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NEURAL NETWORK RECOGNITION OF NUCLEAR

POWER PLANT TRANSIENTS

1 Abstract

The objective of this report is to describe results obtained during the first year of

funding that will lead to the development of an artificial neural network (ANN) fault

- diagnostic system for the real - time classification of operational transients at nuclear

power plants. The ultimate goal of this three-year project is to design, build, and test

a prototype diagnostic adviser for u_e in the control room or technical support center

at Duane Arnold Energy (:enter (DAEC); such a prototype could be integrated into

the plant process computer or safety - parameter display system. The adviser could

then warn and inform plant operators and engineers of plant component failures in

a timely manner. This report describes the work accomplished irl the first of three

scheduled years for the project. Included herein is a summary of the first year's

results as well as individual descriptions of each of the major topics undertaken by

the researchers. Also included are reprints of the articles written under this funding

as well as those that were published during the funded period.

2 Work Performed During the Period

2.1 Objective of Work

The objective of this research project is to develop an ANN fault-diagnostic system

for the real - time detection and classification of nuclear power plant transients and

component failures. The ultimate goal is to design, build, and test a prototype

diagnostic adviser for use in the control room or technical support center at the

Duane Arnold Energy (',enter (DAEC).

1



The significance of the proposed work is the potential improvement in nuclear

power plant operational safety realized through the timely warning and diagnosis of

abnormal plant operating conditions. Another technical significance of the research

is the advancement of the theory of ANN techniques and their application to fault

diagnosis as well as insights and advances in the areas of information prioritization

and accident mitigation and management. These advances can be applied to both

boiling - water reactors (BWRs) and pressurized-water reactors (PWRs) as well as

any other industrial process where accident avoidance is paramount. Quicker accident

diagnostics and the resultant improvement in mitigation efforts will be of great value

to nuclear plant safety.

The general aim of this research is twofold: to investigate and to educate in the

fields of nuclear engineering and artificial intelligence applications.

2.2 Summary of Results

The following is a brief list of accomplishments for the reporting period.

1. More than 40 transient scenarios have been collected at the DAEC training

simulator. A list of these transients is given in Table 3.

2. An error analysis method has been developed and implemented on a. set of ten

transient scenarios obtained from San Onofre (James and Rogers 1992). This

method provides an estimated level of confidence in the transient diagnosis. A

complete description of this work is given in Section 4.6.

3. An input importance analysis method has been developed. This approach is

actually a combination of methods using information theory (Bartlett 1992b:

Section 11.2, Hyvarinen 1970, Kullback 1959, Shannon 1971, Watanabe 1969)

and ANN derivatives (Bartlett and Basu 1991, Lane 1991). The approach helps

m
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determine the relative importance of individual plant variables for diagnosing

specific sets of nuclear power plant transients (see Section 4.7.1 and 10.10).

4. Time-series information has been used for very early diagnosis of transient exis-

tence - other networks are then called to determine the specific transient. Anal-

ysis of the temporal information given by a single variable can yield much in-

formation (Bartlett 1992a). This approach may be very effective at providing

very small transient diagnosis times (see Sections 4.3 & 10.1). We believe that

this approach will be best suited for use in the root network which indicates if a

transient is in progress but does not necessarily provide a diagnosis as to which , ,

particular transient is occurring; this job will be left to other ANNs that are

specifically designed for that purpose.

5. Similar Transients are also an area of concern. Sometimes two or more transients

can exhibit very similar instrument responses. Traditional expert systems, there-

fore, have difficulty distinguishing them. Neural networks may not (see Section

4.1).

6. We are analyzing backpropagation speed-up techniques. Increased learning rates

are very important when training large and complex data sets as in nuclear power

plant diagnoses. Many researchers have investigated backpropagation learning

enhancement techniques. "We have implemented a variety of these techniques.

Section 4.5 describes our work in this area.

7. Dynamic Node Architecture Learning with Backpropagation has a very high

probability of being useful. This work is a re-creation of Bartlett's Ph.D. for

a boiling-water reactor using backpropagation ANNs. Section 4.2 describes our

work in this area.



8. A broad - based adviser has been developed that is capable of diagnosing 23

distinct transients. This ANNs in this adviser were trained using data for 41

transient scenarios collected from the DAEC simulator. Section 4.4 describes

the work leading to the development of the adviser. This represents a big step

forward from the previously developed advisers (described in Sections 4.2, 4.6,

4.7.1, 4.7.2 and 4.7.4) which were basically used to demonstrate the feasibifity

of individual methodologies being developed. This adviser has given us great

insight into the possible design structure of the final diagnostic system, and has

made the researchers capable of evolving a complicated ANN solution of the kind

required to bring the final diagnostic adviser to fruition.

9. Educational Goals Attained

, Two Masters degree completed (May 1992: T. L. Lanc & August 1992:

A. Basu)

, One Masters to be completed December 1992 (K. Kim)

, Four students passed the written Ph.D. qualifying exam. (T. A1Jundi,

A. Basu, C. Dhanwada, K. Kim)

10. Significant progress has been made toward the completion of the first year's goals

set out in the original research proposal - see Section 3.1.

2.3 Time Devoted by Principal Investigator

The PI has devoted 25% of his time to this project. This will continue till the

scheduled completion of the project.



3 Detailed Description of Research Work

3.1 Effect of Performed Work on Research Plan and Timetable

It was originally proposed to implement the approach of ANN analysis demonstrated

in Bartlett 1990 and Bartlett and Uhrig 1992 to the nuclear power plant accident

diagnostic problem. The tasks involved were separated into three phases that would

require approximately one year each. These phases were outlined in the originally

proposed research timetable as follows. (See Bartlett 1992c for revised timetable for

years II and III.)

Originally Proposed Timetable

Year I

1. Specification of accident list

2. Selection of variables for plant process

3. Collection of simulator data

4. Preliminary demonstration and enhancement of network training

,5. Preliminary design of diagnostic system

Year II

1. Collection of data for plant operational transients

2. Secondary demonstration and enhancement of network training

3. Secondary design of diagnostic system

Year III



1. Final design of diagnostic system

"2. Final training of diagnostic system

3. Testing of final diagnostic system

Significant progress toward these goals has been accomplished during this first fund-

ing period. Below is a brief discussion of the milestones accomplished and their

relationship to the originally proposed goals.

1. Specification of accident list

After careful analysis and discussions with DAEC staff, a list of 85 transient sce-

narios has been identified as most important during the initial stages of this research.

These scenarios include two broad categories of operational tran3ients. In the first

category are the more potentially dangerous scenarios. These are most likely to be

fast acting and initiated by large component failures such as a recirculation loop

rupture. The second category contains the presumably more frequent but less severe

scenarios. Typical scenarios in this category include, for example, small steam leakage

in a steam tunnel. Table 1 shows the working list of accidents of interest. We have

already collected more than 45 of these scenarios and are well on our way to defining

lists for secondary component failures and accidents that exhibit similar symptoms.

2. Selection of variables for plant process

The list of variables being used for training of the ANN diagnostic adviser can

be found in Table 2. After careful analysis and discussions with DAEC staff, this

variable set was determined to be the most likely first set of reliable data.

i
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Table 1: Transient Scenarios of Initial Interest
Number Accident Accident Description

Designation
1 AD02 Automatic depressurization system channel fail to initiate

2 AD05 Serious automatic depressurization system actuation

3 CS02 Core spray injection line break, headers A &: B

4 CS03 Core spray inadvertent initiation
5 CU01 Reactor water clean-up heat -exchanger tube leak

6 CU07 Reactor water clean-up leak in heat -exchanger room

7 CU09 Reactor water clean-up regenerative heat -exchanger tube
leak

8 CU10 Reactor water clean-up coolant leakage outside the primary
containment

9 ED01 Loss of offsite power

10 EG01 Main generator trip. primary lockout & backup lockout
11 FW01 Condenser hotwell level controller failure

12 FW02 Condensate pump trip
13 FW04 Condensate filter demineralizer resin injection

14 FW05 Feedwater hydrogen controller failure
16 FW06 Feedwater heater drain valve fails

15 FW07 Feedwater heater dump valve fails
17 FW08 Feedwater heater tube leak

18 FW09 Reactor feedwater pump trip

19 FW12 Feedwater regulator valve controller failure

20 FWl3 Master and feedwater regulator valve controller oscillation
21 FW14 Feedwater flow transmitter failure

22 FW17 Main feedwater line break inside primary containment

23 FWl8 Main feedwater line break outside primary containment

24 HP01 High-pressure core injection inadvertent initiation

25 HP05 High-pressure core injection steam supply line break

(High-pressure core injection room)
26 HP08 High-pressure core injection steam supply line break

(Torus room)
27 IA01 Loss of instrumentation air

28 IA02 Instrumentation air header leaks

29 ID01 Drywell leakage

30 ID04 High-pressure core injection room leakage
31 ID05 Reactor core isolation cooling room leakage

32 ID06 Southeast corner room leakage

33 ID07 Northwest corner room leakage

34 ID08 Torus room leakage

35 MC01 Main circulation water pump trip



Table 1: ... continued

Number Accident Accident Description
Designation

36 MC02 Main condenser tube blockage
37 MC03 Cooling tower fans trip
38 MC04 Main condenser air inleakage
39 MC07 Main condenser tube leakage
40 MC08 Cooling tower riser pipe break
41 MS02 Steam leak inside primary containment
42 MS03 Main steamline rupture inside primary containment
43 MS04 Main steamline rupture outside primary containment
44 MS06 Main steam isolation valve fails close

45 MS08 Steam leakage in steam tunnel
46 MS14 Loss of extraction steam to feedwater heater

47 MS19 Spuraous group 1 isolation
48 MS21 Spurious group 2 isolation
49 MS23 Spurious group 3 isolation
50 MS25 Spurious group 4 isolation:
51 MS27 Spurmus group 5 isolation
,52 MS29 Spuraous group 6A isolation (reactor core isolation cooling)
53 MS30 Spuraous group 6B isolation (high-pressure core injection)
54 MS32 Spurious group 7 isolation
55 NMll Recirculation flow unit fails

56 RC01 Reactor core isolation cooling system failure
57 RDll Control rod drive hydraulic pump trip
58 RD13 Loss of air pressure to control rod drive HCL's
59 RD14 SCRAM discharge volume level high
60 RH01 Residual heat removal pump trip
61 RH02 Residual heat removal heat exchanger tube leak
62 RH03 Residual heat removal pump discharge line break
63 RH05 Residual heat removal/suppression pool suction line

blockage
64 RH06 Residual heat removal heat exchanger B/P valve fails
65 RP03 Spurious SCRAM with operator action
66 RP05 Reactor protection system SCRAM circuit failure

(Anticipated transient without SCRAM)
67 RR05 Recirculation pump shaft seizure
68 RR06 Recirculation motor generator drive motor breaker trip
69 RR07 Recirculation motor generator field breaker trip
70 RR08 Recirculation pump high vibration
71 RR10 Recirculation pump speed feedback signal failure
72 RRll Recirculation pump seal failure
73 RR12 Recirculation motor generator oil pump failure



Table 1: ...continued

Number Accident Accident Description

Designation
65 RP03 Spurious SCRAM with operator action

74 RR15 Recirculation loop rupture (design basis loss of coolant
accident 100%)

75 RR16 Recirculation pump RPT breaker trip

76 RR17 Recirculation motor generator flow controller fails

77 RR18 Recirculation motor generator scoop tube oscillations

78 RR20 Narrow range level transmitter failure
79 RR30 Coolant leakage inside primary containment
80 RR32 Lo-lo-lo level switch failure

81 RX01 Fuel cladding failure
82 SL01 Standby liquid pump trip

83 TC01 Main turbine trip
84 TC02 Electro-hydraulic control failures

85 SW19 River water supply pump trip

3. Collection of simulator data

Table 3 includes a list of the collected scenarios. A description of each of these is

included in Section 9. Notice that many of the transients have been simulated more

than once. This is because either a different initial condition, a different operating

power level, a different severity level, or a secondary malfunction was simulated along

with the original malfunction. More simulator work is needed in order to complete

the list of transients of initial interest Table 1. This work will proceed into the second

year of the project.

4. Preliminary demonstration and enhancement of network training

This goal has been addressed by the investigations of Basu (see Section 4.2 &

4.7.2), Dhanwada (see Sections 4.3 & 4.4), Kim (see Section 4.5, 4.6 &" 4.7.4) and

Lanc (see Section 4.7.1). It is important to determine the most effective method

for ANN training using small numbers of accidents. In this way the larger sets of



Table 2: Initial List of Important Plant Variables Variable
Variable Min. Max. Variable

Desig. Description Value Value Unit

1 A,q41 Local power range monitor 0.0 125.0 % power
16-25 flux level B

2 A091 Source range monitor channel B 0.0 00.0 %
3 B000 Average power range monitor A 0.0 125.0 % power

Flux level

4 B012 Reactor total core flow 0.0 60.0 Mlb/hr
5 B013 Reactor core pressure-differential 0.0 30.0 psid

6 B014 Control rod drive system flow 0.0 0.025 Mlb/hr

7 B015 Reactor feedwater loop A flow 0.0 4.0 Mlb/hr

8 B016 Reactor feedwater loop B flow 0.0 4.0 Mlb/hr

9 B017 Cleanup system flow 0.0 0.07691 Mlb/hr
10 B022 Total steam flow 0.0 8.0 Mlb/hr

11 B023 Cleanup system inlet temperature 0.0 755.0 °F
12 B024 Cleanup sy_stem outlet temperature 0.0 600.0 °F

13 B026 Recirculation loop A1 drive flow 0.0 15.1 Mlb/hr
14 B028 Recirculation loop B1 drive flow 0.0 15.1 Mlb/hr
15 B030 Reactor feedwater channel A1 280.0 430.0 °F

temperature
16 B032 Reactor feedwater channel B1 280.0 430.0 °F

temperature

17 B034 Recirculation loop A1 inlet 260.0 580.0 °F

temperature
18 B036 Recirculation loop B1 inlet 260.0 580.0 °F

temperature

19 B038 Recirculation A wide range 50.4 789.6 °F

temperature

20 B039 Recirculation B wide range 50.4 789.6 °F
temperature

21 B061 Reactor coolant total jet pumps 1-8 0.0 36.7 Ml_,/hr
flow B

22 B062 Reactor coolant total jet pumps 9-16 0.0 36.7 Mlb/hr
flow A

23 B063 Reactor coolant total outlet steam 0.0 2.0 Mlb/hr
flow A

24 B064 Reactor coolant total outlet steam 0.0 2.0 Mlb/hr
flow B

25 B065 Reactor coolant total outlet steam 0.0 2.0 Mlb/hr
flow C

10



Table 2: . . . continued
Variable Min. Max. Variable

Desig. Description Value Value Unit
26 B066 Reactor coolant total outlet steam 0.0 2.0 Mlb/hr

flow D

27 B079 Reactor recirculation pump A 0.0 10.0 MILS
motor vibration

28 B080 Reactor recirculation pump B 0.0 10.0 MILS
motor vibration

29 B083 Control rod drive cooling-water 0.0 500.0 dpsi

differential pressure
30 B084 Control rod drive cooling-water 0.0 60.0 dpsi

differential pressure

31 B085 Torus air temperature #1 0.0 500.0 °F

32 B086 Torus air temperature #2 0.0 500.0 °F

33 B087 Torus air temperature #3 0.0 500.0 °F
34 B088 Torus air temperature #4 0.0 500.0 °F

35 B089 Drywell temperature azmuth 0 0.0 500.0 °F
elevation 750

36 B090 Drywell temperature azmuth 245 0.0 500.0 °F
elevation 750

37 B091 Drywell temperature azmuth 90 0.0 500.0 °F
elevation 765

38 B092 Drywell temperature azmuth 270 0.0 500.0 °F
elevation 765

39 B093 Drywell temperature azmuth 270 0.0 500.0 °F
elevation 765

40 B094 Drywell temperature azmuth 180 0.0 500.0 °F
elevation 780

41 B095 Drywell temperature azmuth 270 0.0 500.0 °F
elevation 830

42 B096 Drywell temperature center 0.0 500.0 °F
elevation 750

43 B098 Torus water temperature 0.0 752.0 °F

44 B099 Torus water temperature 0.0 752.0 °F

45 B103 Drywell pressure 0.0 100.0 psia

46 Bl04 Torus pressure 0.0 100.0 psia
47 Bl05 Torus water level -10.0 10.0 inch

48 B120 Torus radiation monitor A -1.0 100.0 %

49 B121 Torus radiation monitor B -1.0 100.0 %

50 B122 Reactor water level 158.0 218.0 inch

51 B124 Reactor water level 158.0 218.0 inch
52 B1257 Fuel zone level indication -153.0 218.0 inch

53 B126 Reactor water level 158.0 458.0 inch

54 B127 Reactor vessel pressure 0.0 1200.0 psig
11
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Table 2: ,.. continued
Variable Min. Max. Variable

