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Abstract 

The rate of reconnection of magnetic lines at an 
X-point, also growth of a "tearing" configuration 
have always been related to the presence of 
resistivity or other dissipative mechanisms. 
These phenomena, exhibiting nonconservation of 
magnetic line topology, are shown to occur in an 
ideal, nondissipative fluid, thereby violating 
beliefs, theorems, and calculations of over a 
century (including the mathematically equivalent 
questions involving vortex lines in an ideal 
fluid). 
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I. INTRODUCTION 

There are two distinct ideal models which we consider 
in describing magnetic line reconnection or tearing. Type 
one, the more important one practically, contains singular 
surfaces (usually a separatrix) across which the fluid state 
is connected by jump conditions (analogous to discontinuities 
at shock surfaces connected by the Hugoniot conditions, or 
the more appropriate though less familiar analogy of a 
throttling process across a porous plug). Type two is a 
strict solution of some form of the ideal equations of motion 
which exhibits mass and flux flow across a separatrix. Type 
one (previously described, both general theory and numerical 

2 . examples ) contradicts results of the kind which relate the 
rate of line breaking or the tearing growth rate to the 
magnitude of the plasma resistivity, but it does not contra
dict the basic theoretical concept since (as in a shock) 
there may be dissipation hidden in the discontinuity layer. 
The significance of an example of type one is that it reverses 
cause and effect; instead of the resistivity producing a 
certain rate of flow across a separatrix, the rate of flow is 
determined by external, global boundary conditions and other 
constraints, and the resistivity and thickness of the layer 
adjust to produce the required reconnection rate. 

Type two examples, given in this paper, are at present 
more limited; but they have the additional interest of directly 
violating one of the oldest principles of fluid dynamics and 
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magnetofluid dynamics. How could such a situation arise? 
The answer is very common: theorems which apply to physical 
situations are ordinarily proved under restrictive conditions 
which are almost inevitably ignored when the result is quoted; 
[for example, the thermodynamic model of two boxes connected 
with a capillary gives rise to the statement that "the entropy 
of the universe is increasing"]. Although our explicit 
counterexamples speak for themselves, we shall give a sequence 
of outlined proofs of the invariance of magnetic lines under 
more and more general conditions to demonstrate the origin 
of the limit beyond which the result is no longer valid; we 
shall also give more general counterexamples which, though 
plausible, are not yet mathematically proved. 

In a theory of adiabatic processes in ideal MHD , it is 
natural to include flux conservation as a constraint since 
this is a property of the equations of motion. In a complex 
topology (Fig. 1), the flux inside each region must be 
preserved (in particular, no new islands can appear). This 
constraint in a complex topology is found to lead to the 
unacceptable conclusion that the external parameters (such as 
current in a coil, position of a wall, etc.) cannot be varied 
at will. This defect was overcome by introducing the (type 
one) concept of a generalized adiabatic process in which 
the total flux (sum of three regions in Fig. 1) is conserved 
rather than each flux individually. The original justification 
provided was that, upon varying an external parameter, large 
current concentrations would appear near the separatrix, 
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violating the nondissipative assumption locally. As in the 
theory of shock waves, jump conditions can be specified, 
allowing one to formulate and solve an inherently dissipative 
problem without overt reference to the magnitude or even 
presence of dissipation, no less its mechanism (resistivity, 
viscosity, etc.). This generalized adiabatic concept was 

2 
used successfully to construct simulation codes (including 
adiabatic creation, growth, and shrinking of islands), and 

3 was further confirmed by later resistive transport codes 
which were sufficiently efficient and accurate to be run with 
small resistivity, confirming the localized current layer 
(Fig. 2), and confirming that the rate of island growth 
(line breaking) in this problem is nonzero in the limit of 
small resistivity. 

From the beginning, there was one puzzling feature of 
the generalized adiabatic jump conditions as compared to the 
Hugoniot conditions in a shock. The purpose of the relaxation 
of strict adiabatic constraints was to take into account hidden 
dissipation; but there is a large class of problems in which 
there is no net entropy increase, even with mixing of plasma 
and magnetic flux from two regions into one (e.g. tearing), 
or splitting of one region into two (e.g. Doublet). This 
conceptual difficulty is resolved in the present paper by an 
example (type two) of a strict solution of the (linearized) 
equations of motion of ideal MHD allowing mass and magnetic 
flux transfer across a separatrix without intervention of 
jump conditions. In other words, in at least some cases, the 
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generalized adiabatic solutions appear to be conventional 
solutions of the ideal equations of motion (in addition, as 
supported by numerical evidence, they are a valid nonuniform 
limit of resistive solutions). 

