
development ot indices (such as 1the rather tamous
I T1Z). and with the use of these indices to maintain
this control. Here 1 think our chicl problem as
statisticrins isto be sure that we assistin every way we
can to make sure that the data are obtained. that the
conseguences of that data arc understood by people.
and that new methods areavailable to deal with new
situations. Yesterday 1 was saving to some people at
the discussion session on safeguards that I'm
absolutely  convineed that the modern real-time
control methods which are being used to obtain
tmeliness under conditions where timeliness is a very
important thing i the control of nuclear materials
are going to call for some entirely new statistical
methods of dealing with data. For example, it is very
ditficult to define an appropriate combination of
timeliness. and the amount of detection which can be
used to parameterize the systems wetry todevelop. It
is onc of the kinds ol things 1 think statisticians will
have to deal with.

I'he other side of the picture is the side that |
mentioned carlier when 1 was asked, “What do you
think is the most important single problem facing
safeguards? and 1 responded that the single most
important way in which statisticians might help is to
be able to state some measure of the effectiveness of
safeguards that would be credible to the public: first
the public as a whole and second as an international
body such as the Sarsi group. Then I could turn 1o
somebody from another country and say. “Yes [ do
believe that such and such can be accomplished if we
put so many inspectors in your plant.” In other
words. I don’t have to be in the position of saying.
“Gee, why don't you et me send some inspectors into
the plant. and after a while I't tell you whether weare
getting any results and whether they’re correct or
not.” I should be able to convince him that he should
accept the intrusiveness of inspectors in his plant,
because 1 can convince him of exactly what the
cffectiveness is going to be. Now that might not be a
statistical problem as such, but it certainly depends
heavily on the ability of somebody. systems people or
statisticians, to quantify what happens because you
have an inspector present, what happens because you
have a barrier, what happens because of all the other
measures that are usually associated with safeguards.
1 supposc that what I'm really trying to say is that in
this area of cstablishing credibility in the face of
uncertainty (if I can use the term), we really have to
think of this first in a positive sense — how to act in
the face of uncertainty or how to live with uncertainty

(or vou can create your own phrase). Finally . because
I like 1t so well. I'm gomng to borrow from a
summarization that John made this morning: 1 think
we also need to have statisticians act in the negative
sense: that s, they need 10 mimmisze the salse
attractiveness of highly sophisticated procedures. |
will give you a specific example of this. 1 think we
have long overdone the atiractiveness to many people
of material-balance accounting, limits of error, and
so torth, simply because they do praduce numbers
that are. in a sense. quantitative. It is casy for a
statistical  procedure to be oversold and over-
attractive. simply because it is statistical and because
1t can be. to some extent, quantified.

Herb Kowts: 1 guess have the distinetion of being
the only member of this panel who is not a
statislician, 1'm a consumer and not a producer of
statistics, and 1 guess | represent that part of the
world. I do have some things that might be useful to
say on the subject. however. because I do keep
running into statistics in a number of applications
and a number of things that I do.

First, let me talk about statistics in a broad sense,
that is, the broad utility of statistics and statistical
methods toward the energy problem and its solution.
When I was getting ready to come here, 1 went to the
library and quite naturally got out the U.S. Sraristical
Abstract for 1976 and looked through it to sce what
kind of data base we’re operating on in this country,
and | found about ten pages of closely crammed
information directly related to energy in a section
entitled “Energy of the United States.” I also found
that almost all of the rest of the U'S. Staristical
Abstract was full of tables which impacted indirectly
on the energy problem. There is certainly a great
lesson to be gathered here on the importance of
statistics to the solution of the energy problem,
because you have a data base which is reliable and
comprehensive to start with, and cven though it may
be a fairly humdrum application of statistics to
generate such a data base, it’san extremely important
application, it seems to me. One gets involved in this
kind of data base in connection with all the energy
modeling activities that are popular these days and
that are really the analytical input to decision-making
in the energy field. If the energy modeling activities
start with statistics, a framework is begun within
which the statisticians begin to interact with this
problem. With respect to the question of the Reactor
Safety Study, or the Rasmussen report, since Rich
Hooper has brought it up, 1 might say a few words
because it’s an example, ! think, of the kind of



