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··                                                                                     ABSTRACT

'4 A continuum model is proposed as a theoretical foundation for the in-

elastic state variable theory of Hart. The model is based on the existence

of a free energy function and the assumption that a strained material element

recalls two other local configurations which are, in some specified manner,

descriptive of prior deformation.  A precise formulation of these material

hypotheses within the classical thermodynamical framework leads to the re-

covery of a generalized elastic law and the specification of evolutionary

laws for the remembered configurations which are frame invariant and formally

valid for finite strains.  Moreover, the precise structure of Hart's theory

is recovered when strains are assumed to be small.
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INTRODUCTION

+                 The recognized inadequacy of the classical theories in many sensitive

applications, such as the design of turbine and nuclear reactor components,

has spurred considerable interest in the development of new constitutive

theories capable of describing the rate and temperature dependent response

of metals.  A.recent contribution in this effort has been the proposal by

materials scientists of a number of so called "state variable" theories.

The distinguishing feature of such theories is that the accumulated effect

of deformation history on future material response is completely characterized

by the current values of a.finite number of state variables.  Although the

choice of state variables differs from one theory to the next, the existence

of rate laws which govern their evolution is common to all.

Of principal concern here is the theory proposed by Hart [1] in which

the state of a material element is assumed to be fixed by the current values
..Y

of elastic and anelastic strain tensors, absolute temperature and a scalar

parameter denoted as "hardness".  The qualitative features of this theory

are illustrated by the simple schematic model shown in Fig. 1.  Here,  e

represents the elastic or instantaneously recoverable strain,  a, the anelastic

strain which is to be regarded as momentarily locked in, and D,e and &, the total,
--

non-elastic and plastic rates of deformation.  Element three in this model

is best understood as a non-linear viscous element while two is described as

a plasticity element.  a,  a   and  of  represent, respectively, the total-   -a

observable stress and the components of Qbservable stress active in each

branch.  The various scalar coefficients in the suggested tensor relationships

0     0 +G
-     -a  -f

P   Sts
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in which prime denotes deviatoric part, are determined from empirical laws

which generally depend on temperature and hardness.

A distinctive feature of this theory is that plastic flow and harden-

ing effects are simulated without making use of yield criteria in the clas-

sical sense.  As a consequence, the complications which arise when attempt-

ing to determine and match boundary conditions across an elastic-plastic

interface are eliminated.  Another feature is its ability to predict induced

anisotropic effects such as the Bauschinger effect.  Directional characteristics'':'1

of this type are introduced through the anelastic strain tensor which reflects

local deformation history.  Also characteristic of this model is its ability

to exhibit time dependent phenomenon such as creep and stress relaxation

through the Kelvin-Voigt combination of elements one and three.

Despite the apparent scope of this theory it is important to emphasize

that its empirical foundation and validation are based almost entirely on

uniaxial tests*    For this reason the present three dimensional version  is,
for the most part, unsubstantiated.  Moreove'r, questions which arise when

the linear or small strain limits are exceeded have not been addressed as
"                         "

no distinction is made between reference and current configurations nor is

their a precise definition of the "dot" time derivative.  In the present

paper this theory.is given precise mathematical structure within which

*
Developments in this area are outlined and amply referenced in [2].

L.
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questions of this type may be meaningfully considered.  In the.development

to follow, which proceeds from the assumed existence of a free energy func-

tion, all strains shall be considered finite and full use shall be made of

the second law of thermodynamics and the invariance constraints of modern

constitutive theory.  The general theory which results not only allows for

the recovery of· the equations of Hart in the small strain limit but also pro-

vides a rational basis for proposing non-linear generalizations fully con-

sistent.with the laws of thermodynamics and mechanics. It is recognized,

however, that the subsequent development of more sophisticated multiaxial

experimental capability·will provide the only true litmus for assessing.the

correctness of our model.

The theory set forth in this paper is based on an ideal material with

11 selective memory".    To  make this precise  it is assumed  that the deformed

element remembers two other configurations: one which would be recovered
..'

instantaneously upon step removal of the supporting load, and a second which

represents the rest or zero strain energy configuration.  By distinguishing

between the rest and unstressed configurations we introduce anelasticity into

our model whith reflects the tendency of a typical metal to continue to

recover, thereby releasing energy, for a measurable period following the re-

moval of load.  In addition, the rest and initial or reference configurations

need not coincide. This introduces non-recoverable deformation into our model

and reflects the fact that two subsequent zero strain energy configurations

may generally differ.  The relative distortions between the current and re-

membered configurations, together with absolute temperature, temperature

gradient and a collection of scalars make up the complete

-·          list of state variables. Besides fixing the current values of stress, free
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energy, entropy and heat flux through constitutive equations consistent with

the second law of thermodynamics, these state variables are also assumed to

fix the evolution of the unstressed and rest configurations through con-

stitutive equations for their rates of change.  As previously mentioned, this

theory will be formally valid for large deformations and will also be capable

of accounting-for material inhomogeneity and certain types of anisotropy.

Although the development is carried to completion only for isotropic materials

it  may be extended to handle materials Which  recall  a  rest conf iguration  with

invariant directional characteristics.  This sort of anisotropy, of course,

depends on the characterization of plastic flow as a simple rearrangement of

material along slip lines, inducing no further local anisotropy or texture.

In the fully isotropic theory it is also assumed that there exists no

mechanism for the maintainance of dilatation in the absence of stress.  It

is therefore necessary to impose an incompressibility requirement on the

flow rules for the unstressed and rest configurations.  Most important, how-

ever, is the complete characterization of plastic flow as a simple non-

dilatational rearrangement of material, carrying an isotropic rest configura-

tion into a n'ew isotropic rest configuration, without altering the visco-
elastic properties of the material.  Although this could be relaxed to some

degree it does allow us to characterize material response as being purely

viscoelastic with the added complication of a continuously deforming visco-

elastic reference.