The crucial point which allows transfer of plasma and 
flux across a separatrix is that the plasma have an adiabatic 
type singularity near the separatrix. Such a flow is not 
possible with a conventional separatrix equilibrium. One of 
the crucial features of the adiabatic formulation of plasma 
equlibrium problems is that instead of giving a pressure 
profile, p(^)/ one specifies an adiabatic profile, u(^), where 

p = n(,j,) [,(,• (V)]Y (1) 

[V(if>) is the plasma volume within a surface ^ = const., ty (V) 
is the inverse function]. In a "standard" equilibrium (with 

2 
smooth current profile) where ^ ^ r near a hyperbolic critical 
point and V\p ^ r, the volume between a flux surface and the 
separatrix behaves like V ^ ^ log if> which gives the adiabatically 
unacceptable conclusion that if/' (V) = 0 (p=0) at the separatrix. 
In an adiabatically processed equilibrium, the flux contours 
will shift sufficiently to make V ^ ij; and if/* (V) nonzero. 
This requires \p ̂  rm, 1 < m < 2, near the X-point, which, in 
turn, requires a weak current singularity near the separatrix. 
Without referring to adiabatic "processing" one can see that 
a standard separatrix, defined by finite pressure p and dp/d^ 
is incompatible with an adiabatic separatrix where y and dy/dijj 
are finite. 
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A standard X-point does, not allow- transfer of plasma or 
flux; an adiabatic X-point does. This paper would be 
logically complete if we merely displayed, the- ideal flow 
pattern across such an adiabatic type separatrix.; but to be 
psychologically satisfying, we should also show that this 
X-point behavior is not ad hoc but arises from a self-consistent, 
successful, and experimentally confirmed adiabatic theory 
(and we will indicate how it.might also arise, nonadiabatically, 
in a nonlinear, nonsteady flow). 
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II. CONSERVATION OF FLUX 

The classical equation describing conservation of flux is 

3B 
g|-+ curl (Bxu) = 0 , div B = 0 (2) 

which, for an open surface, S, moving with velocity u, implies 

B'dS = 0 (3) d_ 
dt 

S(t) 
Breaking field lines in a vacuum (where (2) is not normally 

considered to hold) is trivial. For example, consider the 
field between two parallel perfectly conducting plates 
through which a perfectly conducting (field excluding) object 
moves (Fig. 3). The complementary example, a perfectly 
conducting fluid between two plates through which a nonconducting 
object moves (also Fig. 3) is a little more subtle; but some 
thought shows that the magnetic line mapping from one plate to 

the other is altered by motion of the object. Proofs that 
4 (2) does imply conservation of flux go back to Helmholtz and 

5 Kelvin (in the vortex formulation); more recent, magnetically 
oriented discussions are in Refs. 6 and 7. 

The concept of conservation of flux and of field line 
topology is inherently dependent on the possibility of 
unambiguously labeling a moving magnetic line (a possibility 
which is almost imbedded in the language used to talk about 
magnetic fields). To exhibit the full generality of these 
concepts, independent of whether the equations of motion are 
dissipative or ideal, macroscopic or microscopic, fluid 
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dynamic or magnetic, we consider solenoidal fields B(x) 
which are subject only to div B = 0. As a first example 
take the simple tubular domain, Fig. 4. We are given a 
smooth field B with the property that through each interior 
point of the tube there is a unique magnetic line which 
intersects each end surface of the tube (B - 0 on S , 

n o B < 0 on S,, B > 0 on S-). n i n I 
It is an easy matter to introduce coordinates (a,6) on 

p S such that da dB = B dS. Extending a and $ along each 
line as a constant, defines a(x), 6(x) such that 

B«Va = .0 , B-VB = .0 (4) 

also 

B = Vet x VB (5) 

and for any surface element, 

B'dS = dadB (6) 

First of all, a and B are coordinates (4); second they are 
flux coordinates (6). The coordinates (ct,B) are not unique; 
any other pair satisfying (5) [which implies (4) and (6)], 
a' = a'(a,B) , B1 = B'(a,B), has Jacobian one, 
3(a',B')/3(a,B) = 1. 

Next consider a one-parameter smooth family of incom
pressible vector fields B(x,t) (t need not be related to time). 
Suppose for each t one chooses a(x) and B(x) satisfying (5) 
such that a(x,t), B(x,t) are smooth in t. Introducing the 
two vector fields E and u, 
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E = as 
?t Va - |« VB (7) 

u = 
B 

we verify that 

Va VB - VB Va f3B 
3t Va -

3a 
3t VB (8) 

E + u x B = 0 (9) 

— + curl E = 0 (10) 

!!■ + curl (Bxu) = 0 (11) 

| £ + u . V a = 0 , f l + u . V e = 0 (12) 

There seems to be a large amount of physics hidden in 
the variation of an arbitrary incompressible field (which is 

7 
not even necessarily a magnetic field)! The "Maxwell" 
equation (10) simply states that E is a vector potential of 
the rate of change of B; if the full system of equations 
contains Maxwell's equations, E differs from the electric 
field by a gradient. The magnetic field line velocity, u, 
carries a and B; we define a(x,t) = const., B(x,t) = const. 
to be a specific line. Since a and B are highly nonunique, 
u is also nonunique. If there are fluid equations in the full 
system (i.e. in addition to div B = 0), the fluid velocity 
will, in general, bear no relation to u in (8) which carries 
the field lines unless "Ohm's law" (9) governs the true 
velocity and electric field. 
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Since (a,B) for a given B are not unique, a and B can 
depend on t even if B does not. The flow, u, follows the 
arbitrary labels (a,B) which are assigned to the lines (this 
is a classical interchange). 