analysis in a specific field which does interact and
have importance with decisions in the energy system.
The Reactor Safety Study was an analvsis of risk in
the nuclear field  risk associated with the production
of power by nuclear reactors. | guess [ was associated
with it in various depths and various forms from the
beginning, when the group under Professor
Rasmussen at M.LT. was first put together, until the
time the report finally came out: I'm still associated
with 1t because I'm on a panel that is reviewing the
report for the Nuclear Regulatory Commissionat the
request of Congressman Udall. At any rate. the
Rasmussen report is an extremely  complicated
application  of  relatively  simple  statistical
methods- that is. of propagation of probabilities
through model-describing modes of failure. or
rassible failure. in complex nuclear systems. | know
most of the people who worked on it: | was in almost
daily contact with the work over a long period of
‘time; and 1 can assurc you that this is a very honest
picce of work and about the best level of work that
competent people of this character could put
together. at this time and with the information they
had available. 1t had several characteristics which
every application of statistics 1o a technical or social
problem has. First, it had a daa base; second. ithad a
model and calculations based on that model; and
finally. it had an crror analysis to be attached 1o it.
These are all important aspects of the application.
think that, in each one of thesc areas in this particular
application. therc is room for considerable
improvement. The data basc for the Rasmussen
report needs improvement; cverybody says so,
especially the people who worked on it. The models
for the probabilities of failure are pretty good, but the
models for consequences need a lot more work, partly
as a result of inadequacy of data, because when the
data base gets bigger, then your models can get more
complicated. but certainly the modeling needs to be
improved. Most important of all is the question of
error analysis. This area is one in which | think
statisticians really have a great deal to develop and to
accomplish, because the error analysis of the results
of the Rasmussen report are still rather rudimentary
compared to the gencration of the values they
produced themselves,

1 should point out that there isanother analysis of a
simpler kind, commonly used in reactor safety areas.
which is just a calculation of what happens if you
have a reactor accident. It’s the calculation of the
effect of what used to be called the maximum
hypothetical accident, now called the designed-base
accident--a pipe break, let’s say—in a Pressurized
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Water Reactor. One of the most difticult problems
tacing people who caleulate this kind of thing is an
estimate of the error attached to the uncertainty in the
numbers in the input to a caleulation ot this kind. 1
think a great deal can be done by statisticians to help
i this vers important tield because the analysis ol all
reactor safety these dass tor every reactor plint goes
through a phase where this 1s the predommate set ot
questions to be asked.

Fred Leone: ook at this picture froma somew hat
different point ol view. partly i terms of the
individual, bu alse in terms of the professional
organization, I'm a little bit torn because even within
our own board of directors there's a question as to
whether the ASA should be a learned society or a
professional association. We are a professional
association, and somchow we should have some
impact both as professionals and as anassociation on
some of the decision-making processes. We have been
involved in a few things onc s relaung to the
American National Standards Institute and. at the
same  time. sending  a representative  to o the
International  Standards  Institute.  We o have
attempted to provide a forum. As most of vou know,
we had a symposium last year and two years before
that on the topic of statistics and the environment.
i'his next year the symposium will be extended. and
we're broadening it to include energy. toxicology
and environment. We'e not speaking to statisticians
alone. which | think is important. Unfortunately,
most of my own contact is with statisticians, but 1
would like to sec us go beyond this imitation. We're
getting into legal aspecets: one-third of the program
committee is made up of members of the bar
association whose particular arca is along the
environmental and energy lines. We have an ad hoe
committee that is working with the American Bar
Association and with the commitice on
environmental guidelines. Somchow there’s a lot of
frustration because we know that, when the final
decisions arc made, there's a great deal of political
input  sometimes  cevasive  on what the actual
deciston should be. As was mentioned earlier by Carl,
weve got lo develop a stronger and .sl'rongcr
credibility with reference to the data that are
collected, with reference to the data base. 1 think the
time is here for us. I think the public is waiting even
though they wonder about the credibility, especially
when they sce two different results from public
opinion polling, and in general, they don't realize that
these polls possibly start from different bases. We
have tried and will continue 10 try to have an impact
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on the legnlative process. but as we alt know 1t s
extremely ditticolt toantluence leginslanon. espeaially
sinee the number ol hills that are pouring through
Congress has gone up by at leasta lactor ot 10, 20, or
maore as compared toa tew yvears ago. In some in-
stiances, we have taken acnon, though notn the line
of energy s hopetulh . we will get more and more into
this arca. One job 1 teel Thave, as sttt a number of
chapters, s beating the drum of the individual statis-
tieran, getimg imvolved o the dilferent decision
mahing. fst ot local levels and then besvond that.

