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WAVE HEATING MODELS FOR
ION-CYCLOTRON HEATING IN EBT-S

J. L. Sperling
JAYCOR, Del Mar, California 92014

ABSTRACT

Wave heating of ELMO BUMPY TORUS-SCALE (EBT-S) in the ion-cyclotron
range of.frequencies will be strongly influenced by the geometfy of the
plasma. In particular, the short finité length of the mirror sections means
that the electron bounce frequency is of comparable magnitude to the ion-
cyclotron frequency. Consequently, the bouncing motion of trapped particles
impacts the electron absorption of wave énergy. Furthermore, the varying
magnetic field strength along magnetic field lines influences the ion-
cyclotron absorption of waves because the ion-cyclotron resonance conditions:
are satisfied only at discrete points along the field lines. Expressions
are given for trapped and passing electron absorption as we11.as ion-cyclotron

absorption. A numerical example is also discussed.



&

I. INTRODUCTION

Waves with frequencies comparable to the ion-gyrofrequency may heat
either electrons or ions or both electrons-and ions. The precise magnitude
and spatial location of the heating generally depends on therplasma gedmetry
and parameters as well as wave propagation characteristics within the plasma.

In particular for E1m6 Bumpy Torus-Scale (EBT-S), a plasma confingQ
ment device which consists of a set of 24 toroidally 1inked magnetic mirrors,
stabilized by a hot electron annu]us,l'the bounce frequency of trapped elec-
trons is only slightly smaller than the ion-cyclotron frequency. Quantita-
tively, for a proton plasma with an electron temperatufe (Te) of 600 eV, a
mirror sector length (Ls) of .39 cm, and a magnetic field strength (BO) of

7 x 103 gauss, the ratio of the electron bounce to ion-cyclotron frequencies

is
W (v /L)
be e’ s
g ~—g—— ~0.39 (1)
i i :
where Wpas Ve and Qi are the electron bounce frequency, electron thermal

speed, and the ion-cyclotron frequency, reSpectivéiy. In addition, Lhe

electron collision frequency,z'

4

25.3 - 1.15 log(n) + 2.3 log (T_)
= ~ 1.0 x 10" Hz

v - e
e 3.5 x 10°

n
3/2

’ Te
(2)

is very much smaller than the electron bounce frequency for the assumed

density (n) of 3 x 10%2 cm-3.

It follows that the bounce motion of trapped
electrons in .a general sense shonld impact the absorption of waves in the

ion-cyclotron range of frequencies.
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The geometry of EBT-S also affects the ion-cyclotron absorption of \
waves. Specifically, the wave frequency is eqUa] to the fundamental or
harmonic of the ion-cyb]otron frequency only at discrete points along a
field line (see Figure 1). In addition, the ion-cyclotron frequency varies
along a t;pica1 jon's trajectory in real space while the ion bounce freduency
(for trapped {ons), wp;» and the jon transit frequency, w,,, are both much

-smaller than the ion-cyclotron frequency [i.e.,

(3)

By 2 Vil s W R /Ry << R
where Vs and RT are the ion thermal speed and the major radius of the torus
(150 cm), respectively]. It follows that the phase of the ion-cyc]otron
gyration is in general effectively,randomized_for successive jon pésses
through the resonance regions, and appropriate manipulations of the infinite
homogeneous expression for idn-cyc]otron absorption can be used to evaluate
the ion heating rate in EBT-S.3'?

The remainder of this report is divided into four sections. In the
second section, a model for the trapped electron absorption of waves is
developed. In the third sect{on, an analogous model for the absorpfion of
waves by passing electrons is developed. The fourth section is concerned

with the development of a model for ion absorption,while the last section

is a summary and discussien of the absorption models.



