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MTIHM 
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Assembly cell 
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9 Gigawatt-days = 10 watt-days 

Megawatt-days = lo6 watt-days 

6 Metric tons (= 10 g) of initial heavy metal 

CANada Deuterium Uranium reactor; a D20-moderated, 
pressurized-heavy-watercooled Canadian reactor 

Calculational irradiation of fresh reactor fuel 
resulting in the prediction of the discharged 
fuel composition 

The smallest structurally discrete part of a fuel 
assenlbly which has nuclear fuel as the principal 
constituent; also called a fuel pin or a fuel rod 

A grouping of fuel elements that remains intact 
during the charging and discharging of a reactor 
core 

A cylindrical model of a fuel element used in a 
reactor physics calculation 

A cylindrical model of a fuel assembly used in a 
reactor physics calculation 

Natural uranium (0.7115 wt X 235~) 

Slightly enriched uranium 

Molten-Salt Breeder Reactor 



ONCE-THROUGH CANDU REACTOR MODELS 
FOR THE ORIGEN2 COMPUTER CODE 

A. G. Croff 
M. A. Bjerke* 

ABSTRACT 

Reactor physics calculations have led to the development 
of two CANDU reactor models for the ORIGEN2 computer code. 
The model CANDUs are based on (1) the existing once-through 
fuel cycle with feed comprised of natural uranium and (2) a 
projected slightly enriched (1.2 wt % 235~) fuel cycle. The 
reactor models are based on cross sections taken directly from 
the reactor physics codes. Descriptions of the reactor models, 
as well as values for the ORIGEN2 flux parameters THERM, RES, 
and FAST, are given. 

1. INTRODUCTION AND SUMMARY 

1 Introduction 

1.1.1 Background 

1 The ORIGEN computer code is a versatile tool used for calculating the 

buildup and depletion of isotopes in nuclear materials. This computer code 

was written in the late 1960s and early 1970s by the ORNL Chemical Technology 

Division. At that time, the required nuclear data libraries (half-lives, 

cross sections, fission product yields, etc.) and reactor models (PWR-U, 

PWR-Pu, LMFBR, HTGR, and MSBR) were also developed. The code was principaliy 

intended for use in generating spent fuel and waste characteristics (compo- 

sition, thermal power, etc.) that would form the basis for the study and 

design of fuel reprocessing plants, spent fuel shipping casks, waste 

treatment and disposal facilities, and waste shipping casks. Since fuel 

cycle operations were being examined generically, and thus were expected . . . 

to accommodate a wide range of fuel characteristics, it was only necessary 

that the ORIGEN results be somewhat representative of this range. A 

satisfactory result was obtained by simply adjusting the resonance integrals 

* 
Computer Sciences Division, UCC-ND. 



of the major fissile and fertile species to obtain agreement with a spent 

fuel composition from an exogenous source. 

Soon after the ORIGEN computer code was documented, it was made 

available to users outside Oak Ridge National Laboratory (ORNL) through 

the Radiation Shielding Information Center (at ORNL). The relative 

simplicity of ORIGEN, coupled with its convenient and detailed output, 

resulted in its being acquired by many organizations. Many of these 

organizations began using ORIGEN for applications that required greater 

precision in the calculated results than those for which the code had 

originally been intended. These applications were generally much more 

specific than the early ORNL generic fuel cycle studies. Many were 

environmental impact studies that required relatively precise calcula- 

tions of minor isotopes such as 3 ~ ,  14C, 232U, and 242 ' 244~m. The 
initial responses to these requirements were attempts to update specific 

aspects of ORIGEN and its data bases. ' However, inconsistencies and 

numerous different data bases soon resulted from these efforts. 

In an effort to remedy these problems, a concerted program was 

initiated in 1975 to update the ORIGEN computer code and its associated 

data bases and reactor models. This report is one of several reports 

describing the various aspects of the ORIGEN update effort. Other reports 

that have been issued previously document (1) a revised version of the 

OKIGEN computer code, designated ORIGEN2, 7 5  (2) updated decay and photon 

data libraries,' (3) updated U-Pu cycle PWR and BWR modelsY7 and 

( 4 ) .  alternative-fuel-cycle (thorium cycles and extended burnup) PWR 

models.8 Work is currently under way on LMFBR models. 

1.1.2 Scope 

This report is concerned with a description of model CANDUs operating 

on once-through, 235~-enriched fuels and the methods used to generate the 

information for these models. The basic CANDU reactor model was based on 

the Gentilly 2 reactorY9 which is typical of modern CANDU reactors. The 

reactor has a net electrical output of 638 MW(e) and a fuel assembly 

containing 37 fuel elements. 



The two CANDU reactor models developed for the ORIGEN2 computer code 

are fueled with (1) natural (0.7115 wt % 235~) UO, [cANDu-NATU] and (2) 
L 

slightly enriched (1.2 wt % 235~) U02 [CANDU-SEU], both operating on a 

once-through fuel cycle. These models are only differentiated by their 

fuel cycles since the basic reactor design was held constant. The natural 

uranium fuel cycle is currently in use, whereas the slightly enriched fuel 

cycle is presently being studied for a future implementation. The character 

strings given in brackets are the abbreviated names of the CANDU fuels that 

will be used in this report. 

The fundamental objective of this work was to revise ORIGEN2 so that 

it could predict the correct spent fuel compositions without having to 

resort to the adjustment of cross sections, which had typified previous 

ORIGEN reactor models. This meant that ORIGEN2 had to be able to use 

cross sections that resulted from the processing of existing compilations 

such as ENDFIB. lo, 11 

The generation of the information required for these reactor models 

began,with the gathering and'initial processing of existing raw cross 

section data into a library of 27 neutron energy groups that could be 

used by a modular system of reactor physics codes12 (Sect. 2). Two 

separate libraries were created: (1) a smaller library containing those 

nuclides whose presence in the reactor would have the greatest effects 

on the neutron spectrum and depletion characteristics and (2) a larger 

library containing many nuclides of interest in OKIGEN2 but having a 

negligible effect on the spectrum and depletion. Only the first of  these 

libraries was considered in the subsequent multigroup fuel-depletion 

calculations. 

Following these initial steps, burnup-dependent cross sections that 

accounted for spatial and energy self-shielding effects were generated 

for each of the two fuel types being considered (Sect. 3). The.libraries 

resulting from this procedure co~ltainsd five neutron energy groups. The 

burnup-dependent, five-group libraries were then used in a diffusion-theory 

depletion code that predicted the composition of the spent fuel and supplied 

some of the cross sections required by ORIGEN2. The cross sections in the 

larger 27-group I.:i.brary mentioned previously were then collapsed to one-group 



cross sections using a typical neutron spectrum that was calculated while 

the burnup-dependent cross sections were being generated. Fission product 

yields were obtained by flux-weighting energy-dependent yields using the 

same neutron spectrum. Additional calculations were then performed that 

yielded new values of the ORIGEN2 flux parameters - THERM, RES, and FAST. 

The ORIGEN2 depletion results were then compared to spent fuel compo- 

sitions obtained from the open literature. Finally, an investigation was 

undertaken to determine appropriate input parameters for the reactor models. 

The parameters investigated included the actinide composition of the frc~h 

fuel, the impurity composition of the kresh fuel, and the seructural 

material type and composition of a fuel assembly. 

1..2 Summary 

This project involved the gathering and processing of a large amount 

of diverse data, which led to the generation of ORIGEN2 reactor models for 

model CANDU reactors operating on once-through, 235~-enriched fuels. The 

specific types of information developed for CANDU-NATU and CANDU-SEU are 

as follows: 

1. 27-energy-group neutron spectra; 

2. one-group, burnup-dependent cross sections for the major 

actinides; 

3. one-group, typical cross sections for 234 nuclides (including 

the actinides); 

4. new values for the ORIGEN2 flux parameters THERM, RES, and FAST; 

5. recommended initial heavy-metal compositions of fresh fuel; 

6. recommended initial metal compositions of fuel-assembly structural 

materials ; and 

7. recommended minor constitucne conccnrrcltiunb: LVL LULII the fuel 

material and the structural materials. 

Using this information and the ORIGEN2 computer code, depletion 

calculations were made for each of the fuel types. The results of these 

depletion calculations were compared to predicted discharge compositions 

obtained from literature sources. 



In general, the results of the ORIGEN2 depletion calculations agreed 

very well with "the literature values for the CANDU-NATU reactor. Agreement 

in the case of the CANDU-SEU was acceptable, although not as good. This 

was attributed to the fact that the SEU fuel cycle is not actually being 

used and has not yet been sufficiently studied to ensure accurate depletion 

calculations. Based on the comparisons of ORIGEN2 vs the literature that 

were made as a part of this project, it appears that the cross section 

information is adequate for performing depletion calculations for fuel 

enrichments within a few tenths of a percentage point of the enrichments 

used in generating the cross sections for the reactor models. However, 

the depletion calculations will become progressively less accurate as the 

fuel composition deviates from the reference conditions. 