A number of years ago we were asked to producea
report on the statistics system of the Bureau of Mines.
Fhat report was completed about 1950 ar 1951, and |
think that was the fast heard of it. Two wecks ago 1
was ashed by the assistant director Jor metal,
minerals, ete. il the ASA way interested in reviewing
their statistical systems, He had only been aboard for
sixand one-half vears: hedidn’t know about the other
report. | think a lot has happened since 1950, and
perhaps the bureau is hearing some of the sounds
about the kind of statistical data that's coming out.
Neat week 1 owill be sitting down with the acting
dircctor of the Burcau of Mines. the individual who
contacted me. and two or three statisticians. Let me
state that 1 think thereisa role that an association can
plasy as a professional, as a group of professionals. |
think the voice has to come trom individual
statisticians demanding that we tuke greater steps
along this arca. but I teelthat a national office as such
cannot do it without the individuals who are the
caperts. not in statisties atone but also in the subject
matter arca. to come lorth and propose that they
themselves will be part of this role, will be purt of this
impact.

Joln Tukey: 1 suspect most of what I'm likely to
say really attaches ta things that have been said
befare. but maybe 1 can sharpen some of the issues a
little. At the 50th (or was it the 75th?) anniversary af
the Mathematical Association of America. [ was
asked to speak about what mathematics can do for
the government. 1 refused until there was a small
change in title: [ said | was willing to talk about what
mathematicians could do for the government. Now if
people are going to contribute increasingly to
decision activities, they have to plan to be
increasingly uncomfortable. Usually, you are not
going to contribute to decision-making in major and
high-level ways (there may be a few exceptions) by
doing statistics as defined in the textbooks, und this
means that in a certain sense (it’s never bothered me
very much), you won't sleep so casily at night.

N

1 know of one statistician whose name 1s known to
all ot you. and I will be caretul not 1o reveal it either
directly or indirectly. who some years ago gave up
consulting.  because he was deeply  concerned.
honestiy concerned. that he may not have given all his
clients the best possible advice evers ume. | think
everybody in the room is aware that if vou are going
to adhere to this standard. you do have to give up
consulting.

Well. the requirement tor giving up decision-
making or contributing to it is much more stringent
than thai. I'm not convineed that 1 understand when
the technical tacts should really determine the
decision. It might have been possible to interpret one
of the earliest speaker’s words to mean that technical
tucts ought to settde the matter. Clearly. Fdon't teel
this iy alwavs true. 1t ] telt it was always true. |
wouldn't have any difticults in making up my mind
when it was true. 1 think there’s a very real
responsibility  on  the  profession. or on am
profession, to see that the technical facts are. at the
very least. reasonably available and in some cases.
perhaps. vigorously so. Whether those facts are going
to determine the difficult sociai decision is one
matter, and whether they ought to s another matter:
so one has to be prepared for oneself and the rest of
the technicul community to be a voice crving in the
wilderness. maybe for a vear. or ten vears, or
indefinitely. and we can afford to let that get us
down. I'msaving that just being a statistician, 1 would
recognize some very strong obligations to go well
bevond what is taught in statistics today. If vou are
concerned with an area. vou have an obligation to
understand about measurement in that area. You
may be lucky enough to find some other people who
understand  and vou mayv not. It is a narrow
responsibility of the statistician. 1 think. to see that
the measurement facts get realized. which isn't casy,
and not all the measurement facts are going to be
statistical.