Desig. Description Value Value Unit

55 B128 Reactor vessel pressure 0.0 1200.0 psig

56 B129 Reactor vessel pressure 0.0 1500.0 psig
57 Bl30 Reactor vessel pressure 0.0 1500.0 psig
58 B137 Torus water level 1.5 16.0 ft

59 B138 Torus water level 1.5 16.0 ft

60 Bl50 Core spray A flow -1767.8 5000.0 gpm

61 Bl51 Core spray B flow -1767.8 ,5000.0 gpm

62 Bl60 Reactor core isolation cooling flow -62.5 500.0 gpm
63 Bl61 High-pressure core injection flow -437.5 3500.0 gpm

64 B162 Residual heat removal A flow -75.0 15000.0 gprn

65 B163 Residual heat removal B flow -75.0 1,50.0 gpm
66 B164 Drywell radiation monitor A -1.0 100.0 %

67 B165 Drywell radiation monitor B 0.0 100.0 %

68 B166 Post-treat activity 0.0 100.0 %
69 B168 Pretreat activity 0.0 100.0 %

70 Bl71 Analyzer A O2 concentration -1.25 10.0 %

71 B172 Analyzer A Hz concentration -1.25 10.0 %

72 B173 Analyzer B 02 concentration -1.25 10.0 %

73 B174 Analyzer B H2 concentration -1.25 10.0 %

74 Bl80 Clean-up system flow 0.0 200.0 gpm
75 B196 Reactor water level-fuel zone A -153.0 218.0 inch

76 B197 Reactor water level-fuel zone B -153.0 218.0 inch

77 B247 Turbine steam bypass 0.0 500.0 °F

78 B248 Turbine steam bypass 0.0 500.0 °F
79 E000 4160 V Switch Gear bus 1Al A-B 0.0 5.25 KV

80 F004 Condensate pump A&B discharge 0.0 600.0 psig
pressure

81 F005 Low-pressure condenser circulating 0.0 200.0 °F
water inlet temperature A

82 F010 High-pressure condenser circulating 0.0 200.0 °F
water outlet temperature A

83 F011 Low-pressure condenser circulating 0.0 10.0 dpsi
water pressure differential A

84 F015 Circulating water pump A&B 0.0 100.0 psig
discharge pressure

85 F018 Cooling tower A discharge water 0.0 752.0 °F
temperature

86 F019 Cooling tower B discharge water 0.0 752.0 °F

temperature

87 F040 lP-lA reactor feed pump suction 0.0 600.0 psig
pressure

12



Table 2: ,.. continued
Variable Min. Max. Variable

Desig. Description Value Value Unit
88 F041 1P-1B reactor feed pump suction 0.0 600.0 psig

pressure
89 F042 lP-lA reactor feed pump discharge 0.0 2000.0 psig

pressure
90 F043 1P-1B reactor feed pump discharge 0.0 2000.0 psig
91 F044 Condensate total flow 0.0 8.0 Mlb/hr
92 F045 Condensate makeup flow -10.0 100.0 Klb/H
93 F046 Condensate rejection flow 0.0 .50.0 Klb/I-I
94 F094 Feedwater final pressure 0.0 2000.0 psig
95 G001 Generator gross watts 0.0 720.0 MWE
96 T039 Low-pressure condenser pressure 0.0 30.0 inHg
97 T040 High-pressure condenser pressure 0.0 30.0 inHg

accidents can be trained efficiently without wasting time.

.5. Preliminary design of diagnostic system

A preliminary diagnostic adviser has been developed that can diagnose 23 dis-

tinct transients based on the data of 41 transient scenarios collected from the DAEC

training simulator. This adviser, which is the most broad-based effort towards the

development of the final diagnostic adviser, will help lead the research towards the

ultimate form and structure of the final adviser. A single network was trained to

detect a normal or abnormal condition at any instance of time. This "root" net-

work activates the other diagnostic networks if it determines that the plant is in any

condition other than normal. Five other networks then together produce the five-bit

boolean that classifies the abnormal condition. This approach, together with the other

methodologies developed as part of this research effort, has given us a preliminary

design of the final adviser.

The final diagnostic system will be a complex set of independently trained inter-

connected networks. The approach will be to have a "root" network that diagnoses

' normal or abnormal conditions. Once the abnormal condition is recognized by the

13



Table 3: Transient Scenarios collected
Number Accident Accident

Designation Description

1 C,U10 Reactor water clean-up coolant leakage

2 CU10 Reactor water clean-up coolant leakage with automatic
group 5 isolation malfunction

3 FW02 Condensate pump. trip
4 FW04 Condensate Filter demineralizer resin injection

5 FW09 Reactor feedwater pump trip

6 FW12 Feedwater regulator valve controller failure
7 FW17 Main feedwater line break inside primary containment

( 100% severity)

8 FWl7 Main feedwater line break inside primary containment
(60% severity)

9 FWl7 Main feedwater line break inside primary containment

(30% severity)

10 FWl8 Main feedwater line break outside primary containment

11 HP05 High-pressure core injection steam supply line break "
(High pressure core injection room 100% severity)

12 HP05 High-pressure core injection steam supply line break

(High pressure core injection room 60% severity)

13 HP05 High-pressure core injection steam supply line break
(High pressure core injection room 30% severity)

14 HP08 High-pressure core injection steam supply line break

(Torus room)

15 MC01 Main circulation water pump trip

16 MS02 Steam leak inside primary containment

17 MS03 Main steam line rupture inside primary containment
18 MS04 Main steam line rupture outside primary containment
19 MS14 Loss of extraction steam to feedwater heater

20 MS19 Spurious group 1 isolation

21 MS32 Spurious group 7 isolation

22 RP03 Spurious SCRAM with operator action

23 RP05 Reactor protection system SCRAM circuit failure (ATWS)
24 RR10 Recirculation pump speed feedback signal failure

25 RR15 Recirculation loop rupture (design basis Loss of coolant

accident 100% severity)
26 RR15 Recirculation loop rupture (design basis Loss of coolant

accident 60% severity)

27 RR15 Recirculation loop rupture (design basis Loss of coolant

accident 30% severity)

28 RR30 Coolant leakage inside primary containment

29 RX01 Fuel cladding failureJ

14

I



Table 3: ...continued
Number Accident Accident

Designation Description

30 TC02 Electro-hydraulic control failures

31 ICl4 Spurrious SCRAMat 100% power beginning of cycle

32 IC20 Spurrious SCRAM at 100% power end of cycle

33 IC',22 Spurrious SCRAM at 25% power beginning of cycle

34 IC',23 Spurrious SCRAM at 75% power beginning of cycle
35 IC',24 Spurrious SCRAM at 100% power middle of cycle ??

root network, a category network will determine the category of the transient. For

example, the transient may be a positive reactivity insertion or a loss of coolant event.

Next, the specific transient will be diagnosed based on the outputs of the root and cat-

egory networks. The specific accident network will use the information from the other

more basel networks, i.e., that an abnormality has occurred and that the abnormality

is of the loss of coolant type to help it make its decision as to the particular type

of transient, i.e., main steam line break. Next will be the error prediction networks.

These networks will provide a figure of merit on the diagnosis (see Section 4.6). The

approach is similar in architecture to a tree (see Figure 1) and allows for the splitting

of the overall diagnostic effort into small, manageable steps. Each of the networks will

be trained separately, and this will significantly reduce training computer time. Each

of the networks is not required to have the same number or identical input variables

which greatly reduces the complexity of data collection.
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4 Summary of Individual Projects

This section contains summaries of the work undertaken by each of the graduate

students working on this project.
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4.1 Diagnosing Similar Transients Using Artificial Neural Networks

by Taher Aljundi

4.1.1 Introduction

When an operational transient takes place at a nuclear power plant, many measuring

instruments will detect the changes in the plant's conditions. Although there is a L

wide variety of these transients, some, because of their nature, will cause part of the

measuring instruments to respond in a similar way. Consequently, groups of these

instruments will show similar responses for a variety of transients. A typical example

is a small coolant leak compared to a big steam leak in the torus room at a boiling

water reactor power plant. In this case, responses of temperature and pressure gauges

in the vicinity of the leak will be similar for both scenarios. However, since the steam

is radioactive while the coolant is not, radiation monitors will tell which transient is

taking place.

Previous work done here at Iowa State University (ISU) showed that ANNs have

the ability to diagnose several different transients at a nuclear power plant in a very

short time (Bartlett 1992_ Lanc 1991, Bartlett, Basu, and Kim 1992). The next step

in this area will be to further explore the capabilities of these networks in recognizing

transients that are symptomatically similar.

4.1.2 Method

We have applied information theory to select the variables that have the highest diag-

nostic values. This method has reduced the confusion in the network by eliminating

redundant variables and variables with low information content.

Training a neural network to diagnose similar transients is a very difficult task, es-

pecially when the number of these transients increases. Applying information theory
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to select the important variables and other techniques to find the optimal network

architecture will ease the training problem and improve the generalization ability of

the network. Determining the appropriate network architecture for a given problem

before training is a very important task. Too many nodes in a network will signifi-

cantly increase the training time and will make it easy for the network to fit the noise

of the training data, thus failing to generalize (Weigend, Rumelhart, _nd Huberman

1991). Different techniques for determining the optimal network architecture have

been investigated and a dynamic node scheme for the backpropagation neural net-

work has been developed here at ISU (Bartlett and Basu 1991, Bartlett and Uhrig

1991b). These techniques along with the selection of the plant's variables according

to their information contents will be applied to diagnose the similar transients.

The number of plant pr tess variables being collected from the Duane Arnold

Energy Center (DAEC) simui,tor is 97. This number can be increased to 300 (or

more) variables if the information content of the variables is not enough to diagnose

all of the similar transients of interest. However, discussions with the simulator

supervisor at DAEC led us to believe that 200 variables should be enough to diagnose

ali important similar transients in the plant.

4.1.3 Objective

The diagnostics adviser will consist of a root network connected to an array of branch

networks. One of these branches will be responsible for diagnosing transients that are

symptomatically similar. Special attention will be paid to these transients because

usually they are more difficult to identify and diagnose. Also a good benchmark for

the diagnostics adviser will be to test its performance in identifying these transients.
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4.1.4 Preliminary Results

The results below demonstrate the advantage of continuous monitoring, which is the

ability to detect malfunctions in a relatively short time.

The raw data that generated these results were collected without any addition

of new instrumentations to the plant. Readings were taken from currently used

measuring instruments in the plant. In other words, this system can be implemented

in the plant at a lower cost than other alternatives such as some expert systems

that require adding new instruments or periodic hand-h,_ld hlonitors (Frarey, Wilson,

Peterson and Bartlett 1984).

Figure 2 shows the network respond toward classifying two similar transients.

These transients were chosen by comparing the sequence of events that take place as

a consequence of the main transient. Description of the transients can be found in

Section 9 (Description of Collected Malfunction Data).

Information theory was applied to choose the most valuable 25 variables among

the 97 total number of variables that were trended. The oscillations at the beginning

of each accident means that the network has detected instability in the system, but it

is not sure which transient is in progress. When the RMS approaches zero, it means

that the network has decided which particular transient is in progress.

The network was able to recognize the first transient in a very short time (less than

4 seconds). For the second transient, however, the network took about ten seconds

to recognize it.

4.1.5 Conclusion and Future Work

The results show the feasibility oi using ANNs technology as a diagnostic tool for

similar transients in nuclear power plants. The next step is to further explore the

capabilities of these networks in diagnosing more of these similar transients.
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We are also investigating the classification of these transients in the frequency

domain. The way in which the monitored variables change during a transient can

be described in the freq,_ency domain using the Discrete Fourier Transform (DFT).

The frequency spectrum will be monitored on-line in one-second time slices for all

the variables. The changes in the frequency spectrum of the monitored variables

could lead to significant information relative to the diagnosis. Certain aspects of the

changes in the plant's conditions are more obvious in the frequency domain than they

are in the time domain. The DFT will magnify the importance of the variables that

are disturbed the most during the transient. The most disturbed variables usually

represent the measuring instruments in the vicinity of the transient, and hence are

directly affectedby the change in the plant's conditions. This method might be useful

to determine which variables have the highest diagnostics values. The transients

will be classified when certain frequency components appear or disappear from the

spectrum.

Because some variables oscillate during both the transient and the normal oper-

ating conditions, monitoring their oscillations in the time domain gives misleading

information to the network. This is because changes in the time domain will give

_. such variables a high diagnostic value, while actually they are not that important

from a diagnostic point of view. The frequency domain, on the other hand, monitors

the c_tt_nges in the frequency components of these variables, and the power spectrum
J

of the variables will measure the strength of the oscillations. This way, the variables

that oscillate with the same frequency before and after the transient's onset will be

disregarded because they carry no information about the transient. Classifying the

transients in the frequency domain might also be immune against noisy data since the

DFT a]lows us to filter the spectrum and reject very high frequencies which usually

correspond to noise.
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4.2 A Nuclear Power Plant Status Diagnostic Adviser Using A Dynamic

Node Architecture Backpropagation Neural Network

by Anujit Basu

4.2.1 Introduction

This section describes the development of an artificial neural network (ANN) based

nuclear power plant status diagnostic adviser. This adviser is used to detect and

distinguish seven distinct transients and normal operating conditions. The adviser

indicates if the plant is in a normal operating condition, and if not, which of these

seven transients it's going through. The transients were simulated on the full scale

control room simulator at the Duane Arnold Energy Center (DAEC) owned by Iowa

Electric Light and Power Company at Palo, IA. The goal of this ongoing project is

to install and test a prototype adviser in the technical support center at DAEC.

Every _ransient in a nuclear power plant is unique in the changes it causes in the

values of the various plant variables. So, by looking at the patterns in the variables

during a transient, it is possible to recognize the transient. ANNs are able to handle

this task because they are very good pattern classifiers.

