H. 271 ORNL/TM-6409

Gaseous Fission Product Release During Storage at Various Temperatures for HTGR-Type Fuels

C. L. Fitzgerald R. J. Shannon V. C. A. Vaughen

MASTER

OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION · FOR THE DEPARTMENT OF ENERGY

1992

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy \$4.50; Microfiche \$3.00

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, nor represents that its use by such third party would not infringe privately owned rights.

ORNL/TM-6409 Dist. Category UC-77

Contract No. W-7405-eng-26

2.1

CHEMICAL TECHNOLOGY DIVISION

HTGR Fuel Recycle Development Program (189a OH 045) Reprocessing Development (Task 310)

GASEOUS FISSION PRODUCT RELEASE DURING STORAGE AT VARIOUS TEMPERATURES FOR HTGR-TYPE FUELS

C. L. Fitzgerald R. J. Shannon V. C. A. Vaughen

Date Published - July 1978

Note: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

> NOTICE This report was prepared as an account of work sponsored by the United States Covernment. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or proased diseloard, or represent that its use would not infringe privately owned rights.

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

THIS PAGE WAS INTENTIONALLY LEFT BLANK

CONTENTS

		PAGE
ABSTI	RACT	1
1.	INTRODUCTION	1
2.	FUEL DESCRIPTION AND IRRADIATION DATA	2
3.	EXPERIMENTAL EQUIPMENT AND PROCEDURE	2
4.	EXPERIMENTAL RESULTS	5
5.	CONCLUSIONS	16
6.	REFERENCES	18
7.	APPENDIX	19

THIS PAGE WAS INTENTIONALLY LEFT BLANK

LIST OF FIGURES

PAGE

1.	Experimental arrangement for storage experiment RTE-2-5	4
2.	Release rates for 85 Kr and 3 H at ambient temperature	
	(30°C)	7
3.	Release rates for 85 Kr and 3 H at 100°C	8
4.	Release rates for 85 Kr and 3 H at 150°C	9
5.	Release rates for 85 Kr and 3 H at 200°C	10
6.	Release rates for 85 Kr and 3 H at 300°C	11 .
7.	Arrhenius plot of release rates during storage at	
	various temperatures	12
8.	Releases of 85 Kr and 3 H from stored HTGR fuel at various	
	temperatures (30 to 100 days at temperature)	14

-v-

THIS PAGE WAS INTENTIONALLY LEFT BLANK

LIST OF TABLES

PAGE

1.	Releases of 85 Kr and 3 H at various temperatures	6
2.	Amounts of activity found on the absolute filter in the	
	off-gas line of the storage test at 100°C	15
3.	Amounts of residual activity found in the fuel body	
	container by gamma scanning	15
4.	Amounts of activity found in fuel body container wash	
	solutions	17

-vii-

GASEOUS FISSION PRODUCT RELEASE DURING STORAGE AT VARIOUS TEMPERATURES FOR HTGR-TYPE FUELS

C. L. Fitzgerald R. J. Shannon V. C. A. Vaughen

ABSTRACT

Measurements were made of gaseous fission product releases from an HTGR-type fuel body under conditions simulating storage at temperatures up to 300°C. The fuel was a recycle test element containing BISO-BISO coated fuel particles which had been irradiated for 701 effective full-power days in the Peach Bottom HTCR.

Storage test temperatures were ambient (about 30°C), 100, 150, 200, and 300°C. The initial release rates of 85 Kr varied after each change in temperature. A fairly stable release rate was reached that increased from $\sim 60 \ \mu$ Ci/day at ambient temperature to $\sim 1000 \ \mu$ Ci/day after 30 days at 200°C and slowly decreased to about 200 $\ \mu$ Ci/day after 554 days at 200°C. In the experiment at 300°C, a final release rate of 4000 $\ \mu$ Ci/day was attained after 66 days. The releases of 85 Kr were followed for about two and one-half years.

The stabilized release rates for 3 H were $\sim 0.02 \ \mu$ Ci/day at ambient temperature, $\sim 0.750 \ \mu$ Ci/day at 200°C after 30 days, and 0.460 μ Ci/day after 554 days. The final release rate at 300°C was about 30 μ Ci/day after 66 days.

Over the lifetime of the experiment, $\sim 22\%$ of the initial 85 Kr inventory was evolved and swept out, and $\sim 4\%$ of the initial 3 H inventory was evolved and swept out. The activation energies calculated for the Kr and 3 H evolution were ~ 7.8 kcal/mole and ~ 12.4 kcal/mole, respectively.

1. INTRODUCTION

The reprocessing of high-temperature gas-cooled reactor fuels to return the fissionable and fertile materials to the fuel cycle necessitates the existence of a storage facility for the spent fuel elements. The most economical manner to operate such a storage facility would be with the elements in unsealed containers, and with no treatment of the off-gas. Since the quantities of radioactive nuclides that can be released to the biosphere are regulated strictly, a thorough knowledge of the quantities of gaseous fission products released at various storage temperatures is needed to assist in making the design decisions. An experiment to measure fission gas (85 Kr and 3 H) releases during storage of an irradiated fuel element was started on Jan. 27, 1975, and terminated June 30, 1977. Studies were made at ambient temperature (30°C), and at 100, 150, 200, and 300°C. Details of the experiment are presented below.

2. FUEL DESCRIPTION AND IRRADIATION DATA

RTE-2-5, which was chosen for these tests, is a cylindrical graphite body about 7.6 cm diam by 38.1 cm long containing a central hole and eight smaller holes arranged like a telephone dial. The eight smaller holes contain the fuel; seven of the holes still had the original loading, whereas the fuel had been removed from the eighth. This particular body was loaded with mixtures of BISO-coated $(4Th/U)O_2$ particles, BISO-coated ThC_2 particles, and particles of graphite flour. The three particles were loaded concurrently from three vibrating V-trough feeders. The entire body was vibrated after filling to settle the bed, and additional graphite flour was added to fill the voids. The beds were sealed in place by adding 2 cm³ of methyl ethyl ketone and 10% polystyrene. (The fueled bodies were loaded into Peach Bottom fuel elements. Details of the fabrication and irradiation of the coated particles and the recycle test elements are reported elsewhere.^{1,2})

As stated above, fuel from one of the channels had been removed for PIE. Additionally, three graphite components - the spine, a fuel hole plug, and a top sample hole plug - had also been removed. The assembled weight of body RTE-2-5 is reported² as 2531.5 g; if the weights of missing fuel and components are deducted, the weight as received should have been 2091.8 g. (A total of 590.2 g of coated particles is contained in this gross weight.)

3. EXPERIMENTAL EQUIPMENT AND PROCEDURE

The experimental apparatus consisted of a sealed, purged, heated container to hold the fuel element. The container was made of an

· -2-

insulated 4-in. sched. 40 stainless steel pipe 18 in. long and flanged at one end with an O-ring seal. A Calrod unit supplied heat for the tests at the elevated temperatures (Fig. 1).

Monitoring and collection of the off-gases for subsequent analyses were performed using the off-gas instrumentation from head-end studies.³ The off-gas system consisted of a CO analyzer, a CO_2 analyzer, a multichannel analyzer gamma spectrometer, a heated CuO bed (to oxidize any HT to HTO), molecular sieve traps (for HTO removal), a wet-test meter, and an inflatable gas collection bag. The CO and CO_2 analyzers were in the system only for the 300°C test. An absolute filter was in the line for the test at 100°C.