Let me follow Carls suggestion and draw on my
recent experience in i couple of directions having to
do with the chlorofluoro methane in the ozone layer.
Generally speaking, the Academy report got pretty
good press. However, i saw a copy of an editorial in
one paper. and if } remember right, it wasn’t too many
miles from here, probably considerably less than
2000, which suid cither the freons are damaging the
ozone layer or they’re not, and the Academy of
Sciences should have told us which. It a good joke,
gets the reaction of people, including more people in
our techniczl organization than is comflortable for
any of us to think about. The issue of graduaily



educating the public, that they are living with
uncertainty whether they think so or not. is very
important.

Lay Vaughn Newell, who used to work for the
EPA. at one stage had an administrator to replace.
Vaughn s a medical type but not a statistician, and he
expressed his problem very much in medical terms:
it's casily demonstrable medically that its dangerous
to get up out of bed in the morning: you get up. and
vou may  have an accident. Also it's  easily
demonstrable medically that it's dangerous to stay in
bed and not take the exercise. If people could
understand that this is the way the world is, that
they're living their life under these conditions all the
time. and that they need to learn to manage the
situation. then 1 think some of our problems with
uncertainty would be less serious. In the report on
chlorofreons. or chlorofluoro methanes in the ozone
laver, we quoted some uncertainties. Important in
thase  uncertaintics were certain  chemical rate
reactions. Estimated uncertainties for thosc reactions
were used. and these estimates were not the internal
uncertainties vou would discuss if you analyzed the
last set of determinations of that rate constant, if
there was one. Based pretty much on professional
judgment among chemists skilled in kenetics, the
uncertainties would likely be between what you had
now and where the thing might settle down. I think
statisticians have to look forward to doing more of
this.

The reason things are rather different than they
were a year orso ago  the reason that the committee
on impacts of stratospheric changes to some degree
must go back to its drawing board is that onc of
the significant reaction rates has changed by a factor
of 38; 1 believe, though [ am not sure, that thisisa
factor of 38 between the best judgment that could be
made before any measurement and the first
measurement. One is, 1 think, still somewhat
uncertain as to whether there are more important
reactions in the mill, and I am sure that there are
other reaction rates which are, and not unreasonably,
still in that state. This is the best judgment by analogy
with the things that you have measured, because
reactions, for example, are between two free radicals
at stratospheric pressures and temperature in
concentrations that may be a few parts per billion. It
is not a thing that one feels nice about or a thing that
the next new graduate student would go into the
laboratory and measure.

There was a conference in Boulder two months ago
on the detectability, by direct ground-base

measurements, of trends in the total ozone overhead.
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When the conference was all over. itlooked hkesome
unspecified units, which T witl just call units because
nobody usually does, existed. Out of four possible
units. one and onc-hall came out of the statistical
cvaluation ol the available data, und vou had toallow
about one and one-half for that. One-half” unit was
ample to allow for the stations not being uniformly
distributed over the fuce ot the globe, 'wo units came
from the instruments bemng known to have certain
kinds of drift in terms of what you know about how
they™ve been calibrated over the years, and this is a
trend that yvou would expect to see over probably one
or two decades. You have to Ieave two units i there
for the measurement, and also yvou have to be very
careful to say vou know the azone goes up and down
anvway. You have detected a trend. but it would be
unwisc to say that we are sure that this is the resalt of
what the human race has been doing, | don™t think
that’s an unfair example of where the quantitative
technical issues ofien come out. in a decision base
situation, and we have not yet begun to inguire which
uses of the chlorofluoro methases are important to
society. I you are going to contribute the most either
narrowly or boardly, vouve got to spread your
individual responsibility well beyond the courses in
the university. The further up the line that you're
goingto havesome influence, the further you're going
to have to spread that responsibility and the more
things you're going to have to say that you may feel
uncomfortable about after vou've gone to bed at
night.