The backpropagation learning algorithm (Hecht-Nielsen 1989) was used for this

work. In such neural networks, the number of nodes in the input and output layers

are set by the problem at hand (Caudill, 1988). The users' only real choice in net-

work design is the number of nodes in the hidden layer. Hidden layers are the layers

in between the input and output layers and are so called as they are isolated from

the outside environment. It is crucial to have the appropriate number of nodes in

the hidden layer because too many or too few hidden nodes will lead to unsatisfac-

tory training and post- training performance. Backpropagation require a prespecified

network architecture (or size) before training is initiated because this architecture se-
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lection is going to affect the learning speed and generalization abilities of the network.

Thus the effectiveness of a selected architecture can be assessed only after training

(Bartlett & Basu 1991). For large and complex problems of the kind involved in nu-

clear power plant diagnostics, the search for an appropriate ANN architecture would

prove to be an extremely time consuming affair involving a lot of guesswork. To

eliminate this guesswork, it is imperative to utilize a systematic method to arrive at a

proper network architecture. The Dynamic Node Architecture (DNA) scheme for the

backpropagation neural network (Bartlett & Basu 1991) was developed to do this.

4.2°2 Neural Networks

Most pattern recognition problems try to find a functional relation between the inputs

and the outputs• This is called a mapping. A mapping M given by (Bartlett & Basu

1991)

M( inputs ) = outputs ( 1)

can be modeled by an artificial neural network. The inputs and the outputs a_,_either

vectors or scalars.

This work used ANNs with only one hidden layer, so the networks had a total of

three layers, the input, hidden, and output layers. To be consistent, in this section

subscripts i, j and k shall refer to the input, hidden, and output nodes respectively,

and the subscript n shall refer to the nth training pattern. Let imaz, jma_r and kmaz

be the number of nodes in the three layers. Also let zi, xj and zk be the outputs of

the ith input, jth hidden, and kth output layer nodes respectively. It is to be noted

that the hidden and output nodes are the active nodes. The input layer nodes are

inactive in that their output is equal to their input. Thus, zi is also the input to the

ith input node. The input of the jth node in the hidden layer is the weighted sum of



the outputs of the input layer nodes. Mathematically,

irrlax

= Z (xi,n*a.j,i) (2)
i=1

where xi., is the output of the ith input node for the nth training pattern and aj,i

is the weight connecting the jth hidden node and the ith input node. The transfer

function used in this work was the sigmoid function. The output of the jth hidden

node, xj.,_, after passing the input through the transfer function, is given by

1

xj,,_ = {1 + exp(-sumj,n)} (3)

where sumj,, is given by Eq.(2). Similarly, the input to the kth output node is

jrnax

sumk,n = _ (xj,,_ * b_,j) (4)
j=l

where xj,n is given by Eq.(3), and b_,j is the weight connecting the kth output layer

node and the jth hidden layer node. As with the hidden layer, the output of the kth

output node, x_,n, is given by

1

xk,. {1 4- exp(-sumk,,_)} (5)

By the above computations, the output of the network for the given weight set can

be calculated for a given pattern. A measure of the performance of a neural network

is the Root Mean Square (RMS) error in the output of the network. This error is a

function of the existing weight set. It can be defined as

1 N kmaz

)2 1/2RM'S error = E(ai,i,b_,j ) = { N • kmax y_[ y_ (z_,. - xk,n ]} (6)
n=l k=l

where z_,, is the expected output of the kth output node for the nth training pattern,

i.e. this is the value we want x_,, to reach. The N in the above equation is the total

number of patterns in the training set.

Backpropagation (Hecht-Nielsen 1989) is by far the most commonly used neural

network paradigm. Its popularity arises from its simple architecture and easy to
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understand learning process. The backpropagation scheme consists of two major

passes through the network (Lippmann 1987). The first is the forward activation

flow, which gives the output of the network for the given input and the current set

of weights. The second sweep is the backward error propagation that calculates the

error in the output of all the active nodes. This process of assigning errors to ali the

active nodes allows us to apply the Delta rule to the output nodes and the Generalized

Delta rule to the hidden nodes to arrive at a new set of weights that is nearer to the

ideal weight set that we are seeking. This process is continued until the RMS error

(Eq. 6) falls below a prespecified value.

The weights specifying the trained network are then used to solve the particular

problem. The network is presented with input patterns that it may or may not have

encountered during the training process. This process using the trained ANN is called

the recall.

4.2.3 Dynamic Node Architecture

The generalization capabilities of ANNs are strongly dependent on their architecture.

Theoretically, it might be possible to make the RMS error very low over a training

set with a network of some arbitrary size (Hecht-Nielsen 1989), but such an approach

does not guarantee generalization of features. Generalization is "the ability to quanti-

tatively estimate the characteristics of a phenomenon never encountered before based

on its similarities with things already known" (Bartlett & Basu 1991 ). Generalization

is very important since the ultimate objective of the whole exercise is to minimize the

recall error. But the recall set is rarely known during training for real-world prob-

lems. A good generalizer will be able to weed out the general characteristics from

the training set and will correctly classify unseen (not used, during training) patterns

without being involved or led astray with the specifics of the training data set. This

effective generalization requires that the network has just the right amount of ability



to distinguish details. ANNs derive this ability from their nodes and weights. Thus it

is imperative to have an ANN with the appropriate architecture to solve a problem.

Too few nodes will result in a network too slow to train; in fact it might even be

untrainable. A network with too many nodes, on the other hand, will memorize the

training set and will have a poor recall performance (Caudill 1988).

In the problem studied here involving nuclear power plant diagnostics, the formu-

lation of the training set was in our hands. We attempted to reduce the recall error

using as few of the recall patterns as possible during training. When we found that

the recall error got very high in a particular region, the pattern corresponding to the

highest error in the region was added to the training set. In this way, the training

set was being forced into a fairly accurate representation of the recall set. Good

generalization helped keep the training set size as small as possible.

The problem of network size can be likened to finding the interpolating polyno-

mial between various points (Bartlett & Basu 1991). A reasonably small degree of

the polynomial will give a fairly smooth curve. But as the degree of the polynomial

increases, the curve starts oscillating between the interpolating points and becomes

chaotic. Similar is the case with an ANN with too many nodes. But in the nuclear

power plant diagnostics problem, we are able to force the training set to be represen-

tative of the recall set. In the polynomial interpolation analogy, this is akin to being

able to add those points that are away from the smooth interpolating curve, and try

to find a new interpolation. In this case, it is that much more important to be able

to get the smoothest interpolating curve so that the least number of points need to

be used to find the proper interpolation.

The Dynamic Node Architecture scheme works as follows. Training is initiated

with as few hidden nodes as possible, which in this work was usually one node. In all

likelihood, the network will be unable to learn the mapping. As the network reaches
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a plateau, add one more node. Keep repeating the process till the network is able to

learn the mapping (indicated by a value of RMS error smaller than a preset value).

Once this is done, eliminate a node with the least importance. If this node had a

near-zero importance, then we will be removing a virtually useless node (Bartlett

& Basu 1991). This smaller network might now be able to learn the classification

problem upon further training. This procedure of deleting nodes is continued till the

network has become so small that it cannot learn the classification any more• Then

start adding nodes till the network can relearn the classification. This cycfic addition

and deletion of nodes leads to a final network that has the optimum architecture for

the given problem. This network should give a "more general implementation of the

mapping problem" (Bartlett & Basu 1991). The procedure described here can be

understood from the computer simulation results given later.

4.2.4 Importance of a Node

While deleting a node, we select one with the least importance. The importance of a

node is a function of the network outputs. If changes in the output of a hidden node

is detrimental in deciding the output of the network more than a similar change in

the output of another hidden node, it stands to reason that the former node is more

important to the "dynamic functioning of the network" (Bartlett & Basu 1991) than

the later node. Therefore, the importance of the jth hidden node with respect to the

kth output node can be defined as (Bartlett & Basu 1991)

I(_,l_h) : E[ 6x_._/6xj,, ]. dx? ":_ (7)

where E[ ] is the expectation over the entire training set and dx_ ax is the maximum

change in the output of the jth hidden node also over the entire training set. This

importance function is called the derivative importance function. The derivative in

the previous equation, which is the change in output of the kth output node due to a
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change in output of the jth hidden node, can be evaluated by partial differentiation

of the transfer function. This gives

6x_,,_ exp( -- sumk,n ) * bk,j

- [1+ (s)

where sum a.n is of the form given by Eq.(5). Equation (7) gives us the partial impor-

tance of the jth hidden node with respect to the kth output node. In case of more

than one hidden layer, the importance of any hidden node with respect to any output

node can be found out using the chain rule. The total importance of the jth hidden

node is the sum of the partial importances of that node with respect to all the output

nodes. Mathematically,
]¢rtr _ ;r

I(_) = _ I(_,1_, ) (9)
k-1

In this same way, we can define the importance of a layer as the sum of the importances

of the nodes in that layer.

4.2.5 Demonstration on Simple Examples

This section demonstrates how a backpropagation neural network learns with DNA.

For this purpose, three different problems are selected. The first is the Exclusive-nor

problem; the second is the 8-to-1 decoder problem; and the third is a probability

density function separator problem.

The Exclusive-Nor Problem

The most basic benchmark learning problem for a neural network is the exclusive-

nor problem. The training data is shown in Table 4 This is a simple two-input

one-output problem. The DNA training algorithm was started with one hidden node.

Thus the starting architecture was 2 x 1 x 1. Table 5 shows the training history for

this problem. The starting architecture is, as expected, unable to learn the problem.

A second node is added. This architecture also reaches a plateau, and a third node
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Table 4: Exclusive-nor training data

Pattern Input 1 Input2 Output
1 0.0 0.0 1.0
2 0.0 1.0 0.0
3 1.0 0.0 0.0
4 1.0 1.0 1.0

Table 5: Dynamic node architecture training history for the exclusive-nor problem
Arch. RMS Arch. RMS Arch. RMS

In Hid Out Error In Hid Out Error In Hid Out Error
2 1 1 0.5012 2 3 1 0.0179 2 4 1 0.0283
2 1 1 0.3872 2 4 1 0.0193 2 4 1 0.0099
2 2 1 0.3907 2 4 1 0.0099 2 3 1 0.0288
2 2 1 0.1106 2 3 1 0.0224 2 3 1 0.0098
2 3 1 0.1190 2 3 1 0.0097 2 2 1 " 0.0684
2 3 1 0.0338 2 2 1 0.0423 2 2 1 0.0099
2 4 1 0.0413 2 2 1 0.0099 2 1 1 0.4996
2 4 1 0.0099 2 1 1 0.4998 2 1 1 0.4922
2 3 1 0.0252 2 1 1 0.4929 2 2 1 0.4218
2 3 1 0.0098 2 2 1 0.3219 2 2 1 0.1452
2 2 1 0.0624 2 2 1 0.0623 2 3 1 0.1826
2 2 1 0.0211 2 3 1 0.0668 2 3 1 0.0164
2 3 1 0.0302 2 3 1 0.0148 2 4 1 0.0239
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is added. This 2 x 3 x 1 architecture is unable to learn the problem fast enough, and

a fourth node is added. The 2 x 4 x 1 architecture manages to reach an RMS error

below the target of 0.01. Now, the node with the least importance is deleted. This

leaves three nodes in the hidden layer. This architecture is now able to reach the

target RMS error, and yet another node is deleted. We find that on further training,

the 2 x 2 x 1 network is also able to learn the problem classification. The further

elimination of a node renders the network with only one hidden node. This is not

sufficient to learn the problem, and a node is added. This process is continued and

the algorithm oscillates around the optimum architecture as can be seen from Table

2. It is also evident that 2 x 2 x 1 is the appropriate architecture for the problem.

The 8-to-1 Decoder Problem

Eight distinct patterns can be made using three booleans. This problem involves

firing one of eight output nodes for each of the eight patterns. So there are three

inputs and eight outputs. The training data for this problem can be found in Table

6. As with the exclusive-nor problem, training is started with one hidden layer. So the

starting architecture is 3 x 1 x 8. The training history for this problem can be found

in Table 7. The training process is very similar to that for the exclusive- nor problem.

The target RMS error was 0.01. The network kept adding nodes till the RMS error

finally fell below the target with six hidden nodes. Then nodes began to be deleted till

at three hidden nodes, the network was unable to learn the problem. Following this,

nodes began to be added, and the oscillations noticed in the previous example are

witnessed here too. As can be seen from Table 4, the optimum architecture arrived

at by the DNA scheme is 3 x 4 x 8.

The Probability Density Function Separator Problem

In this problem, an artificial neural network with DNA is taught to recognize

which of two probability density functions was used to sample a set of ten numbers.
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Table 6:8-to-1 decoder training data
Pattern

1 Inputs 0.0 0.0 0.0
Outputs 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Inputs 0.0 0.0 1.0
Outputs 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

3 Inputs 0.0 1.0 0.0
Outputs 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

4 Inputs 0.0 1.0 1.0
Outputs 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

5 Inputs 1.0 0.0 0.0
Outputs 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

6 Inputs 1.0 0.0 1.0
Outputs 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

7 Inputs 1.0 1.0 0.0
Outputs 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

8 Inputs 1.0 1.0 1.0
Outputs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 7: Dynamicnode architecture training history for the 8-to--1decoderproblem
Arch. RMS Arch. RMS Arch. RMS

In Hid Out Error In Hid Out Error In Hid Out Error
3 1 8 0.5162 3 4 8 0.1267 3 5 8 0.0622
3 1 8 0.4872 3 4 8 0.0098 3 5 8 0.0099
3 2 8 0.4216 3 3 8 0.2218 3 4 8 0.0503
3 2 8 0.2935 3 3 8 0.0834 3 4 8 0.0091
3 3 8 0.3354 3 4 8 0.1679 3 3 8 0.1148
3 3 8 0.1974 3 4 8 0.0210 3 3 8 0.0734
3 4 8 0.2192 3 5 8 0.0604 3 4 8 0.1427
3 4 8 0.0895 3 5 8 0.0098 3 4 8 0.0323
3 5 8 0.1248 3 4 8 0.0944 3 5 8 0.0910
3 5 8 0.0227 3 4 8 0.0099 3 5 8 0.0247
3 6 8 0.0518 3 3 8 0.2421 3 6 8 0.0402
3 6 8 0.0099 3 3 8 0.0828 3 6 8 0.0098
3 5 8 0.0826 3 4 8 0.1004 3 5 8 0.0826
3 5 8 0.0099 3 4 8 0.0315 3 5 8 0.0096
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Table 8: Probability density function separator training data
[ n p u t s Out

0.388 0.099 0.327 0.892 0.394 0.036 0.505 0.571 0.383 0.454 0.0

0.628 0.996 0.487 0.628 0.953 0.873 0.365 0.917 0.899 0.666 l.O

0.892 0.099 0.394 0.034 0.695 0.6!9 0.223 O.Oll 0.126 0.020 0.0
0.996 0.628 0.873 0.480 0.970 0.953 0.766 0.365 0.666 0.425 1.0

0.099 0.034 0.619 0.091 0.350 0.695 0.316 0.223 0.020 0.120 0.0

0.628 0.480 0.953 0.614 0.850 0.970 0.830 0.766 0.425 0.658 1.0

0.034 0.091 0.695 0.227 0.580 0.350 0.375 0.316 0.120 0.503 0.0
0.480 0.614 0.970 0.769 0.943 0.850 0.863 0.830 0.658 0.918 1.0

Table 9: Dynamic node architecture training history for the probability density function separator
problem

Arch. RMS Arch. RMS Arch. RMS

In Hid Out Error In Hid Out Error In Hid Out Error

10 1 1 0.4999 10 3 1 0.0662 10 3 1 0.0992

10 2 1 0.3454 10 4 1 0.5019 10 4 1 0.1492

10 2 1 0.2055 10 4 1 0.4404 10 4 1 0.0623
10 3 1 0.2819 10 5 1 0.3216 10 5 1 0.0812

10 3 1 0.1448 10 5 1 0.0422 10 5 1 0.0488

10 4 1 0.1403 10 4 1 0.0918 10 4 1 0.1008

10 4 1 0.0413 10 4 1 0.0488 10 4 1 0.0402

10 3 1 0.1304 10 3 1 0.1281 10 3 1 0.0961

Figure 3 shows the two probability density functions. If function A was used to do

the sampling, then the proper network output was chosen to be 0.00; if function B

were used, the output was to be 1.00. Table 8 shows the training data.