The primary goal of the experiment was to monitor the releases of 85 Kr and 3 H at various storage temperatures. Since the in-line gammadetector does not yield absolute values for krypton concentrations, replicate gas samples were taken from the collapsible gas collection bag after each collection interval and counted in a 2-in.-well NaI detector. The sweep gas was humidified to provide isotopic dilution for the 3 H, and the resultant HTO was adsorbed on molecular sieves (Type 4A). The HTO was recovered by refluxing the sieves for 4 hr in 50 ml of H₂O. The leach solution was analyzed for tritium content by beta liquid scintillation.

The element was purged with moist air continuously at the beginning of each test until a reasonably stable release rate was observed. Once this rate was attained, the unit was sealed at temperature and purged once weekly for a total purge volume of at least ten volume changes of the test chamber. The duration of the experiment at ambient temperature (\sim 30°C), 100, 150, 200, and 300°C was 70, 78, 108, 554, and 66 days, respectively. The extended test at 200°C (554 days) was performed to observe any long-term changes in the apparently stable release rate.

The experimental release values must be generalized if these values are to be used in the design of a storage facility. The total inventories of 85 Kr and 3 H in RTE-2-5 have been estimated by analogy to

-3-

ORNL DWG 75-8360 R

-4-

1- NOT IN LINE AT AMBIENT TEMPERATURE

.

Fig. 1. Experimental arrangement for storage experiment RTE-2-5.

fuel body RTE-2-3 of the same fuel element with the assistance of the ORIGEN code.⁴ About 0.38 Ci of 85 Kr per fuel channel was predicted for RTE-2-3. We directly measured 0.31 Ci of 85 Kr (about 80% of the predicted amount) in head-end experiments involving fuel channel RTE-2-3-2.⁵ The neutron flux at the RTE-2-5 position was about 75% of the flux at RTE-2-3; however, RTE-2-5 contained more uranium and thorium than RTE-2-3. By adjusting the ORIGEN yield of 85 Kr for RTE-2-3 by simple factors, we have estimated 85 Kr and 3 H inventories of 2.6 Ci and 56 mCi, respectively, in RTE-2-5.

4. EXPERIMENTAL RESULTS

<u>Releases of krypton and tritium during storage</u>. The average daily releases for each temperature are shown in Figs. 2-6. The experimental values are presented in Tables A-1 through A-10 in the Appendix. Each change in temperature, except at 300°C, resulted in a sharp increase in the daily release rate, which then decreased asymptotically with time. The release rates at 300°C did not decrease significantly over the period of the test (66 days).

To provide a comparison of the changes in release rates with temperature, the values between about 30 and 100 days into the test were averaged. A few obviously divergent values were omitted from the averages (see Tables A-1- A-10). These averages, and the ranges calculated using Student's t method for the 95% confidence interval, are presented in Table 1. An increase was observed in the average release rates between day 30 and day 100 with increasing temperature.

An Arrhenius plot of these data indicates that there is some regularity of behavior (Fig. 7). The solid lines fit equations as shown in (1) and (2) below:

for ${}^{85}_{\text{Kr}}$, k = 3.937 x 10⁶ e^{-7820/RT}; (1)

for ³H,
$$k = 1.042 \times 10^6 e^{-1.2,400/RT}$$
; (2)

where k is the rate of release in μ Ci/day, R is the ideal gas constant (1.987 cal/mole·K), and T is the temperature in K.

The data points and ranges (95% confidence interval, by Student's t) are also presented. It is clear that the data at ambient temperature ($\sim 30^{\circ}$ C) lie well above the predictions. Several hypotheses for this behavior may be advanced. One is that the fresh fuel had a "surplus"

Temperatur	e Dates	85 _{Kr}				3 _H			
(°C)	from/to	Release rate (µCi/day) Initial End ^e		Total Ci in period	ΣmCi from start of experiment	Release rat€ (µCi/day) Initial End		Total µCi in period	ΣµCi from start of experiment
Ambient	1-27-75/4-4-75	900Đ	60 <u>+</u> 16	16	16	3.0	0.024 ± 0.007	7 8.46	8.46
100	4-4-75/6-20-75	6000	103 <u>+</u> 51	67	83	0.3	0.045 <u>+</u> 0.039	8.53	17
150	5-20-75/10-17-75	1000	394 <u>+</u> 107	40	123	0.3	0.376 <u>+</u> 0.218	3 93.5	111
200	10-17-75/4-20-77	4000	844 <u>+</u> 476	202	325	1.2	0.749 <u>+</u> 0.388	3 701	812
300	4-27-77/6-30-77	5000	4095 <u>+</u> 82	1606	44.2	19.3 <u>+</u> 0.7		1307	2119

Table 1. Releases of 85 Xr and 3 H at various temperatures

^aAverage of values between \sim 30 and \sim 100 days with 95% range (by Student's t).

.

-7-

Fig. 3. Release rates for 85 Kr and 3 H at 100°C.

ι

-8-

Fig. 4. Release rates for 85 Kr and 3 H at 150°C.

-9-

ORNL DWG 77-18318

Fig. 6. Release rates for 85 Kr and 3 H at 300°C.

-11-

Fig. 7. Arrhenius plot of release rates during storage at various temperatures.

inventory in its pores, which was released rather easily. This hypothesis is given some credence by the very high release rates $(3885 \pm 941 \ \mu\text{Ci} \text{ of } ^{85}\text{Kr} \text{ per day})$ seen at the start of the 100°C series. Thus, perhaps the experiment was not run long enough under ambient conditions to measure the release mechanism seen in the later tests.

The other data, however, are in relatively good agreement with the results predicted by the Arrhenius equation. For interpolation, the release rates predicted by the Arrhenius correlation are presented on a semilogarithmic plot of release rates vs temperature (Fig. 8).

The krypton release rate increased by almost a factor of 70, while the tritium release rate increased about a factor of 800 over the temperature range 30 to 300°C.

In the test of longest duration (200°C), the release rates continued to decrease slowly until the temperature was changed. The final average values for 85 Kr and 3 H (after 554 days at 200°C) were 175.8 ± 23.3 µCi/day and 0.460 ± 0.130 µCi/day, respectively. Overall, about 24% of the 85 Kr and about 4% of the tritium were evolved over the two and one-half years of testing.

<u>Release of other fission products during storage</u>. An absolute filter (Pall Corporation, Cortland, N.Y., Part No. DEA 3001URA) was placed in the off-gas line for the test at 100°C. The principal gamma emitters found on the filter at the end of the test are shown in Table 2. Their levels of activity ranged from about 0.1 μ Ci for ¹²⁵Sb to about 0.75 μ Ci for ¹⁴⁴Ce. These results can be taken as maximum values since there is a possibility that some of the activity is a result of incell contamination, even though a diligent effort was made to ensure that the exterior of the filter body was free from contamination.