Richard Hooper: Regarding the sccond question, |
necd to summarize a couple of things that were said.
Carl made several statements about the need to see
that credible data is obtained and the consequences
evaluated. He talked about the development of
evaluation schools that provide credible information
to the public; Dr. Kouts made reference to a very
complicated model for which the error analysis that
went along with it wasn’t nearly as sophisticated as
the model; Dr. Leone madc reference to a stronger
credibility, generally in the data and the daia base
which is used eventually to support decisions. Wein
the profession should recognize that most of what we
end up doing is the result of our own selling
efforts—either selling ourselves and our services to
investigators in other areas or selling an idea that we
think some sponsoring agency would buy. It seems
that our recognition of the necessity of salesmanship
in itself might be a mechanism to begin turning some
of these problems around, and I'm interested in your
views on this.
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Carl Benners. 1 think the real problem comes
salesmanship ot certnn types. and 1 don’t mean
salesmanship o the sense of going out, if vou know
what [ mean. and adverusing or anything hike that,
but the salesmanship that’s talked about . for
caample. the hook by Ralph Cordoer. The
descrptionis ginven in Cordner™s book | of the guy who
ended up developimg tor, [behieye, Sylvania, one ol
the fundamentad tems to patent Jor television,
Between 1927 und 1937 he had his rescarch funds cut
ot perhaps twen tmes, But this turned out to be once of
the single most important patents that Svhvania ever
bought. Fthink what we're getting back to s the kind
of persistence that enables vou to Jook at a data hase
vou hine mvestigated. look at @ process which you
arctamibiar with, hinvea certain amount of confidence
i vour own leelings that vou understand what's
gomg on and that you do have some kind ol
understandmg. which s important for somebody
chse to have, and then be able o go through the
uncomiortable process ol educating somebody else to
this point of understanding. Ina sense. you have to
tirst analy 7e the data so vou're comfortable with it
but then vou have to go through the process of
mahing that understanding credible 1o someone ¢lse.
and it's establishung that credibility 1o someone clse,
n my opimon, that’s gomg to make you a part of a
deerion process. 1t s not enough to understand the
process vourselt, you see. Unless vou can use the
resulls ot vour stausties o intluence others. your
work might end up like the report Fred was talking
about on the shelfl you see. Now, this can be very
uncomiortable: yvou can get laughed at.

I can remember the expressions on the faces of the
people in the room when 1 irst suggested to a group
ol people that they could learn an awtul lotif thev'd
simply run about 50 fuel elements to rupture. My
heavens, there wasn't a single person in that room
that wasn’t going to have the whole problem solved
before they had ten ruptures. 1 can remember sitting
i a room with a group of five production people that
just laughed at the idea of deliberately loading and
running till rupture until we can get some idea of
distribution theory and so lorth.

That's thesense of uncomfortableness, [ think, that
we're talking about. It's the sense of being out there
on a limb with, first of all, something vou believe in
because you've done vour best to look at all the data
vou have, and I can’t go through this stale process
until 1 really belicve in that fact. That belicf has to be
established first. but then you have the responsibility
for selling it and to establish that you have credibility
in someone clse. There are two different levels of

understanding, and 1 think that again | am indebted
to Morton Schubert tor this msight. About 13 years
ago, he sind that there are two completely ditterent
levels ot understanding ot a problem: one s whenyou
suddenly get the maight and understand it yourselt.
and the other s the appreciably later time whenyou
havet tormalized to the pomt that you can expliinat
to someone else. Theseare ta o signsticantly difterent
levels of understunding o1 the problem. 1 am
admittediy a little turned on because Twas triggered
by. fike | usually am. John's remarks with respect ta
this business of living dangerously. and the fact that
one must live dangerously  because 1t so clearh
expresses just what a lot of us are not willing to do.

IUs hard o describe to o group like this what the
situation was like, et me say about 30 vears ago.
when yvou could be in the relatively lonely and
uncomiortable position ot dealing with data out in
the plant. You were sort ot looked down upon by the
group back at the university as though you were
prostituting vourselt, and yvou were looked upon asa
way-out longhair by the group you were working
with, It is very dificult o understand the sheer
uncomfortableness of romg out and dealing with
data in a time when it was far more enticing Lo retreat
to the nice comfort ot good. theoretical development
or to go over to the comtart of a hand book which told
vou what dodo. It’s that kind of thing that vou should
challenge. il you're going to become part of the
decision-making structure,

John Tukey: Of course, | agree with evervthing
that Carl suid. [ would expand it just a little bit more.
Carl wus emphusizing “understanding the data™ and
those who know me. know 1 think this is extremcly
important. In most of these situations, 1t’s also
important to understand the problem. In another
direction is another level of understanding when you
not only understand the data. but you understand
how people think about the problem. why they think
about itthat way. and how thedata fits into that. It’s a
diffcrent second level, and if you can combine the two
separate levels, so that you not only understand the
data but you understand the problem and can
transfer the conviction of this understanding. then
you've gone a long, long way.