The theorem just demonstrated [viz. that in a topologically 
simple, moving, incompressible field one can find flux coordi
nates (a,B) carried with a velocity u which satisfies (11)] 
has the following converse: given two vector fields, u and B, 
which satisfy (11) (and div B = 0), then one can find 

7 coordinates (a,B) which satisfy (5) and (12). 
Next we take as our domain the inside of a torus and 

assume that a smooth vector field B is given with the property 
that a cross cut S can be found such that through each interior. 
point there is a unique field line' which when extended in 
either direction intersects the cut (Fig. 5). This reduces 
the problem to the simple domain, Fig. 4, on identifying S.. and 
S~ as the two side of S. There remains the question of the 
continuation of a and B across the cut. This is not a serious 
matter since we are used to multivalued potentials. The 
properties of field lines when extended indefinitely in a 
torus are usually examined in terms of iterations of the 
mapping, a' = a'(a,B)/ B' = B'(a,B) across the cut. Fig. 5. 
However, in a general time varying field (satisfying div B = 0 
only), the mapping, a' = a' (a,3,t), B' = .B'(a,B/t) will also 
be time dependent. This is a very unsatisfactory means of 
assigning a name to a line. We define that a magnetic line 
coordinate system is established when the mapping is independent 
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of time. Introducing the velocity field u via (8) in the cut 
domain, we see that u' = u is necessary and sufficient for 
the (a,B) map to be time-independent (this could be taken as 
an independent definition that field lines are not being 
reconnected). It is also easily shown that, if u is contin
uous across the cut, then an initially closed magnetic line 
will remain so; a closed magnetic surface will persist; an 
ergodic line will persist; the rotation number of a magnetic 
line on a surface will be invariant in time. 

It is not clear whether there are physical examples of 
a nonsingle-valued velocity u across the cut. If u is a 
physical velocity [more precisely, if the perpendicular 
component of the physical velocity satisfies (11)], then it 
is usually continuous. Across a shock, where the physical 
velocity u is discontinuous, the (a,B) mapping can be shown 
to be time-independent since flux conservation is one of the 
shock jump conditions; (note that the shock requires a 
generalization of the present formulation to allow discontin
uous B) . 

Up to now we have taken smooth fields B with no sudden 
shifts in direction or singularities (except for the aside 
concerning shocks).* To continue, consider a two dimensional 
field. It can be represented in terms of a single flux 
function, 

* There has been found an exact solution with intersecting 
shocks (type one) which reconnects lines; E. Hameiri, 
private communication. 
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B = n x Vip (13) 

w h e r e 

| i + u'Vijj = 0 (14) 

If u is required to be finite, then 3^/3t = 0 at every 
critical point, Vij; = 0. This means that the maxima, minima, 
and separatrix values of ty are fixed in time. No islands 
can appear, disappear, grow or shrink. This is the tradi
tional conclusion. 

It is possible to allow u to be unbounded to some extent 
and still be physically acceptable.. If ij; is a smooth function, 
then in the neighborhood of a critical point, VIJJ = 0, we have 

2 
ty - ty ^ r , V ^ ^ r . Taking 3ijj/3t ̂  0 at such a critical 
point implies that u ^ 1/r which is not square integrable. If 
we take finite kinetic energy to be a valid restriction on u, 
then, again, we conclude that flux and topology are strictly 
conserved, even when there are critical points, Vip = 0. 

For ideal MHD stability, the Lagrangian virtual displace
ment, £, satisfies the same equation as u, viz. (14). Since 2 this is a self-adjoint formulation with / p £ dV as norm, 
for £ to be an admissible displacement implies that ty not be 
varied at a critical point (this is a precaution that should be 
observed when constructing numerical stability codes). 

However, if we allow nonstandard behavior near a critical 
p o i n t , e . g . ij> - ij> ^ r m , l < m < 2 , Vif>% rm~ , t h e n . 3;|j/3t ^ 0 

is allowable while still maintaining finite kinetic energy. 
We shall return to this point. 
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III. EQUATIONS OF MOTION AND ADIABATIC FORMULATION 

The complete nondissipative formulation is 

3p 
at + div (pu) = 0 

P("3T + u* V u ) + VP = JXB , 

•^ + u*Vp + YP div u = 0 

J = — curl B 

3B 
3t + curl (Bxu) = 0 , div B = 0 

(15) 

The adiabatic system has been defined as the above with 
inertia, p du/dt = p(3u/3t + u#Vu) removed: 

|£ + div (pu) = 0 

Vp = JXB , 

J— + u*Vp + yp div u = 0 

H- + curl (Bxu) = 0 , 

J = — curl B 

div B = 0 

(16) 

This can be obtained by a formal, "slow" scaling in which 
3/3t and u are multiplied by a small parameter, e ; e enters 
homogeneously in all but the momentum equation [this is the 
nondissipative form of the Grad-Hogan transport formulation ]. 
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One might expect solutions of (15) to converge to those 
of (16) if, for example, the initial state is static and 
the constraints are varied slowly. This seems plausible in 
a simple topology but seems to offer an immediate contra
diction when there is a separatrix - these statements will 
be made more precise. 