The container for the fuel body was decontaminated (externally) and gamma scanned at the end of the experiment. These results are shown in Table 3. The values ranged from about 7 uCi for ¹²⁵Sb to about 573 μ Ci for ¹⁴⁴Ce. As stated above, these results may be taken as maximum values. One should note that both fertile and fissile particles are BISO-coated, and a degree of migration of fission products through these coatings is not uncommon.

-13-

Fig. 8. Releases of 85 Kr and 3 H from stored HTGR fuel at various temperatures (30 to 100 days at temperature).

ORNL DWG 78-9618

Nuclide	Amount found (dpm)	Apparent concentration (µCi/l ^a)
95 _{Zr-} 95 _{Nb}	Trace	-
106 _{Ru}	2.34×10^5	5.4 \times 10 ⁻⁴
¹²⁵ Sb	2.30×10^5	5.3×10^{-5}
¹³⁴ Cs	3.48×10^5	8.0×10^{-5}
¹³⁷ Cs	4.78 x 10 ⁵	1.1×10^{-4}
¹⁴⁴ Ce	1.67×10^{6}	3.8×10^{-4}

Table 2. Amounts of activity found on the absolute filter in the off-gas line of the storage test at 100°C

 $^{a}\mathrm{The}$ total volume collected at 100°C was 1965 L.

, ·

Ó

Table 3. Amounts of residual activity found in the fuel body container by gamma scanning

Nuclide	Amount found (dpm)	
106 _{Ru}	1.78×10^7	
¹²⁵ Sb	5.75×10^{6}	
¹³⁴ Cs	1.15×10^8	
¹³⁷ Cs	3.16×10^8	
¹⁴⁴ Ce	3.65×10^7	

The container for the fuel body was rinsed with demineralized water to remove any particulates adhering to the inner surface. The container was then washed with basic and acidic solutions. The basic solution contained (per liter) 1.52 g of NaOH, 0.5 g of KI, and 1.4 g of NaHSO₃ to remove ¹²⁹I. The acidic solution, 8 <u>M</u> HNO₃, was used to leach other fission products. The principal gamma emitters contained in these solutions are shown in Table 4. The amounts reported in this table are within about a factor of 2 of those reported in Table 3, representing reasonable consistency for measurements of this type.

Reactions between the air purge gas and the fuel element stored at 300°C. The carbon monoxide and carbon dioxide analyzers were in-line for the test at 300°C to observe any possible oxidation. The CO_2 analyzer indicated that the purge gas contained about 1% CO_2 . Samples taken for analysis by gas chromatography indicated an average CO_2 concentration of 1.12% in the off-gas. If we assume that this value is an average concentration for the entire test at 300°C, the observed weight loss should be 31.7 g. The original weight (as received) was not available. The fuel body weighed 12.9 g less than the calculated weight of 2091.8 g at the end of the experiment. Visual inspection of the body revealed evidence of a slight amount of erosion on the inlet side of the purge line. We conclude that there was some attack of the fuel body at 300°C by the purge air.

5. CONCLUSIONS

Spent fuel elements must be stored in the near future. Any offgases from such a storage facility will need to meet the requirements of existing regulations for releases of radioactive species. The concentrations of gaseous contaminants expected to be released at the storage temperature can be estimated from these data, and will have to be considered in the design of the facility. The loss of up to 22% of the ⁸⁵Kr and 4% of the tritium inventories of the spent fuel elements may require containment of the activity. Releases of particulates and other fission products do not appear to present unusual problems. Design trade-offs between costs of fuel element containment and any off-gas cleanup methods will need to be performed.

-]	L7	-	

Isotope		Wash so	lutions		
(dpm total)	Water	Basic	Acid	Σdpm	
106 _{Ru}	<3.33 x 10 ⁶	<2.22 x 10 ⁵	<1.11 x 10 ⁷	<1.5 x 10 ⁷	
¹²⁵ Sb	$<2.22 \times 10^{6}$	<1.11 x 10 ⁵	<3.33 x 10 ⁶	<5.7 x 10 ⁶	
¹³⁴ Cs	1.67×10^8	1.01×10^{7}	7.35×10^{7}	2.51×10^8	
¹³⁷ Cs	3.77×10^8	2.33×10^{7}	1.75×10^8	5.74 x 10^8	
¹⁴⁴ Ce	<2.22 x 10^7	2.55 x 10 ⁶	4.91×10^7	$<7.4 \times 10^{7}$	
154 _{Eu}	$<2.22 \times 10^{6}$	<3.33 x 10 ⁵	4.52×10^{6}	<7.1 x 10 ⁶	
¹²⁹ Ι, μg		1.94	· –	1.94	

Table 4. Amounts of activity found in fuel body container wash solutions

÷

6. REFERENCES

- 1. R. P. Morisette and K. P. Steward, <u>Recycle Test Element Program</u> Design, Fabrication, and Assembly, GA-10109 (September 1971).
- 2. E. I. Long, R. B. Fitts, and F. J. Homan, <u>Fabrication of ORNL</u> <u>Fuel Irradiated in the Peach Bottom Reactor and Postirradiation</u> <u>Examination of Recycle Test Elements 7 and 4</u>, ORNL/TM-4477 (September 1974).
- 3. C. L. Fitzgerald, V. C. A. Vaughen, K. J. Notz, and R. S. Lowrie, <u>Head-end Reprocessing Studies with Irradiated HTGR-Type Fuels</u>, <u>Studies with RTE-7: TRISO UC2-TRISO ThC2</u>, ORNL-5090 (November 1975).
- 4. M. J. Bell, <u>ORIGEN, The ORNL Isotope Generation and Depletion</u> Code, ORNL-4628 (May 1973).

٦

5. A. L. Lotts and P. R. Kasten, <u>Gas-Cooled Reactor Programs - Thorium</u> <u>Utilization Program Progress Report - January 1, 1974-June 30,</u> 1975, ORNL-5128 (May 1976). 7. APPENDIX: TABULATED RESULTS OF ⁸⁵Kr AND ³H RELEASES FOR STORAGE EXPERIMENT RTE-2-3-5

Accumulated	days	Gas bag vol. (liters)	85 _{Kr}	(dpm/day)	85 _{Kr}	(µCi/day)	Accumulated 85 _{Kr} (mCi)
1		57	2.04	x 10 ¹⁰	9.18	× 10 ³	9.18
2		58.5	5.83	x 10 ⁸	2.63	$ x 10^{2} $	9.43
3		55.8	3.77	x 10 ⁸	1.7	$\times 10^{2}$	9.61
4		56.5	2.65	x 10 ⁸	1.19	$x 10^{2}$	9.73
5		61.4	2.79	x 10 ⁸	1.26	x 10^2	9.86
6		63.0	2.82	x 10 ⁸	1.27	$\times 10^{2}$ ·	9.98
7		62.0	2.01	x 10 ⁸	1.27	$\times 10^{2}$	10.11
8		61.5	1.87	x 10 ⁸	8.41	$\times 10^1$	10.19
9		60.0	2.9	x 10 ⁸	1.31	$\times 10^2$	10.32
10		58.4	2.41	x 10 ⁸	1.09	$\times 10^2$	10.43
11		57.1	2.63	$\times 10^8$	1.18	$\times 10^{2}$	10.55
12		18.8	3.03	x 10 ⁸	4.50	x 10 ^{1a}	10.59
19		36.0	1.17	x 10 ⁸	5.26	x 10 ^{1a}	10.95
25		36.0	9.39	$\times 10^7$	4.23	x 10 ^{1a}	11.25
32		37.7	1.02	$\times 10^{8}$	4.61	x 10 ^{1a}	11.58
39		38,5	1.13	x 10 ⁸	5.09	x 10 ^{1a}	11.93
46		38.6	6.39	x 10 ⁸	2.88	$\times 10^2$	13.95
53		37.7	2.06	x 10 ⁸	9.3	x 10 ^{1a}	14.60
59		35.5	1.53	x 10 ⁸	6.88	x 10 ^{1a}	15.01
70		36.0	1.80	x 10 ⁸	8.12	x 10 ^{1a}	15.66

Table A-1. Release rate for ${}^{85}\mathrm{Kr}$ at ambient temperature (${\sim}30^\circ\mathrm{C})$

^aValues used to determine average and range, $\overline{X} = 60.0 \pm 15.8$.