Fred Leone: 1'd like to emphasize another point in
the matter of salesmanship. Too often I have seen
cascs, especially in analysis of quality control groups,
where the individuals are highly regarded us perhaps
being good statisticians but not good scientists. In
other words, these individuals may be respected for



what they can do in their own smalf circle, but they
somchow do not get it across. Now surely we must be
willing to be uncomfortable, uncomfortable to the
point where we're willing to be patient to the people
who do not understand us at first: then we try to reach
them. I'm not talking about those we know we cannot
reach and the barriers there. for there’s no way to guin
their respect, at least initially. We need to understand
why the data arc such, how they are collected. what
the implications arc. and how to get that
understanding across. [ think that too many good
statisticians are not ready to take the time to sell
good. sound. statistical bases for a decision. 1 dont
think we can underestimate this process atall: 1 think
it is very, very important.

Jolm Tukey: I'd like to come back fara moment to
the very important process on the other side of the
fence. Jack Youden and Frank Wilcoxon were
dedicated chemists f{or 25 wyears in the same
institution, and my estimate is they argued statistics
an hour a day for four days a week on the average
over that time, but that made two very good
statisticians. It’s a question of whether five vears
should have been enough. The related idea (and 1
think all of you must be familiar with this) is that it’s
sometimes often accidental that you start establishing
a working relationship in some area and that your
best relations have often come by the continued
growth of something that scemed to start purely
accidentally. You don’t get to the places where youy
expertise is most needed at once: you are lucky if vou
get to most of them in the long run: and how vou get
there is sometimes very interesting and round about.
In dealing with the subjcct matter arcas, | suspect the
most important thing to do is to understand the
phenomenology. I've alwavs  admired Joe
Hurstfellow’s title At the Bikini Tests.™ He wore the
title of chief phenomenologist. Too often the
technical people you deal with from other disciplines
will not have given the phenomenology cnough
attention, Where they haven't, if the statistician can
learn it and use it in the right way, not too
obstreperously, maybe that’s a way to take a good
step forward.

Herb Kouts: Well, there’s a lot of talk about pitfalls
in this application to problems of theday, and I'd just
like to put some of these in a few different words.
Both Carl Bennett and John Tukey have talked about
the need to define the problem. I think it is necessary
to define the problem in very simple ways, If you can
write the problem out in one sentence you stand a
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chance of solving it. 1f it takes a page to write the
problem out, you might as well give itup. Inaddition
to writing the problem out in one sentence, vou ought
to write it out in such a way that vour wife will
understand it. If she can understand it. then vou have
a good chance of solving it. I'm not joking about this!

In the application to social problems of this kind. it
is important to recognizce that the social problems are
the kinds that affect everybody and the effect on other
people is expressed in terms of an inability of other
people to understand. Of course there are exceptions
to all these things: 1 doubt that some of the things that
took place at Bikini could have been put in a form
understandable to one’s wife. Other applications of
bikinis. ves. There’s another pitfall that one runs
into-- deviating from the initial goal. Frequently
sicentists start out knowing what they are going to do,
and then. by a process which is like drowning in
motion, collision with small problems of the day
divert them in completely different directions, and
they end up trying to svive other problems. This is
often called solving the problem you know rather
than the problem that needs to be solved. It happens
all the time.

Let me just say something clse; if you are going to
try to solve social problems, you are going to have to
do some selling. You are going to have to convince
sotnebody to let you go where you can do some of
this. You are going to have to communicate in
understandable terms. which means stating what you
intend to do in terms of what’s to be had. It's a
standard problem in salesmanship.