The crucial analytical and numerical features of the 
adiabatic system (16) is that u does not "march". The 
velocity must so adjust that at every instant the pressure, 
magnetic field, and current (which do march) are in static 
pressure balance, Vp = JxB. 

The original theoretical attack on (16) (more precisely 
on a similar resistive model) was to obtain an equation for 
the velocity field by differentiating the static equilibrium 
with respect to time, then replacing 3p/3t, 3B/3t, 3J/3t by 
using the remaining equations (described in Refs. 9 and 10 
with more general transport in Ref. 11). A greatly preferable 
procedure (both analytically and numerically) was found to be 

1 2 to eliminate the velocity field from the problem. ' Our 
present task will be to reinsert the velocity field; i.e. 
after solving for the adiabatic evolution of thermodynamic 
and magnetic field quantities, to retrace the steps by which 
u was eliminated. 

Assuming that there is a family of flux surfaces identi
fied by a flux function, ip, we introduce the volume, V(^) , 
within a surface ty and the inverse function î  (V) , also p(V), 
p (V) [it is assumed that p = p(<p) is constant on a flux surface]. 
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We also introduce the microcanonical volume average, 
restricted to a flux surface: for a general function <}>(x), 

f r 
<<ji> = o <J> dS/|W|, o dS/|W| = 1 (17) 

If <p(x,t) = F(V,t) is constant on flux surfaces, we find that 

3F/3t = $t = <3<j>/3t> . (18) 

Averaging the mass and energy equations yields 

Pt + (PU)' = 0 (19) 

where 

Pt + Up' + ypu' = 0 (20) 

■ 

U = o u'dS = <u«VV> , ' = 3/3V . (21) 

The average pressure balance can be put in the form of a 
second order ordinary differential equation for ^(V) involving 
the two profiles p(<J0 and I(ty) (poloidal current within ty) and 
a 2x2 inductance matrix L..(V) which depends on the geometrical 
shape of the flux surfaces only (Ref. 1, Appendix). A partial 
consequence of the averaged magnetic field equation is 

i|>t + U*' = c(t) . (22) 

Specializing to two dimensions (V = area), with no third 
field component (B = 0), leaves (19) and (20) unchanged; 
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|i + u-ViJ, = c(t) (23) 

becomes the total content of the magnetic field equation, 
and the pressure balance 

A* = - p'/r = - p(i|>) , ' = 3/3ip (24) 

has as its average 

(K*')' = - p'/^* (25) 

where 

K(V) = <|VV| > = d> VVdS (26) 

is the only relevant inductance coefficient in this special 
case. Introducing the total mass, 

M = P dV , M' = P (27) 

and integrating (19) , we have 

M + UM' = a(t) . (28) 

The integration constants a(t) and c(t) are usually set 
equal to zero. Their choice depends on where we fix the 
physically irrelevant reference points \\> = 0 and M = 0 [in 
the resistive problem, fixing i|i = 0 at a convenient location 
usually gives a nonzero c(t)]. The choice a = c = 0 has the 
important conceptual consequence that, in virtue of (22) and 
(28) , M(IJJ) becomes a time-independent profile (adiabatic 
invariant). By manipulating with c(t), the flux at a 
separatrix can be made to vary at will. Of course, this does 
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not imply line breaking or reconnection. The crucial point 
is to change the total flux within a bounded separatrix or 
to observe mass flow across the separatrix. 

Similarly, from (19) and 

i|M + (u*1) ' = 0 (29) 

we observe that 

p/ty' = T(i|>) = dM/d^ (30) 

is an ivariant.profile. Also 

p/(^')Y •= U W (31) 

p/pY. = a(ij>) = u/xY (32) 

are invariants of the adiabatic equations of motion; [including 
the third field component, B , gives rise to the rotational 
transform as an additional invariant profile]. 

Eliminating p in favor of y in (24) gives a single 
equation which governs the adiabatic evolution of ^(x,y,t) 

A\l> = - ii(^')Y - Y P ^ ' ) 7 " 1 V" , ' - d/clip (33) 

1 12 13 This is an unusual equation which has been studied intensively. ' ' 
Just as the nonlinear elliptic PDE (24) allows ^(x,y) 
to be determined, given p(^) and suitable (elliptic) boundary 
data and constraints (e.g. coils), the GDE (33) allows i/)(x,y) 
to be determined given y(>/;) and appropriate (nonelliptic) 

1 12 data. ' Time variation in an adiabatic formulation consists 
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of successive snapshots taken with the varied boundary data 
or constraints; y(^) is fixed. 