Accumulated days	Gas bag vol. (liters)	⁸⁵ Kr (dpm/day)	⁸⁵ Kr (µCi/day)	Accumulated ⁸⁵ Kr (mCi)
1	61.8	1.44×10^{10}	6.5×10^3	6.51
2	62.8	1.13×10^{10}	5.08×10^3	11.60
3	68.9	1.06×10^{10}	4.76×10^3	16.36
4	58.5	9.19 x 10 ⁹	4.14×10^3	20.5
5	67.0	8.68 x 10 ⁹	3.91×10^3	24.41
6	68.0	8.32×10^9	3.75×10^3	28.16
. 7	68.7	7.34×10^9	3.31×10^3	31.46
8	62.3	5.84 x 10 ⁹	2.63×10^3	34.09
9	71.0	5.58 x 10 ⁹	2.51 x 10^3	36.61
10	73.0	5.0 x 10 ⁹	2.25×10^3	38.86
13.33	39.3	2.25×10^9	1.01×10^3	39.87
14.33	63.6	2.38 x 10^9	1.07×10^3	40.95
15.33	66.7	2.13×10^9	9.6 x 10^2	41.91
16.33	68.2	1.94×10^9	8.73 x 10^2	42.78
17.33	69.9	2.09×10^9	9.39 x 10^2	43.72
21.33	60.0	3.64×10^{10}	1.64×10^4	60.12
22.33	73.0	3.30×10^9	1.49×10^3	61.61
23.33	61.0	1.64×10^9	7.37×10^2	62.34
24.33	66.3	1.25×10^9	5.61 x 10^2	62.80
28.0	68.0	1.28×10^9	5.76 x 10^2	63.38
29.0	59.6	5.95 x 10 ⁸	2.68 x 10^2	63.65
30.0	62.0	9.06 x 10^8	4.08×10^2	64.06
31.0	70.5	6.20×10^8	2.79×10^2	64.34
34.33	40.1	1.33×10^9	5.97 x 10^2	64.93
35.33	63.8	3.83×10^8	1.73×10^{2a}	65.11
36.33	63.2	3.13×10^8	1.41×10^{2a}	65.25
37.33	63.0	2.99×10^8	1.35×10^{2a}	65.38
38.33	60.8	2.91×10^8	1.31×10^{2a}	65.51
45.33	41.2	6.61 x 10^7	2.98 x 10^{1a}	65.72
52.33	35.8	$1.6 \times 10^{\prime}$	$7.2 \times 10^{\circ}$	65.77
59.33	36.0	2.15×10^7	$9.69 \times 10^{\circ}$	65.84
66.33	36.6	1.27×10^8	5.72 x 10 ^{1a}	66.24
78	35.2	1.18×10^8	5.34 x 10^{1a}	66.61

Table A-2. Release rate for 85 Kr at 100°C

^a Values used to determine average, $\overline{X} = 102.9 \pm 50.8\%$.

-21-

Accumulated days	Gas bag vol. (liters)	⁸⁵ Kr (dpm/day)	⁸⁵ Kr (µCi/day)	Accumulated 85 _{Kr} (mCi)
1.0	69.0	2.46 x 10^9	1.11×10^3	1.11
2.0	60.3	1.67 x 10 ⁹	7.51 x 10^2	1.86
3.0	58.0	1.32×10^9	5.96 x 10^2	2.46
4.0	58.0	1.04×10^9	4.68×10^2	2.93
5.0	66.9	1.26×10^9	5.68 x 10^2	3.50
U. U	69.U	1.39 x 10 ⁹	6.29×10^2	4.13
7.0	69.9	1.33×10^9	6.01 x 10^2	4.73
8.0	67.4	1.29×10^9	5.83 x 10^2	5.31
12.33	34.4	4.86 x 10 ⁸	2.19 x 10^2	6.19
13.33	68.8	1.11×10^9	5.02×10^2	6.69
14.33	68.5	1.02×10^9	4.59×10^2	7.15
15.33	69.7	1.05×10^9	4.72×10^2	7.62
16.33	66.3	9.47 x 10 ⁸	4.27×10^2	8.05
23.33	32.0	3.86 x 10 ⁸	1.74×10^2	9.27
30.33	39.4	6.61 к 10 ⁸	2.98 x 10^2	11.35
37.33	47.8	5.17 x 10^8	2.33 x 10^{2a}	12.98
44.33	41.8	5.74 x 10^8	2.59 x 10^{2a}	14.79
51.33	39.3	9.24 x 10 ⁸	4.16 x 10 ^{2a}	17.70
58.33	33.5	5.77 x 10^8	2.60 x 10^{2a}	19.52
65.33	39.0	1.06×10^9	4.76×10^{2a}	22.85
72.33	43.8	1.42×10^9	6.42 x 10^{2a}	27.34
79.33	33.9	1.15×10^9	5.17 x 10^{2a}	30.96
86.33	38.2	9.76 x 10^8	4.40×10^{2a}	34.04
93.33	35.2	6.84×10^{8}	3.08×10^{2a}	36.20
100.33	31.5	3.33×10^8	1.50×10^2	37.25
107.33	40.0	6.57 x 10^8	2.96 x 10^2	39.32
118.0	42.0	2.53 x 10^8	1.14×10^{2}	40.12

Ŷ

Table A-3. Release rate for ⁸⁵Kr at 150°C

^aValues used to determine the average, $\overline{X} = 394 \pm 107$.