2. THE GENERATION OF THE MASTER, MULTIGROUP 
CROSS SECTION DATA BASE 

This section describes the sources of the unprocessed cross-section 

data that were used in developing the U-Pu cycle CANDU reactor models and 

the initial processing of these cross sections into an AMPX'~ master 

cross-section library. Only a brief description of the data and its 

processing is given in this report since the processing methods used were 

nearly identical to those used for the U-Pu cycle LWRs. For a more detailed 

discussion, the reader is referred to the repori7 describing those models. 

The cross sections in the master, multigroup libraries were put into 

a 27-energy-group structure, of which 13 groups were thermal. The group 

structure used in this study is listed in Appendix A. 

2.1 Scope and Source of Cross Section Data 

The cross sections that were used for the CANDU reactor models were 

collected into two groups. The first group consists of all of the fission 

p r o d u c ~  isotopes having cross section data available for processing. The 

nuclides in this group were obtained from ref. 10 and are listed in Table 1. 

The second group consists of all of the activatlon products, actinides, 

'moderators, and structural materials considered in this work. This second 



Table 1. ORIGEN2 update group 1 (fission-product) nuclides a 

-- -- - - 

a 
All cross sections taken from ref. 10. 



group was divided into subgroups A and B. Subgroup A consists of those 

nuclides that are important in the reactor calculation. The membership 

and sources of subgroup A nuclides are given in Table 2. Subgroup B 

consists of those members. of the second group that are present in the 

reactor in minor amounts but that may be important for some reason. The 

membership and sources of subgroup B nuclides are given in Table 3. 

Certain 238~ cross section parameters were adjusted according to a 

procedure supplied by ~en~amin'~ in order to obtain agreement with the 

experimental data. Changes in the neutron capture cross section were 

made between 0.00025 and 0.7067 eV, in the neutron and radiation widths 

for the low-lying s-wave resonances between 6.65 and 165 eV, and in the 

unresolved resonance parameters.. 

2.2 Resonance Nuclide Processing in NPTXS 

The nuclides included in subgroup 2A (neutronically important) can be 

separated into two classes - resonance nuclides and nonresonance nuclides. 

Nuclides in the first class are those that contribute significantly to 

. the resonance absorption in the system(s) of interest. For the purposes 

of this study (U-Pu cycle CANDU reactors), the following nuclides were put 

in this class: 235,236u 238u, and 239-242pu 
Y 

The AMPX~* module NPTXS is used to process the resonance parameters 

contained in the ENDFIB data for those nuclides listed above. In the 

resolved resonance range, each resonance is described by a few parameters 

(resonance mergy ,  neutron w i d t h s ,  etc.) that are used as variables in a 

mathematical representation of the resonance shape. NPTXS uses these 

mathematical functions to reconstruct each of the resonances, giving the 

equivalent cross section at a number of energy points that span the 

resolved range. In the unresolved range, only average resonance quan- 

. tities are given because the resonances are too closely spaced to be 

distinguished. The distribution of the average quantities can be 

integrated (flux-averaged) to yield average cross sections at energy 

points that span the unresolved range. The point cross sections for 

the resonance nuclides are used by NEWXLACS'~ (Sect. 2.3) to calculate 

the scattering matrix. 



Table 2. ORIGEN2 subgroup 2A nuclides (included 
in depletion calculation) 

Nuclide Ref. 

IH 13 

2~ 13 

160 13 

Z 1- 13 
a Zr-2 13 

3 ~ b  13 
234u 13 
235U 

11 
236 u 13 
237u 11 
238u 11, 14 
237 

N p 13 

Nuclide Ref. 

NP 11 
238 

239~p 11 

238~u 13 

23YPu 11 

. - 240~u 11 
- 241~u 13 

242~u 13 

243~u 11 

241h 11 

242mh 11 
243A, 11 

244~m 11 



Table 3. ORIGEN2 subgroup 2B nuclides (not 
included in depletion calculation) 

Nuclide Ref. 

'L i 13 

7 ~ i  13 

loB 13 

llB 13 
12 C 13 

1 4 ~  13 

7 ~ 1  13 

C r 13 

Fe 13 

59~0 13 

N i 13 

230~h 11 

232~h 11 

233~a 11 
232u 11 
233u . 11 

Nuclide Ref. 



The background cross sections from file 3 of ENDFIB are added to those 
calculated in the resonance regions and output to a file that is similar 

to an ENDFIB file 3. Only the total, elastic, fission, and capture cross 

sections are put on this file, and the data are Doppler-broadened to a 

specified temperature (1000 K in our case). The data in the unresolved 

resonance range are evaluated at an input value of 0 that is indicative 
0 

of the system in which these cross sections will be used. (oo is the 

total cross section of the surrounding medium.) 

2.3, AMYX Master Interface Preparation by NEWXLACS 

The purpose of N E W X L A C S ~ ~  is to create an AMPX master interface (i.e., 

a master cross section library) that contains all of the s-wave resonance 

parameters, the flux-averaged group cross sections, and the scattering 

matrix required in subsequent steps. NEWXLACS requires as input the 

ENDFIB-format tape for the desired nuclide and, if it is a resonance 

nuclide, the NPTXS-created file of point cross sections. 

If the nuclide is not a resonance nuclide, NEWXLACS group-averages 

the point cross sections from file 3 of the ENDFIB-formatted data with an 

input weighting function. This weighting function was a Maxwellian thermal 

spectrum coupled to a 1/E spectrum in the resonance range which was con- 

nected to a fission spectrum in the fast region. These data are Doppler- 

broadened to a specified temperature. If it is a resonance nuclide, 

NEWXLACS puts both the resonance parameters and the group background 

cross sections on the interface so that the NITAWL module can be used to 

analyze systems with various resonance nuclide concentrations. These 

group background cross sections are evaluated for the total, elastic, 

fission, and capture reactions and are taken from the file 3 background 

in ENDF/B and averaged over the weight function mentioned above. 

All the other reactions in the ENDFIB file are group-averaged using 
the weight function and placed on the master interface. This includes 

the values for total, elastic, fission, and capture cross sections that 

are taken from the NPTXS-created file. The elastic scattering point data 

from this latter file are also used in conjunction with the secondary 



energylangle distributions in the ENDFIB file to generate group-to-group 

transfer arrays (i.e., the scattering matrix) for the master interface. 

3. MULTIGROUP DEPLETION C-4LCULATIONS 

The 27-energy-group AMPX master cross section library described in 

Sect. 2 of this report contains cross section information of a general 

nature for solving U-Pu cycle CANDU reactor problems. This section 

describes the processing of this general multigroup library into problem- 

dependent, burnup-dependent, multigroup libraries and then into problem- 

dependent, one-group libraries used in ORIGEN. 

A schematic information flow diagram for the processing of the master 

cross section library into the problem-dependent, one-group libraries is 

given in Fig. 1. In this diagram, the principal computer codes used in 

processing the cross sections are contained in rectangular figures. 

Descriptions of the cross section parameters that comprise the input to 

and output from each computer code are contained in the curved figures. 

As is evident from Fig. 1, there are three principal cross section 

processing codes - NITAWL, l2 XSDRNPM, l2 and CITATION. l5 A general 

description of these three computer codes is given in Sect. 3.1. 

There are four principal steps involved fn processing the 'master 

cross section library into ORIGEN libraries, as depicted in Fig. 1. The 

first of these is to perform pin-cell neutron energy spectrum calculations 

at three different burnups using NITAWL and XSDRNPM, which are used to 

account for the self-shielding effects for the nuclides in Table 2.2. 

The second processing step is to perform assembly-cell spectrum calcula- 

tions using these same computer codes to account for the fact that the fuel 

elements at the center of a fuel assembly are exposed to a significantly 

different neutron spectrum from those on the periphery of the assembly. 

This difference is due to the varying characteristics of the surrounding 

medium. The third step is to perform fuel-depletion calculations with 

CITATION using few-group, self-shielded cross sections from XSDRNPM. The 

principal result of the CITATION calculation is one-group, burnup-dependent 

cross sections for a few of the most neutronically important actinides. 
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Fig. 1. Procedure for processing AMPX master i n t e r f a c e  c r o s s  
s e c t i o n s  i n t o  ORIGEN2 c r o s s  sec t ions .  



The final step is to use a single neutron-energy spectrum that is typical 

of each fuel type to collapse the multigroup cross sections for the 

nuclides in Tables 1 to 3 to one-group cross sections.for ORIGEN2. A 

description of this processing sequence is given in Sects. 3.2 to 3.4. 