Given a-family of adiabatic solutions ip(x,y,t) and i|;(V,t) 
depending on the parameter t, U is then obtained from- -

U = r/^t , (34) 

the normal component of u from 

un = (c - 3*/3t)/|ViH (35) 

and the parallel component (within an added constant on each -
line) using (31) and 

div u = - — YP '|f + u-Vp] (36) 

It is interesting to note that in the Grad-Hogan resistive 
theory, from which velocity is eliminated as in the adiabatic 
theory, the reinserted velocity field is square integrable 
near a separatrix, whereas in the Pfirsch-Schluter resistive 
theory it is not. 
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IV . CORNER EQUILIBRIA 

C o n s i d e r t h e t w o - d i m e n s i o n a l e q u a t i o n 

Axp = A| i j ; | n , - 1 < n < 0 . (37) 

The parameter X can be scaled out; it is significant 
primarily through its sign. We look for a solution in the 
sector 0 < 9 < 6 with \b = 0 at 6 = 0 and at 9 = 8 and 

o r o 
adopt the form 

ij; = rm g(8) . (38) 

For the present, take g > 0, i|> > 0 in the sector. Substi
tution of (38) into (37) yields 

m = - , 1 < m < 2 (39) 
1-n 

g" + m2g = Xgn . (40) 

This equation can be integrated, 

dg/v (41) 

where 

v2 = v2 - m2g2 + ag1+n , a = 2X/(l+n). (42) 

The sector angle is given by 

6o = 2 j dg/v (43) 
o 

where 
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2 2 2 , 1+n n ■ i A A\ 
v - m g, + ag = 0 (44) 

In terms of x = g/g-, , 

2 2, 2. 2, , 1+n 1+n, 
v = m (g^g ) - a(gx - g ) 

2 2 r /, 2. a ,, 1+n., 
= m g^d-x ) - 2 1_n (1 - x )] 

m g. 

> =
 2 

o m ] 

'1 

2 -1/2 l-x
1+n _1

/
2 2A 

(1-x^)
 X/

^[l-B 2
 ] dx

'
 6 = 2 1-n (45) 

l
_
x (l+n)m g, 

The second factor in the integrand is bounded in 0 < x < 1 
if B < 1, and it is evident that 8. is monotone in B- For 
B = 0, 

9 = e = TT/m (46; 
0 vac 

where 8 is the sector angle for Aij; = 0, ^ = r sin m8 . 
We have 

6 < 8 , B < 0 
o vac 

1 > 8 , B > 0 
o vac 

(47) 

Also, 8 -»■ o for large negative B and 8 can be made arbitrarily 
large with B positive (B < 1)• 

This result is surprisingly general. It can be shown 
that in an arbitrary simple bounded domain (with or withour 
corners, Fig. 6) the nonlinear equation (37) subject to ip = 0 
on the boundary has a unique solution, ip(x,y), with sign 
opposite to X everywhere in the interior. This seems to 
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contradict the second corner solution above with 8 > 8 
o vac 

(B has the same sign as X). There is no strict contradiction 
since the standard elliptic existence theorem referred to 
does not apply to an unbounded sector. To consider just the 
relation of the sign of ^ to the sign of X, we employ the 
Green's function of the sector (always negative), 

{ G|*|n 4> = X I G I uV I d x d y 

This implies that the sign of ty is opposite to that of X 
except that a simple estimate shows that the integral ceases 
to converge for r -»■ °° when 8 > 8 ; thus there is no 

o vac 
contradiction in the unbounded sector. 

We see that the large angle solution, 6 > 8 , is not 
^ ^ o vac' 

valid for the neighborhood of a corner inside an island 
(cf. Fig. 1). However, there is no reason to discard it in 
a nonsimple region (e.g. outside the figure-eight in 
Fig. 1) . The reader can verify that the sign of \p can 
change in an annulus. 

A similar argument gives a somewhat different conclusion 
for bounded current, say Aip = 1. It is easy to construct 
separatrix solutions of Aip = 1 as in Fig. 1. Suppose ^ = 0 
at the separatrix. The same arguments as above shows that 
ty < 0 inside the figure-eight and clearly ty > 0 outside. 
Near the separatrix, the representation 

ty * j ax2 + j d - a)y2 (a < 0 or a > 1) 
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shows that ij> > 0 on the obtuse side. We conclude that the 
inner angle of the figure-eight is always acute (for finite 
current). 

The similar statement for the singular current, (37), 
is that an interior corner of an island is smaller than 8 

vac 
(for the given m or n), but the exterior angle can be either 
larger or smaller. To make this statement meaningful, we 
must match the corner solution, 0 < 8 < 8 , to one in the 
supplementary corner, 8 < 8 < TT (using symmetry to obtain 
a full neighborhood of the origin, Fig. 7). 