II. TRAPPED ELECTRON ABSORPTION

As the basis for a calculation of the trapped electron absorption

of waves, the following magnetic field model is assumed:
' 2,2
B(x,y,z) = B (x,y) (1 +2z7/L%) . (4)

where z is the coordinate along the field line, and the cooédinates, x and
y, are orthogonal to the field line. In the absence of waves the electron

motion along the field lines satisfies the equation

2

d z0 2
Mg 2 = -2 uBo(x,y) ZO/L (5)
t
where
b= m2/28 (x,y,2) (6)
U -L O ’y 9

© is the magnetic moment, assumed to remain constant. Also, t, My and v, are

the time, eleétron mass and the perpendicular velocity, respectively. The

general solution to Eq. (5) is

zo(t) = B sin (wbt +a) (7a)

dz,(t)/dt = B w, cos (u,t +a) N | (7b)
where

= (2B (xy)/mgL°] = (v /)y (8)



b
suppressed. The constants B and a are determined from the initial condition

In writing Eq. (8) the dependence of w, on the coordinates x and y has been

criteria

dz_(t)/dt

'—Z;(—t-y'—— = O.)b COt(O(.) N (ga)
t=0

% mvﬁ:Z=O +_pBo(x,y) = uBo(x,y) (1 + 82/L2) . - <9b)

In writing Eq. (9b) both the constancy of the magnetic moment and the par-
ticle energy in a static magnetic field have been invoked. It follows from

Eq. (9b) that
B = L(V"/V_L)Z=0 ' : ‘ (10)

. where v = dzo(t)/dt.

The interaction of trapped electrons with waves having frequencies
comparable to the ion-cyclotron frequency is dependent on the wave structure
parallel to the magnetic field. In general, the wave electric and magnetic
fieids [i.e., E(x,y,z,t) and E(x,y,z,t)] can be expanded in a Fourier series.

based on the length of a-field line, Lf,

o]

-> ' ) - -
E(x,y,z,t) = exp(-iwt) Er(x,y) exp(ikrz) (11a)
. Y‘:—OO
- o . -
B(x,y,z,t) = exp(~uot)r:§3° Bk(x,y) exp(lkkz)~ (11b)
where )
kr = 27rr/Lf (12)

n



With the assumed form for the wave fields, the rate at which trapped electrons .
absorb wave energy can be calculated using a perturbation technique. to solve
the equation of motionlpara11e1 to the}fie]d line to second order in the wave
amplitude. A similar technique was used to derive the expression for the
Landau damping absorption of wave energy for the physical situation when the
unperturbed motion is a straighf 1ine.8 For the wave fields given by Eq. (11)
‘the perturbation of the particle motion about the unperturbed particle tra-
jectory given by Eq. (7) satisfies the following equation to first order in

. the wave amplitude

a2, 1 & . |
2 twyzg = o z: Y, exp{1[kr20(t) - wt]} (13)
e r=-o ,
where
~ > . ~ -
Yp = 9g 2 » Exy) = duk z B (xy) (14)

"~ ~

and e and z are the electron charge and the unit vector in the z-direction,
Arespective]y. The subscript, 1, in Eq. (13) denotes a quantity to first
order in the wave amplitudes and the dependence of”yr on x and y has been
suppressed. Substitution of Eq. (7) into the right-hand side of Eq. (13)

and using the Bessel function identity,9

exp[ix sin(y)] = 53 Jp(x)’exp(ipy) (15)
. peme . |

permits Eq. (13) to be rewritten as



1 2 |
+w "z, = A ] : (16) -
dt2 b 71 1 o _
where
1 > 3 ; i |
Al ) m_e rg.:oo p;w T JP (kr‘B) exp[1(pwb-w)t *ipe] (17)

‘In Eqs. (15) and (17), Jp'iS»the-Bessel function of the first kind and

order p. For the initial conditions,

dt

t=0

0= s . (18)

21

t=0

Eq. (17) is readily evaluated using standard techniques for linear differ-

ential equations. The appropriate solutions are:

dz . > (<]
1
T - i 3 > Y, Jp(krs) exp(ipa)

zwbme r=-® p=-c

(pwb-w) exp[i(pwb-w)t] + o exp(-imbt)
(p-kl)wb—w

(pwb—m) exp[i(pwb-w)t] - @ exp(iwbt) (10)
i (- 1) o, - e
zy = 2m1'm IEEDIIES Ik 8) exp(ipa)
b'e r=-o p=- .
'exp[i(pmb-m)t] - exp(-iwbt)
exp[i(pw, ~w)t] - exp(in, t)
B (pb— 1) w, ~m : ) (19b)
0 7b .