3.1 General Description of Cross Section Processing Codes 

3.1.1 NITAWL 

The NITAWL computer code is used to account for resonance self- 

shielding effects in nuclides with resonance parameters; that is, given 

information about the fuel region of a pin cell, such as the Doppler 

temperature, moderator concentration, pin-cell dimensions, and resonance 

nuclide concentrations, NITAWL accounts for (1) Doppler broadening of the 

resonances, and (2) the fact that the effect of large resonances is 

diminished because there are relatively few neutrons at the resonance 

energy. The latter effect results from the resonance itself depleting 

the supply of neutrons having the same energy as that of the resonance 

(i.e., energy self-shielding). The Nordheim integral treatment is used 

to account for the resonance self-shielding effects. The output of 

NITAWL is a multigroup cross section library (working library) in which 

the resonance parameters have been incorporated into the group-averaged 

cross sections. 

3.1.2 XSDRNPM 

The XSDRNPM computer code is effectively used to account for spatial 

and energy self-shielding effects within a fuel element or a fuel assembly. 

To do this, the code does a one-dimensional, static, Sap3, discrete- 

ordinates flux calculation and then uses this flux to weight the input 

cross section library (the working library) in space, energy, or both. 

This results in a cross section library which accounts for the fact that 

the ncutron energy spectrurll, a d  thus the effective nuclide cross sections, 

varies significantly within the fuel material and within the moderator. 

This library is designated as a weighted library. The principal input 

data required are a physical description of the fuel element or assembly 



(i.e., the dimensions of each zone), the concentration of each nuclide 

within each zone, and a working library from NITAWL, corresponding to the 

nuclide concentrations. 

3.1.3 CITATION 

The CITATION computer code performs the reactor fuel-depletion and 

fuel-management calculations using multigroup diffusion theory. The code 

can be used with a variety of geometries in one, two, or three dimensions. 

Output from CITATION includes the discharge composition of the fuel and the 

specific power and neutron flux in a particular unit of fuel as a function 

of burnup. Minor modifications to CITATION also allow effective cross 

sections for each nuclide as a function of burnup to be output for subse- 

quent use in ORIGEN2. 

3.2 Pin-Cell Calculations 

3.2.1 General approach 

The so-called pin-cell calculation involves two distinct substeps. 

The first substep is to process the 27-energy-group master cross section 

library and its associated resonance parameters into a 27-group working 

library using the NITAWL computer code. This step accounts for Doppler 

broadening of the resonances and energy self-shielding. The second 

substep is to process the working library into a weighted library using 

the XSDRNPM computer code. This step accounts for the spatial self- 

shielding effects in the fuel element. The spatial weighting is over 

the entire pin cell because the cross sections will subsequently be used 

with nuclide densities that have been averaged over the entire pin cell. 

The results of this XSDRNPM pin-cell calculation are in 27 energy groups, 

since they are to be used in subsequent XSDRNPM assembly-cell calculations 

(Sect. 3.3). Pin-cell calculations were made at three different fuel 

compositions, corresponding to burnups of 1.1, 3.4, and .5.7 GWdIMTIHM for 

the CANDU fueled with natural uranium and to burnups of 4.5, 12, and 

20 GWd/MTIHM for the CANDU fueled with slightly enriched uranium. 



3.2.2 Pin-cell description 

The pin cells for both reactor models consisted of seven concentric 

zones: fuel, gap, clad, D20 coolant, homogenized assembly, pressure and 

calandria tubes, and D 0 moderator. The D 0 was assumed to contain 2 2 
0.25 wt % H20. A "white," or isotropic-reflecting, boundary condition 

was imposed on the outer boundary of the cell to simulate the presence 

of the cell in an infinite medium of other similar cells. The pin-cell 

dimensions are given in Table 4. 

The nuclide number densities that are used as input to the NITAWL 

and XSDRNPM codes were based on linear interpolation of depletion data 

given as a function of burnup for CANDU reactors. 16-19 As noted above, 

the pin-cell calculations were made using compositions that corresponded 

to three different burnups. These burnup-dependent cross section libraries 

were developed to account for the variation in the reactor neutron energy 

spectrum and nuclide concentrations, and thus the effective nuclide cross 

sections, during the irradiation of the fuel. The calculation of the 

nuclide densities assumed a fuel density of 97% of the theoretical and a 

stoichiometric amount of oxygen. For the Doppler-broadening of the 

resonances calculated by NITAWL, a Doppler temperature of 1000 K was 

assumed. 

The result of the pin-cell calculations was 27-energy-group, pin-cell- 

aver,aged cross sections for the actinides, moderator, and principal 

structural materials at multiple bu.rnups. The 27-energy-group cross 

sections are used in subsequent XSDRNPM assembly-cell calculations for 

the plutonium-recycle LWRs and will be discussed in Sect. 3.3. 

3.3 Assembly-Cell Calculations 

3.3.1 General approach 

The assembly-cell calculations use the XSDRNPM code and the 27-energy- 

group, pin-cell-weighted cross sections previously produced by XSDRNPM 

(Sect. 3.2.2) to determine effective cross sections and neutron energy 

spectra for the two CANDU reactor models. This procedure was used to 

account for the fact that the neutron energy spectrum on the periphery 



Table 4. Pin-cell dimensions for the CANDU reactora 

Region 
Outer radius 

(cm> 
Volume 
fraction b 

Fuel 0.5945 0.4894 

Gap 0.6066 0.0201 

Clad 0.6530 ' 0.0809 

Coolant U ,8498 0.4095 

Smeared assembly 5.1689 

6.5875 
- . +. 

Pressure and calandria rubes 

Modera tor 16.1217 

0. 
Data based on ref. 9. 

b Fraction of pin cell only, excluding surrounding assembly, 
tubes, and moderator. 



of a CANDU fuel assembly, which is near the large expanse of moderator 

between the fuel channels, is different from the neutron energy spectrum 

in the center of the assembly. The output cross sections from the assembly 

calculations are cast into a five-energy-group format that is suitable for 

input to CITATION after reformatting. A five-energy-group cross section 

set is produced for each of the burnups used in the pin-cell calculations 

(Sect. 3.2.1). 

3.3.2 Assembly-cell description 

The assembly cells for all of the assembly calculations consisted of 

five concentric zones: homogenized fuel assembly, pressure tube, nitrogen 

annulus, calandria tube, and moderator. The dimensions of these zones 

are given in Table 5. An isotropic-reflecting boundary condition was used 

at the outer boundary. The composition of the inner zone was equivalent 

to that obtained by homogenizing (volume-weighting) the pin-cell composi- 

tions described in Sect. 3.2.2. 

3.3.3 Results .of assembly-cell calculations 

The results of the assembly-cell calculations for the CANDU reactors 

are as follows: 

1. five-energy-group, cell-averaged cross sections for the nuclides 

in Table 2 at multiple burnups; 

2. 27-energy-group, neutron spectra at multiple burnups; 

3. one-group, cell-averaged fission product, activation product, 

and actinide cross sections at one burnup; and 

4. cell-averaged parameters to enable THERM, RES, and FAST values 

to be calculated. 

The five-energy-group, cell-averaged cross sections (i.e., weighted 

libraries) for the principal actinides are used as input to the CITATION 

computer code. 

Typical neutron-energy spectra calculated by the XSDRNPM code for 

CANDU fuels comprised of natural or slightly enriched uranium are listed 

and graphed in Appendix A. These spectra correspond to a single burnup 



Table 5. Assembly-cell dimensions f o r  t h e  CANDU r eac to ra  

Outer r a d i u s  Vo lume 
Region ( 4  f r a c t i o n  

Assembly 

P r e s s u r e  tube  

N anrl1.11-us 
2 

Calandr i a  t ube  

Moderator 

a 
Data based on r e f .  9 .  



for each reactor that was selected because of the similarity of its neutron 

spectrum to that calculated by CITATION during the depletion calculations 

described in Sect. 3.4. 

These same neutron spectra are used to collapse cross sections for 

the actinides listed in Tables 1 to 3 to one-group, assembly-cell-averaged 

cross sections that are incorporated directly into the ORIGEN cross section 

library. These cross sections are listed in Appendix B. 

Finally, the same assembly cells selected for collapsing the multigroup 

cross sections to one group are rerun to generate two sets of two neutron- 

energy-group cross sections and neutron spectra that are used to calculate 

values of THERM, RES, and FAST for each fuel type being considered. The 

details of the methods used to calculate these values are given in a 

separate publication.4 The results of the calculations are presented in 

Sect. 4..1. .e 

3.4 Fuel-Depletion Calculations 

3.4.1 General approach 

The purpose of performing a multigroup fuel-depletion calculation with 

the CITATION computer code was to model the depletion characteristics of an 

entire batch of reactor fuel. Hence, f o r  the purposes of updating the 

ORIGENZ computer code, spatial details of the depletion are not important. 