We demand that the vector VIJJ be continuous, i.e. that 
^ (automatic) and 3^/3n be continuous across a ray on which 
ijj = 0. Suppose the solution in 0 < 8 < 8 is fixed. Since 
3^/3n = r g' = r v we must take the same exponent m 
(and n) in the two sectors; g' = v must have the same magnitude 
but change sign (ip changes sign) and X in the second region must be adjusted to obtain a sector angle 8 = TT - 8 . To J ^ o o 
verify this, we first remark that carrying out the previous 
calculation with g < 0 is equivalent to changing the sign of 
X, i.e. it gives the same formulas (44) and (45), but with g, 
replaced by g. and 

( _ a = - 2X/(l+n) 
(48) 

. B = a/m2|51|1~n = - 2X/(l+n)m2|g1|1"n . 

Equation (45) determines a unique value B to produce 8 = TT—0 . 
Equation (44) can be rewritten 
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v2 = m2g2 - S|51|1+n = m2g2 (1 - B) (49) 

- 2 
which determines g1, since v is unchanged. Thus we have 
extended the corner solution to include an entire neighbor
hood of the origin, Fig. 7, with ij> = 0 at two intersecting 
straight lines and VI/J continuous. 

We have already established that an interior corner has 8 < 8 . Since 1 < m < 2, 6 is obtuse. But, o vac vac 
depending on whether 8 is smaller or larger than the supple
ment of 8 , 9 = TT - 8 can be either larger or smaller 

vac o o 
than 8 . Also, 8 can be acute or obtuse. If 9„ > 6 . vac o o vac 
the current (A^) reverses across the separatrix; if 8 < 9vac' 
the current has the same sign on both sides. If 8 = TT - 8 , 

3 o vac 
then the current in the exterior corner is zero (or it can 
be finite and nonzero by fitting to Aip = 1 instead of A^ = 0; 

2 
this requires adding a higher order correction since i> ^ r 
is small compared to ^ ̂  r ). 

To summarize, from the corner analysis, two parameters, 
8 and n can be given arbitrarily [subject to -1 < n < 0 and 
8 < (l-n)Tr/2], and an appropriate solution can be found in 
an entire neighborhood of the origin. The current reverses 
or not depending on whether 8 < (l+n)Tr/2 or not. 

Next we turn to a boundary layer analysis of the entire 
separatrix and of a smooth closed curve (Fig. 6), each with 
the singularity given in (37). We have already seen that a 
global analysis restricts the class of valid corner solutions. 
Near the separatrix (or smooth boundary curve), away from the 
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corner, the solution is approximately one-dimensional. 
Consider first the smooth curve. Taking y as the (inward 
pointing) normal coordinate, and assuming that ty > 0, we have 

which integrates to 
*yy = X* n 

Y = 
1> 

d £ 
u 

(50) 

(51) 

where 

u = u + aty , a = 2X/(l+n) (52) 

The volume (oriented inward so that ij/' > 0) is 

V = (i y ds = dij; o — (53) 

Therefore, 
1_ 
1 > ' = o ds u (54) 

In this integral, u (s) (3^/3y at the boundary) is assumed 
to be given. 

For a smooth curve 

l * ' J = r d^ n r ds i-| = - X if>« i|>" <j> ~3 (55) 

(this formula cannot be used near a corner where u becomes 
zero). The most important conclusion that we draw is that ty" 

has the same singularity (viz. ijjn) as Aip, and even has the 
same sign, "̂/Xij;11 = (̂') d» ds/u . This is not surprising 
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since intuitively Ai|> ̂  t|> ^ ip". 
This boundary layer analysis applies to the solution of 

(37) which we know exists and is unique. However, if this 
solution is to represent an adiabatic equilibrium we would 
want y = dy/dt|> to be finite. The averaged pressure balance 

W ) " = - y ( K ) Y - Yy(^')Y_1 if>" = Ai|>n (56) 

implies that i|>" has a sign opposite to \ty (since the 
singular term in ty" is assumed to dominate the finite term 
in tf). Thus, although there is a perfectly legitimate 
standard (elliptic) solution with the indicated current 
singularity, it must have unbounded y, and there is no 
adiabatic singular solution in the case of a smooth boundary, 
(nor should we expect one). 

For a separatrix with a corner, the contribution to \\i" 

from the neighborhood of the corner must.be the same order 
as the distant contribution, and must be the reverse in sign. 
The boundary layer analysis for a global adiabatic separatrix 
will be presented elsewhere. For reasons that will presently 
become clear, we are interested in corner solutions whether 
or not they are compatible with a global adiabatic solution. 

http://must.be
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V. LINE BREAKING FLOWS 

We start with the explicit equilibrium solution of a 
corner equilibrium as given in the last section. Ignoring 
the fact that this type of solution was suggested by adiabatic 
considerations, we construct from it a solution of the full 
equations of motion (15). To be more precise, we construct 
a solution of the full equations of motion linearized about 
the specified static equilibrium. It is well known that there 
are enormous subtleties in relating a linearized solution to 
the solution of the original nonlinear system. However, 
exactly this linearization is very widely used; for example, 
more than 95% of the literature of MHD stability is based on 
these equations. To be still more precise, we do somewhat 
better than the usual linearization. Assuming that the flow 
velocity, u, is small, we drop pu'Vu from the momentum 
equation (this yields the adiabatic system (16) with 3u/3t 
reinserted). But no other approximation is made; e.g. we 
do not replace p by p + p' where p is the original equilibrium 
quantity and p' its perturbation. This allows us to distinguish 
between the Eulerian 3/3t and Lagrangian 3/3t + u«V which 
are normally identified in a linearization. For example, the 
explicit solution will have p(x) unchanging in time, 3p/3t = 0, 
but the entropy and density are carried with the fluid, e.g. 
3n/3t + u*Vri = 0. This makes the solution believable for 
longer periods of time than a conventional linearization. 