Accumulated	days Gasbag (liter	vol. ⁸⁵ s) Kr	(dpm/day) ⁸⁵ Kr	(µCi/day)	Accum 85 _{Kr}	ulated (mCi)
1	70.8	9.39	x 10 ⁹ 4.23	3×10^{3}	4.23	
2	74.2	7.72	$\times 10^9$ 3.48	3×10^{3}	7.71	
3	75.0	6.99	x 10 ⁹ 3.15	5 x 10 ³	10.86	
7	77.0	5.79	x 10 ⁹ 2.61	. x 10 ³	21.28	
8	74.5	5.32	x 10 ⁹ 2.39	10^{3}	23.69	
9	75.8	5.57	x 10 ⁹ 2.51	. x 10 ³	26.19	
10	73.7	5.40	x 10 ⁹ 2.43	3 x 10 ³	28.62	
14	73.5	4.67	x 10 ⁹ 2.10) x 10 ³	37.03	
15	73.5	4.88	x 10 ⁹ 2.20	$) \ge 10^3$	39.23	
16	76.3	5.25	x 10 ⁹ 2.36	5×10^3	41.60	
17	73.5	4.97	x 10 ⁹ .2.24	x 10 ³	43.83	
21	80.0	5.00	x 10 ⁹ 2.29	10^{3}	52.99	
22	78.0	4.86	x 10 ⁹ 2.19	10^3 x 10^3	55.18	
23	77.0	4.83	x 10 ⁹ 2.17	$\times 10^{3}$	57.35	•
24	67.3	4.20	x 10 ⁹ 1.89	$x 10^{3}$	59.25	
28	70.0	3.97	x 10 ⁹ 1.79	$) \times 10^{3}$	66.39	
29	72.0	3.81	x 10 ⁹ 1.72	$\times 10^3$	68.11	
31	148.0	4.01	x 10 ⁹ 1.81	1×10^{3}	71.72	
52	57.5	4.01	x 10 ⁹ 1.81	1×10^{3}	109.73	
56	88.1	5 6.66	x 10 ⁸ 3.0	x 10 ²	110.93	
57	72.5	2.46	x 10 ⁹ 1.1	x 10 ³	112.03	
58	63.4	1.56	x 10 ⁹ 7.0	$\times 10^2$	112.73	
· 59	72.2	2.02	x 10 ⁹ 9.1	$\times 10^{2}$	113.64	
76	42.4	5 6.47	x 10 ⁸ 2.97	$' \times 10^{2}$	118.59	
84	35.2	5 1.15	x 10 ⁸ 5.21	L ж 10 ¹	118.64	
90	39.0	6.19	x 10 ⁸ 2.76	5×10^2	121.40	
97	41.6	8.81	x 10 ⁸ 3.97	7×10^{2}	125.37	
104	41.2	6.09	$\times 10^8$ 2.74	$x 10^2$	127.29	
111	12.6	5.67	x 10 ⁸ 2.55	5×10^2	129.08	
119	42.3	5.65	x 10 ⁸ 2.54	$+ \times 10^2$	131.12	
125	41.0	7.83	$\times 10^8$ 3.53	3×10^2	133.24	

Table A-4. Release rate for 85 Kr at 200°C

Accumulated days	Gas bag vol. (liters)	⁸⁵ Kr (dpm/day)	⁸⁵ Kr (µCi/day)	Accumulated ⁸⁵ Kr (mCi)
127	71.8	1.52×10^9	6.84×10^2	134.61
128	72.0	1.77×10^9	7.57 x 10^2	135.41
129	77.1	1.85×10^9	8.33 x 10^2	136.24
130	50.5	7.95 x 10 ⁸	3.58×10^2	136.60
137	53.5	2.96 x.10 ⁸	1.33×10^2	137.53
144	55.5	7.94×10^{8}	3.57×10^2	140.03
151	45.3	9.8 x 10 ⁸	4.4 x 10^2	143.12
158	51.3	8.68 x 10 ⁸	3.87×10^2	146.19
165	50.2	6.21 x 10 ⁸	2.8 x 10^2	148.15
171	57.1	8.92 x 10 ⁸	4.82×10^2	150.56
179	58.5	7.14 x 10 ⁸	3.21×10^2	153.13
186	54.3	5.53 x 10 ⁸	2.49 x 10^2	154.87
193	52.5	2.92 x 10 ⁸	1.32×10^2	155.79
200	52.7	1.04 x 10 ⁸	4.72 x 10^{1}	156.12
204	65.2	7.16 x 10 ⁸	3.22×10^2	157.40
205	60.0	8.93 x 10 ⁸	4.02×10^2	157.81
206	67.4	1.99 x 10 ⁹	8.96 x 10^2	158.70
207	77.8	2.51 x 10^9	1.13×10^{3}	159.83
214	50.2	4.26 x 10 ⁸	1.92 x 10 ²	161.18
221	45.2	9.27 x 10^7	4.18 x 10^{1}	161.47
228	60.0	3.73×10^8	1.68×10^2	162.64
238	51.5	6.99×10^7	3.15×10^{1}	162.96
242	55.3	3.68×10^8	1.66×10^2	163.62
243	54.5	1.65×10^8	7.47×10^{1}	164.14
260	60.0	2.75 x 10^8	1.24×10^2	165.01
267	60.0	2.06×10^8	9.28 x 10^{1}	165.66
274	58.0	2.42×10^8	1.09×10^2	166.42
281	58.0	6.68×10^7	3.01×10^{1}	166.63
288	47.0	1.54×10^8	6.93×10^{1}	167.11
295	57.0	1.16×10^{8}	5.21 x 10^{1}	167.47
302	58.0	9.29×10^7	4.18 x 10^{1}	167.76
309	54.5	2.29×10^8	1.03×10^2	168.48

Table A-4 (continued)

Accumulated days	Gas bag vol. (liters)	⁸⁵ Kr (dpm/day)	⁸⁵ Kr (µCi/day)	Accumulated ⁸⁵ Kr (mCi)
316	58.6	3.43×10^8	1.54×10^2	169.56
323	60.0	2.14 x 10^8	9.65 x 10^{1}	170.24
330	58.5	3.96 x 10 ⁸	1.78×10^2	171.49
337	58.0	2.08×10^8	9.39 x 10^{1}	172.15
345	54.0	8.5×10^7	3.83×10^{1}	172.42
353	85.0	1.56 x 10 ⁸	7.02 x 10^{1}	172.98
360	54.2	1.17×10^8	5.27 x 10^{1}	173.35
367	42	1.56 x 10 ⁸	7.02 x 10^{1}	173.84
374	48.5	2.24×10^8	1.01×10^2	174.54
381	49.5	2.28 x 10^8	1.03×10^2	175.26
388	48.0	2.21 x 10^8	9.96 x 10^{1}	175.96
395	45.0	2.21 x 10^8	9.98 x 10^1	176.65
402	41.0	1.99×10^8	9.0 $\times 10^{1}$	177.29
409	46.0	1.94×10^8	8.74 x 10^{1}	177.90
417	45.5	1.69×10^8	7.6 $\times 10^{1}$	178.51
424	57.0	4.58×10^8	2.06 x 10^2	179.95
430	57.0	5.34 x 10^8	2.4 x 10^2	181.39
437	57.0	4.58×10^8	2.06 x 10^2	182.84
444	57.0	4.58×10^8	2.06×10^2	184.28
451	57.0	4.58×10^8	2.06×10^2	185.73
458	57.0	4.58×10^{8}	2.06×10^2	187.17
465	78.5	2.85 x 10^8	1.28×10^2	188.06
472	62.2	3.55×10^8	1.59×10^2	189.18
479	52.2	3.72×10^8	1.68×10^{2a}	190.36
486	122.1	3.51×10^8	1.58×10^{2a}	191.47
493	122.1	3.51×10^8	1.58×10^{2a}	192.57
500	53.0	4.31×10^8	1.94×10^{2a}	193.93
507	55.2	4.16×10^{8}	1.87×10^{2a}	195.24
514	58.0	3.63×10^8	1.63×10^{2a}	196.39
521	58.0	3.63×10^8	1.63×10^{2a}	197.53
528	59.0	4.14 x 10 ⁸	1.86×10^{2a}	198.84

Table A-4 (continued)

.