The second order correction to the electron trajectory (subscript 2)

satisfies the following equation of motion

dzz2 5
' + w2, = A (21)
dtz b “2 2
where
A, = 1 Si v.. exp[ik 8 sin (o .t + a)] (ik z *) (22)
2 M W Yr PLIK, b r-l )

The rate at which a single electron absorbs wave energy, dW/dt,

is determined from the relation

m dz dz :
dW _ e 1 ,.* 0 .*
&7 (———-A + = AZ) + c.C. . , (23)

- . 8
With the assumption of random electron phase, o, at t = 0, Eq. (23) can be

averaged in the following way:

Q.'CL.
| =

2m -
: _ 1 dW

Using Eqs. (7), (17), (19) and (22) the result of the averaging process
N
(see Appendix A for details) is

<.

Q.
22

I'=_m

1 © ©0 [e] ) " *
> = 5 — 2. 2 Py FYay,)
Zm, rg;n r p=—co r'r r'tr

k8)  dlJ (k.8)]

sin[(pwb-w)t]- .[Jp(
k

r
3 wa‘w Y‘B d(kr-B)
J (k_.B) dJ(kg)
prr't “p'r
F KRB (k B) ] (2%



Noting that

sfn[(pwb-m)t]
P, -0

troo -

Tim = nd(pwb-w) = 7| L/p| 6(vl-Lw/p) (26)

permits Eq. (25) to be rewritten as

[oe]

ii ’ 2( * *
Py Y ¥ YY.-YY.)

= =00 p=—w

dw, _ w1
<G> T Zhn, 2

[oo]
e rs-o p!

J (k.g) d[Jd_(k_,B)]
|L/pl8 (v, ~La/p) [Pkrg dﬁr.g)

8)] |
) ] : o (en)

(kp.8) AL (K,
B AP

- d
+ p

It follows from Eqs. (26) and (27) that the absorption of wave energy in
the parallel electron motion is due to a resonance resulting from finite
perpendicular electron energy.

To determine the tota1 power absorbed by electrons per unit volume,
Pys Eq. (27) must be integrated over the electron velocity distribution
function. In particular, for the thermal distribut}on,function (i.e.,

-3/2

fe(v) = n(2w vi) exp[—(vi + vﬁ)/Zvi] s (28)

’ v, §
|Lp|6(yL-Lm/p) exp (-Yf/Zvi) :£ ; dv”exp(-vﬁ/2vi)
|
(kp8) dla (k8]
B :

(k8) dL9,(k,B)] 3y (
kg Td(k.B) " TKR.B A
9




In writing Eq. (29) the parameter, §, denotes that only particles sétisfying

Iv”| <v,8 : : (30)

are trapped. The parameter, §, is related to the fraction of electrons

which are trapped, f, through the ekpression:

oo ) .
o Y| 27 2y,,.2
f —-———5—575-_£ leVL _[ s dv" exp[a(v" + VL)/ZVe]
(2mv7) -Vi :
e
_ §
= > 172 (31a)
(1 +67)

or

(o]
n

< f22> . : . (31b)
1-f |

Because of the.delta—function, the perpendicular velocity integration
in Eq. (29) is readily evaluated. Assuming that the parameters, L and @,

are positive, the result is:

1/2 oo o [e) * *
Po=(Z) 5 X 2 X L2y Yo + YY)
mv r=-o r'=-ow p:]_
ee
‘ Lws/p
22,,2 2 2 2
exp(-L 0" /2p ve) X '[O dv" exp(-v"/2ve)
' : 1 . 1 k
qugf?), d[qp(kr B)] . Jp(kr B) d[Jp( rB)]. (32)
krB d(kr-B) kr.B d(krB)
where
B =pv /o ) - - (33a)

10



~ > m L(,UZ’\ ->

- . - 1 e —_ . ’ -
Y = 952 Er(X,Y) i gg;r;:yy <p > z Br(x,y) . (33P)

If only one term in the fourier series, r‘éro; contributed to the

heating of trapped paftic]es, Eq. (32) would be:

L o

l. . 2"
Po= () —5 X wl® |y, |2 exp(-L%?/2p% )
meVe p=1 o .
2
LwS /p 2 o1 dla (k8]
: pr .
j; dv, exp(-v, /2v, ) oy d(krﬁf . (34)

0

Although a numerical evaluation of Eq. .(32) is required to determine

a quantitative estimate of the total trapped electron ébsorption of wave
energy, several qualitative comments can'be made concerning the equation.
First, if more than one term in the summation over, r, contributes to the
description of the wave amplitude, cross terms in Eq. (32) (i.e., r #r")
contribute to the wave absorption by trapped electrons. Second, the quan-
tity P, is not obviously positive definite since the Bessel functions and

the amplitude factors with r # r' may be negative. Hence, trapped electrons
may give energy to waves rather than absorb it. However, as shown in Appen-

dix B, those contributions to P_ with r # r' are positive definite. Hence,

t
the expression in Eq. (34) fs positive definite. Third, as the harmonic
number, p, increases a greater number of electroné are in resonance with the
wave [i.e., exp(-Lsz/szvi) approaches ong]. However, the summation over
the harmonic number, p, does converge (see Appendix C). Fourth, Landau,
transit time and cross Landau-transit time damping terms [proportiona] to
ErE:" BrB:' and ErB:' (or E:Br.), reépeetive1y] contribute to electron

-

absorption of wave energy.

11



IIT. .PASSING ELECTRON ABSORPTION

The plasma model and calculative technique used to derive the
expression for. passing electron absorption of wave energy is analogous
to that used in‘the previous section Witﬁ the exception that the z-directed -
magnetic fie]d'is assumed to be of constant strength Bo. In the absence of

wave fields. the trajectory of the electrons along the magnetic field is:

z)(t) = v t + z, (35a) -
dza(t) » '
It = V. (35b)

where Ve and z. are constants such that'the initial particle positibn and
velocity at t = 0 are z, and vc,lrespective1y.
In the presence of the wave fields of the form specified by Egs.

(11a) and (11b) the perturbed particle trajectories zi(t) and zé(t) satisfy

dzzi )
M, . = E:. Y, expli(k zs - wt)] | (36a)
t y=ac ‘
dzzé 0
= 7 L : t %
M dt2 rg;” Yy exp[](krzo wt)](1kr21_) . (36b)

As in the previous section the subscripts, "1" and "2," denoté quantities
which are first and second order in wave amplitudes, respectively. Also,
for the sake of brevity, the Hependente of zé(t), zi(t)_and zé(t) on time
has been suppressed in writing Egs. (36a) and (36b). With the initial

conditions,

12



dz

1
0 = — = 7! _
AT 1|t-o
the solution to Eq. (36a) is:
dz,. o Y
1 r .
- =i ) = exp[i(k v, - w)t] - 1}
t e Mo Ko - w { ‘ rec
exp(1krzc) (38a)
oy expli(k v - w)t] - 1
Zi =1 E: ﬁﬁ k v1 - w 6 k vr S ® tt
r=-© e 'r¢ rc
exp(ikrzc) R ‘ (38b)
dzzf ® o exp[i(k'v - w)t]
=.:.]—‘- z Z AY oYX P r
qt? mg N Y e S A KVe- @

-t exp[i(kr.-kr)zc] . (38c)

The rate at which a single electron absorbs energy from the wave is

given by the expression:

] 2 % *
m dz1 d zq dz0 d 5

d’ + + c.c. (39)

————:—e
t 2

dt dt2 dt

Upon averaging over the initial electron position and substituting Eqs. (38a),
(38b) and (38c) into Eq. (39), there results the following expression for the
average rate at which wave energy is absorbed per unit volume by electrons of
speed V'

13



q [V sin[(k v_ - w0)t]
) 2: - dv ( - k vr S w ’ (40)
c rc

'y —r 4 '
<G> = T mo v [ves(k.ve

DM BEENCIOR
Note that unlike the case of trapped electrons cross-terms (i.e., yry;.
with r # r') do not contribute to the wave absorption By passing electrons.
However, as in the calculation of trapped electrons Landau, fransit'time
and cross Landau-transit time damping contr;bUte to electron aésorption of
wave energy.