Therefore, the basic approach taken was to use the simplest neutronic and 

fuel management model possible while still obtaining adequate depletion 

results. As is evident from the preceding sections, five-energy-group 

cross section sets were employed. The energy boundaries of this five-group 

structure are given in Table 6. This group structure consists of one 
-5 thermal group and four fast groups spanning the energy range of 1.0 x 10 

Thc once-through, colltil~uuus refueling used for CANUU reactors results 

in not having to use multiple dimensions to accommodate fuel management 

considerations. However, the heterogeneous nature of the CANDU lattice 

(i.e., assemblies surrounded by large amounts of D20) requires the use of 



Table 6. Energy-group structure for 
CITATION cross section 

G ~ o u ~  
number 

Upper boi~ndary 
(eV> 



a one-dimensional (radial) calculation to accommodate the radial spectrum 

changes. The contents and dimensions of the radial zones are the same as 

those given in Table 5 for the XSDRNPM assembly-cell calculations. 

The initial fuel compositions were 0.71 and 1.2 w't % 2 3 5 ~  in stoichio- 

metric 238~ oxide for the natural uranium and slightly enriched uranium 

fuels, respectively. For the purposes of the CITATION calculations, the 

specific power in the fuel was assumed to be 34.08 MW~MTIHM, and the fuel 

burnups for the natural uranium and slightly enriched uranium systems were 

taken to be 6800 and 23,200 MWdIMTIHM, respectively. The CITATION depletion 

calculation explicitly considered all of the nuclides listed in Table 2. 

3.4.2 Results of CITATION depletion calculations 

The results of the CITATION depletion calculations for LWRs are as 

follows : 
. . 

1. one-energy-group, effective cross sections for the nuclides 

listed in Table 2, as a function of burnup; 

2. the discharge composition of various LWR reactor fuels;' and 

3. five-group neutron spectra as a function of burnup. 

The one-energy-group, effective cross sections of the principal actinides 

are reformatted and incorporated into the ORIGEN2 computer code as a 

function of burnup, as described in S e c t .  4.1. The CANDU-NATU and CANDU- 

SEU cross sections incorporated into ORIGEN in this manner are listed in 

Appendix C. 

The discharged composition of the fuels is used as a basis of com- 

parison to ensure that ORIGEN depletion calculations are correct. This 

consideration will be discussed further in Sect. 4. 

The five-energy-group neutron spectra are used as a basis for selecting 

one of the cell calculations described in Sects. 3.2 and 3.3 to provide 

collapsed, one-energy-group cross sections for the fission products, 

activation products, and actinides for incorporation into the ORIGEN2 

cross,section library. 



4. DESCRIPTION. OF REACTOR MODELS 

The results of the reactor physics calculations described in Sect. 3 

were specifically developed to provide the neutronic and cross section data 

required by the ORIGEN2 computer code. However, the full incorporation of 

new CANDU reactor models into ORIGEN2 requires the results of work not 

directly involved with the reactor physics calculations. The additional 

work can be broken down into four major categories: (1) calculation of 

new values of THERM, RES, and FAST, (2) specification of the initial 

structural material and fuel compositions, (3) comparison of ORIGEN2 fuel- 

depletion calculations with independent calculations to validate the new 

reactor models, and (4) a summary description of the new reference reactor 

iii~cl~l~. 

The specification of the input compositions to ORIGEN2 involves a 

literature search to determine (1) the mass and elemental cornpusition 

(including minor constituents) of the structural metals in a fuel assembly, 

(2) the trace-element composition of oxide fuel pellets, and (3) the 

heavy-metal isotopic composition of the fuel. These compositions are 

presented and discussed in Sect. 4.2. 

A comparison of the spent fuel compositions predicted by the revised 

reactor models with independent calculations is required since the relative 

simplicity of the multigroup depletion (i.e., CITATION) models does not 

necessarily indicate an accurate result even when ORIGEN2 results are in 

good agreement with CITATION results. The results of depletion calcula- 

tions were obtained from the literature, and ORIGEN2 depletion calculations 

were performed on a basis that was consistent with each literature reference. 

These two results are presented together in Sect. 4.3. In general, agree- 

ment was very good, although some discrepancies were noted in the case of 

CANDU-SEU Iuel. 

A summary description of the results of ORIGEN fuel-depletion calcu- 

lations for the CANDU models is given in Sect. 4.3. 



4.1 ORIGEN2 Flux Parameters THERM, RES, and FAST 

The results of the assembly-cell neutron spectrum calculation 

described in Sect. 3.3, when cas't into a two-group (thermal and fast) 

structure, allow the calculation of the ORIGEN2 flux parameters THERM, 

RES, and FAST. The equations used to calculate these parameters and their 

bases are described elsewhere4 and will not be repeated here. The values 

of THERM, RES, and FAST that are appropriate for ORIGEN2 (on a total flux 

basis) are given in Table 7. Values appropriate for the older versions 

of ORIGEN (thermal-flux-based) are given in Table 8. 

4.2 Input Compositions and Masses 

There are three different composition-related aspects to be considered 

when specifying the CANDU fuel-input composition: 

1. the characterization and composition of the CANDU fuel assembly, 

2. the trace-element concentrations in the oxide fuel pellets, and 

3. the heavy-metal isotopic composition of the fuel. 

4.2.1 Fuel assembly description and composition 

A CANDU fuel assembly is markedly different from that in an LWR, as 

is evident from Fig. 2. The dimensions and constitution of the CANDU 

assembly are given in Table 9. The assembly is much smaller than an LWR 

assembly and is comprised entirely of Zircaloy-4 and UO (ignoring the 2 
small amounts of brazing materials). The composition of the Zircaloy-4 

i s  given in Table 10, and the composition of the fuel pellets will be 

given in the following section. 

4.2.2 Composition of LWR oxide fuels .. -- 

The nonactinide elements present in fresh CANDU fuels are comprised 

of numerous trace elements (<I00 ppm) plus the oxygen present in the 

actinide oxide fuel material. A typical set of nonactinide element con- 

centrations in fresh CANDU oxide fuel, which is assumed to be the same as 

that for LWR fuels, is given in Table 11. The values in Table 11 generally 



Table 7. Values of THERM, RES, and PAST to 
be us'ed in ORIGEN2 

Fuel Total flux 
type THERM RES FAST (neutrons/cm2- s) 

CANDU-NATU 0.2900 :0.0173 0.0514 2.35 x 10 14 

CANDU-SEU 0.3791 0.0215 0.0531 2.14 x 10 14 

Table 8. Values of THERM, RES, and FAST to be used with 
older thermal-flux-based versions of ORIGEN 

Total flux 
THERM RES FAST (neutrons/cm2- s) 

CANDU-NATU 0 ..4340 0.0259 0.0769 1.57 x 10 14 

CANDU-SEU 0.5883 0.0333 0.0825 1.38 x 10 14 



ORNL-PHOTO 2254-80 

37-ELEMENT FUEL BUW$LE 

Ftg. 2. CANDU fuel assembly containing 37 fuel elements. 



Table 9. Physical characteristics of CANDU fuel assembliesa 

Overall assembly length, cm 49.5 

Diameter, cm 10.24 

Fuel element length, cm 49.5 

Active fuel height, cm 

Fuel element OD, cm 

Fuel element array 

Outer ring 

Intermediate ring 

Inner ring 

Center 

Fuel elements per assembly 

Assembly total weight, kg 

UO /assembly, kg 2 

Zircaloy/assembly, kg 

Nominal volume/assembly, cm 3 

a~ource: ref. 9. 



a 
Table 10. Composition of Zircaloy-4 

Element 
Atomic 
number 

Composition 
(~/MTIHM) 

H 

B 

C 

N 

0 

A1 

Si 

P' 

S 

Ti 

v 
C r 

Mn 

Fe 

C 0 

N i 

Cu 

Zr 

Nb 

Mo 

C d 

Sn 

H f 

W' 

u 
- - - - - _ _ _  

Density, g/cm 3 

%ata obtained from refs. 20 to 22. 



a 
Table 11. Assumed nonactinide composition of CAN3U oxide fuels 

A:.omic Concentration 
Element: number (~IMTIHM) 

Atcmic Concentration 
Element nurrber (g/MTIHM>a 

a 
Data obtained from refs. 21, 23 tc 26. 

b 
Parts of element per million parts of heavy metal. 

C ' 
Sto%chiometric quantity for U02 fuel. 



reflect actual measured concentrations instead of the maximum allowable 

concentrations' given in purity specifications . I£ the concentration of 

a particular element has been determined to be less than a particular 

value, then that value is used in Table 11. 