To start take 3î /3t = 1. This is not a trivial relabeling 
of magnetic lines because it will be coupled with a mass flow 
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across the separatrix, the mass flow following the magnetic 
flux flow implied by 3ip/3t ̂  0. In particular, a specific 
magnetic line carrying with it mass at a certain density 
will split in two as it crosses the separatrix; another pair 
of symmetric: lines will touch as it reaches the separatrix, 
then leave in two different quadrants with the halves of the 
individual lines reconnected differently. To be a solution 
of the equations of motion it is clear that the configuration 
must be symmetric; more precisely, lines which merge must 
carry the same thermodynamic state; a line which splits -
leaves two lines carrying the same state. We shall return to 
the question of generalized adiabatic solutions which do not 
have this restriction. 

Specifically, take 

* = *Q + t (57) 

where ty is the corner equilibrium solution. The magnetic 
field 

B = n x Vi)i (58) 

is unchanged in time as are J = curl B and p. The velocity 
component normal to B is 

u'Vij; = -. 3i|//3t = - 1 (59) 

The vector normal component is 

Uj_ = - Vi|>/|Vif42 (60) 
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This component is singular only at the X-point and it is 
easily seen to be square integrable for -1 < n < 0. 

Next we evaluate div u from the combined entropy/mass 
equation for p. Since 3p/3t = 0 

u • Vp + Y P div u = 0 
or 

div u = - p/YP / * = d/d^ (61) 

Also we recall that 

p = - A^ = - X|^|n , p = p - -^-i- i|, (62) 
° (n+1) 

Writing 

u = u + Ujj , U|| = crB , (63) 

we obtain 

div uj| = B'Va = div(V̂ /|Vi|>|2) - X|i|;|n/YP (64) 

which determines a within an added constant on each flux 
contour. 

The velocity component u., is singular not only at the 
X-point, r = 0, but along the entire boundary of the sector, 
ty = 0. Near the corner, ujj is square integrable for m < 2, 
in other words, always. Near the edges, u(! is square integrable 

3 1 for m > j , n > - -^ , which restrictions we adopt. 
The momentum equation is satisfied since u is steady and 

3u/3t = 0. The only equations left to examine are mass and 
entropy Cthe combination of the two, which involves 3p/3t, 
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has already been used): 

| P . = - u . v P - p d i v u = p - pp/YP = p [ l o g ( p / p 1 / Y ) ] ' (65) 

| ^ = - u . v n = n 

The initial density or entropy profile, p(ip) or n (ip) is 
arbitrary [the equilibrium equation relates only to p (vp) ] . 
If n = const, initially, then this persists, 3ri/3t = 3p/3t = 0. 
More generally, the convection of n and p gives rise to the 
indicated time variation of p and n• T n e reason for the 
nontrivial convection is that p is invariant in Eulerian 
and n in Lagrangian (moving) coordinates. 

A constant field component, B , can be superposed on 
the solution just given provided that an appropriate flow 
velocity u is also supplied. The condition curl E = 0 
determines u within a constant on each ^-contour. Although 
u is singular, it is square integrable if n > - ■=- as before. 

• Consider next the more complex problem of a time-varying 
adiabatic Doublet (Fig. 1). Assuming that the numerical 
evidence implies the mathematical existence of these solutions, 
we can reintroduce u. and then div u and u.. in the adiabatic 
formulation (16). In the case of two symmetric islands, 
mixing (shrinking islands) makes contact between two identical 
states and there is no obvious entropy increase - this is what 
is confirmed by use of the appropriate jump conditions. The 
velocities that go with this equilibrium have the same form 
as found in the exact solution of the corner, indicating that 
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the adiabatic solution is a true solution of the full 
(linearized) equations of motion - with line-reconnection. 

With asymmetric islands, the jump conditions give an 
entropy increase (p, and p_ mix to form p ). The jump in 
entropy is exactly the entropy of mixing and no more. 
Consistent with this nontrivial mixing, the adiabatic velocity 
component u() turns out to have a 6-f unction at the separatrix. 
This is truly an adiabatic limiting solution only, not an 
exact solution of the equations of motion. 

In the case of asymmetric splitting (growing islands in 
Fig. 1), the jump conditions show that p, = p? in the newly 
created regions, so that this case can be expected to be an 
actual solution of the equations of motion. 