Table 9 gives the dynamic node architecture training history for this problem.

The problem, as defined, gives us ten input and one output layer nodes. We start

with one hidden node and very soon reach a plateau and add a secondnode to the

hidden node. This is continued till the number of nodes becomes four. The 10 x 4 x

1 network manages to learn the problem to a sufficient level of accuracy. The target

RMS error for this problem was set at 0.05. As this is reached, the network computes

the importance of each of the four hidden nodes and deletes the one with the least

nodal importance. This smaller network, 10 x 3 x 1, is unable to reach an RMS below
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FUNCTION A : f(X) = 0.5_Cos(_X/2)

OUTPUT : 0.00

FUNCTION B : f(X) = 4X 3

OUTPUT ." 1.00

3.0 FUNCTION B

x2 8

"" FUNCTION A

Figure 3: The two probability density functions used for the PDF sepnrntor problem.
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Table 10: Comparative recall performc.nceof neural networks derived by DNA and FNA schemes
Problem Architecture Scheme Train. RMS Recall RMS

error error

Exclus- 2 x 2 x 1 DNA 9.9956E-03 0.00999

lye-nor 2 x 5 x 1 FNA 9.9278E-03 0.01831
2 x 10 x 1 FNA 9.7582E-03 0.01983

8-to-1 3 x 4 x 8 DNA 9.0636E-03 0.00906

decoder 3 x _ x 8 FNA 9.3911E-03 0.03642
3 x 10 x 8 FNA 9.6355E-03 0.03849

the target upon further training, so a fourth node is added. Because this architecture

does not lcarn the mapping fast enough a fifth node is added. When this 10 x 5 x 1

network is able to reach the target RMS error, one node is eLminated and the process

continues. The scheme oscillates around the optimum architecture, which in ti,is ca,e

is the 10 x 4 x 1 network.

Recall Performance

Further computer simulations were carried out for the exclusive-n_,r and 8-to-1

decoder problems to compare the effectiveness of the networks derived by the DNA

scheme with those derived using a fixed node architecture (FNA) scheme.

The DNA scheme gave a 2 x 2 x 1 network as the optimum for the exclusive-

nor problem. Two networks with 2 x 5 x 1 and 2 x 10 x 1 architectures were also

trained on the exclusive-::or prob'em. These three networks were used to recall on

data corrupted by noise. The noise added was uniform 1 All networks were trained to

t:te same level of accuracy. The results prove the earlier assertions about the benefits

of architecture optimization.

4.2.,q Power Plant Diagnostics

This work uses the DNA scheme in a backpropagation neural network to create an

"|i!! ANN based adviser that is able to recognize37and classify seven different accidents and



normal operating conditions. The data for this work was simulated at the DAEC

simulator. The seven accidents are

• recirculation loop 'A' rupture inside the primary containment (RR15)

• main feedwater line 'A' break inside primary containment (FWl7)

• loss of extraction steam to feedwater heaters (MS14)

• High Pressure Coolant Injection (HPCI) steam supply line break in HPCI room

(HP05)

• condensate pump 'A' trip (FW02)

• main steam line 'A' rupture inside primary containment (MS03) and

• main circulation water pump 'A' trip (MC01).

Descriptions of all these accidents can be found in the A],pendix. These accidents

were simulated for various intervals of time till the plant re_Lcheda more or less stable

condition. In each case there are a few seconds of normal operating condition before

the malfunction is inserted.

For these seven accidents , we had collected the values of eighty-one variables that

were used to train the adviser. A listing of these variables can be found in Table 11.

The data was normalized between 0.1 and 0.9. So a normalized value of 0.9 would

correspond to a 100% meter reading in the plant for that variable. Also, for each

accident and the normal condition we had a unique combination of three binaries.

But consistent with the extremities of the normalized values, these were 0.1 and 0.9

rather than the usual 0 and 1. The seven accidents, their expected outputs and length

of simulation can be found in Table 9.



Table 11: The 81 variables trended for the seven transients.
Number Variable Description

1 A041 Local power range monitor 6-25 flux level B

2 A091 Source range monitor channel B

3 B000 Average power range monitor A Flux level
4 B012 Reactor total core flow

5 B013 Reactor core pressure-differential
6 B014 Control rod drive system flow

7 BO15 Reactor feedwater loop A flow

8 B016 Reactor feedwater loop B flow
9 B017 Cleanup system flow
10 B022 Total steam flow

11 B023 Cleanup system inlet temperature

12 B024 Cleanup system outlet temperature
13 B026 Recirculation loop A1 drive flow

14 B028 Recirculation loop B1 drive flow

15 B030 Reactor feedwater channel A1 temperature

16 B032 Reactor feedwater channel B1 temperature

17 B034 Recirculation loop A1 inlet temperature
18 B036 Recirculation loop B1 inlet temperature

19 B038 Recirculation A wide range temperature

20 B039 Recirculation B wide range temperature
21 B061 Reactor coolant total jet pumps 1-8 flow B

22 B062 Reactor coolant total jet pumps 9-16 flow A
23 B063 Reactor coolant total outlet steam flow A

24 B064 Reactor coolant total outlet steam flow B
25 B065 Reactor coolant total outlet steam flow C

26 B066 Reactor coolant total outlet steam flow D

27 B079 Reactor recirculation pump A motor vibration

28 B080 Reactor recirculation pump B motor vibration

29 B083 Control rod drive cooling-water differential pressure
30 B084 Control rod drive cooling-water differential pressure

31 B085 Torus air temperature #1

32 B086 Torus air temperature #2

33 B087 Torus air temperature #3
34 B088 Torus air temperature #4

35 B089 Drywell temperature azmuth 0 elevation 750

36 B090 Drywell temperature azmuth 245 elevation 750

37 B091 Drywell temperature azmuth 90 elevation 765

38 B092 Drywell temperature azmuth 270 elevation 765
39 B093 Drywell temperature azmuth 270 elevation 765

40 B094 Drywell temperature azmuth 180 elevation 780

41 B095 Drywell temperature azmuth 270 elevation 830
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Table 11: . . . continued

42 B096 Drywell temperature center elevation 750

43 B098 Torus water temperature

44 B099 Torus water temperature
45 B 103 Drywell pressure

46 B104 Torus pressure
47 B 105 Torus water level

48 B120 Torus radiation monitor A
49 B121 Torus radiation monitor B

50 B122 Reactor water level

.51 B125 Fuel zone level indication

.51 B126 Reactor water level

53 B137 Torus water level

54 B138 Torus water level

55 Bl50 Core spray A flow
56 B 151 Core spray b flow

57 B 160 Reactor core isolation cooling
58 Bl61 High-pressure core injection
59 B162 Residual heat removal A flow
60 B163 Residual heat removal B flow

61 B164 Drywell radiation monitor A

62 B165 Drywell radiation monitor B

63 B166 Post-treat activity
64 B 168 Pretreat activity

65 Bl7] Analyzer A O_ concentration

66 B172 Analyzer A H2 concentration

67 B173 Analyzer B O_ concentration
78 B174 Analyzer B Hz concentration

69 Bl80 Clean-up system flow
70 B196 Reactor water level-fuel zone A

71 B197 Reactor water level-fuel zone B

72 B247 Turbine steam bypass

73 B248 Turbine steam bypass
74 E000 4160 V Switch Gear bus 1Al A-B

75 F004 Condensate pump A&B discharge pressure

76 F040 lP-lA reactor feed pump suction pressure

77 F041 1P-1B reactor feed pump suction pressure

78 F042 lP-lA reactor feed pump discharge pressure

79 F043 1P-1B reactor feed pump discharge
80 F094 Feedwater final pressure

81 G001 Generator gross watts
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4.2.7 Training the Adviser

The adviser is trained to recognize the plant status by looking at the values of the

plant data at any given moment of time. The value of the 81 variables at any time

is thought to contain enough information as to make this possible (Bartlett & Uhrig

1992b). The training data is selected in an iterative manner (Bartlett 1990, Bartlett &

Uhrig 1991b, Bartlett & Uhrig 1992b). In the first trial, the patterns at the beginning

and the end of each of the seven simulations are used as the training set. The training

was begun with 1 hidden node, so the starting architecture was 81 x 1 x 3. The first

trial was with 14 training patterns. The trained network was then used to recall on

the whole length of the simulations, and the RMS errors of the outputs for each of

the patterns was plotted out. Obviously, the network does not do a very good job

of classifying all the patterns. The patterns with the worst recall errors are added

to the training data set, and the network from the previous trial is used to further

train the network. This process is repeated till the network can successfully detect

all the accidents within a reasonable amount of time. Care is taken so that patterns

too close to the initiating event are not included in the training set. This is because

these patterns exist at a time when the plant is highly unstable, and inclusion of the

same might confuse the ANN. Information about the various trials is in Table 10.

As seen from Table 13, the final architecture for the adviser was 81 x 36 x 3. The

output RMS error of this adviser for the seven simulations can be seen in Figs. 4

through 10. This work did not investigate scenarios where the data was corrupted

by noise. As can be seen from the figures, most of the accidents are detected fairly

quickly by the adviser. One notable exception is the trip of the main circulation

water pump. This takes about 80 seconds to be detected. But the plant remains in

an unstable state for a long time after the onset of the initiating condition in this

case.
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Table 12: Networkoutput, simulation time and time to detect each scenario.
Transient scenario Desired output node Transient Scram Transient

activation simulation time diagnosis
time time

1 2 3 (in sec) (in sec ) (in sec)

Recirculation loop'A' 0.1 0.1 0.9 304 1 17
rupture inside primary
containment (RR15)

Main feedwater line 'A' 0.1 0.9 0.1 316 4 22

break inside of primary
containment (FWl 7)

Loss of extraction steam 0.1 0.9 0.9 346 214 32
to feedwater heater

(MS14)

HPCI steamsupplyline 0.9 0.I 0.i 78 - 15
breakinsideHPCI room

(HP05)

Condensatepump _A'trip 0.9 0.i 0.9 764 - 38
(FW02)

Main steam line 'A' 0.9 0.9 0.1 165 8 14

rupture inside primary
containment (MS03)

Main circulation water 0.9 0.9 0.9 586 - 75

pump 'A' trip
(MC01)

Normal condition 0.1 0.1 0.1 - - -
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Table 13: Training in_rmation of the adviser.
Trial Num. of training Num. of hidden nodes

pat terns Start End
1. 14 1 7

'2. 56 Z 13

3. 90 13 17

4. 127 17 22
5. 169 22 24

6. 193 24 26

7. 230 26 30
8. 246 3O 30

9. 262 30 35

10. 264 35 36

4.2.8 Conclusions

A systematic method to arrive at the appropriate network architecture for any given

problem has been presented. This method is used to arrive at an ANN based adviser to

detect and distinguish the seven accidents. The adviser is expected to be quite robust

and quick to respond in an emergency. Further work might include the broadening

of the scenarios investigated with a proportional increase in the number of plant

variables trended. Also, the application of the importance function to the input

nodes to determine the importance of the various inputs shows promise (Lanc 1991),

further work needs to fie done in that respect.
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4.3 Application of Artificial Neural Networks for Nuclear Power Plant

Diagnostics

by ('halapathy V. Dhanwada

The use of Artificial Neural Networks (ANNs) for nuclear power plant diagnostics is

an innovative approach for improved plant safety. ANNs capable of a fast assessment

of plant status were shown to be feasible in the past [(Bartlett and Uhrig, 1992;

Ikonomopoulos et al. 1991). Currently, the use o( ANNs in plant diagnostics is being

investigated in the Nuclear Engineering Department at Iowa State University. The

research work is focused on developing ANN paradigms capable of fast and accurate

diugnosis of incipient abnormal conditions. An ANN based adviser suitable for use in

plant control room is envisaged• Such an adviser can improve plant safety by directing

the attention ,_f the operators to abnormal conditions as soon as they occur. It also

assists the operators in their decision process by furnishing its fast diagnosis of these

conditions. The author's activiti¢.s under the research project are summarized in this

chapter.

4.3.1 Introduction

A_.ormalities occurring in a nuclear power plant and their classificationare briefly

discussed in this section. An introduct'on to artificial neural networks and their

application to plant diagnostics is also given.

4.3.2 Plant Abnormalities

Abnormalities occurring in a plant may be classified as incidents, transients, or acci-

dents tiepending upon their severity. The Nuclear Regulatory Commission has divided

the spectrum of possible abnormalities into nine classes, in increasing order of sever-

ity. A summary of this classification is shown in Table 14. An abnormality can be
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triggered by a malfunction. As a result, a transient may occur and could develop

into an accident depending on the type of malfuaction. Usually a scram may occur,

or a safety system may be actuated to stall or revert the progress of undesirable

events. However, under the remote possibility that all safe_y systems fail, release

of radioactivity into the environment may result. The purpose of using ANNs is to

recognize the abnormality as soon as possible after its inception. Its diagnosis within

the transient portion is desirable as that allows more time for the operators to take

proper actions.

Several simulated abnormalities were considered by the author for recognition by

ANNs. They represent a variety of malfunctions and a range of severity. The ab-

normalities are discussed in more detail in the next section. The ANNs were trained

until the selected abnormalities could be classified within the transient portion. The

abnormalities are referred to as "transients" in the following report.

4.3.3 Artlfieial Neural Networks

The structure of an artificial neural network is based on present understanding of bi-

ological neural systems. A network is composed of nodes and weights. The nodes are

nonlinear computational elements and are linked to other nodes by weights. Thus,

the output of a node is weighed and passed as input to other node(s). In its ele-

mentary form, a node sums all its inputs and passes the result through a nonlinear

function. The weights of the network are variable. The set of rules which specify

the initial weights and stipulate how they should be changed in order to improve the

net's performance is called the training or learning algorithm. Several ANN training

algorithms are available in the literature [Lippmann 1987, Widrow and Lehr 1990). In

the present work the backpropagation (BP) technique (Hecht-Nielsen 1989) is used.

The following discussion is restricted to ANN structure as applicable to multilayer

networks trained using the BP technique.
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Table 14: NRC Classificationof plant abnormalities.
('lass I Trivial incidents.

(',lass 2 Small releases outside containment.

('lass 3 Radwaste system failures.
3.1 Equipment leakage or malfunction.
3.2 Release of waste gas storage tank contents.
3.3 Release of liquid waste storage tank contents.

('.lass 4 Fission products to primary system (BWR).
4.1 Fuel cladding defects.
4.2 Off design transients that induce fuel failures above those

expected.

('.lass 5 Fission products to primary and secondary systems (PWR).
5.1 Fuel cladding defects and steam generator leaks.
.5.2 Off design transients that induce fuel failures above those

expected
and steam generator leak.

5.3 Steam generator tube rupture.

('.lass 6 Refueling accidents.
6.1 Fuel bundle drop.
6.2 Heavy object drop onto fuel in core.