To calculate the total rate at which wave energy is absorbed by
passing electrons, Eq. (41) must be integrated over the ve]bcity distribution

function for passing electrons. Assuming the thermal distribution function

given by Eq. (28), the following expression for the absorption rate results:

w Ayl
! ' N :
PP = 2ﬂﬁ[m dwljg dvlvl <dW'/dtD> fe(v{ \
W 2 R
' 1 e 3 2 2 -2
= B 2 Ix T exp(ox) {IELT 11 (1467 )exp(-b,)]
2(m) y=- A
2 2
mv B k
eerr 2 -2
+ —'a'e—B;—— [2-(br(1+(3 )+2br+2)exp(-br)]
2 .
k vim . :
. Y‘ e e * - * - -2 -
+ i —a;§;~ (BfET BrEr) [1 (br(1+-6 )+ 1) exp( brﬂ

(42)
14



In Eq. (42),

o/1(2)% k v,]

2,.2
X /8 s

4y n qg/m e-

b

'(43>‘

In general, P»P may be positive, negative or zero dépend'ing on wave and plasma

parameters.

15



IV. TION ABSORPTION

Because of the strong variation of magnetic field strength in EBT-S
(i.e., magnetic field strength of 0.7 tesla on axis at the midplane and a
mirror ratio of two), ions are heated in a thin layer at surfaces of constant __
magnetic field strength (see Figure 1) where the wave frequency is equal to

the fundamental or harmonic of the ion gyrofrequency, i.e.,

w = p.R. : (44a)

1]
—
-
NN
-

p; = 1.2, ..., ) ‘ (44b)

"The formalism which will be.used to'derive the ion heating rate assumes that
within the thin layer the infinite and homogeneous expression for cyclotron
absorption is vaiid and that to Towest order wave absorptfon does not alter
‘the wave structure within the absorption 1éyer.3'7 Hence, the expressions

. derived for ion absorption are generally expected to be most generally appli-
cable for the harmonic cyclotron damping processes, but.may also be valid fdk
fundamental heating by fast waves in a dense single ion species plasma.”’

The assumption of cyclotron heating within a thin layer is reasonable in EBT-S
since the gyrofrequency varies along the ijon trajectéry while the ion bounce

frequency is very much smaller than the gyrofrequency (i.e., v1./LS < Q.) and

i
so the phase of the ion gyration can in general be expected to -be uncorrelated’
during successive passes through the resonance layers.

Now in an infinite and homogeneous plasma the rate at which wave

energy is absorbed per unit volume by ions with a thermal velocity distribu-

tion function,

-3/2

fi(v) - n(2wv§) exp(-v2/2v§) , (45)

16 -



is

1 P
_1lmE 2 Pi 1y
& Py =7y (2> ;m [Exrt 1yl 12 (p;- 1)1 <2)
2 2
(k‘ / )2p1-—2 P; (w-ps02;) (46)
V. /0. X T-—1~—— expf- ———5—5—
troasa kr vi 2k$v§

where klr is the perpendicular wavenumber associated with the Fourier com-

ponent of the wave amp]itudé with parallel wavenumber kr’ The quantity,

®

|E, + iE

r yrl’ is the magnitude of the left-hand component of the wave

amplitude associated with parallel wavenumber kr. The-summation over, i,

indicates ion species satisfying the gyroresonance conditfon Eq. (44a).

Also klrvi/gi has been assumed to be much smaller than one and the quantity,

mpi’ is the ion plasma frequenéy for species 1.