The initial heavy-metal composition of the natural-uranium CANDU 

234~, 55 g/MTIHM; 235~, 7115 g/MIHM; and 
238u 

fuel is as follows: y 

992,830 ~IMTIHM. For the slightly enriched CANDU fuel, the initial 

composition is 234~, 102 g/MTIHM; 235~, 12,000 g/MTIHM; and 238u . . 

987,898 g/MTIHM. The reference burnups for these fuels are 7500 and 

20,900 MWd/MTIHM, respectively. 

4.3 Comparison of ORIGEN2 and Literature 
Depletion Calculations 

This section serves to verify the accuracy of the calculational 

procedures used in develdping the alternative fuel cycle PWR models 

described herein by comparing them with results calculated by an inde- 

pendent organization. The comparisons of the ORIGEN2 and literature ' 

depletion calculations are summarized in Tables 12 and 13 for the 

CANDU-NATU and CANDU-SEU, respectively. The agreement between ORIGEN2 

and the literature values is very good for the CANDU-NATU, as shown 2n 

Table 12.. The agreement is not as good for the CANDU-SEU. However, the 

results documented herein for the CANDU-SEU were deemed acceptable for 

the following reasons: 

1. The CANDU-SEU literature values were calculated using the saulr 

correlations as those for the CANDU-NATU. 

2. The CANDU-SEU case represents a significant extrapolation of 

the well-known CANDU-NATU values (burnup increased by a factor 

of 3). 

3 .  The CANDU-SEU is a relatively new system that has been neither 

implemented nor extensively studied. 

4. The methodology used gave very good results for the CANDU-NATU. 



Table 12. Comparison of ORIGEN2 CANDU-NATU depletion 
calculation with literature values 

Discharged CANDU-NATU fuel composition (~/MTIHM) 

ORIGEN2 Ref. Kef. 
Nuclide calculation 16 2 7 

7 ~ p  

2 3 8 ~ u  

23gPua 

240~u 

24lPu . 

242 P 1.1 

Total Pu 

241h 

Initial 
235,, 7,115 7,100 2,110 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Bumup, MWd/MTIHM 6,720 6,728 6,703 



Table 13. Comparison of ORIGEN2 CANDU-SEU depletion 
calculation with literature values 

- -  - 

Discharged CANDU-SEU fuel composition (g/MTIHM) 

ORIGEN2 Ref. ORIGEN2 Ref. 
Nuclide calculation 16 calculation 2 7 

Total Pu 6,475 6,079 6,381 6,122 

244c, ., 10.5 8.89 9.4 

Initial 235u 10,891 10,891 12,000 12,000 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Burnup, M W ~  /MTIHM 20,600 20,569 20,828 20,861 

(I Includes 239Np. 



4.4 Sununary Description of the OKIGEN2 
CANDU Reactor Models 

Fuel depletion calculations have been performed for the two CANDU 

fuel types considered in this report - NATU and SEU - using the input 

compositions given in Sect. 4.2. The results of these calculations, 

including irradiation conditions and measurements of the uranium and 

plutonium contents of the fresh and spent fuels, are presented in 

Table 14. Many of the values in this table are given in terms of both 

kilograms per refueling cycle and kilograms per year, a~siiming an 80% 

capacity factor for the latter. 



Table 14. Summary of ORIGEN LWR model characteristics 

Parameter CANDU-NATU CANDU-SEU 

Electric power, MW(e) 

Thermal power, MW(t) 2,180 

Average specific power, a 

m(t) IMTIHM 

Average fue burnup, 
MW~/MTIHM h 

Irradiation duration, 293.3 
f ull-power days 

Charge, kg/MTIHM 
(kglyr at 80% capacity factor) 

Total U 

Discharge, ~~IMTIHM 
(kg/yr at 80% capacity factor) 

235u 

Total U 

Fissile puC 

Total Pu d 

Total (U + Pu) 

Total heavy metal 

a 
Based on full power and fuel charged. 

b ~ ~ ~ H M  = metric ton of initial heavy metal. 

C239ru + 241ru + 2 3 9 ~ ~ .  
d238Pu + 239~u + 240~u + 241~u + 242~u + 239~p. 
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Appendix A: 27-Energy-Group Neutron 
Spectra Graphs and Listings 

Appendix A contains graphs and listings of 27-energy-group neutron 

spectra for the two once-through uranium-cycle CANDU fuel types considered 

in this report as calculated by the XSDRNPM code, The units of the neutron 

fluxes are flux per unit lethargy. All spectra are averaged over the 

assembly cell (see Sect. 3.3). 





Fig. A.2. Neutron energy spectrum in a CANDU-SEU. 



Table  A . 1 .  Flux  p e r  u n i t  l e t h a r g y  f o r  once- thro-~gh CANDU f u e l s  

Energy Energy group boundar ies  (eV) 
group Upper Lower CANDU-SEU 



Appendix B: One-Group, Spectrum-Averaged Cross Sections 
for Once-Through, Uranium-Cycle CANDU Fuels 



Table B.1. One-group, spectrum-averaged cross sections 
. fo r  on.ce-through fuel-cycle CANDU reactors 

Nuclide 
. 

R - 1 b - -  
R - lC 
fl - 2 b  
fl - 2C 
XI- 6 
LI- 7 
0 - 10 
I! - 11 
c - 12 
N - 1 4  
3 - 16 
AX- 27 

, C C -  59 
GE- 72 
GE- 7 3  
GE-  74 
G E -  76 

'RS- 75 
SE- 76 
ST- 77 
SF- 78 
SF- 80 
SE- 82  
E R -  79 
E R -  81 
KR- 80 
K R -  82 
!ZR- 83 
KB- 84 
KR- 85 
K R -  86 
R R -  85 
RE- 06 
RE- 87 
SR- 86 
SR- 87 
SR- 88 
SB- 89 
SR- 90 
Y - 89 
Y - 90 
Y - 91 
ZR- 90 
ZR- 91 
ZR- 9 2 d  
ZR- 92e 
ZR- 9.3 
ZR- 94 

Cross 
section 
typea 

8 # G 
B , G  
N # C  
N , G  
N # A  
1, G  
N , R  
N , C  
N # G  
N, E 
B #  A 
1 . G  
N # Q  
N # G  
R # G  
B , G  
N , C  
N # G  
R # G  
N , G  
N # G  
N , C  
N , G  
N,G 
N,G 
f l # G  
19,G 
N , C  
N # G 
B, G  
B , G  
N , G  
B # C  
1 . G  
1 . G  
1Q,G 
1 # G 
N # G  
W # G  
B # G  
N # G  
N , G  
N #  G  
1 , G  
N # C  
Q , G  
f l # G  
R , G  

Cross section, barns 
-- 

CAND-NATU 

2.02E-0 1 
1.0 IF-0 1 
3,173-04 
1.60E-04 
5.30E 02  
2.02E-02 
f.16E 0 3  
2.82E-03 
1.90E-0 3 
1.03E 0 0  
4.30E-04 
1.31E-01 
2.22E 0 1  
5.55E-01 
9.523 00  
2.20E-0 1 
1.04E-01 
3.51E 0 0  
4,7073 0 1  
2,358 0 1  
3.09E-0 1 
3.53E-01 
2.633-0 2 
&,62B 80 
2.45E 0 0  
e . 9 8 ~  00  
1.98E 0 1  
1.15E 0 2  
1.16E-01 
9,35E-0 1 
3.62B-02 
3.70E-0 1 
3.13E 0 0  
1.07E-0 1 
1.65E 0 0  
1.09E 0 1  
3.4OE-03 
2-39E-01 
4,993-01 
7,15E-01 
1,99E 0 0  
7,94E-0 1 
6.18E-02 
6.763-01 
9,881-02 
l.59E-01 
2.12E 0 0  
3.7813-02 

CAND- S EU 



Table B . 1 .  (cont 'd )  

Cross Cross s e c t i o n ,  barns 

Nuclide 

ZR- 95 
ZR- 96. 
NE- 9 3 d  
NB- 93e 
NE- 94 
BE- 95 
nc- 94 
no- 95 
NO- 96 
40- 97 
HC- 98 
ao- 99 
MO-100 
TC- 99 
R U -  99 
RO-100 
RU-101 
RU-102 
BD-103 
RU-104 
RU-105 
RO-106 
RH-103 
RA-105 
PC-104 
PC-105 
PD-106 
PD-107 
PC-108 
PC-110 
AG-107 
AG-109 
AG-111 
CD-108 
cn-110 
CC-111 
Cf -1 12 
CD-113 
CC-114 
CC-115 
CC- 116 
IN-113 
TN-1 15 
SN-115 
SN-116 
SB-117 
SR-118 
SR-119 
SN-120 
SN-122 

s e c t  i o n  
typea CAND-NATU CAND-SEU 



Table B . 1 .  (cont'd) 

