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ABSTRACT

This paper presents a new formulation of a class of
nonlinear optimal control problems in which the system's signals
are noisy and some system parameters are changing arbitrarily
with time. The methodology is validated with an application to a
nonlinear nuclear reactor model. A variational technique based
on Pontryagin's Maximum Principle is used to filter the noisy
signals, estimate the time-varying parameters, and calculate the
optimal controls. The reformulation of the variational technique
as an initial value problem allows this microprocessor-based
algorithm to perform on-line filtering, parameter tracking, and
control.

INTRODUCTION

The availability of fast and reliable microprocessors has opened the
possibility of performing on-line numerical calculations to improve and
optimize the way nuclear reactors are controlled. In particular, there is
general interest1 in increasing the robustness of control, algorithms when
the system's behavior is affected by nonlinearities, unknown time-varying
parameters, or noisy signals.

In this paper we present a new microprocessor-based algorithm that is
able to perform on-line filtering, parameter tracking, and control of a
nonlinear nuclear reactor. A variational technique based on Pontryagin's
Maximum Principle (PMP)2'3 is used to estimate the system's state and
parameters and to calculate the optimal control.

Three simultaneous optimizations are performed: (a) estimates of the
state variables are determined by optimal matching of the noisy plant
signals to the model, (b) time-varying parameters are obtained by matching
the filtered estimates to the control model results, and (c) optimal
controls are obtained by matching a set of prescribed demands.
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To validate the algorithm, a nonlinear nuclear reactor was simulated
in which the coolant feedback coefficient was an unknown time-varying
parameter and the measured signals from the plant had additive noise. The
plant was forced to follow demands in neutron density and outlet coolant
temperature by adjusting two controls: (a) ul, reactivity, which was
constrained to given set of maximum and minimum values, and (b) u2, inlet
coolant temperature.

OPTIMAL CONTROL PROBLEM REFORMULATION

This section reviews the reformulation of the free terminal time (FTT)
optimal control problem presented by the authors in ref. 2.

Let

dy/dt = F(y,u) (1)

represent the plant model, where y(t) is the vector of state variables and
u(t) is the control vector. Our goal is to find u(t) such that the system
will follow a given demand vector, d, in the sense that the cost function
defined as

rcf
7 7 (2)

rcf
J = [\d - H(,y)}7Q{d - H(y)

J o

is minimized. Q and R are weighting matrices, which are allowed to change
with time. Note that the initial state vector y(0) and final state
H{y(t£)) are known but t.f is free.

It has been shown2 that, if the system is in equilibrium at t=0 and d
is a well-behaved function, the minimization problem is equivalent to the
solution of the following set of equations:

dy/dc = F(y,u) , (3)

dw/dt = [dF/dy)Tw - (dH/dy)Q(d - H(y)} , (4)

u = R~lwr(dF/du) , (5)

7(0) - 7o : "(0) " 0 , (6)

where w is a vector of Lagrange multipliers or adjoints. The above
reformulation of PMP can be achieved by integrating backwards the cost
function. Note that the initial conditions are known only if the initial
state is in equilibrium.2 Under this special condition, the calculation of
the optimal control can be easily executed on-line on a microprocessor
because the classical two-point boundary value problem is recast as an
initial value problem.



STATE ESTIMATION: FILTERING

In this section the optimal control reformulation is applied to the
problem of estimating the actual state of the plant from detector signals
chat are corrupted with additive noise.

Assuming that Eq. (1) represents a mathematical description of our
system, let us define the vector of signals coming from the plant detector:

s - yd + n , (7)

where yd represents the vector of detected state variables and n is an
additive noise with zero mean.

Defining x as the estimated plant state, the dynamic estimation of x
can be obtained from

dx/dc = G(x,u) + v , (8)

where G is an approximated model of the plant (predictor) and v is the
dynamic correction (corrector) that can be obtained from the minimization
of the cost function

fL f

F •=• {\s - Xt^Qzis - x d] + vTRtv)dt
J 0

JF •=• Us - x^'QAs - xd] + v
LRfv)dC . (9)

PARAMETER TRACKING

This section shows how the reformulation of the optimal control

problem can be used to update the time-varying parameters in the plant.

Let us assume that there is a set of parameters that can change
arbitrarily with time. Our control model needs to be updated on-line,
otherwise we cannot guarantee that the calculated control will be optimal.
The updating of the control model can be achieved by applying once more the
reformulation of the optimal control problem presented in the first section
of this paper. In this case, we assume that the value of the unknown time-
varying parameters, a, will be the one that minimizes the cost function

JP = { [x - nj]TQp[x - m] I arPva)dc (10)

where m represents the control model state variables.