- The assumption that ion heating is taking place within a very thin
® layer along a fie]d line is valid in the Tlimit of krv]./Qi going to zero.
- For an asymptotically thin resonance layer, the magnetic field strength

can be assumed to be'linearly expandable (except for the intersection of
® the Tayer with the plane defining the fattest cross section of a mirror

section (see Figure 1) along a field line about the point where the wave

frequency satisfies the resonance criterion, Eq. (43a), i.e.,

Ve

(47a)

’

Qi(z) Qio(l + z/Ll)

‘ ' : = . .
PC Pifsy - (47b)
Substitution of Eqs. (46a) and (46b) into Eq. (45) and assuming that the
® only strong variation of the resulting expression is in the exponent, there
results the following ave}age expression for the ion heatiny rate per unit
volume along a field line per mirror section (i.e., two resonance regions):

17



o]

.2
<P'i>1 = f; L dz wi |
2
L. © 2 “p. Py
o1 . i _(0.5)
B 2Lf Fg;; ]Exr * 1Eyrl 2; Qio (pi - 1)!
2p.-2 :
(k vi/Q: ) (48)
rVifio ) :

Another informative calculation is to consider the case where the
resonance region intersects the plane which defines the fattest cross section
of a mirror section (see Fig. 1). For this case the magnetic field strength

along the central field line can be taken to have the form,

a,(2) = 0;0(1 + 2215 (49a)

~

0= p . o | (49b)

Following the procedure used to derive Eq. (48), the average expression for
the ion heating rate per unit volume along a field line per mirror section

is:

! |
P>, = f;' z; dz wi
25 ;
0.22 — E . +iE
| Lf pm o Xxr yr
2
w_ . /Q. p X 9
p:' 10 i 4 p;=2
x 2 —— ROl (py) (K, Vi/) (50)
i (kvg/m, )2 P |

18



Several features of Eqs. (48) and (50) are hote@orthy. First, the
jon heating rate expressions, particularly Eq. (48), are very similar in form
‘to those previbus]y defived for the cyclotron damping process within a thin
1ayer.3'7 However, unlike the earlier work the contribution to the heating
rates of each fourier amplitude has been taken into account. Secbnd, Eq.
(48) is independent of the parallel wavenumber, kr’ while Eq. (50) i§ inversely
‘&ependent on the square root of kr' Hence, 16n heating at the center of a
mirror section is enhanced by long paraliel wavelengths. Third, for funda-
mental ion heating (i.e., p; = 1) both Egqs. (48) and (50) are independent of
the perpendicular wavenumber. Eq. (48) is‘a1so independent of temperature
while Eq. (50) is inversely proportional to the square root of temperature.
It follows that for the heating model Eq. (50) ion heating efficiency is
enhanced by low ion temperatures. = Fourth, .the average ion heating rate is
increased if the geometry factor, Ll/Lonr Lé/Lf, is maximized. Consequently,
resonance regions located near the center of a mirror section are likely to
result. in increased ion heating efficiency. These resonance regions are also
beneficial from the standpoint of ion heating sincé they have the largest

surface area of any constant magnetic field strength surfaces in EBT.

19



E. SUMMARY AND DISCUSSION

As a quantitative example the electron and ion heating expressions
were evaluated with the following parameters appropriate to an EBT-S hydrogen
plasma being heated at the first harmonic of the ion-cyclotron frequency:

12 -3

B = 0.7 testa, n = 3 x.10 .cm -, Te = 600 eV, Ti = 500 eV, L

o = 942.5 cm,

f
L=Ly =1L, = 39.3cm, p=2, 0 = ZQi, and k; = 0.3 cm—l. 0n1y one term in
the summation over Fourier amplitudes, r = ro; was retained in Egs. (42),'
(48) and (50); These equations, along with Eq. (34) for trapped electrons,
were the ones solved for the electron and ion heating rates. Wave amplitudes,
IE . El = [E + iEyI = 1 statvolt/cm and i; . EI = 1 gauss, were assumed.
Extrapolation of the heating rates to other values of the wave amplitudes
is stréightforward since the heating rate expkessions are proportional to
the square of the wave amplitudes. (It'shou1d also be pointed out that in
actual experiments the parallel wave e1ectrié field will probably be much
smaller than the perpendicular component.) To assess the relative importance
of trapped electrons on the total electron dissipation of the wave, two values
for the trapped electron fraction {i.e., 0.8 and 0.0) were assumed. Also, the
expressions were calculated for different values of the parallel wavenumber. |
The results of the calculations are summarized in Table I.