Class T Spent fuel handling accident.
7.1 Fuel assembly drop in fuel storage pool.
7.2 Heavy object drop onto fuel rack.
7.3 Fuel cask drop.

('.lass 8 Accident initiation events considered in design basis
evaluation in the safety analysis report.

8.1 Loss-of-coolant accidents.

8.1(a) Break in instrument line from primary system that penetrates
the containment.

8.2(a) Rod ejection accident (P WR).
8.2(b) Rod drop accident (BWR).
8.3(a) Steam line breaks (PWR's outside containment).
8.3(b) Steam line breaks (BWR).

Class 9 Events more serious than class 8 events. They are highly
improbable. For example, complete loss of on-site and off-site
power concurrent with LOCA, sudden rupture of the pressure
vessel, or containment rupture due to an aircraft impact.
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The schematic diagram of a three-layered network is shown in Fig. 11. A network

layer is composed of one or more nodes. Each node of a layer is linked to each

node of the next layer by a weight. Thus, the outputs from nodes of a layer are

weighed and passed as inputs to the nodes of the next layer. In the form used here,

a node sums its weighted inputs and passes the result through a sigmoid function.

A layered ANN structure consists of a set of network inputs, one output layer, and

one or more intermediate (or hidden) layers that separate the inputs from output

• layer. Each network input is linked to each node of the first hidden layer by a weight.

Thus, the inputs to the network are not directly connected to any nodes. However,

it is customary to refer to the set of inputs as the "input layer". This convention

was found to be convenient and will be used in the following discussion. During the

training procedure of the network, the weights are adjusted according to the training

algorithm in order to improve its performance. The network is said to "learn" its

training data during training. Training continues until desired accuracy of learning

is attained.

In the current work, training is performed using the BP technique. The inputs

to the network are propagated forward from one layer to the next in a sequential

manner through the interconnecting weights until the output layer is reached. The

actual outputs are compared with desired outputs. The error in the outputs is used

as a measure of accuracy with which the network has learned its training data. The

errors are propagated back into the hidden layers. The weights are adjusted by an

amount proportional to the errors they cause. The feed-forward, backpropagation,

and weight adjustments are repeated until the errors are below a specified level. The

square root of the mean of squared errors in the output layer, referred to as the

rms-error, is used as the figure of merit for the network's performance. Thus, the

BP training technique is an iterative gradient algorithm designed to minimize the
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WEIGHTS

INPUT

LAYER

NETWORK INPUTS

Figure 11: Schematic diagram of a three layer neural network. Nodes are represented by circles and

weights by the interconnecting lines. This network has four inputs and two outputs represented by
the arrows. It has a single hidden layer with three nodes in it.
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rms-error.

In the preceding discussion, the network inputs and the desired outputs constitute

a training pattern. Often several such patterns have to be used for training in order

to obtain a network paradigm that performs the desired function. This set of training

patterns is called the training set. A valid training set consists of one or more training

patterns, each with the same number of inputs and same number of associated out-

puts. For a training set with more than one pattern, cumulative weight adjustments

for the training set are determined and then added to the original weights during each

iteration. This is known as batch training and is used in the following work.

A trained network will generate outputs with rms-error below the specified level

when input patterns from the training set are forward propagated. This is implied by

saying that the network has successfully "recalled" its training set. However, the real

use of ANNs lies in its capability to successfully recall patterns that are close (but

different from) the training set. This may be interpreted as a tolerance for noise in

recalling data and is known as the generalizing capability of the network. The degree

of generalization depends on the rms-error achieved during training. A high rms-error

implies the network has not learned its training set properly. A very small rms-error

means the network has "memorized" its training set and, therefore, will tolerate very

little noise in its recalling data. In the following work, data normalized between 0

and 1 is used for training and recalling. Usually an rms-error between 0.01 and 0.1

for this data resulted in the desired degree of generalization.

4.3.4 Using ANNs in Plant Diagnostics

An artificial neural network uses examples of plant transients as its model. The

network generalizes the characteristics of the examples during the training procedure.

The examples are called transients known to the network. The network classifies a

given situation based on its similarities with the examples. A particular transient is
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identified if it is akin to one of the known transients. Any transient that is significantly

different from all known transients cannot be classified successfully. Thus the domMn

of the network's "knowledge" is restricted only to its training examples. However,

ANNs are capable of fast and accurate transient classification within their domain of

knowledge. This will be exemplified by their performance discussed in later sections.

A transient example consists of some selected plant variables such as the reactor

flux level, average coolant temperature, or others. The values of these variables are

recorded at regular intervals, say, one second. Usually data is recorded to cover the

entire transient and the safety actions or consequence following the transient. Raw

data is not suitable for training purposes. The variables are normalized to take values

between 0 and 1. The interrelationship between these variables gives an indication of

the plant operating status during the transient. The ANNs are trained to generalize

this relationship between the variables. The inputs of a training pattern consists of

the values of the variables for a part.icular recording time. The outputs are chosen

such that a unique ID may be assigned to each transient in the training examples.

For example, if four transient examples are present in a training set, two outputs may

be chosen with 00, 01, 10 and 11 as outputs for each example.

4.3.5 The ISU Accident Data Bank

An accident data bank for use by the ISU research team was set up at ISU. The data

bank consists of examples of power plant accidents which can be used for training

neural networks. Since this data forms an important component of the research work,

it is briefly described in this section.

The accident data was obtained from the Nuclear Power Plant Simulator at the

Duane Arnold Energy Center. Several examples of reactor abnormalities were chosen

for simulation. These examples differ in type and severity. A summary of all the

accidents simulated is included in Section 9. The ISU team held discussions with
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the simulator personnel to decide upon what accidents to simulate and what plant

variables to choose for inclusion in the data. The accidents chosen were generally

ones with severe consequences since these are most important from safety point of

view. The plant variables chosen are discussed in the next section.

4.3.6 Plant Variables

The term "plant variables" is used here to refer to all the variables the simulator

keeps track of during simulation. The plant variables total several hundred. Of these,

a subset (about three hundred) were chosen as possible inputs to the ANN based

adviser. The variables of this subset , referred to as trend variables here, will be

trended during accident simulation and written to a data file. The choice of these

trend variables is based on their importance from safety point of view.

During each simulation a maximum of only 100 trend variables can be written to

the data file. Since data for over three hundred variables is required, each simulation

is slated for repetition with different trend variable set each time. Currently, data is

being collected for the first set of trend variables. After data for the selected accidents

is collected for this set, the simulations will be repeated for the other sets of trend

variables.

Trend variables are of two types. The first type will be referred to as process

variables. For the accidents being simulated now, these are ninety-seven in number.

A list of all these variables is given in Table 2 (pages 9-12). The process variables are

common to all simulations.

The second type of variables are commonly called the Boolean variables. Unlike

process variables, the Boolean variables are not common to all accidents simulated.

They represent the malfunction particular to the accident being simulated, and they

take one of the two possible values of true and false. The malfunction takes effect when

the Boolean is set to true. Because a maximum of 100 trend variables can be chosen,
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there is room for three Boolean variables which is sufficient for the current work in

progress. Usually, only one Boolean is required to insert the desired malfunction. But

sometimes a safety feature can have an overriding effect on this inserted malfunction.

Thus, space is provided for two more Booleans so that appropriate malfunction may

be inserted for the overriding safety features.

4.3.7 Simulator Operation

.-k simulator that is "on" can operate in three basic states. It is in "'RUN" if ali

the conditions existing are normal, i.e., the simulator is in steady state operating

conditions. This state is assumed when the simulator is switched on, or when the

reset command is given. A second possible state is freeze, abbreviated "FRZ". The

simulator can be put on freeze at any desired point of time. All conditions existing at

the time freeze is initiated are preserved until the simulator is reset. When abnormal

conditions develop due to malfunctions inserted, a "Ieactor" scram can occur. This

is the third possible state. The simulator continues to run in "SCRAM" state until

reset. The freeze, reset, and run actions can be performed by either entering the

command at the terminal or by pressing the appropriate buttons provided for the

purpose. For the accidents simulated, the scram usually occurred as an automatic

action.

Before the accident simulation starts, certain initial conditions are chosen. For

example, conditions corresponding to the beginning, middle, or end of the fuel cycle

can be selected. Since the ANN based adviser should be able to classify accidents

independent of the initial conditions, data is being collected for each initial conditions.

The next step is to load the trend variable list.

The simtflation is performed with help of a batch command file. This batch file

contains commands that puts the simulator on run and initiates a data collection

procedure. A waiting time of about five seconds is included to obtain readings for
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steady-state operation. Then the malfunctions as specified in the trend variable list

are inserted. The simulation continues with these conditions until brought to freeze

status through external command. This will mark the end of trend time. Typically,

trend times of three to five minutes were used. This raw data consists of a brief

description the accident followed by the values of the trend variables against time.

4.3.8 The Normalized Data

Computer programs were developed at ISU for reformatting and normalizing the raw

data files as brought from the D AEC simulator. The minimum and maximum values

each variable can take according to the instruments at the simulator were used to

normalize the data. For normalized values between 0 and 1, the following formula

was used:

Actual - Minimum

Normalized value = Maximum- Minimum (10)

The variables in the simulator programs, termed "engineering variables", have no

minimum or maximum limits imposed on them. It is possible for them to assume

values beyond the range of the instruments. Hence, some normalized values can take

negative values or values greater than one if the above equation is used. In such cases,

the normalized values were hard limited to whichever limit was exceeded. Along with

the normalized version of the accident data, information about each accident such as

the number of Boolean variables, number of process variables, and the time at which

malfunction is inserted is also generated.

4.3.9 Effect of Sensor Faults on Network Performance

A nuclear power plant has a complex arrangement of sensors which monitor various

plant systems. When these sensors perform according their design specifications, the

operating status of the plant may be assessed through their outputs. In the event

of an abnormal condition at the plant, the sensor outputs will enable plant status to
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be determined. Appropriate preventive measures may then be taken to counteract

progress of undesirable events. In this light, a malfunctioning sensor is a potential

safety concern because any deviation from normal in plant conditions may remain

undetected. Providing sensor redundancy is, therefore, a standard industry practice.

However, there is a small possibility that a total sensor failure will occur; and if it

occurs, plant safety will be in jeopardy.

Conventional control systems monitor the sensor outputs and indicate the plant

operating status through control room panel displays and CRT screens. Any abnormal

conditions will be indicated to the operating personnel through annunciators, flags, or

alarms. These control systems may also initiate automatic control actions if the type

and/or severity of the abnormality warrant such an action. Generally, a degree of

robustness is incorporated into these control systems so that a malfunctioning sensor

will not adversely effect their performance. But the type and severity of the sensor

malfunction can have a variable effect on their performance, such as misdiagnosing an

event. The objective of the present work is to simulate a sensor fault and investigate

its effect on the diagnosing ability of a neural network.

4.3.10 Training Data

The data used to perform the study was obtainedfrom the trainingsimulatorat

the San Onofre NuclearPower Plant. The data consistsof ten differentsimulated

transientscenarios.For each ofthesetransients,a totalofthirty-threeplantvariables

(common toall)were trendedforabout tenminutes.The variablesarelistedinTable

19 (page 81). From theseten data sets,two were chosento study the sensorfault

effects.These two data setsare:

i. Tripof_llreactorcoolantpumps

2. Tripofa single-reactorcoolantpump

6!
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In each transient, of the thirty-three variables, five variables common to both sets

remain constant throughout the trend time. They are:

1. Pressurizer relief steam flow

2. Pressurizer relief liquid flow

3. Source range counts (cps)

4. Reactor vessel head level

.5. Reactor vessel plenum level

These variables do not contain information useful for classifying the two transients.

Therefore, they have been eliminated from the data sets.

The data generated by the simulator cannot be used in its "raw" form for training

the diagnostic network. Each variable was normalized with respect to the minimum

and maximum values that variable takes in that data set, so that all values lie in the

range 0 and 1. The normalized data retains the information content of the original

data and is amenable for use in training the network. This is the data used in the

training procedure of the network, as will be explained soon. In what follows, this

data is referred to as "true data."

4.3.11 Network Architecture

The number of trend variables in the (true) data sets are twenty-eight. Accordingly

twenty-eight input nodes to the network were chosen. The two data sets represent two

distinct transients. Thus, to distinguish between the two, one node for output layer

was chosen; this will enable a representation of the first transient with output equal

to 0 and the second transient with output equal to 1. Other network architectures

are possible. For example, two output nodes can be chosen with 01 and 10 as the
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outputs representing the two transients. The input nodes can also be expanded with

the additional inputs chosen as some primitives of other inputs.

The number of hidden layers and the number of nodes in each hidden layer can be

varied from one to any higher number. After some initial trials, one hidden laver with

twenty-five nodes in it was chosen. Thus the final network dimensions are 28 x 25 x 1.

These dimensions remain fixed throughout our development here.

4.3.12 Training Procedure

The backpropagation algorithm was used for training the network on the true data.

The RMS-error to be achieved was set equal to 0.1. This relatively high value was

chosen with an intention of providing the trained network a degree of robustness

against data contaminated due to sensor faults.

The training procedure consists of two distinct steps recursively executed until

the network has achieved desired degree of generalization. The first step consists

of training the network on training data set using backpropagation algorithm. The

second step consists of using the network so obtained to "recall" or "feed-forward" the

patterns in the true data set. If the desired cost function was not achieved for every

pattern in the true data set, the training data set is modified in a manner explained

below, and the above two steps are repeated. Once the desired cost function is

achieved, the network parameters are saved and the training procedure ends.

Initially, the training data set is composed of four patterns. These four patterns

are the first and the last pattern of each true data set. The first step is executed

with this training set. The output generated by step two is analyzed, and some fairly

uniformly-spaced peaks are chosen for inclusion in the training set. The objective is to

train the network on those patterns which give high errors in the outputs. All peaks

need not be included, since in practice it has been observed that one newly included

peak tends to "pull down" its neighboring peaks after training. The expansion of the

63



training data set stops when ali the patterns in the true data set are recalled with

less than the specified RMS-error.

After the training procedure is complete, the network layout and weights are saved.

This will be referred to as "trained network" in the following discussion and was used

without any further modification to study the effects of simulated sensor faults.

4.3.13 Simulation of Sensor Faults

A sensor can malfunction in several ways. The sensor output in each case can be

different depending on, for example, the severity or the type of malfunction. In this

preliminary work, it was assumed that the sensor output assumes its minimum value

when it is malfunctioning. Thus the fault data was generated fro,,- the true data

by setting the value of a variable to zero throughout its trend time. It is possible

that more than one sensor of the twenty-eight (corresponding to twenty-eight trend

variables) can malfunction simultaneously. For example, two sensors can malfunction

due to a common cause failure. However, for now, it is assumed that only one sensor

can go bad at any time.

Two separate cases of sensor faults were considered. In the first case, the input

4 corresponding to the. Cold Leg lA Temperature (OF) was set to zero. Two fault

data sets for the two transients were generated from corresponding true data sets.

In the second case, input 14, which corresponds to Steam Generator Feedwater Flow

(gallons per min), was set to zero, and fault data sets were generated.