Nuclide 
SN-123 
SN-124 
SF-125 
SI -126  
SE-121 
SB-123 
SF-124 
SB-125 
SE- 126 
TE-122 
TE-123 
TEel2f l  
TE-125 
TE-126 
TE - 127 
TE-128 
TE- 129 
TF-130 
TE-132 
I -127 
T -129 
I -130 
T -131 
1 -135  
XE-128 
XE-129 
XE-130 
XE-131 
XE-132 
XE-133 
XE-13U 
X E - 1 3 5  
XE-136 
CS-133 
CS-134 
CS-135 
CS-136 
CS-137 
EAa134 
EA-135 
FA-136 
EA-137 
EA-138 
BA-140 
LA-I39 
LA-140 
CE-140 
CE-141 
CE-142 
CE-143 

Cross 
section 
typea 

?d,c 
B I G  
n , G  
1 . G  
N , G  
N,G 
N , G  
N ,  G 
N , G  
N,G 
P, E 
N,Q 
N ,  E 
N I C  
n,c 
H,G 
8 ,  G 
N,E 
N , G  
N, c 
N ,  E 
B,G 
N ,  G 
8.G 
R , G  
N , G  
R,G 
N , G  
H, 6 
N,G 
N,G 
8.G 
.N , G 
1.C 
R q G  

W w G  

Cross sectio;, barns 

CAND-NATU 



Table B.1. (cont'd) 

Nuclide 

CE-144 
PR-I41 
PR-142 
PR-143 
NC-142 
NC-143 
NC-144 
NO-145 
Nf-146 
NC-147 
Nf-148 
ND-150 
P l -147  
PN-148 
PI!-148 
~ n - 1 4 9  
PII-151 
sn-147  
SN-148 
sn-149 
SN-150 
S l - I S 1  
S l -152  
Sfl-153 
SR-154 
EU-151 
EU-152 
EU-153 
EU-154 
EU-155 
EU-156 
ZU-157 
Gt-154 
GC-155 
GC-156 
GO-157 
GC-158 
GC-160 
TE-159 
TB-160 
CP-160 
DP-161 
DY-162 
Dl-163 
CP-164 
HO-165 
ER-166 
ER-967 
T8-230 
TEI-230 

Cross 
section 
typea 

Cross section, barns 

CAND-NATU 

5.853-01 
6,63E 0 0  
1.-36E 0 1  
5:19E 0 1 
1-03E 0 1  
1.78E 0 2  
2.07E 0 0  
2.703 0 1  
E.27E-01 
3 ,843  01 
1,75E 0 0  
F-76E-01 
1.38E 0 2  
1.95E 0 3  
6 i73E 0 3  
7.763 0 2  
4.16E 0 2  
4-82E 0 1  
i.01E 0 0  
3-88E 0 4  
6.08E 0 1  
7,12E 0 3  
1,65E 0 2  
2.30E 0 2  
3-63E 0 0  
Ui56B 0 3  
1-13E 0 3  
2'.65F 0 2  
7.4'OE 02  
2.23F 0 3  
2.89E 0 2  
1.2'1E 0 2  
5.09E 0 1  
2.22E 0 4  
3-23E 0 0  
9.42E 0 4  
2.56E 0 0  
5.89E-01 
2-2SE 0 1  
3.06E 0 2  
t.53E 0 1  
3.36E 0 2  
1.58E 0 2  
l iO2E 0 2  
1.34E 0 3  
5-OlE 0 1  
i . 1 6 E  0 1  
5.28E 0 2  
L 8 9 E  01 
9249B-03 

CAND-SEU 

5.66E-01 
C.40T 00 
1.33E 01  
E..02E 0 1  
?.92E 00 
1-71E 02 
1-99E 00 
2.64E 0 1  
E.OOE-01 
l i 8 1 E  01  
1.73E 00 
5 ;  72E-01 
1.37E 0 2  
1-97E 03  
€-58E-  03  
7.468 02  
4.C3E 02  
4.77E 01 
1.99E 00 
r.73E 04 
E.89E 01  
f.8OE 03  
1-63E 02 
2.2633 02  
t.55E 00  
t ,39E 03 
1.09E 0 3  
2.57E 02 
7,12E 02  
2.14E 0 3  
2.80E 02 
1-24E 02  
4.93E 0 1  ' 

2.12E 04 
t.37E 00 
S.OOE 04 
2-59E 00 
5.. 85E-01 
2-25E 0 1  
2-95E 02 
f.61E 0 1  
2-24E 02  
1.56E 02 
1.01E 02  

, 1-29E 0 3  
4,963 01  
;, 11E 0 1  
E-21E 0 2  
2.94E 0 1  
1.00E-02 



Table B.1. (cont'd) 

Nuclide 

TR-232 
TR-232 
PA-231 
PA-231 
PA-233 
PA-233 
PA-233 
U -232 
U -232 
0 -233 
U -233 
n -234 
U -234 
fl -239 
U -235 
U -236 . 
U -236 
U -237 
U -237 
U -238 
U -238 
NP-237 
WP-237 
NP-238 
NP-238 
PU-236 
PU-236 
PU-227 
PTJ-237 
PU-238 
PO-238 
PO-239 
Pa-239 
rn-2uo 
PU-240 
PO-241 
PU-241 
Pod242 
~ n - 2 4 2  
PU-243 
PO-243 
PO-244 
PO-244 
AM-241 
an-241 
AH-241 
An-242 
41-242 
A l l  -2 42 
AH-242 

Cross 
section 
typea 
N ,  G  
N # F  
N , C  
B # F  
N , G  
N I T  
N # G X  
N I G  
N , F  
N , E  
N. F 
N , C  
N,F 
N,C 
N , F  
N , G  
# , F  
N #  G 
R , F  
N # G  
N  # F 
N , G  
N I T  
N.# E 
N,F 
N v G  
B I F  
N l  c 
N,P 
N , C  
N I F  
N #  G 
N I P  
f l # G  

, R,F 
N I G  
N # F  
N # G  
N , F  
B I G  
R,P 
N # G  
N # F  
N # G  
N  # F 
N  I G X  
R , G  
N , F  
N # G  
N # F .  

Cross sectio n, barns 

CAND -NATU 

5.60E 0 0  
3.80E-03 
l i S 2 E  02  
6.81E-02 
1.893 0 1  
2.36E-02 
1.891 0 1  
4.31E 0 1  
4.81E 0 1  
2.86E 0 1  
3,0172 0 2  
3,423 0 1  
2.48E-01 
2.86E 0 1  
l.59E 0.2 
5b66E 0 0  
1 072-0 1 
2.593 0 2  
1q22E 0 0  
1.16E 0 0  
5.423-02 
5.86E. 0 1  
2.91E-0 1 
1,lOE 0 2  
l . 1 O E  0 3  
9.243 0 1  
?.2GE 0 1  
2.97E. 0 2  
1.16E 0 3  
1.43E 0 2  
5.09E 0 0  
1.23E 0 2  
2,67E 0 2  
1.45E 0 2  
3.33B-0 1 
1.16E 0 2  
,1,39E 0 2  
2.38E 0 1  
2.523-0 1 
f,23E 0 1  
1.08E 0 2  
2.98E 0 0  
5,. 70E-0 2 
2.15E .O2 
2.19E 0 0  
7..87E 0 1 
1,368 0 2  
1 -223  0 3  
Lr19E 0 2  
4..17E 0 3  

CAND- SEU 
5.54E 00 
r- .  97E-03 
1.49E 02  
S.17E-02 
1.90E 0 1  
2.473-02 
1.90E 0 1  
4.19E 0 1  
4.70E -01  
2.78E 0 1  
;,91E 02  
:a038 0 1  
2.62E-01 
2.45E 0 1  
1.34E 0 2  
E:76E 00  
1.12E-01 
2-49E 02 
1.19E 00  
1.06E 00  
E.64E-02 
E.20E 0 1  
2.06E-01 
1.06E 0 2  
1.06E 0 3  
E.92E 01  
E. 94E 0 1  
2.85E 0 2  
1.12E 0 3  
1.18E 02  
9.423 00  
1.1SE 0 2  
2.40E 0 2  
1.562 02 
5.52E-01 
1.OOE 0 2  
2.95E 02  
2.41E 0 1  
;,65B-0 1 
5.07E 0 1  
1.04E 02 
2.08E 0 0  
€.Of+E-02 
f . 0 7 . E  0 2  
;.IS? 0 0  
7 ,688 0 1  
l i 3 0 E  0 2  
1.17E 0 3  
E.17E 02  
4.r01E 0 3  