Accumulated days	Gas bag vol. (liters)	⁸⁵ Kr (dpm/day)	⁸⁵ Kr (µCi/day)	Accumulated 85 _{Kr} (mCi)
535	62.0	5.59 x 10^8	2.52 x 10 ^{2a}	200.61
554	63.3	2.86 x 10 ⁸	1.29×10^{2a}	201.51

••

^aValues used to calculate $\overline{X} = 175.8 \pm 23.3$.

Accumulated	days Gas ba (lit	ag vol. ⁸⁵ Kr	(dpm/day)	85 _{Kr}	(µCi/day) Accum 85 _{Kr}	ulated (mCi)
1	62	.0 1.07	$\times 10^{10}$	4.83	x 10 ³	4.83	
2	63	.0 8.35	x 10 ⁹	3.76	x 10 ³	8.59	
3	64	.0 9.49	x 10 ⁹	4.28	x 10 ³	12.88	
4	64	.0 1.05	$\times 10^{10}$	4.73	x 10 ³	17.61	
5	67	.0 1.11	$\times 10^{10}$	5.02	x 10 ³	22.64	
6	67.	.0 1.17	$\times 10^{10}$	5.27	x 10 ³	27.91	x
7	67	.0 1.20	$\times 10^{10}$	5.42	x 10 ³	33.33	
8	58.	.5 1,13	$\times 10^{10}$	5.08	x 10 ³	38.42	
9	63.	.0 1.13	$\times 10^{10}$	5.10	$\times 10^3$	43.52	
10	58.	.0 1.19	$\times 10^{10}$	5.38	x 10 ³	48.89	
11	76.	.0 1.19	$\times 10^{10}$	5.37	x 10 ³	54.27	
12	83.	.0 1.29	$\times 10^{10}$	5.80	x 10 ³	60.07	
13	51.	.0 1.15	$\times 10^{10}$	5.18	x 10 ³	65.25	
14	39.	.0 1.03	$\times 10^{10}$	4.63	x 10 ³	69.88	
15	62.	5 1.16	$\times 10^{10}$	5.24	x 10 ³	75.12	
16	66.	0 1.22	$\times 10^{10}$	5.53	$\times 10^{3}$	80.65	
17	64.	0 1.16	$\times 10^{10}$	5.24	$\times 10^{3}$	85.89	
21	87.	0 1.36	$\times 10^{10}$	6.12	x 10 ³	92.01	
22	74.	5 8.98	x 10 ⁹	4.05	x 10 ³	96.05	
23	. 74.	.5 9.44	x 10 ⁹	4.25	x 10 ³ 1	L00.31	
24	74.	5 9.44	x 10 ⁹	4.25	x 10 ³]	L04.56	
27	123.	9.45	x 10 ⁹	4.26	$\times 10^3$	L08.81	
28	84.5	5 1.38	$\times 10^{10}$	6.24	x 10 ³]	L15.05	
29	81.0	D. 1.16	$\times 10^{10}$	5.23	$\times 10^3$ 1	L20.29	
30	77.5	5 1.11	$\times 10^{10}$	4.99	x 10 ³]	L25.28	
31	83.5	5 1.12	$\times 10^{10}$	5.07	x 10 ³ 1	L30.34	
35	288.0	1.33	$\times 10^{10}$	5.98	$\times 10^3$ 1	L54.26	
36	110.0) 1.16	$\times 10^{10}$	5.22	x 10 ³]	L59.48	
37	111.0) 1.1	$\times 10^{10}$	4.96	x 10 ³ 1	L64.45	
38	108.5	5 1.08	$\times 10^{10}$	4.85	$\times 10^3$ 1	L69.29	
4 <u>1</u>	220	9.8	x 10 ⁹	4.42	x 10 ³ 1	L82.56	

Table A-5. Release rate for 85 Kr at 300°C

Accumulated days	Gas bag vol. (liters)	⁸⁵ Kr (dpm/day)	⁸⁵ Kr (µCi/da	y) Accumulated 85 _{Kr} (mCi)
42	113.0	1.04×10^{10}	4.69×10^3	187.25
43	113.0	1.01×10^{10}	4.55×10^3	191.81
44	119.0	1.01×10^{10}	4.56 x 10 ³	196.37
45	116.0	1.02×10^{10}	4.63×10^3	200.99
48	264.0	9.83 x 10 ⁹	4.47×10^3	214.28
49	108.0	ዓ.ፈ∖ x រុO ^y	4.25×10^3	218.53
50	119.0	9.49 x 10 ⁹	4.28×10^3	222.81
51	124.0	9.63 x 10^9	4.34×10^3	227.15
52	118.0	9.10 x 10^9	4.09×10^3	231.25
55	249.0	9.56 x 10 ⁹	4.31 x 10 ^{3a}	235.55
56	121.5	9.09 x 10^9	4.09 x 10 ^{3a}	239.65
57	121.0	9.09×10^9	4.09 x 10 ^{3a}	243.74
58	120.0	9.13 x 10^9	4.11 x 10 ^{3a}	247.85
59	119.0	9.32×10^9	4.20 x 10 ^{3a}	252.06
62	265	9.28×10^9	4.18×10^{3a}	264.59
63	113	8.87×10^9	3.99×10^{3a}	268.59
64	141	8.81×10^9	3.97 x 10 ^{3a}	272.56
65	131	9.05×10^9	4.08×10^{3a}	276.63
66	133	8.72×10^9	3.93 x 10 ^{3a}	280.56

Table A-5 (continued)

^aValues used to calculate the average, $\overline{X} = 4095 \pm 82$.

Accumulated days	³ H (dpm/day)	³ Η (μCi/day)	Accumulated ³ H (µCi)
1	6.67×10^{6}	3.01	3.01
2	1.70×10^{6}	0.77	3.77
3	8.37×10^5	0.38	4.15
4	8.79×10^5	0.40	4.55
5	6.10×10^{5}	0.27	4.82
6	5.49 x 10 ⁵	0.25	5.07
7	6.59 x 10 ⁵	0.30	5.37
8	2.76 x 10 ⁵	0.12	5.49
9	3.81 x 10 ⁵	0.17	5.66
10	2.42×10^5	0.11	5.77
11	2.17 x 10 ⁵	0.10	5.87 , same
12	8.31 x 10^5	0.37	6.24
19	3.85×10^4	0.017 ^a	6.36
25	3.27 x 10 ⁵	0.147	7.39
32	5.78 x 10 ⁴	0.026 ^a	7.57
39 ·	8.17 x 10^4	0.037 ^a	7.82
46	5.47 x 10^4	0.025 ^a	8.00
53	5.45 x 10^4	0.024 ^a	8.19
59	5.88 x 10^4	0.027 ^a	8.35
70	3.21×10^4	0.014 ^a	8.46

Table A-6. Release rate for 3 H at ambient temperature ($\sim 30^{\circ}$ C)

^aValues used to calculate the average, $\overline{X} = 0.024 \pm 0.007$.