To study the effect of the simulated sensor faults, the fault data sets were propa-

gated forward through the network trained on the true data sets. The objective is to

examine the effect of the contamination in the data arising through simulated sensor

fault on the performance of the network. The outputs generated for various data sets

through feed-forward process by the trained network are now compared.
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4.3.14 Results

Figure 12 shows the network performance for true data set of accident (1). The

transient is successfally classified during the entire trend time. Figures 13 and 14

show the network performance with the simulated faults. Considerable deterioration

is seen: the transient is classified correctly only after 100-150 sec. However for accident

(2), no such deterioration occurs (Figs. 15, 16 and 17).
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4.4 A Network Tree For Accident Classification

by Chalapathy V. Dhanwada

Neural network training paradigms suitable for use in a diagnostic adviser were

developed earlier (see Sections 4.2, 4.6, 4.7.1, 10.5, 10.8 of this report; Bartlett 1990).

As a demonstration, these methods were applied to a small set of accidents to test

the ability of the networks to classify them in a timely manner and with as high an

accuracy as possible. Typically, a satisfactory performance was reported. However,

the total number of accidents in their training sets were usually ten or less. The ability

of artificial neural networks to classify a larger set of accidents remained untested.

Developing such a network will be a step towards building a diagnostic adviser capable

of classifying a range of accident conditions. Accordingly, in this work an attempt was

made to classify forty-one transient scenarios which included twenty-three distinct

transient conditions. A significant d.eparture from previous works was the use of

network tree structure (net-tree) in place of a single diagnostic network. The results

show that a successful classification of ali the forty-one scenarios can be achieved in

1 minutes, or less.3_

4.4.1 Introduction

Earlier works cited above used a single network to achieve the classifications. This

was usually found to be sufficient because of the small number of the accidents that

were used for classification. However, initial trials to classify forty-one scenarios using

a single network revealed several inadequacies of such an approach. The network size

tended to become large as the training proceeded towards achieving better diagnosis

time. This is to be expected because an expanded set of accidents would require a

larger network for their successful classification. Because of the range of accident

conditions, all ninety-seven available plant variables in the data sets were used as
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inputs to the network. The increased number of accidents required more nun:ber of

training patterns to be included in the training set. This resulted in long training

times. As a remedy, a network tree structure was used in the current work. This

allowed the problem to be divided into smaller independent parts. Despite an increase

in the complexity of training procedure, this approach provided some advantages such

as independent training of smaller networks for a relatively shorter amount of time.

The following sections describe this approach.

4.4.2 Network Tree

In an attempt _o alleviate the network size and training time requirements, a simple

network tree structure was used to replace the single network. A schematic diagram

of the net-tree used here is shown in Fig. 18. The net-tree is composed of several small

networks similar to the ones used in previous works. These individual networks are

independent of each other and each of them is trained to perform a distinct desired

function. It is intended that, once these smaller networks are trained and used in

the net-tree, a diagnostic adviser capable of classifying the accidents will be formed.

Since the scope of function of the smaller networks is limited, a small size is expected

to be adequate. Also,. since they are independent of each other, all the networks

can be trained simultaneously:. This is expected to take significantly lower training

time than would a single network that carries out the entire task. In Fig. 18, these

! During the course of this work, simultaneous access to five DECstation 3000/5000 machi!._es was available. The
net-tree has a total of six independent networks which shared these five machines during their craimng stage. Overall,
this resulted in the faster development of the net-tree.
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networks are represented as rectangular boxes. Each of them is labeled according the

function performed. Further description follows in the sections below.

4.4.3 The Accident Set

The set of forty-one accident scenarios considered for classification are listed in Ta-

ble 15. A brief description of the nature of each accident is also given. Further

description can be found in Section 9. The data was obtained from the training sim-

ulator at Duane Arnold Energy Center (Vest & Berchenbriter 1991). During each

simulation, data for ninety-seven plant variables was collected. These variables are

described in Table 2. In this work, all these ninety-seven variables are used as inputs

to the networks in the net-tree. Distinct binary coded outputs were assigned to each

accident. The twenty-three distinct accident conditions required five outputs to be

used for each accident. Some of these accidents were simulated at various severities.

For example, fwlSa, fw18a_2, fwlSa_3 are were simulated at 100%, 60%, and 30%

severity of the same malfunction. These different severity simulations of the same

accident condition were assigned the same output (See column Binary ID, Table 15).

It is expected that, if the net-tree establishes the nature of the accident condition,

another network to determine its severity (100%, 60,o70,or 30%) can be developed.

This later task is relatively easier due to the small set to be classified.

4.4.4 Root Network

The individual components of the net-tree are described in this and the following

sections. The function of the root network is to distinguish between normal (no-

accident) condition and an accident condition. The outputs of the node 1-5 networks

collectively establish the nature of the accident condition.

The root network has a single output. The output for a normal condition is 0, and

for an accident condition output is 1. Thus, for all the forty-one accident scenarios,
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DISPLAY NETWORK

SYSTEM TREE

CURRENT DESIGN

NODE 1 NODE 2 NODE 3 NODE 4 NODE 5

ROOT

NETWORK

NETWORK INPUTS
(97 PLANT VARIABLES)

Figure 18: Network-tree design used for the current adviser
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Table 15: List of transient scenarios considered for classification by the net-tree and their corre-
sponding binary IDs.

# Scenario Binary ID Description
E

1 [ cul0 00001 Coolant leakage outside primary containmentr
i 100% severity.

2 cul0gp5 00010 Malfunction cul0 with automatic group 5 isolation
1 overridden

3 t fw04a 00100 Condensate filter demineralization resin

! injection, 100% severity: 5% resin release.

4 fw09a 00101 Reactor feedwater pump tripl

.5 i fw17a_2 00110 Main feedwater line break inside primary

i containment, 60% severity

6 fw17a_3 00110 Main feedwater line break inside primary

containment, 30% severity

7 fw18a 00111 Main feedwater line break outside primary
I containment, 100% severity '

8 fw18a_2 00111 Main feedwater line break outside primary

I containment, 60% severity
9 I fwl8a_3 00111 Main feedwater line break outside primary

containment, 30% severity

l0 ! hp05_2 01000 High Pressure Coolant Injection (HPCI) steam

11 supply line break in HPCI room, 60% severity.hp05_3 01000 HPCI steam supply line break in HPCI room,

_0% severity

12 hp08_2 01001 HPCI steam supply line break in torus room,60% severity

13 hp08_3 01001 HPCI steam supply line break in torus room,
30% severity

14 . icl4scra 01010 spurious scram with initial condition IC14'
100% power, Beginning of Cycle (BOC,)

15 ic20hp05 01011 HPCI steam supply line break in HPCI room,

, supply line break in HPCI room, 100% severity.
16 ic20hp08 01100 HPCI steam supply line break in torus room,

100% severity.

17 ic20scrl 01101 spurious scram with initial condition IC20:

100% power, End of Cycle (EOC,).

Inadequate operator action, scram occurs.

18 ic20scr2 01101 spurious scram with IC20, 100% power, EO('.

Adequate operator action, scram prevented.

19 ic20scrm 01101 spurious scram with IC20, 100% power, EO('.
No operator action.



Table 15: ...Continue c[

i S. # Scenario Binary ID Description

L
20 ic22scrm 01110 spurious scram with initial condition IC22,

]1 25% power, beginning of cycle (BOC),21 ic23scrm 01111 spurious scram with initial condition I('23,

' 75% power, BOC,. ,
22 ic24scrm 10000 spurious scram with initial condition I(524,

i ,100% power,Middleof Cycle (MOC).
23 i ms02_2 10010 I RCIC line break insideprimary containment.

I 60% severity.

24 ms02_3 10010 RCIC line break inside primary containment.

i 30% severity.25 ms03a 10011 Main Steam Line (MSL) rupture inside primary

' containment, 100% severity.

26 msO3a_2 10011 MSL rupture inside primary containment,

i 60% severity
27 I ms03a_3 10011 MSL rupture inside primary containment,

I
30% severity

28 ms04a 10100 MSL rupture outside primary containment,

I _ 100%' severity.

29 ms04a_2 10100 MSL rupture outside primary containment,
I 60% severity.

30 I ms04a_3 10100 MSL rupture outside primary containment,
30% severity. ..

31 msl9ab 10101 Spurious group I isolation.

Feedwater relays A & B logic failure.

32 rp05tc01 10110 Trip of Main Turbine & failure to scram

33 rp5actcl ' 10ill Trip of Main Turbine, failure to scram

& Alternate Rod Insertion (ARI) failure

34 rrl0 11000 Recirculation pump speed feedback signal failure

35 rrl5a_2 11001 Recirculation loop rupture, 60% double-ended shear

36 rrl5a_3 11001 Recirculation loop rupture, 30% double-ended shear

37 rr30 11010 Coolant leakage inside primary containment,

100% severity.

38 ! rr30_2 11010 Coolant leakage inside primary containment,

100% severity. 60% severity.

39 rr30_3 11010 Coolant leakagelnside primary containment,
100% severity. 30% severity.

40 rx01 ll011 Fuel cladding failure, 100% severity.

41 tc02 11100 Electro Hydraulic Control (EHC) pump trip
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patterns corresponding to time prior to malfunction insertion are assigned an output

0, and the rest of the patterns are assigned an output 1.

The training of the root network was carried out in conventional manner. Two

patterns from each scenario, one picked from the start of the simulation (which corre-

sponds to no-accident condition) and other from the end of simulation form the initial

training set. After the desired training accuracy (0.1 RMS) was achieved, a recall was

performed for each of the accident scenarios. Patterns resulting in high recall error

were included progressively in the training set, starting with the ones near the end

of simulation, and the training procedure was repeated. The aim of the training was

to achieve output 0 for normal conditions and output 1 for any accident condition

as soon as possible after the malfunction insertion. The results of this training are

shown in Table 16. It is seen that the desired output is obtained in less than a minute

after malfunction insertion for all the accident scenarios. Thirty-four of the forty-one

scenarios are diagnosed in less than thirty seconds. Thus, independent of the next

level networks, the presence of accident conditions is established by the root network

in less than one minute following the initiating event.

As will be seen later, the purpose of using a root network is to reduce the size of

training sets for the group of networks which perform the accident classification. The

function of these "node networks" is described next.

4.4.5 The Classification Networks

Each accident condition has ninety-seven inputs and a distinct five digit binary code

assigned to it as the output. If a single network is used to train the accidents, a

97xXx5 dimension network would be required, where X represents the number of

hidden layers chosen and the nodes within each hidden layer. However, such an

approach would result in large network size and long training time requirements.

Hence, in the net-tree structure, five independent 97x Xx 1 networks replace the single
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Table 16: Diagnosis times for the forty-one accident scenarios for each individual network in the
net-tree. The last column lists overall net-tree diagnosis time for each accident

Scenario 'j Root i Node 1 Node 2 ' Node 3 Node 4 Node .5 Net-tree

cul0 31 14 l j 84 19 1 84

culOgp5 13t 193 78 I 202 1 106 202
fwO4a 52 211 144j 181 146 1 211

fw09a 7 I 23 13 1 4 1 23
fwlTa_2 11 154 17 116 3 128 154

i

fw17a_3 2 i 158 138 25 45 1 158
fwl8a 8 I 1 1 1 1 1 8
fw18a_2 17 1 39 34 10 65 65

fwl8a_3 14 31 4 1 .52 1 52 _

hp05_2 23 L 36 49 87 1 1 87
hp05_3 32 43 .51 , 85 1 1 8.5

hp08_2 37 94 1 i 1 1 1 94

hp08_3 _. 134 1 1 1 1 134
ic14scra 2 78 135 107 78 1 135

ic20hp05 14 72 72 73 1 1 73

ic20hp08 15 72 741 74 1 1 74

ic20scrl 1 i 3 88 55 84 1 88

ic20scr2 11 3 1 124 42 1 124

ic20scrm 1 23 85 55 79 1 85

ic22scra 21 78 1 117 1 2 117ic23scrm 116 53 79 78 80 116

ic24scrm 2 78 94 99 104 97 104

ms02_2 4 70 41 74 32 74 74

ms02_3 51 72 44 81 35 93 93

msO3a 8 100 136 79 3 13 136

msO3a_2 i! 164 7 65 4 54 164
i

msO3a_3 i: 147 14 71 29 69 147

msO4a 4 145 1 34 4 58 145

msO4a_2 4 137 I 35 4 58 137

msO4a_3 3 128 1 34 4 58 ].28

ms19ab 18 95 1 50 20 74 95

rpO5tcO1 22 102 106 19 49 16 106

rpSactcl 23 169 125 18 22 140 169
rrlO 41 140 1 54 1 146 146

rrl5a_2 2 81 157 179 171 15 179

rrl5a_3 2 2 86 89 80 140 140

rr3n 12 83 57 , 103 84 . 98 !03 I

:.r?f}_2 9 103 78 I 110 104 | 119 119 t

rr30_3 5 133 122 I 140 135 t 146 146

1
rx01 2 16 47 I 2 75 78 781

tc02 II 27 45 1 I 49 29 23 49 t
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network. While ali these smaller networks have common inputs, the single outputs are

the bits of the five-digit binary output assigned to the accidents. These networks are

labeled node 1, node 2, node 3, node 4 and node 5 in Fig. 18. Node 1 is trained on the

least significant bit of the five-digit binary output; node 5 network is trained on the

most significant bit. Node 2-Node 4 networks are trained on bit 2-bit 4 respectively.

The net-tree is said to give correct diagnosis of an accident condition if the output

of the five networks together forms the desired binary ID for that accident. Because

of the reduced number of outputs, these smaller networks individually take lesser

training time than a single larger five-output network.

Since the root network establishes the presence of an accident, the node networks

are relieved of performing this task. Thus, only the patterns corresponding to presence

of a malfunction were used to train these networks. The initial training set for a node

network consists of one pattern for each accident at the end of its simulation. The

output assigned to these patterns depends on the accident and the particular node

network being trained. Thus, for node 1 network the least significant bit of the

accident binary IDs were assigned as outputs to their corresponding input patterns.

Similarly, training sets for the otl"er node networks were formed. These networks were

then trained independently to achieve an RMS error of 0.1. A recall was performed

for ali the accidents on patterns occurring after malfunction insertion. Tllose pat.erns

with high RMS error and nearer to the end of simulation were included in the training

set and the next phase of training was carried out. In this manner, a progressivel:y

refined diagnosis time for each of the node networks was obtained.

4.4.6 Results

The self-optimizing stochastic learning algorithm was used to train the networks

(Bartlett & Uhrig, 1990a,b). Since this a dynamic node architecture scheme, an

optimum network size is obtained. In this work, a single hidden layer is used for all
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Table 17: The dimensions of the root network and the node networks for the results given in to
Table cdtab2. The training set sizes are also shown. The number of patterns used during recall, ali
accider ts inclusive, are 9363. Of these, 269 correspond to normal operating conditions.

Network[Inputs!Outputs Network Dimensions Training set size
Root 97 J 1 ' 97 × 19 × 1 113

Node 1 97 1 1 97× 4 × 1 69
Node 2 97 1 97× 7 × 1 63

Node 3 97 1 97×11 × 1 57

Node 4 97 1 l 97× 2 × 1 58
Node 5 97 [ 1 ! 97× 1 × 1 60

the networks. The network sizes and number of training patterns required for the

networks are summarized in Table 17.

The performance of the root and the node networks is summarized in Table 16. The

last column labeled "Net-tree" is the network tree diagnosis time for each accident.

The root network gives an indication of accident condition in fifty-two seconds or less

for all the accidents. For thirty-four scenarios, the correct output is obtained in less

than thirty seconds. Despite absence of a full diagnosis irt these early stages, output

of the root network is suitable as an early alarm to notify accident conditions to the

operators.