Table B. 1. (cont'd) 
Cross Cross section, barns- 
sect ion 

Nuclide typea CANJI-NATU CAND-SEU 

AM-2'43 N , G  3 , ' 8 1 ~  0 0  2,853 0 0  
AM-243 NvF €.52B-02 €. 89E-02 
AN-243 N , G X  7,25E 0 1  7,31E 0 1  
CI-241 R , C  1.38E 0 2  1,33E 0 2  
CN-241 NvF 1,438 0 3  1,3f?E 0 3  
CM-242 N v C  1 ,211  0 1  1.20E 0 1  
CM-242 N,F 1.68E 0 0  1,61E 0 0  
cn-243 B I G  3,643 0 1  :,54E 0 1  
Cfl-243 NeF 4,161 0 2  4.03E 02 
CM-244 N e C  2.32E 0 1  ;,33E 0 1  
CN-244 N,F 1 ,041 00  1.02E 00  
CM-245 N v G  2,022 0 2  1.93E 0 2  
CII-245 BvF . 1.. 14E 0 3  1,lOE 03  
CM-246 N , Q  2.,561 0 0  ;,66E 00 
CU-246 1 . F  1,85E-0 1 1,93E-01 
C14-247 E v G  4,283 0 1  4.223 0 1  
CN-247 NIF E,25E 0 1  t.17E 01  
CE-248 B v G  5,80E 00  €.05E 0 0  
ClJ-248 BIF 2,821-01 f.95E-01 
EX-249 N e C  9 ,393 0 2  9,lOE- 02  
BK-249 B,F 4,778-02 E. 03E-02 
CF-249 N v G  2*.72E 0 2  2063E 02  
CF-249 N,F 3,08E 0 2  €,76E 02  
CF-250 N , G  1,14E 0 3  1.13E 0 3  
CF-250 B , f  l r73E-01  1.. 85E-01 
CF-251 N , G  1 ,571 0 3  1,51E 0 3  
CP-251 N,F 2 ,991 0 3  2.88E 0 3  
CF-252 N v G  1.18E 0 1  1,1473 01  
CF-252 HvF 1-694E 0 1  1,88E 01  
CF-253 N v G  2..002 0 2  1,93E 02 
CP-253 N,F 6.643 0 2  t.41E 02  
ES-253 BvG 1.531 0 2  1.57E 02  
B'S- 2 53- 10IOX 1-073  02  1-09E '02 

a ~ , ~  = (N,gamma) to a ground state, 
N,F =. (N,fission), 
N,GX = (N,gamma) to an excited state, 
N,A = (N,alpha), 
N,P = (N,proton). 

b ~ r o s s  section in moderator. 
C Cross section in coolant, 
d 
Cross sect.ton in structural materials. 

e 
Cross section in fuel. 





THIS PAGE 

WAS INTENTIONALLY 

LEFT BLANK 



Appendix C: Listings of Selected Burnup-Dependent 
ORIGEN2 Cross Sections for Once-Through, 

Uranium-Cycle CANDU Fuels 



Table ( 2 . 1 .  Cross s e c t i o n s  a s  a  func t i on  of burnup f o r  a  CANDU-NATU 

CROSS FUEL BURNUP, HEGAYATT-DAIS (THEENAX) PER GRAH-ATOLY B E B V Y  HETAL PRESENT 
SECT. 

, NUCLIDE TYPE 0.0 0 ,130 0.260 0,391 0.521 . 0.782 0.913 
0234 N , G  3. 74E 01 3.723 01 3.68E 01 3.65E 01 3.62E 0 1  3 ,632 0 1  3-62)? 0 1  3-61E 0 1  
0235 N , G  3,17E 01 3 , I U E  01 3 ,092 01 3 ,063  01 3.03E 01 3-03E 0 1  3,01E 0 1  3.00E 01  
0235 F ISS  1,76E 02 1-74E C2 1.72E 02 1.69E 0 2  1.68E 0 2  1..68E 02 1..67E 0 2  1-66E 02 
Q236 !!i,G 6.17E 00 6,20E 00 6,24E 00 6.27E 00  6-30E 00  6-23E 00 6 ,253  0 0  6-26E 00  
0238 N , G  1-27E 00 1,26E 00 1.25E 00 1.,25E 0 0  1.24E 0 0  1.25E 0 0  1-24E 0 0  1.24E 00 

NP237 N , G  6.46E 01 6.40E 01 6 . 3 1 E 0 1  6 . 2 4 E 0 1  6 . 1 8 E 0 1  6 . 2 0 2 0 1 6 , 1 7 E 0 1  6 - 1 4 E 0 1  
P0238 N,G d-57E 02 1,55E C2 1.,53E 02 1-51E 02  1,U9E 02  1,SOE 02 1 . 4 9 ~  0 2  1.U8E 02 
PU238 F ISS  5.57E 00 5.523 00 5.46E 00 5,41E 0 0  5-37E 0 0  5.4OE 0 0  5.381' 0.0 5 ,363  00 
P0239 N , G  1-45E 02 1 - 4 3 3  C2 I.41E 02  1-39E 0 2  1-38E 0 2  1-33E 0 2  1-33E 0 2  1-32E 0 2  
PU239 F ISS  3.08E 02 3.04E C2 2-99E 02 2,95E 02 2.92E 0 2  2 ,873  02 2.85E 02 2.833 02  
PU24O N , G  2.042 02 2-02E 02 1 - 9 8 2  02 1-95E 02 1-93E 02 1-66E 02  1.65E 0 2  1064E 02 
PU241 N , G  1.31E 02 .1 .293  02 3.273 02  1.25E 02 1.24E 0 2  1-23E 02  1-22E 02  1.21E 02 
PU241 F ISS  3-83E 02 3-79E C2 3.733 02 3.68E 02  3-64E 02  3-61E 02 3.592 02  3.57E 02 cn 1'4 

PU242 N , G  2.54E 01 2.51E C 1  2.Q7E 01 2-44E 0 1  2.42E 0 1  2.483 01  2.46E 0 1  2.Q5E 01 
AB241 A , G  2.382 02 2.353 02 2-31E 0 2  2,28E 0 2  2.26E 0 2  2-2UE 02 2.233 02  2-21E 02 
AH241 N G E X  2-94s 01 2..91E 01 2.86E 01 2.82E 01  2-79E 01  .2,773 0 1  2 ,752 0 1  2.74E 01 
A!!243 N , G  3 , 7 5 3  00 3-72E 00 3.66E 00 3 ,623  00 3,58E 00 3 ,552  00  3 ,533  00  3-51E 00 
AE243 WGEX 7-13E 01 7.06E 01 6 .953  01  6.873 0 1  6-80E 01 6.753 0 1  6-71E 0 1  6.683 0 1  
CE242 N , G  1-39B 01 1.38E 01 !.37E 01 1-36E 01  1.35E 0 1  1-34E 0 1  1 . 3 3 ~  0 1  1-33E 0 1  
CP244 N , G  1 -68E 0 1  1,68E 01 1.68E 0 1  1-68E 01  1..68E 01  1 ,673  0 1  1.67E 0 1  1,67E 01 



Table  C.1. (cont'd) 

- 

CEOSS FUEL B U R N U P ,  HEGAWATT-DAYS (THEBNAL) PER GRAH-ATOM BEBVY HETAL PRESENT 
SECT. 

lOUCLIDE TYPE 1.. 0411 1,. 175  1.305 1.U36 1.567 1.698 1.830 1.961 . 

0234 N,G 3.60E 01 3,593 C 1  3.613 01  3.60E 01  3.60E 01 3,592 01 3.59E 01  3.593 0 1 '  
0235 N,G 2.98E 01 2,973 01 2.993 0 1  2.983 0 1  2.98E 0 1  2.97E 0 1  2.96E 01  2-96E 01 
0235 P ISS  1.65E 02 1.54E 02 1.66E 02 1.65E 02 1.65E 02 1-64E 02 1.64E 0 2  1.64E 02 
0236 N,G 6-27E 00 6.283 00 6.20E 00 6.20E 00 6.21E 00 6.22B 00 6.22E 0 0  6,233 00 
0238 N , G  1.24E 00 1.211E CO 1.2SE 00 1.24E 00 1.242 0 0  1.24E 0 0  1-24E 00 1.24E 00 