OPTIMAL CONTROL

At this point, our algorithm is able to estimate the actual state
variables and the time-varying parameter magnitude; therefore, we have an
adaptive model to which we can apply again the reformulated optimal control
problem to obtain the controls necessary to follow the demands. Therefore,
we only need to minimize the following cost function:

ft f
Jc = {[d - Hm]7Qc[d - Hm] 4 u7Rcu)dt. . (11)

Jo

THE ALGORITHM

As stated before, our goal is to develop an algorithm that is able to
update the control model by estimating the state variables and time-varying
parameters while, at the same time, calculating the optimal control. This
objective is achieved by minimizing the three cost functions JF [Eq. (9)],
JP [Eq. (10)], and Jc [Eq. (11)] independently and simultaneously. The set
of equations to be solved can be summarized as follows:

dx/dt = G(x,a,u) + v , (12)

dm/dt = G(m,a,u) , (13)

dwf/dt - (dG/dx) T v f - Q f ( s - x d ) , (14)

dwp/dt = (dG/dm)Twp - Qp (x - m) , (15)

dwc/dt = (dG/dx)Twc - (dH(m)/dm)Qc(d - //(m)) , (16)

v - (/? f)-1w f
T(d6/dv) , (17)

a = (J2p)~Vp
T(dG/da) , (18)

u = (Rc)~
lwc

T{dG/du) , (19)

m(0) - x(0) - j(O) = 7 o , (20)

w f(0) - wp(0) = wc(0) = 0 . (21)

Equations (12) to (16) can be solved simultaneously with the initia\
conditions given by Eqs. (20) and (21) by using any standard differential
equations solver. Equations (17) to (19) represent the filter corrector,
v, unknown parameters, a, and optimal controls, u, respectively.



APPLICATION TO A NONLINEAR NUCLEAR REACTOR

The algorithm presented in this paper has been applied to a nonlinear
reactor model. The plant was simulated with a four-dimensional model, and
three detectors (details about this model can be found in ref. 2). During
the transient, the feedback coefficient due to the coolant temperature was
artificially changed sinusoidally with time to test the parameter-tracking
capabilities of the present technique. In addition, the measured signals
from the simulated plant were corrupted with additive noise. The plant was
forced to folio*; demands in neutron density and outlet coolant temperature
by adjusting two controls: (a) reactivity, which was constrained to have
maximum and minimum values, and (b) inlet coolant temperature.

Figure 1 shows how both demands in power and outlet coolant
temperature were followed by the plant despite the parameter changes and
constraints in the controls. Figure 2 shows how the algorithm was able to
update the coolant temperature feedback coefficient during the transient.
Figure 3 shows the controls that were necessary to follow the transient.
Finally, Fig. 4. shows how the variational filter eliminates the additive
noise from the plant signals.

CONCLUSIONS

An optimal filtering, parameter-tracking, and control algorithm has
been developed which allows one to find on-line solutions for demand-
folloving problems in cases in which noisy signals, nonlinearities, and
time-varying parameters invalidate other known algorithms. A crucial
result has been the recasting of the Pontryagin's Maximum Principle
technique for nonlinear systems as the solution of differential equations
with initial conditions. The algorithm has been successfully applied to a
nonlinear nuclear reactor model. Using the plant sensors signals, all the
state variables were estimated, and the time-varying parameter was updated
during the transient, allowing an adaptive optimal control calculation. We
can conclude that this new formulation of the optimal control problem
provides a suitable methodology for on-line, microprocessor-based
applications.
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Fig. 1. Demand following: (a) demand on power (solid line) and plant
power (circles) versus time, (b) demand on hot leg temperature (solid line)
and plant hot leg temperature (circles) vs time.
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Fig. 2. Time-varying parameter update.
Plant coolant feedback coefficient (solid
line) and algorithm estimate (circles) vs
time.
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Fig. 3. Optimal controls: (a) ul, reactivity, which was constrained
to be less than 0.016, and (b) u2, inlet coolant temperature change.
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Fig. 4. Optimal filtering: (a) coolant temperature detector signal
(solid line) and algorithm filtered estimate (circles) vs time, and
(b) fuel temperature detector signal (solid line) and algorithm filtered
estimate (circles) vs time.