Every salesman has to make it clear that he has
exactly what is wanted. In dealing with the
government, the same sort of “rules” apply that are
appropriate for a butcher dealing with a housewife.
The man in government faces problems that he’s
really able to condense into a little package usually.
These are usually the problems | have to solve. If you
go to him, telling him you want to do something for
him which doesn’t fit into what he has to solve, he’s
not even going to listen to you, he’ll throw you out.
This disaster often happens even when there is a
wonderful match to be made. | was talking yesterday
to a fellow at Brookhaven who has some very nice
ideas about stress analysis, He has some beautiful
capabilities for doing analysis, for instance, of things
that might happen to pipes under very difficult
circumstances, but what he wanted to do was to
develop codes. Well, I'm sure there’s no one in
government interested in developing the code that he
wants to develop, but there are lots of people in
government who are interested in doing calculations
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or seeng the results ot caleulations that mught be
done with codes that he might develop. s up to him
to approach people m a manner to convinee them
that his product might be beneticial to them.

Richrard Hooper: Time s moving on. T he panel has
indicated its withingnuess to aceept questions from the
floor,

David  Rubstein, NRC: Wene heard several
eaplianations which go sortof'in different directions,
and | wonder il the panel can give us guidance in
relating them. One is that statisticians should remain
“sellative.™ Not that I wish to state the problem
simply i one ineand not that | suggestwe getout ol
the decision-making process, bevond what might be
tormal statistical input, but 1 think once we step
beyond that we are Ithely to tose our credibilits.

Jolm Tuhey: 11 might respond to that last
comment. some will and some won't. and we hope
that will deternune whether they keep on doing it,

Herh Aouts: I'd Bike 1o say it s impossible to get
into problems that have social impact without losing
some of your credibility.

Jolr Tuhev: Gomng back to the first side of thiat
question where it was suggested that the: tatisticians
would retain thewr credibility, mavbe the message
trom up here was that they should gain their
credibility.

Thomas Woieki, Princeton University: 1 would
fike 1o say Hound the comments really encouraging. |
think 1t a statistician is going to play a role in the
energy  problem. then he has to actively and
aggressnely chinm that role lor the following reason:
whereas the cconomist is automatically identified
with the cconomy ol energy and the biologist is

automatically identified with the biotogical aspects of

cnergy consumption. cte.. the statistician is not

automatically identified with any particular aspect of

the encrgy problem. In fuct. however, he has a
professional role in every aspect because perhaps
every one ol those situations involve collecting data
and making measurements and decisions. 1 don't
think we're being automatically identified with any
aspect. and we have to go outand aggressively claim
our role.

1 think it is inherently harder for a statistician to
claim his role in some ol these tasks than it is fora
person in another discipline. If' a statistician wants to

work on the cconomic aspects of the energy problem.
he has o demonstrate Birst an imterest ino some
knowledge of economies and only then can he bring
to bear the fuel that he had. An cconomist, howeser.
need not demonstrate any knowledge of statisties or
energs or amything else: he has an automate stiche 1n
1t [or some reason. Nobody really knows much about
some ol these  problems  and  thats e
uncomlortable, but an the other hand. thut pomts to
the role of o statistician, Since theres a lot of
ignorance about these problems. then the statistician
s no moreignorant thananyone else  and in tacthas
a4 responsibility 1o contribute to the tormulation ol
the problem. Actually 1 find  that much  less
uncomfortable than being o situation where
someone comes to me and savs. ™ Lhis s the problem.
do ! oreven worse than that. "Here is the data: go
analyze 1t!™ Though it may beuncomtortable in some
cases. I still think you hase to go out and do it

Fred Leone: 17d ke to make o pomnt here. ©think
part ol the problem is with the  statstician,
himsell  or herselt, You were sayvimg the statistician
has to learn the cconomies and then get mto the
statistios. Untortunately. when the statistician learns
the cconomices of the problem. then he has to be called
an econonmist. Often that person s called anengineer.
I remember a television interview ol one of our most
famous statisticians in cancer rescarch, and hedid not
wdentity himsell” as o statistician, but as a cancer
expert. So the problem is that too many of us are not
willing to say “"We are statisticians.™ | would goess
also that most ot us who are associated with, for
example. the American Statistical Association are
also part of at least one other field which would bea
subject matter lield. Nonetheless, we have to stand up
and be countied.