Accumulated days	3	3	Accumulated
	H (dpm/day)	Ή (μCi/day)	3H (µCi)
1	7.23×10^5	3.26×10^{-1}	0.326
2	4.18×10^5	1.33×10^{-1}	0.514
3	4.27×10^5	1.92×10^{-1}	0.706
4	3.857×10^5	1.737×10^{-1}	0.880
5	5.507 ж 10 ⁵	2.48 $\times 10^{-1}$	1.120
6	8.411 x 10^5	3.788×10^{-1}	1.507
7	6.248 x 10 ⁵	2.815×10^{-1}	1.788
8	3.971 x 10 ⁵	1.789×10^{-1}	1.967
9	3.297 x 10 ⁵	1.486×10^{-1}	2.116
10	2.941 x 10 ⁵	1.325×10^{-1}	2.248
13	6.98 x 10 ⁵	3.15×10^{-1}	2.352
14.0	2.63×10^5	1.18×10^{-1}	2.786
15	2.34×10^5	1.01×10^{-1}	2.887
16	1.97×10^{5}	8.87×10^{-2}	2.976
17	1.80×10^5	8.12×10^{-2}	3.057
17.33	2.04×10^5	9.17 x 10^{-2}	3.087
21.33	3.95×10^5	1.78×10^{-1}	3.799
22.33	5.47 x 10 ⁵	2.46 x 10^{-1}	4.045
24.33	2.21 x 10^5	9.93×10^{-2}	4.144
25.33	7.06 x 10 ⁵	3.18×10^{-1}	4.46
29	6.33 x 10 ⁵	2.85 x 10^{-1}	5.509
30	2.10×10^6	9.47×10^{-1}	6.456
31	1.25 x 10 ⁶	5.65 \times 10 ⁻¹	7.021
32	9.03 x 10 ⁵	4.07×10^{-1}	7.428
32.33	7.07 x 10 ⁵	3.18×10^{-1}	7.533
36	1.17 x 10 ⁵	5.29 x 10^{-2a}	7.727
37	3.43×10^5	1.54×10^{-1a}	7.881
38	2.90×10^5	1.31×10^{-1a}	8.012
39	1.96 x 10 ⁵	8.84×10^{-2a}	8.100
39.33	1.69 x 10 ⁵	7.59 x 10 ⁻² a	8.125

Table A-7. Release rate for 3 H at 100°C

Accumulated days	³ H (dpm/day)	³ Η (μCi/day)	Accumulated ³ H (µCi)
46.33	1.66×10^4	7.49×10^{-3a}	8.178
53.33	1.93×10^4	8.70×10^{-3a}	8.239
60.33	2.72×10^4	1.23×10^{-2a}	8.325
67.33	3.09×10^4	1.39×10^{-2a}	8.422
78	3.56×10^4	1.61×10^{-2a}	8.534
		•	

^aValues used to calculate the average, $\overline{X} = 0.056 \pm 0.039$.

-32-	

Accumulated days	³ H (dpm/day)	³ Η (μCi/day)	Accumulated ³ H (µCi)
1	3.10×10^4	1.40×10^{-2}	0 01
2	5.85 x 10 ⁵	2.63×10^{-1}	0.28
3	4.51 x 10 ⁵	2.03×10^{-1}	0.48
- 4	9.25 x 10 ³	4.17×10^{-3}	0.48
5	5.89 x 10^5	2.65 x 10^{-1}	0.75
6	6.64 x 10 ⁵	2.99×10^{-1}	1.02
7	5.64 x 10^5	2.54×10^{-1}	1.32
8	4.10×10^5	1.85×10^{-1}	1.57
12	3.00 x 10 ⁵	1.35×10^{-1}	2.14
13	8.46 x 10 ⁵	3.81×10^{-1}	2.52
14	8.61 x 10^5	3.88×10^{-1}	2.90
15	7.38 x 10 ⁵	3.32×10^{-1}	3.32
15.33	5.66 x 10 ⁵	2.55×10^{-1}	3.32
22.33	2.18×10^6	9.83 x 10^{-1}	10.20
29.33	6.1×10^6	$2.75 \times 10^{\circ}$	29.17
36.33	4.18 x 10 ⁶	1.88 x 10 ⁰	42.36
43.35	1.86×10^{6}	8.36×10^{-1a}	48.22
50.33	1.36×10^{6}	6.15×10^{-la}	52.52
57.33	1.87×10^{6}	8.41 x 10^{-1a}	58.42
64.33	1.13×10^{6}	5.09 x 10 ^{-la}	61.97
71.33	8.0×10^6	$3.61 \times 10^{\circ}$	87.20
78.33	6.09 x 10^{5}	2.74×10^{-la}	89.11
85.33	4.18×10^{5}	1.88×10^{-1a}	90.44
92.33	2.85×10^5	1.29×10^{-1a}	91.34
99.33	8.20×10^4	3.69×10^{-2a}	91.60
106.33	4.73×10^{5}	2.73×10^{-1a}	93.09
118	1.24×10^5	5.59 x 10^{-2a}	93.48
-			

Table A-8. Release rate for 3 H at 150°C

^aValues used to calculate the average, $\overline{X} = 0.376 \pm 0.218$.

-32-

Accumulated days	³ H (dpm/day)	³ Η (µCi/day)	Accumulated 3H (µCi)
1	2.69×10^6	1.21	1.21
2	2.36×10^{6}	1.06	2.28
3	3.43×10^6	1.54	3.82
·7	2.11 x 10^6	0.96	7.62
8	3.67×10^6	1.66	9.28
9	3.90×10^6	1.76	11.04
10	3.06 x 10 ⁶	1.38	12.41
14	1.38×10^{6}	0.6	14.89
15	4.94 x 10 ⁶	2.22	17.11
16	4.35 x 10 ⁶	1.96	19.08
17	4.12×10^{6}	1.86	20.93
21	1.78 x 10 ⁶	0.80	24.14
22	4.81 x 10^{6}	2.17	26.3
23	4.30 x 10 ⁶	1.93	28.24
24	2.77×10^{6}	1.25	29.49
30.8	1.11 x -10 ⁶	0.503	33.04
54.8	3.38 x 105	0.15	36.70
58.8	1.04 x 10 ⁶	0.469 ^a	38.58
59.8	3.4 x 10 ⁶	1.53 ^a	40.12
60.8	3.56×10^6	1.6 ^a	41.72
78.8	3.23×10^6	1.45 ^a	67.90
85.8	7.41 x 10 ⁵	0.333 ^a	70.23
91.8	6.79 x 10 ⁵	0.306 ^a	72.07
98.8	8.86 x 10^5	0.399 ^a	74.86
105.8	8.23 x $10^{.5}$	0.37 ^a	77.46
112.8	1.18×10^{6}	0.53 ^a	81.18
120.8	1.99 x 10 ⁶	0.895	88.33
126.8	9.05 x 10 ⁶	4.07	112.79
127.8	2.53×10^{7}	11.4	124.21
128.8	2.67×10^{7}	16.5	140.77
129.8	3.09×10^{7}	13.9	154.72