The diagnosis times for the node networks typically show a large variation for each

accident. As an example, for ms04a, node 1 network gives appropriate output 145

secortds following malfunction insertion, while node 2 is turned on instantaneously

and the roo_ network takes 4 seconds. Thus for this accident, the diagnosis time is

145s. This value is listed in the last column of Table 16.

4.4.7 Conclusions

As can be seen from this table, most of the long diagnosis times occur for the node 1

network. This is because output changes most rapidly across the accidents for this

network. An improvement in this network can result in a better performance oi' the
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overall net-tree. Several avenues are available for investigation to obtain such an

improvement. Some of these possibilities are enumerated below.

1. The network tree structure shown in Fig. 18 is not very elaborate. Due to

this simple structure, the task to be performed by each network in tbe tree

is still complex resulting in long diagnosis times. Thus, further sub-division

' of the tasks can result in a better diagnostic adviser. For example, the root

, network can be retained but the node networks replaced by one network per

' accident. Each of these new networks is trained to recognize one particular

accident condition, while simultaneously giving no output in the presence of

other accident conditions. This approach would result in forty-one networks in

place of the five node networks. There is a corresponding increase in training

complexity. However, due to the simplification in the task to be performed

: by these networks it will be easier to train and thus possibly result in better

diagnosis time.

- 2. The plant variables in the data collected during the simulations are only ninety-

seven. This small set of variables may not be adequate or suitable to sufficiently
_

represent the conditions for some accident scenarios. Thus, a larger set of data

variables is desirable in view of the range of accident conditions being considered.

3. A major limiting factor in developing large networks, or, group of networks, is

their long training time requirements, which can be prohibitively long. ANNs are

amenable for implementation on a parallel computer. Training the networks on

such a computer can result in significant cuts in training times. Large networks

can be trained on MASPAR-II, a massively parallel computer available on Iowa

= State University campus. A code suitable for use on this machine has been

developed (Section 4.7.3).
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4. In this work, an information theory analysis (Section 11.2) was not performed

on the accident data. Such an approach is useful to decide on the plant variables

needed to train the networks. The corresponding reduction in the size of training

data will result in lower training time requirements.

.5. The ANNs used in this work are simple multilayer feedforward networks. Other

network paradigms using interconnections between nodes of the same layer or

between nodes separated by a hidden layer (recursive networks) axe more pow-

erful. Their suitablility for use in a diagnostic adviser can be investigated in

future work. The processing elements in current networks are relatively simple

which use a non-linear (sigmoidal) transfer function. Processing elements capa-

ble of performaing advanced functions such as integration are available. These

enhanced networks have the potential for use in a diagnostic adviser.

!.,
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4.5 Accelerating the Training Process

by Keehoon Kim and Taher Aljundi

4.5.1 Introduction

Training of ANNs can be supervised or unsupervised. In the supervised training,

the network uses information available from the outside environment to adjust the

network's parameters such as learning rate, number of iterations, and weights. These

adjustments are related to the difference between the network output and the desired

output. The unsupervised training, on the other hand, relies only on information

available within the inputs to modify the network's parameters and has no known

desired outputs. The backpropagation network employs the supervised training to op-

timize its parameters and the user decides, to a certain extent, the way the network's

parameters are modified. The supervised training of a network requires presenting the

network with known examples from a training set of input-output data and adjusting

the interconnecting weights between the individual nodes until the desired result is

obtained. Once the ANN learns the functional relationship between inputs and out-

puts, subsequent inputs need not be identical to the examples in the training set, and

good results are still obtained. However, training of a network to perform a useful task

can be computationally expensive (Judd 1987). New methods for increasing learning

rates and reducing mathematical and computational complexity are being vigorously

investigated (Bartlett 1990, Bartlett and Uhrig 1991a, 1991b). In this area, we have

investigated several new techniques to accelerate the convergence and to optimize the

architecture of the backpropagation neural network. These techniques include:

1. Rescaling of Variables (Rigler, Irvine and Vogl 1991);

2. Dynamic Learning Rate (Vogl et al. 1988)

3. Dynamic Weight Architecture (DWA).

[]
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We used the first two techniques to accelerate the training process, and we developed

the third technique to select the optimal network architecture that can learn the

given input-output pairs. Selecting the optimal network architecture that is capable

of solving the problem will significantly improve the learning speed as well as the

generalization capability of the network.

4.5.2 The Backpropagation Method

The backpropagation algorithm (Rumelhart 1986) is a gradient descent method that

determines the weights in a multilayer, adaptive neural network. The weights are

initially chosen to be small random numbers. Learning is accomplished by successively

adjusting the weights based on a set of input patterns. During the learning process,

an input pattern is presented to the network and propagated through the network to

determine the resulting output. The difference between the resulting output and a

predetermined desired output represents an error. A second pattern is then presented

and an other error is obtained, and this process continues until all the patterns are

presented. The sum of the resulting errors is backpropagated through the network in

order to adjust the weights. The learning process continues until the network gives

outputs whose RMS of errors is less than a preset value. When an input pattern

p is presented to the network, the activation of each node is determined using the

sigmoidal activation function

1

op, = (1 + exp{-(E w,_op,)}) (tl)

where Opj is the activation of node j as a result of presenting the pattern p, Wji is

the weight from node i to node j. The summation of errors at the output node j

is backpropagated to update the weights in the network according to the following

equation:

AI,V_._(n+ 1)= _ _,_p_• Op_+ ,:_• A%._(,_) (12)
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where n is the iteration number, and c_ is the momentum factor. The error 6pj for

an output node j is calculated from the difference between the actual output and the

desired output for that particular node

_p_= (o_j - d_) • Opj• ( i - Op_) (i3)

where dpj represents the desired output. The error for a hidden node j is a function

of the error of the nodes in the next higher layer connected to j and the weights of

those connections.

_.j = o_j • (1 - o._), _ _k • wk_ (14)

where the summation is carried over K and k is a node in the next higher layer. Cur-

rently, this algorithm is employed with constant values for # and ct. Assuming u and

a are appropriately chosen, the backpropagation process will generally converge with

a set of weights that satisfies the criterion imposed by the user. Usually this criterion

is satisfied when the RMS of errors of the output nodes falls below a preset value.

Unfortunately, when applied to many practical problems, the number of iterations

required before convergence can be very large. Consequently, the computations will

be complex and very expensive. To overcome this drawback, several modifications of

the above algorithm have been investigated to accelerate the convergence process.

4.5.3 Rescallng of Variables in Backpropagation Learning

The derivative of the activation function of the backpropagation network is one cause

of the ill-condition of the Backward Error Propagation (BEP) technique. This in-

herent ill-condition of the BEP process causes the learning algorithm to be painfully

slow. The sigmoidal activation function y(x) of each node in the network satisfies the

differential equation:

y' =y,(l-y) (15)
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where .r is the sum of weighted inputs to the node. When modifying the weights of

the network according to the backpropagation learning algorithm, the factor Y* ( 1 - y)

occurs once at the first layer preceding the output nodes, and two suck factors appear

at the second layer preceding, and so on until the input nodes are reached. Because

0 < Y * (1 - Y) < 1/4 , for the sigmoidal function, it is apparent that a major cause

of the ill-conditioned nature of the BEP is the gradient element y'. This element

cannot exceed 1/4 at the first layer preceding the output nodes, 1/16 at tile second

layer preceding , 1/64 at the third, and so on. The fact that this element is getting

smaller reduces the step size of weights modification as we backpropagate the error

from the output layer to the input layer. The rescaling technique suggests that a

compensatory correcting factor for the ill-conditioned BEP should be introduced. A

random behavior of the derivative can be assumed, and one can employ powers of the

expected value Ely • (1 - y)], Ely • (1 - y)]2,..., Ely • (1 - y)]n, where n denotes the

nth layer counting backwards from the output. These values are 1/6, 1/36/, 1/216,...

The rescaling factors are the reciprocals 6, 36, 216,..., applied as a multiplier of each

partial derivative in layers counted backward from the output nodes.

4.5.4 Dynamic Learning Rate

One of the reasons that slows down the convergence of the backpropagation network

was discussed in the previous section. Another reason is that the learning constant

might not be appropriate for all portions of the error surface. Several modifications

of the backpropagation algorithm described by Rumelhart (Rumelhart, Hinton and

Williams 1986) can greatly accelerat, _. convergence. Among these modifications is

the implementation of a dynamic learning rate so that the algorithm utilizes a near

optimum learning rate # (Vogl et al. 1988). Also the momentum factor a is set to zero

when the RMS error does not decrease. Only after the network makes an iteration

that reduces the RMS error, a assumes a no.n_-zero value.
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The value of p, which modulates the step size of the change of weights produced

by the backpropagation, is sensitive to local shape of the error surface. If a steep

V-shaped valley is being followed, too large a value of # will cause steps that bounce

between the two opposite sides of the valley rather following the contour of its bottom.

On the other hand, too small a value of # will prevent the algorithm from making

reasonable progress across a long flat slope in the error surface. Choosing a suitable

learning rate for a particular problem requires experimenting with different values to

see which value achieves the fastest convergence. Unfortunately, even though a one

value of # may be optimum at one stage of the learning process, there is no guarantee

that the same learning rate will be appropriate at any other stage of the learning

process. To accelerate the convergence of the backpropagation algorithm, a dynamic

learning rate technique with the appropriate changing of the momentum factor a was

used. The learning rate # and the momentum factor a were varied according to

whether or not an iteration decreases the RMS error. If an update results in reduced

RMS error, # is multiplied by a factor ¢ > 1, and a is set to a non zero value for

the next iteration. If a step produces a network with an RMS error more than the

previous value, all changes to the weights are rejected, # is multiplied by a factor

/3 < 1, a is set to zero,_and the step is repeated.

4.5.5 Dynamic Weight Architecture

Optimizing the network architecture for a specific problem is a vital part of the

training objective. Too many nodes with too many weights will significantly slow

down the learning process and will also make it easy for the network to fit the noise of

the training data, thus failing to generalize. The minimal network strategy states that

if several nets fit the data equally weil, the simplest one will on average provide the

best generalization (Weigand, Rumelhart and Huberman 1991). The simplest network

that fits a particular set of data is the network with the least number of nodes and the
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least number of weights. A traditional method of determining the optimal network

architecture is by starting with a very large network architecture and eliminating

the least important nodes as the learning process proceeds (Weigand, Rumelhart

and Huberman 1991 ). This appro_Lch, however, requires a significant computer time

because there is no limit on the initial network size. Our approach, on the other

hand, starts with the smallest possible network architecture. Weights and nodes are

then added according to their importance as the training process proceeds. Since

the network is established using the least unit of a weight connection, a resultant

network will have a sparsely connected architecture. The DWA is a different scheme

from DNA (Dynamic Node Architecture) using a node as the least unit of connection.

Start with a fully connected network with only one hidden node in each hidden

layer. The number of input and output nodes is usually pre-determined by the nature

of the specific problem. Typically, since we started with a very small architecture, the

network will not be able to learn the data set. After a certain number of iterations

have been completed without any reduction in the RMS error, we pick the most

important node in each layer according to the following:

The importance of an output node is given by

I(j) = E(Oj) , SD(Oi)(6) (16)

where:

l(j) is the importance of output node j.

E(Oj) is the expected value of the outputs of the node j.

SD(Oi) is the standard deviation of the outputs of the node j.

The importance of an input or a hidden node i is given by

I(i) = E(O,) • SD(O,) • [__ I(j) , Wt, ] (17)

where Wji is the weight connecting the i-th node to the j-th node in the above layer,
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and the summation is over ali the nodes in the layer above. The DWA then connects

the most important nodes via weights with arbitrary initial values of .001. [f the

important node in a hidden layer is already connected to the important nodes in the

layers above and below, the DWA adds a new node in that hidden layer and connects

it to the important nodes in the layers above and below. The process is repeated until

the convergence criterion is satisfied, which is that the RMS error falls below a preset

value. The resulting network architecture will be the smallest network that can learn

that specific data set in a reasonable number of iterations. Hence, this network will

have generalization capabilities better than any other network trained with the same

data set.

4.5.6 Results

Dynamic Learning Rate and Rescaling Factor Results

The rescaling technique along with the dynamic learning rate were implemented

into the backpropagation algorithm with varying results. The dynamic learning rate

has significantly increased the convergence speed of the network, whereas the rescaling

factor has less impact on the convergence speed of the network. Table 18 summa-

rizes the results of implementing both the dynamic learning rate and the rescaling

technique into the same backpropagation architecture to solve the XOR problem.

Figures 19 and 20 compare the results of applying the backpropagation neural net-

work with dynamic learning rate and with constant learning rate to solve the Gaussian

Distribution Separator (GDS) problem. In this problem we have two overlapped data

sets, and we wish to separate them. The same network architecture, 5 x 18 x l, was

used in both cases. Figure 21 shows the way the learning constant _ is changing

during the training process.
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Table 18: The momentum coefficient a=0.5 if the RMS error is decreasing, zero otherwise. Conver-
gence criterion is satisfied when the RMS error is <_0.006. Backpropagation network architecture
is2x3xl.

Technique Used # of Iterations Before
Convergence

1. Backpropagation with learning constant = 0.4 4942

2. Backpropagation with Rescaling factor = 6 4500
3. Backpropagation with Dynamic learning rate 180
4. Backpropagation with Dynamic learning rate and 106

Rescaling factor = 6
5. Backpropagation with Dynamic learning rate and 108

Rescaling factor = 5

0.55

0.50

0.45

0.40

.- 0.35

uJ O.30O3
=E

0.25

0.20

0.15

0.10

0.05

0.00
0 2oo 4oo 6oo 8oo IOOO 1200

Iterations

Figure 19: RMS error vs. number of iterations using the backpropagation network with dynamic
learning rate
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Dynamic Weight Architecture Results

We have applied the DWA technique to find the optimal architecture to solve the

XOR problem. The resulting architecture was 2 x 3 x 1 which agrees with the results

of the Dynamic Node Architecture (Bartlett and Basu 1991). Actually this network

architecture gives generalizing capabilities better than any other architecture when

tested with noisy data. The DWA was also applied to find the optimal network

architecture to solve the GDS problem, and the resulting architecture was 5 x 15 x 1.

4.5.7 Conclusions

We have implemented the convergence accelerating techniques into the backpropa-

gation learning algorithm. These techniques have significantly reduced the training

complexity and the computation time required to train the network during the de-

velopment of the nuclear power plant fault diagnostic adviser. This work shows the

feasibility of the DWA scheme as a network architecture optimizing technique. This

technique, however, will be further investigated, and more varie.bles will be included

in the node importance function.
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4.6 Diagnostic Error Prediction

by Keehoon Kim and Taher Aljundi

4.6.1 Introduction

Many scientists, as well as the public, are concerned with nuclear power plant safety.

The diagnosis of nuclear power plant transients must be swift and accurate. Early and

accurate transient diagnosis can givethe reactor operators extra time to formulate

and perform the necessary actions to prevent a transient from developing into a

potentially dangerous accident. ANNs have many characteristics that make them a

suitable tool to achieve fast and accurate diagnosis of nuclear power plant transients.

These characteristics include fault and noise tolerance, generalization capabilities,

and the ability to quickly respond to changes in a plant's conditions (Bartlett 1990).