The entries in Table I corresponding to Egs. (34) and (42) indicate
that with the assumption of eighty percent trapped electrons the contributions
of trapped electrons to total wave dissipatioh is positive while that of

passing electrons may be positive or negative. Hence, total wave dissipation,

Pe= P +Pp (51)

.20



can be positive or negative. The physical significance of negétive'dissipa-
tion is that electron thermal energy is being transformed into wave energy.

Furthermore, as long as the ion wave absorption rate is of larger magnitude

than electron deabsorption, the wave is stable and ions are being heated at

the expense of wave and e1ectronvenergy.

Table I demonstrates that the contribption of trapped electrons to
"total electron dissipation can be comparable to or .greater than the contri-
bution from passing particles. The significance of trapped electron absorp-
tion relative to passing electron absorption (or deabsofption) is most
apparent for parallel phase velocities much greater than (i.e., with kr,0 =
0.00667 cm'l) the electron thermal speed. In addition, a comparison of the
passing electron absorption rates for 0.8 and 0.0 trapped electron fractions
indicates that the number of passing particles has an‘important‘effect on
the passing electron absorption rate as. long as the para&]e] phase velocity
is comparable to or smaller than the electron thermal speed.

The calculated values for the two ion heating expressions are noted
in Table I. The average ion absorption rate for resonance locations lying
away from the midplane of a mirror section (<P1>1) is given explicitly in
Eq. (48} while for resonance locations lying on the midplane of a mirror
the average ion absorption rate (<Pi>2) is given explicitly by Eq. (50).
There is no parametric dependence of the ion heating expressions on trapped
electron fraction. Furthermore, the expression for <P.>; does not depend
on the paraliel wavenumber. The values for <Pi>, in Table I'ref1ect the
inverse square root dependence on the parallel wavenumber. A significaﬁf
result is that forvcomparable:p1ésma and wave parameters ion heating is

stronger at the midplane than away from the midplane particularly for waves

with parallel wavenumber going to zero.
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Ion heating in EBT-S will probably benefit from a choice of wave
frequencies ;uch that the surfaces of constant hagnetic fié]d strength,
which satisfy the ion-cyclotron resonance criterion, 1ie close to the |
center of é mirror section. The basis for thfs assertion is that such
surfaces have larger area and magnetic ffe]d strength gradient scale
lengths than other constant magnetic field surfaces in EBT. Also, the

-felative magnitude of direct -ion heating relative to direct electron

heating will tend to be increased for long parallel wavelength modes.

ACKNOWLEDGEMENTS

The author wishes to thank Drs. S. Hamasaki, H. Klein and N. Krall
for useful discussions.

This work was supported under subcontract. to McDonnell Douglas:

Astronautics Company.

22



_APPENDIX A -

In this appendix the details in the derivation of Eq. (25) are
given. Using Eqs. (17) and (19a) permits the first term on the right-hand

side of Eq. (23) to be written in the following way:

b'e r=-0 p'=- '

.me dzl . ; [+ 15 oo o
TlE M) g XX PIRNPY

Y Yt 3p(k8) i (K 18) exp[-i(p'wy-w)t+ i(p-p')a]

(pwb-m)exp[i(pwb-w)t],+ wbexp(—iwbt)
(p-+1)wb-w

(pwb_m)exp[i(péb-m)t] - ;bexp(i@bt) > ‘e (1)

h (p-l)wb¥w

With the averaging specified in Eq. (24) only terms with p = p' are retained

in Eq. (Al) and

m dz : ® © .
1
7 ‘<“a?1 Ay + °-°->>=_zm X X o

. sin [(p+1)wbt-wt]
Jp(kr‘B) Jp(kr'B) [ (p+l)mb-cu

sin [{p- 1)wbt—wt]
(p- 1)cub-<u ]

1 [*5) : © o . .
i R IR [Jp_l(krs) 3,k )

sin [(pwb-w)t]
P, -




Noting that

With the averaging specified in Eq. (24), Eq.

using Egs. (7b), (19b) and (22) in the following way

Me dZo * i R
- \g A2 T C.C A=?mb8 cos(mbt+oa) > >,

-, . | '
KoY ,.21 Jp(krB) exp[1(pwb-w)t + ipal

cos(8) Z Jp(z) exp(ipo)