A maximum or minimum of \\> (e.g. the center of an island) 
is also a critical point, Vij; = 0. There is no adiabatic 
evidence (theoretical or numerical) that the current is not 
smooth, but we may investigate the consequences of postulating 
ty ̂  rm, 1 < m < 2, at an extremum of ty. Allowing 3i|j/3t ^ 0 
at this critical point yields a velocity field with finite 
kinetic energy. It must, nevertheless, be rejected on physical 
grounds, because 3^/3t ^ 0 implies the presence of a mass 
source or sink; this is not allowable. We conclude that only 
at a hyperbolic critical point is this type of singularity 
relevant. 

We offer now a conjecture as to the possible behavior at 
an X-point of the full nonlinear time-dependent ideal 
equations (15). At a two-dimensional X-point the velocity of 
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an Alfven wave is zero; (the projected signal speed in the 
plane remains zero with a nonzero third component, B ). In 
th.e "normal" case with bounded current and ^ ̂  r , the time 
required for a signal to reach the critical point is infinite. 
There will therefore be a buildup of irregularities (large 
derivatives) near this point. A very similar argument is 
used to show the instability of a compressive transonic 
nozzle flow in fluid dynamics (with subsequent development 
of a shock); a similar argument can also be given as the 
qualitative reason for dissipationless Alfven wave heating 
at a resonance, k«B = 0 (the propagation speed normal to 
the resonant surface approaches zero). We conjecture that 
"in general", a singularity of the type ty a. r , 1 < m < 2, 
will develop after a finite period of time. This seems to 
be a difficult analytical question to resolve. A good two-
dimensional numerical code could probably detect such a 
phenomenon. For a certain period of time the value of ^ at 
a separatrix (in the presence of waves) would be observed to 
remain approximately constant, but after a precise time, ip 

should' be seen to vary in a manner insensitive to choice of 
mesh size, etc. There will be an automatic problem with 
numerical accuracy near the X-point since the solution will 
become irregular whether or not the conjectured singularity 
arises. However, it should not be difficult to find that 
the global behavior (e.g. changing ty at the X-point or a. 
buildup of current) is reproducible. 
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The significance of the square-integrability condition 
for velocity is not simple. It is relatively clear that 
one should discard solutions or, at least, examine them very 
carefully if the kinetic energy is infinite. On the other 
hand, opening the doors to arbitrary square-integrable 
perturbations leads to a Pandora's box of disturbing possi
bilities. Consider, for example, the linearized equations 
of motion and a flux function 

if> = i|>0 + t^1 (67) 

where \\> is smooth, Vijj ^ 0, and ty. has a cusp at which Vty, 
is unbounded. Since U*VIJJ = - \p, , u.j is not only square 
integrable, it is bounded (u is square-integrable if ViJ>, is) . 
But for arbitrarily small t, the perturbation \\i. changes 
the topology of the flux surface. 

This is not particularly disturbing with regard to 
solutions of the equations of motion, but it is quite disturb
ing for variational (6W) stability where one is presumably 
working in a Hilbert space in which the displacement £ 
(5*Vi|/ = - lp-i) can easily alter the topology. Presumably, 
such nontopology-preserving displacements will usually increase 
the potential energy, in which case they are innocuous. First 
of all, no such theorem has been proved (or mentioned). 
Secondly, it is easy to construct counterexamples of ideal 
(nonresistive) tearing. Thirdly, stability of a "standard" 
separatrix is entirely different from that of an adiabatic 
separatrix. These questions will be broached elsewhere. 
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The explicit corner, line reconnection solution presented 
here and its relation to earlier adiabatic examples were 
presented and fully discussed at a Gordon Conference in 
Wolfeboro, New Hampshire, June, 1977, also at the Sherwood 
Theoretical Meeting in San Diego, May, 1977, at the Plasma 
Physics Division meeting of the APS in Atlanta, November, 
1977, and at a number of intervening seminars and colloquia 
at various universities. 
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VI. CONCLUSION 

We have shown by plausible arguments that a previously 
described class of adiabatic time-dependent solutions (type 
one) with complex topology has a subset (no mixing of regions 
with different density) in which reinsertion of the (small) 
velocity field probably gives a legitimate solution (type two) 
of the equations of motion in the limit of slow motion. We 
have also exhibited an explicit exact solution (type two) of 
the linearized ideal equations in a special separatrix 
configuration with flow across the separatrix. The role 
played by dissipation in magnetic line reconnection is, to 
a large extent, unknown. 
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Figure Captions 

Fig. 1: Complex Topology 

Fig. 2: Resistive evolution from Belt Pinch to 
Doublet as external coil pinches the 
"waist". Current layer develops and 
moves with separatrix. 

Fig. 3: Moving Object Breaking Magnetic Lines. 

Fig. 4: Tubular Domain. 

Fig. 5: Toroidal Domain, Magnetic Line Map. 

Fig. 6: Interior Domain, With and Without Corner, 

Fig. 7: Corner Solution. 
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