One disadvantage of ANNs, however, has been the relative difficulty of assigning error

bounds on its results. Resolving the uncertainties associated with the ANN diagnoses

is a very important step towards assuring the reliability of the adviser's diagnoses. In

this work, an ANN fault diagnostic adviser was developed to diagnose nuclear power

plant transients. The ANN adviser was developed by training a backpropagation

neural network to diagnose ten distinct nuclear power plant transients. This ANN

was trained using computer generated data obtained from the San Onofre Nuclear

Power Station training simulator (James and Rogers 1992). The data simulates the

plant's conditions during the ten distinct transients. We also applied the Stacked

Generalization technique (Wolpert 1992) to estimate the predicted error associated

with the adviser's diagnoses. When a transient or an accident occurs in a nuclear

power plant, the ANN adviser will inform the operators in the control room about

the cause of the system instability in a timely manner. At the same time the adviser

will also provide them with a prediction of its diagnosis accuracy. The development



of an ANN nuclear power plant fault diagnostic adviser that can classify transients

and provide error bounds on its diagnoses is another new contribution of this project

to the science of ANNs and its applications.

4.6.2 Neural Networks and Stacked Generalization

The lack of validation capabilities of the ANNs' results has been a major limiting

factor on the applications of these techniques. Stacked generalization, however, is a

method that can be used to address the validation problem and can be implemented

in several different ways (Wolpert 1992). When used with multiple generalizers, it can

provide an estimate of the average generalizing accuracy (Wolpert 1990c, 1990d) of

each individual generalizer. Hence, one can pick the generalizer that has the highest

estimated generalization accuracy to map a particular data set. When used with a

single generalizer, it can provide an estimate of the error associated with the outputs

of a neural network that has been recalled on novel input data. In this work we have

used the backpropagation neural network as a single generalizer to develop a fault

diagnostic adviser that can classify nuclear power plants instabilities. The stacked

generalization was used along with the backpropagation generalizer to assign error

bounds to the adviser's outputs.

4.6.3 Stacked Generalization

Stacked generalization is a technique whose purpose is to achieve the highest possible

generalization accuracy. In this work, we have applied this technique for estimating

the errors of a single genera!izer when working on a particular learning set. The

stacked generalization can also be used to correct for these errors and, therefore,

maximize the generalization accuracy.

The first step in employing stacked generalization is choosing a set of (r) partitions,

each of which splits the learning set (L) into two (usually disjoint) sets. Label such
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a set of partitions as Lij, where 0 _ i _ r, and j _ {1,2}. We have arbitrarily

chosen the cross-validation partition set (Li 198.5), where r = ra and rn is the number

of patterns in the training set. For ali i, Li., consists of a single pattern of L, the

corresponding Li1 consists of the rest of L, and Li2 5_ /_j2 for i # j.. Since r = ra.

this last requirement of distinctness of the Li2 means that the set of all Li2 covers L.

Wolpert defines the original learning set L as the "level 0" space. So any network

when applied directly to L in the "level 0" space is called a "level 0" generalizer, and

the original learning set L is called a "level 0" learning set. Figure 22 describes the

partition used in stacked genealization. A learning set L is represented by the circle,

and a partition of L into two portions is also shown. Given this partition, we train the

"level 0" generalizer on the portion {L-(x,y)}. Then we ask the "level 0" generalizer

the question z, and note both its guess, g and the vector (Euclidean distance) from z

to its nearest neighbor in {L- (z,y)}, k. Since the "level 0" generalizer has not been

trained with the pair (z, y), g will generally differ from y. Therefore when the question

is z, and the vector from z to the nearest neighbor in the learning set is k, the correct

answer differs from the "level 0" generalizer guess by (g- y). This information can

be cast as input-output information in a new space, the "level 1" space. The input is

the pair (z,k) and the output is (g - y). Choosing other partitions of L gives other

such points. Taken together, these points constitute a "level 1" learning set L'. We

then train a "level 1" generalizer on the "level 1" training set. We now ask the "level

0" generalizer the question q. Then we take the pair q and the vector from q to the

nearest neighbor in L, and feed that pair as a question to the "level 1" generalizer

which has been trained on L'. This "level 1" generalizer's guess is our gucss for

"level 0" generalizer's error in guessing what output corresponds to q. This is a brief

description of one of the applications of the theory of stacked generalization. There

are several other applications and details concerning the theoretical and empirical
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Figure 22: Description of the partition in the stacked generalization to predict the error of a "level
0" generalizer. The rectangle {q} represents the set of ali questions. The circle {L} represents the
full learning set. {/} is partitioned into two subsets,{L - (x,y)} and (z,y). A "level 0" generalizer
is trained using {L -(z,y)} and then ask (x,y). The error, y minus the guess of the "level 0"
generalizer, will constitute the desired output of a "level 1" generalizer. The input to the "level 1"

generalizer is the question z plus the vector from z to its nearest neighbor in {L - (x, y)}, k.
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issues of stacked generalization. It is important to note that many aspects of stacked

generalization are. at present, not completely understood. For example, there are no

rules to how many inputs there should be in "level 1" generalizer. In practice, one

must rely on prior knowledge to make intelligent guesses for how to set the details of

stacked generalization.

4.6.4 Method

A backpropagation neural network with 33 x 22 x 10 x 4 architecture was used to

diagnose the ten distinct transients. Thus, the network has 33 nodes in the input

layer, 22 in the first hidden layer, 10 in the second hidden layer , and 4 in the output

layer. The 33 input nodes represent 33 of the plant variables, which are shown in

Table 19, and four output nodes distinguish each of the 10 transient conditions with

a distinct 4-bit code. The two hidden -layers architecture was found to be the most

suitable for this particular problem among trying several different architectures that

were investigated. Training of the network was accomplished in steps (Bartlett, Uhrig

1992, 1991b). The initial training set composed of 20 patterns, two from each tran-

sient. These two patterns were the first pattern, corresponding to normal operating

conditions at time = ls, and the last pattern in each transient, corresponding to the

time during the transient's onset. In all of the 10 transients, the data collection was

terminated around time = 600 seconds. Training on this data was performed until

an RMS error of .0135 was attained. The next step was to recall the network on the

entire data set for each of the ten transients. The RMS error obtained from the recall

set was plotted against time for each transient. There were several peaks where the

RMS error was very high. These peaks correspond to patterns very different from

those chosen in the initial training set. These patterns were included in the training

set of the network for the next training phase. The training, recalling, and expanding

of the training set was repeated, and the cycle continued until all peaks in the recall
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Table 19: Nuclearpowerplant variablesused forthe SanOnofrediagnosesdescribedin the text.
1) Power (flux)
2) Average Temperature (Degrees F)
3) Hot Leg 1 Temperature (Degrees F)
4) Cold Leg lA Temperature (Degrees F)
5) Cold Leg 1B Temperature (Degrees F)
6) Hot Leg 2 Temperature (Degrees F)
7) Cold Leg 2A Temperature (Degrees F)
8) Cold Leg 2B Temperature (Degrees F)
9 ) Pressurizer Pressure .(psia)

10) Pressurizer Level (%)
11) Pressurizer Temperature (Degrees F)
12) Steam Generator 88 Narrow Range Level (%)
13) Steam Generator 88 Water Level (%)
14) Steam Generator 88 Feed Water Flow (gpm)
15) Steam Generator 88 Feed Water Flow (Lb/sec)
16) Steam Generator 88 Steam Flow (Lb/sec)
17) Steam Generator 88 Pressure (psia)
18) Steam Generator 89 Narrow Range Level (%)
19) Steam Generator 89 Water Level (%)
20) Steam Generator 89 Feed Water Flow (gpm)
21) Steam Generator 89 Feed Water Flow (Lb/sec)
22) Steam Generator 89 Steam Flow (Lb/sec)
23) Steam Generator 89 Pressure (psia)
24) Containment Pressure (psig)
25) Containment Temperature (Degrees F)
26) Pressurizer Relief Steam Flow
27) Pressurizer Relief Liquid Flow
28) Core Inlet Flow
29) Saturation Margin
30) Surge Line Temperature (Degrees F)
31) Source Range Counts (counts per second)
32) Reactor Vessel Head Level
33) Reactor Vessel Plenum Level
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set fell below .1 RMS error. The final training set consisted of 113 patterns and is

equivalent to L in Fig. 22. The next step was to apply the cross-validation parti-

tioning on this final training set. The "level 0" generalizer was the backpropagation

neural network with 33 x 22 x 10 x 4 architecture. The "level 1" training set was

composed of the "level 0" input (a:) plus the vector from (z) to its nearest neighbor k.

The "level 1" desired output was the difference between the "level 0" guess and the

desired "level 0" output. The "level 1" network was another backpropagation neural

network with 66 x 30 x 20 x 10 x 4 architecture. Again this architecture was chosen

after several attempts to find the smallest architecture which could be trained with

this particular data set and still give g(,od results. The training of these networks

was carried out and then the stacked generalization was applied as explained in the

above section.

4.6.5 Results

Table 20 shows that the fault diagnostic adviser is capable of classifying the ten

distinct transients and providing error bounds on its classification in a timely manner.

The second column in Table 20 describes the time needed for the network to make a

decision about what particular transient is taking place. The third column represents

the time spent before the accuracy of the classification (th e confidence level) reached

an acceptable level. The acceptable level was arbitrarily taken as the time spent before

the estimated error on the diagnoses drops below 0.1 RMS. Notice that the network

responds very rapidly to the changes in the plant conditions. One exception is the

Trip of a Single Reactor Coolant Pump transient, where the time to classification is

60 seconds.

Figures 23 through 32 represent the diagnoses of the ten distinct transients and

the error predictions on these diagnoses. The peaks at the beginning of each of the

diagnoses figures indicate that the adviser has detected an instability in the plant's
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Table 20: List of the San Onofre 10 distinct scenarios and the associated diagnosing time and the
time needed after correct diagnosing to assure the diagnosis.

Name of transient Time needed after Time needed after

the initiating correct diagnosis

event to diagnose to assure

the transient(s) the diagnosis(s)

1. Turbine trip/reactor trip 30 1

2. Loss of main feedwater pumps 3 0

3. Closure of both main steam 28 0
isolation valves

4. Trip of ali reactor coolant pumps 2 0

5. Trip of a single reactor coolant 62 0

pump

6. Turbine trip from 50% power. 1 Fail to make
an assured

diagnosis.

7. Loss of coolant accident with 14 0

loss of off-site power.

8. Main steam line break 4 31

9. Stuck open pressurizer safety Immediate 63

valve with high pressure injection diagnosis

inhibited diagnosis

10. Single turbine governor valve closure 16 0
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conditions but it, did not decide on the cause of this instability. After few seconds, the

adviser has decided that this particular transient is responsible for the instability in

the plant. The error prediction figures can be interpreted as the level of confidence in

the decision obtained from the diagnoses figures. The value (1- the predicted error)

can be considered as the level of confidence in the diagnosis. Column 3 in Table

20 indicates the time from the point where a correct diagnosis has been made in

the diagnoses figures, RMS error drops below 0.1, until the confidence level in the

, diagnosis is reasonable. The time for this reasonable confidence level was taken as

the time when the predicted error drops below another arbitrary value of 0.1.

Figure 28 indicates that although the classification of the Turbine Trip From 50°-/0

Power is correct, the network confidence in this classification is low. The estimated

= error on diagnosing this transient is large for the entire time period. This indicates

:.
that the diagnosis is unreliable even though it is correct. That looks like an unwanted

' result of the stacked generalization. But it justifies our experiment in the view point

of the generalization characteristic. Since a,ll the data were collected from 100% power

except for this particular transient where the data were collected from 50°70power,

the network was not able to make an assured diagnosis on this particular transient.

The level of confidence in the diagnosis of this transient can be increased by training

the ANN adviser with more transients from this power level. Figure 31 shows the

results obtained for the Stuck Open Pressurizer Safety With High-Pressure Injection

Inhibited transient. This transient is a computer simulation of TMI-2 type accident.

The ANN adviser was able to correctly diagnose the transient immediately; however,

the adviser took about 65 seconds to assure its diagnosis.

4.6.tt Conclusion

This chapter has demonstrated tke feasibility of using ANN technology coupled with

stacked generalization technique as a diagnostic tool for nuclear power plant tran-
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sients. The stacked generalization technique was used to measure the accuracy of

the diagnoses. The results of the stacked generalization agreed with what we would

expect. The diagnoses of nine of the transients was correct and accurate, while the

accuracy of diagnosing the Turbine Trip from 50% Power transient was low because

this was the only transient where the data was collected from 50% power level. Future

work should include more transients and should test the performance of a prototype

of such an adviser in a nuclear power plant. Implementing such an adviser in a nuclear

power plant will provide continuous and accurate monitoring of the plant's integrity.

It will also provide fast and reliable diagnosis of any system instability and therefore

will significantly enhance the safety of nuclear power plants.
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Figure 23: Time vs. diagnostic RMS error of the ANN adviser (above) and the predicted error

(below) for the Turbine Trip/P,,ea,.tor Trip transient. Notice that the value one minus the predicted

error can be interpreted as the level of confidence in the diagnosis.
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Figure 24: Time vs. diagnostic P,.MS error of the ANN adviser (above) and the predicted error

(below) for the Loss of Main Feedwater Pumps transient. Notice that the value one minus the
predicted error can be interpreted as the level of confidence in the diagnosis.
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Figure 25: Time vs. diagnostic RMS error of the ANN adviser (above) and the predicted error
(below) for the Closure of Both Main Steam Isolation Valves transient. Notice that the value one

minus the predicted error can be interpreted as the level of confidence in the diagnosis.
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Figure 26: Time vs. diagnosticRMS error of the ANN adviser (above) and the predicted error

(below) forthe Trip of All Reactor Coolant Pumps transient.Notice that the value one minus the

predictederrorcan be interpretedas the levelofconfidenceinthe diagnosis.
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Figure 27: Time vs. diagnostic RMS error of the ANN adviser (above) and the predicted error
(below) for the Trip of a Single Reactor Coolant Pump transient. Notice that the value one minus

' the predicted error can be interpreted as the level of confidence in the diagnosis.
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Figure 28: Time vs. diagnostic RMS error of the ANN adviser (above) and the predicted error
(below) for the Turbine Trip from 50°7o Power transient. Notice that the value one minus the

predicted error can be interpreted as the level of confidence in the diagnosis.
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Figure 29: Time vs. diagnostic RMS error of the ANN adviser for (above) and the predicted error

(below) the Loss of Coolant Accident with Loss of Off-Site Power transient. Notice that the value
one minus the predicted error can be interpreted as the level of confidence in the diagnosis.
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o,6 i Main Steam Line Break
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Figure 30: Time vs. diagnostic RMS error of the ANN adviser for (above) and the predicted error
• (below) the Main Steam Line Break transient. Notice that the ,,,due one minus the predicted error

can be interpreted as the level of confidence in the diagnosis.
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Figure 31: Time vs. diagnostic RMS error of the ANN adviser (above) and the predicted error (be-
low) for the Stuck Open Pressurizer Safety Valve With High Pressure Injection Inhibited transient.

Notice that the value one minus the predicted error can be interpreted as the level of confidence in
the diagnosis.
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Figure 32: Time vs. diagnostic RMS error of the ANN adviser (above) and the predicted error

(below) for the Single Turbine Governor Valve Closure transient. Notice that the value one minus
the predicted error can be interpreted as the level of confidence in the diagnosis.
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4.7 Selections from thesises completed under the current funding

This section contains the main bodies of the various thesises complted by graduate

students under supervision of the PI during the current funding. The work undertaken

in these thesises are either directly connected to this project (Sections 4.7.1, 4.7.2 &

4.7.4) or will contribute to the project different methodologies developed for other

work (Section 4.7.3).
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10 "ArticlesPublished During the Period

This section contains the journal papers, e_bst.racts, and conference papers that were

published or accepted for publication during the current funding.
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