NE237 N,G 6.11E 01 6.09E 01 6.14E 01 6.122 '01 6,1133 01 6.10E 01  6.09E 0 1  6.08E 01 
PU238 N,G 1.47E 02 1,47E 02 1.482 02  1.483 02 1.Q7E 02 1-47E 02 1.47E 02  1.46E 02 
P0238 F l S S  5-34E 00 5.333 00 5,373 00  5,3633 00 5. 353 00 5.35E 0 0  5.34E 00 5.33E 00 
P0239 N , G  1 . 3 1 E  02  1.31E 02 1,2033 02 .1,28E 02 1-27E 02  1.27E 0 2  1.273 0 2  1.27E 02 
PO239 FISS 2.823 02 2.81E 02 2.78E 02 2-77E 02 2.763 02 2.763 02 2.752 02  2,753 02 
P02&0 N , G  1.63E 02 1..63E 02 1.50E 02 1.50E 0 2  1.50E 02  1.119E 02 1.49E 02 1.49E 02 
P0241 lV,G 1.21E 02 1.20E 02 1.20E 02 1.20E 02 1.20E 02 1.19E 02  1.19E 02  1.19E 02 cn w 
PU241 FISS  3.553 02 3-54E C2 3.533 02 3.,52E 02 3.51E 02 3,51E 02 3..50E 02 3,U9E 0 2  
PO242 N,G 2.44E 0 1  2 A 3 E  01 2.48E 01 2.U83 0 1  2.47E 0 1  2.117E 0 1  2.U6E 01 2-46E 01 
AE241 N,G 2.20E 02 2.20E 02 2-19E 02 2-19E 02 2.18E 02 2.17E 02 2.17E 02  2-17E 02 
AE2U1 N G E X  2.723 01 2.71E 01 2.71E 01 2.7033 01  2-69E 0 1  2. .693.01 2.68E 0 1  2.68E 01 
88243 N,G 3.50E 00 3.69E 00 3,483 00 3..47E 00 3.46E 00 3.46E 00 3-45E 00  3,44E 00 
AE243 N G E X  6.652 01 6.633 04 6.61E 01 6,.59E 01 6.5833 01 6.573 0 1  6.553 0 1  6'.54E 01  
C!!242 N , G  1.32E 01 1.32E 01 1.32E 0 1  1..31E 0 1  1 . 3 1 ~  01 1.31E 0 1  1 .31E  0 1  1.31E 01  
!C82U4 N,G 1.67E 01 1.67E 01 1.67E 01 1.67E 01  1.67E 0 1  1.67E 0 1  1.67E 0 1  1,67E 01 



Table  C.2. Cross s ~ s c c i o n s  a s  a f u n c t i o n  of burnup f o r  a  CNU-SEU 

CROSS FUEL BCRNUP, MEGAWATT-DAYS (THERMAL) PER GRAM-ATOH BEAVY EETAL PRESENT 
SECT. 

NUCLIDE TYPE- 0.0 0,366 0,732 1.098 1.466 1,833 2,202 2.571 
G 3.#28E 01 3,273 01 3,273 01  3,273 0 1  3,293 01 3,353 01 3 ,373 0 1  3,383 01 ' 

N , G  2.63E 0 1  2,623 01 2,61E 01 2.62E 0 1  2.63E 011. 2-70E 01  2,71X 01 2..733 01 
FISS 1.44E 02 1.Q3E C2 1,43E 02 1.432 02 1.43E 02 1.48E 02 1.49E 02 1.50E 02 
N , G  6,353 03  6.383 00 6,.39E 00 6,40E 00  6.403 00 6,233 00 6,23E 00 6,223 00 
N , G  1.16E 03 t.16E 00 1,16E 00 1.16E 00 1,16E 04 1.18E 00  1.18E 00 1,19E 00  
N,G 5,61E 01 5.583 01 5,57E 01 5,583 01 5.593 O ?  5..67E 0 1  S,71E 0 1  5,7UE 01 
N i G  1-27E 02 1-26E 02 1026E 02 7.263 02 1027E 02 1. .31E 02 1032E 0 2  1.033E 02  
PISS U.80E 03 U..78E 00 4.,'77E 80 4,773 00 4.78E 00 U,92E 00 4.952 00 4,97E 00 
N,G 1,23E 02 1.,23E C2 1,223 02 1..228 02 1.23E 02 1..20E 02 1,21E 02  1.22E 02 

N,G 1 - 0 8 ~  02 1,07E 02 1.,07E 02 1,07E 02 1.07E 02 1.09E 02 1.,09E 02 1,10E 02 
FfSS 3.17E 02 3.15E 02 3,14E 02 3.14E 02 3.15E 0 2  3..20E 02 3',235 02 3,2SE 02 cn 

N,G 2 . 6 0 ~  01 a.SeP: 01 2 . ~ 8 ~  01 2.583 01 2 . 5 9 ~  01 2.563 01  2 . 5 8 ~  0.1 2 . , 6 0 ~  01 
.P 

N,G 2.03E 02 2.02E 02 '2 .023 02 2,02E 02 2..02E 02 2,03E 02 2,.04E 0 2  2-06E 02 
N G E X  2.51E 01 2050E C 1  2.49E 01 2049E 0 1  2,50E. 01 2,SIE 01 2:.53E 0 1  2.0553 01 
N , G  3,24E 03 3.23E CO 3,22E 00 3.223 00 3.233 00 3,24E 00 3;,26E 00 3-29E 00 
NGEX 6..16E 01 6,14E 01 6-12E 01 6,123 0 1  6,14E 01 6,162 0 1  6520E 0 1  6,24E 01  
N , G  1,25E 01  1,258 01 1.2UE 01 1,24E 0 1  1.2SE 01 1..25E 0 1  1,26E 0 1  1,26E 01 
N , G  1,.6SE 01 1.65E 01 l.65E '01 1,65E 01  1.66E 07 .1.66E 0 1  1.,66E 01  1,663 01 



Table C.2.  (cont'd) 

CROSS FUEL BURNUP, NEGABATT-DAYS(TBERMAL) PER GRAM-ATOM A E A V Y  METBL PRESENT 

NUCLIDE TYPE 2,940 3,310 3.681 4.052 4.424 4,796 5.169 5,543 
0234 I , G  3,UOE 01 3 , Q l E  01 3.U9E 01 3.493 01 3,50E 01 3,502 01  3,51E 0 1  3.503 01  

PISS 1,51E 02 1,52E C2 1,56E 02 1.57E 02  1.57E 0 2  1,58E 02 1,5.8E 02 1,58E 02 
N,G 6,21E 00 6,21E 00 6-06E 00 6.05E 0 0  6,OSE 00  6,05E 0 0  6.06E 00  6..06E 00 
#,G '1,19E 00 1.19E 00 1.,21E 00 1-22E 00 1.22E 00 1..22E 00  1,222 00 1,22E 00 
lo,G 5,783 01 5,80E 01 5.89E 01 5.91E 01  5,923 01 5,93E 0 1  5,93E 0 1  5,93E 01 
IO,G 1 ,343  02 1.35E 02 1.4OE 02  1.40E 02 1.U1E 02 1.412 02 1,UlE 02  1-41E 02 
FISS U,99E 00 S..OlE 00 5.15E 00 5,17E 00 5.18E 00  5-18E 00  5.18E 00 5,18E 00 
U , G  1.23E 02 1.24E C2 1-22E 02 1.22E 02  1.23E 02 1.23E 02 1.23E 02  1-23E 02 
FISS 2,61E 02 2..63E 02 2,64E 02  2.653 0 2  2.65E 02 2.66E 02  2,66E 0 2  2,663 02 
B,G 1.37E 02 1.38E C2 1.25E 02 1 ,263  02  1.26E 02  1-26E 02 1-26E 02  1..26E 02 
I , G  1 , 1 1 E  02 1,12E 02 1.14E 02 1,14E 02  1.143 02 1,15E 02 1,!5E 02  1.14E 02 
PISS 3.27E 02 3,29E C2 3.34E 02 3,363 02 3.37E 0 2  3,37E 02 3-37E 02  3,373 02 ~n Cn 
B,G 2,62E 01 2,633 01 2.573 Q1 2-58E 0 1  2.59E 01 2.S9E 01 2,59E 0 1  2,593 01 
#,G 2.07E 02 2-08E 02 2.09E 02 2-10E 02  2.11E 0 2  2.11E 02 2,11E 0 2  2,11E 02 
BGEX 2056B 01 2058E 01 2-59E 01 2.60E 01  2.60E 01 2061E 01  2-61E 0 1  2.6133 01 
B,G 3 - 3 1 E  00 3.323 00 3-33E 00 3-35E 00 3.3SE 0 0  3.363 00 3.36E 00 3,363 00 
MGEX 6,28E 01 6,31E .01 6.34E 01 6.36E 0 1  6.37E 01  6.383 0 1  6.38E 0 1  6-38E 01 
B,G 1.27E 01 1,27E 01 1.28E 01 1-28E 0 1  1..28E 0 1  1,282 0 1  1.28E 0 1  1,28E 01 
U,G 1,66E 01 1.67E 01 1.67E 01 1.67E 01  1,67E 01  1,67E 0 1  1,67E 0 1  1.67E 01 
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