Table A-9. Release rate for 3 H at 200°C

Accumulated days	³ H (dpm/day)	³ Η (μCi/day)	Accumulated ³ H (µCi)
136.8	2.51 x 10^6	1.13	162.64
143.8	1.56 x 10 ⁶	0.703	167.57
150.8	1.01×10^{6}	0.45	170.74
157.8	9.18 x 10 ⁵	0.413	173.64
164.8	1.00×10^{6}	0.452	176.80
171.8	1.13×10^{6}	0.531	180.53
177.8	1.51×10^{6}	0.681	184.62
185.8	1,74 x 10 ⁶	0.783	190.88
192.8	2.22×10^{6}	1.00	197.90
199.8	2.43×10^{6}	1.09	205.57
207	6.92×10^{6}	3.12	227.38
214	2.83×10^{6}	1.28	236.32
221	7.13 x 10^6	3.21	258.81
228	7.40×10^5	0.333	261.15
235	5.36 x 10^5	0.241	262.83
242	3.63×10^{6}	1.64	274.29
247	1.56×10^7	7.02	344.48
251	9.44 x 10 ⁶	4.25	361.49
255	1.43×10^{6}	0.644	368.57
266	1.85×10^{6}	0.833	369.40
273	1.55×10^{6}	0.699	370.01
280	1.66×10^{6}	0.748	370.758
287	1.16 x 10^{7}	5.22	407.329
294	1.01×10^{6}	0.455	410.514
301	1.75×10^7	7.90	465.801
308	6.69×10^{6}	3.02	486.916
315	1.63×10^{6}	0.732	492.043
322	8.54 x 10 ⁶	3.85	518.97
329	1.89×10^{6}	0.851	524.93
336	3.44 x 10 ⁶	1.55	535.77
343	1.7×10^{6}	0.767	541.14
350	2.27×10^{6}	1.02	548.29

Table A-9 (continued)

Accumulated days	³ H (dpm/day)	³ H (µCi/day)	Accumulated 3Η (μCi)
357	5.11×10^{6}	2.3	566.7
361	2.19×10^{6}	0.988	573.62
367	2.05×10^{6}	0.923	580.08
374	2.05×10^6	0.923	586.55
381	2.05 x 10 ⁶	0.923	593.01
388	2.05 x 10 ⁶	0.923	599.47
395	2.05 x 10 ⁶	0.923	605.94
402	2.05×10^{6}	0.923	612.40
409	2.05×10^{6}	0.923	618.87
417	1.79 x 10 ⁶	0.808	625.33
424	2.05 x 10 ⁶	0.923	631.79
430	2.39 x 10 ⁶	1.08	638.26
437	2.05×10^{6}	0,923	644.72
441	2.05×10^{6}	0.923	651.19
448	2.05×10^{6}	0.923	657.65
455	1.91 x 10 ⁶	0.859	663.66
462	1.01×10^{6}	0.457	666.86
469	6.17×10^5	0.278	668.81
476	7.25 x 10 ⁵	0.326	671.09
490	9.83×10^5	0.443	677.30
497	9.52 x 10 ⁵	0.429	680.30
504	1.19 x 10 ⁶	0.538	684.06
518	5.34 x 10^5	0.241	687.43
528	8.22×10^5	0.370	690.02
535	1.72×10^{6}	0.776	695.45
554	1.65×10^6	0,746	700.67

Table A-9 (continued)

^aValues used to determine average, $\overline{X} = 0.749 \pm 0.388$.

Accumulated days	³ H (dpm/day)	³ Η (μCi/day)	Accumulated ³ H (µCi)
1	9.81 x 10^7	44.2	44.17
2	2.38×10^7	10.7	54.89
3	1.5×10^7	67.5	61.64
4	1.6×10^7	73.1	68 . 95
5	2.5×10^{7}	11.3	80.26
6	2.87 % 10 ⁷	13.0	93.2L
7	2.94×10^{7}	13.2	106.46
· 8	2.27×10^{7}	10.2	116.68
9	2.56×10^7	11.5	128.22
10	2.15 x 10^7	9.66	1,37.88
11	3.5×10^7	15.8	153.65
12	2.53×10^{7}	11.4	165.04
13	2.19 x 10^{7}	9.88	174,92
14	1.37×10^{7}	6.17	181.09
15	1.96 x 10 ⁷	8.81	189.90
16	2.53×10^7	11.41 ^a	201.31
17	2.68×10^{7}	12.06 ^a	213.37
18	1.36×10^7	5.01 ^a	237.79
22	2.1 \times 10 ⁷	9.48 ^a	272.89
28	4.05×10^7	18.3 ^a	339.27
36	4.61×10^{7}	20.7 ^a	467.08
42	6.43×10^7	28.9 ^a	612.35
49	6.42×10^7	28.9 ^a	815.06
56	6.42×10^{7}	28.9 ^a	1017.79
63	6.42×10^{7}	28.9 ^a	1220.51
66	6.42×10^7	28.9 ^a	1307.39

Table A-10. Release rate for 3 H at 300°C

^aValues used to determine average, $\overline{X} = 19.3 \pm 6.7$.

ORNL/TM-6409 Dist. Category UC-77

INTERNAL DISTRIBUTION

1.	B. J. Baxter, GAC/ORNL	41-42.	K. J. Notz
2.	R. J. Beaver	43.	A. R. Olsen
3.	E. C. Beahm	44.	H. A. Parker
4.	R. A. Bradley	45.	W. H. Pechin
5.	A. J. Caputo	. 46.	D. P. Reid
6.	J. A. Carpenter, Jr.	47.	J. E. Rushton
7.	W. L. Carter	48.	T. F. Scanlan
8.	C. F. Coleman	49.	H. C. Savage
9.	J. L. Collins	50.	C. D. Scott
10.	W. P. Eatherly	51.	J. H. Shaffer
11.	D. E. Ferguson	52-56.	R. J. Shannon
12-15.	C. L. Fitzgerald	57.	D. P. Stinton
16.	F. E. Harrington	58.	T. N. Tiegs
17.	C. C. Haws	59.	D. B. Trauger
18.	R. M. Hill	60.	V. C. A. Vaughen
19.	F. J. Homan	61.	J. R. Weir
20.	J. D. Jenkins	62.	W. R. Williams
21.	D. R. Johnson	63-64.	R. G. Wymer
22-29.	P. R. Kasten	65-66.	Central Research Library
30.	D. J. Kington	67.	Laboratory Records
31.	W. L. Lackey	68.	Laboratory Records - RC
32.	C. E. Lamb	69.	ORNL Patent Section
33.	K. H. Lin	70.	G. R. Choppin (Consultant)
34.	T. B. Lindemer	, 71.	L. J. Colby (Consultant)
35.	E. L. Long	72.	E. L. Gaden (Consultant)
36.	R. A. Lorenz	73.	L. E. Swabb (Consultant)
37-38.	A. L. Lotts	74.	K. D. Timmerhaus (Consultant)
39.	J. E. Mack		
40.	A. P. Malinauskas		

EXTERNAL DISTRIBUTION

- 75. Research and Technical Support Division, DOE, ORO, P. O. Box E, Oak Ridge, TN 37830
- 76. Director, Reactor Division, DOE, ORO, P. O. Box E, Oak Ridge, TN 37830
- 77-78. Director, Division of Reactor Development and Demonstration, DOE, Washington, D. C. 20545
- 79-255. Given distribution as shown in TID-4500 under Gas-Cooled Reactor Technology category (25 copies - NTIS)