= 2 (p/2) 3,(2) exp(ipe)
p=-c -

permits Eq. (A3) to be rewritten as

Yerpe P (K 8) 35i(kB) expli(puy-w)t

exp[-i(p'wb—m)t] - exp(iwbt)

+ i(p-pa] < (p™+ Dup-w

exp[-1i (p'mb-m)t] - exp(-imbt)

N = (pl"]-)(l)b'(l) > +‘C.'C.
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(A5) becomes

The second term on the right-hand side of Eq. (23) can be written explicitly

(A3)

(A4) -



sin[(pwbew)t]
Po, - @

If Eqs. (A2) and (A6) are combined, then

TZISEE D DD VD DRV

sin{(pwb—m)t]
pwy - @

Eq. (25) follows from the Bessel function identities

—
N

~—
]

(p/Z)Jp(Z) + d[Jp(Z)]/dz

(z) = (p/z)d_(z) - d[Jp(z)]/dz‘

p+l p

and the symmetry of the Bessel functions in r and r'.
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APPENDIX B

To prove that the contributions to P, for r = r' are positive

t
definite it suffices to show that the integral in Eq. (32) is positive

definite. Now for r = r' the integral can be written as:

; 2
b . d[J"(av, )]
2,,.2y 1 I
I = ./ dv, exp(av“/Zve) Py d%av 7 . (B1)
0 I AR )
where N
a = pk /v | ‘ - (B2a)
b= LaS/p . ~ (B2b)
Integrating by parts permits Eq. (Bl) to be rewritten as
Lol 2 () exp(eiZr2vd) v L fbd
== o av,) exp -v"/ Ve A vi
av, v"—b a 0
11 2, 2\ .2 | |
<;§-+;?-> exp(—wl/2ve>dp(av”) (B3)
I e .

which is positive definite.

26



APPENDIX C

The proof that the summation over the harmonic number, p, converges
in Eq. (32) is most eaéi]y shown using the ratio test. For values of the

harmonic number, p, approaching infinity

(2) + L2212 | B (5

(z72)P1

and the integral in Eq. .(32) becomes

[lsre (k 8/2)° (k. ,8/2)P""
0 dv, p! (p-1)!

—t
11}
~Nf

p: (p-1).

X Ko+ K.\ /kk ,1%62\P
- 4 w r r rr - ‘ . (C3)
P (p)? \ ety o

Using Eq. (C3) it is clear that

(k .8/2)P (krB/Z)p'll | ’

I JI. — 0 | (c4)
+1 :
PP e , .

and so the series in Eq. (32) must converge.
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Table I. Calculated Qa]ues for Py, Pps Pos <P.>; and <P.>, for -
various values of kroand for f = 0.8 and 0.0. Al
dimensioned quantities are in cgs units.
0.00667 0.04 0.08 0.12 0.16 0.20
0.8 0.0 0.8 0.0 | 0.8 0.0 ~| 0.8 0.0 0.8 0.0 0.8 0.0
1.2x10%% 0.0 [s.ox0!l| 0.0 |2.8x10%2| 0.0 | 4.1x10%2| 0.0 3.8x10%% 0.0 | 3.3x10'2| 0.0
3.5x107%7]3,5x10787|1.1x10%2 [1.2x10%2| 2. 1x10%2 |8. 1x1012 |-6.1x101 ! {5. 1x1012| -8. 2x10% | 2. 8x1012| -6. 2x101 L |1 6x1012
1.2x101013.5x107%7 1. 7x10%2 1. 2x10%2] 4. 9x10%2 [8. 1x1012 | 3.5x1012 5. 1x10%2| 3.0x10%%|2.7x10%2] 2.7x10%2]1.6x10%2
3.9x10° 3.9x10%" 3, 9x10° 3.9x10° - 3.9x10° 3.9x108
5.2x107 2.1x107 i.5x107 1.2x107 1.1x107 " 9. 4510°




Figure 1. Figure illustrates general .geometry of field lines (solid),
surfaces of constant magnetic field strength (----), and the
plane defining the fattest cross section of a mirror section

(— - —) in EBT.



MIDPLANE