Carl Bennerr: T must take the opportunity to say
that one of the high points of my carcer was when the
Hanford Laboratory was formed: some important
person was visiting, and 1 was being introduced by the
then head of the laboratory from cach group, and he
said, "1 would like tor you to mect Carl Bennett, our
statistician: he’s also a pretty fair scientist.™

Jolm Tuker: The message from that is if you want
to be important, you must arrange to also be a pretty
lair scientist,

Gary Tietjen, lLos Alamos: Increasingly I see
statisticians becoming involved in legal testimony
and coming away {rom these cxperiences with



unpleasant feehngs of inadequacy and frusiration.
What does the panel see as the role of the statistician
in those Jegal situations.

Jolm Tukey: Well I'll answer that, if' you are
willing. wnd preface the answer with an ancedote. |
was on the U.S. delegation, the technical working
group. to the test-bun negotation: the first day Twas
a litde perplexed about the atmosphere. But before
we got to the second meeting 1 knew what was
famitiar: it was exactly the atmosphere of o rate case
betore @ public utilities commission. except there
wasn'ta strong independent person to chair. T think i
our sociely is going 1o function well. then interest
groups are just as entitled to have quantitative
council, as they are to have legal council. We cannot
expect that the guantitative council for opposing
points of view are going to make entirely compatible
statements. but we can expecet each of them will keep
the other quantitative council honest. Many of you
may not know of the case that | mentioned at
breakfast, in which Chester Blaizerfield appeared for
onc party. and Judge Netterfield appeared far the
other. One did the analvsis model I and got one
answet, and the other did the analysis of variance
model 2 and got the otheranswer. Now [ think it was
for the good that this possibility of disagreement and

adequate quantitative representation took place. I

vou are going to appear as quantitative couneil. thats
not the same thing as sitting in the neutral lab: there™s
no use trying to make it look as if it is.

Carl Bennerr: Having spent the last six years over
on the other side of the mountain with this Human
Affairs Rescarch Centers group (which consists
primarily ol psychologists. sociologists, lawyers,
economists, and a certain number of public affairs
type people), I've greatly enjoyed discussing with
some of my “legal friends™ the difference between the
adversary type of proceedings that constitute typical
legal procedure and the kinds of procedures we arc
more accustomed to, where you supposedly analyze
the data and come out with the answer. Reaily ina
sense there is a great deal more in common here than
you might think. My lawyer friends claim that the
adversary proceedings really only start after
admission into evidence of a certain set of factual
data which both lawyers essentially agree exist. That
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is. there s @ process in law of agreemng on a brief ora
body of evidence or data which is taken as tact. and
the adversary argument starts from there, in the sense
of being interpretation of this evidencee, orarguments
of how this evidence is interpreted. Ina sense we have
almost the same procedure here. You can start with a
given body of data. and 1think it pertectly possibleto
have two ditterent people agree or disigree on the
interpretation of that et of data and what i
meaningtul to conclude them. Lo me 1 think it s
worth thinking about,

John Tukey: Itseemsto mewe goa lot turther than
saving that the statstician professionally internahize
this. The motion of the conlidence interval 1y
perfeetly equivalent tosaying that (1) a representative
is arguing for cuch value ol the parameter (a difterent
representative for cach value) now which ones of
those can you not rule out? and (2) theadyversary isin
a sense supplied. but the successtul adversaries are
represented by the upper and lower circumferences,
et me also not leave the impression that 1 think an
adversary™ position iy always best. ve alwavs
thought that one ol the better compliments 1 ever
had. which eventually heard secondhand. was inan
international discussion where somebaedy on the
other side said, “Well 1 never understood why you
had Tukey along, but now 1 realize that hes being
absolutely as objective as ane can get.” So, there are
times and places: you need to know which is your role
and try to fill i,

Richard Hlooper: We started out 1o tulk about the
voles of the statistician and decisions needed and
formulated in national energy policy: we albked at
length about the need to understand the problems t
the point that we can articulate them in a meaningful
way to consumers; we tatked at some length about the
nced to make the application ol complicated
procedures more credible through the kinds of error
analyses and the statements that are associated with
then. It seems to me that, time and time again, the
conversations  turn  back 1o Professor  Tukev's
statement, which will really bave an impact on
decisions and enhance and inercase our credibility as
a prafession: “We have to be willing to be
uncomfortable.”
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