The theory proposed here is cast within the general state variable

structure provided by Onat [3,4] which, although based on a rather precise

and distinctly different notion of state, has apparently not been widely

noticed or accepted. Specifically, two elements are said to have the same
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state and orientation at a given instant if their measurable future response

to identical but otherwise arbitrary temperature and deformation processes

(stimuli) is indistinguishable.  Consideration is then restricted to materials

for which the instantaneous state and orientation, i.e., future response to

ongoing stimuli, is determined by a finite number of tensor state variable

fields defined over the current element configuration. It is noteworthy that

this characterization of state variables reduces to the classical one, namely

that the state variables determine the instantaneous values of stress, free

energy, entropy and heat flux, only for materials which respond continuously

to continuous stimuli.  We note, after recalling the specifics of the two con-

stant Kelvin-Voigt model for one-dimensional solid viscoelasticity, that this

is not always the case.  For this simple model smooth deformation is required

in order.to elicit. continuous stress response even though the specification

of total strain suffices to determine the state in the sense intended by Onat.

Only a part of the stress, i.e., the stress carried in the elastic branch,

would reflect the state while the remaining part would reflect state transition.

The important features of this general state variable structure are re-

viewed in the' initial section. The kinematic measures necessary to describe

the material deformation and account for the remembered element configurations

are then introduced in Section 2. A general theory capable of including

material anisotropy is set forth in Section 3 and then quickly particulariz-

ed in accordance'with the specific qualitative features discussed previously.

In the closing sections we demonstrate that, to first order in strains,.the

equations proposed by Hart result  from considering the simplest theory in-

corporating energy dissipation in the non-elastic (viscous) and plastic com-

ponents of the flow, the vanishing of stress with elastic strain, and a con-

stant temperature minimum for free energy when the current and remembered

configurations coincide.



1.  STATE VARIABLE STRUCTURE

In this section we present a review and slight extension of the state

variable structure proposed by Onat [3,4].  We consider a class of simple

materials whose "state and orientation" at any instant of time t  are

locally determined by the current values of the mass density  p, the absolute

+ +
temperature  0, the spacial temperature gradient g = Ve, and a finite Col-

lection,  {  } , of tensor state variables defined pointwise over the current
N

a a=l

configuration. The fixing of the state and orientation at time  t, as defined

by Onat, determines the response of the material to future stimulus in the

sense that Cauchy stress  a, specific Helmholtz free energy per unit mass

111, specific entropy n, and outward heat flux h at a future instant  (tt e)

are determined by the local deformation and temperature history in the

intervening period    t + (t + e) .    This  may be expressed in frame indifferent

form through the operational equation
.,

t   t  +t
IT(t+E), *(t+E), n(t+E),  (t+E)] = E[p(t), 0(t),  (t), qa(t); g-, 0_, GE];

E>0, (1.1)

where

T = JF  0(F  ) i J E det(E)
-1   -1 T
- - -

C=F F

(1:2)*
+    T+G=Eg

H    =    JE 1,          ,

*

9 These quantities represent, respectively, the symmetric Piola-Kirchhoff stress
tensor, the right Cauchy Green tensor  and the referential temperature gradient
and heat flux vector referred to the element configuration at time  t.  In
terms of these quantities the Clausius Duhem inequality takes the form

-p(t)ho-P(t)li'+21 T.8+1 Hi·G > O- -0   -
-6-
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and  g  represents the non-singular deformation gradient measured from the

element configuration at time  t (i.e.  F(t) =  ).  The notation

ft    {f(T):  t<T< t+6} (1.3)E

is used to indicate dependence of the operator  E  on the strain and temper-

ature history over the intervening period  t + (t+e). It should be observed

that if the material under consideration responds continuously to continuous

stimuli then the current values of the response variables are determined by

the current values of the state and orientation variables, i.e.,

Ca'*,n,  ) R(P,0, '4a 
' (1.4)

In order to see this consider the future stimulus

9(T)     I

0(T) 0(t) t<T < t+E , (1.5)

6(T) 2(t) ,(t)

which extends the overall history continuously through  t.  For this particular

stimulus (1.1) reduces to

+                      t  t +tl (1.6)[e,1,11,n,h](t+E) = E[p,8,2, ai  E'BE'Ge. E R(p,0., ,Ela'E)  0

From continuity it then follows that

[a,t,n, ](t) = lim R(p,8, ,Ua'e) E R(p,e,g,4=) 0 (1.7)
E+0
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If, however, smooth stimulus is required to elicit continuous response,

as is the case with the Kelvin-Voigt model for viscoelasticity, we might then

consider the smooth history extension

C(T) It C(t)T = It 2D(t)T--

0(T)- 0(t)+6(t)T t<T < tte ,:  (1.8)

D+ +
3(T) 8(t)+3(t)T ;Ict) + k g-Pg)T    ,

vwhere p represents the deformation rate tensor and· DE represents the

co-rotational or Jaumann derivative. By once again exploiting continuity

it follows that

[g,$,n, ](t) lim E[p,e,it,4 ; C.,0 ,G ]t  t +t
' a *ve E E

E->0

.,                                                                                                                                                                              0     +
lim    12 (p,  0,g, qa ,9,0  ' 13iI     g ' E) (1.9)
E+0

1-

R(P, 0,g,4 a'D,6   -2     g)'Dt

For materials of this type we thus observe that it will generally be neces-

sary to specify, in addition, the instantaneous deformation rate and the

temperature and. temperature gradient rates in order to fix the response

variables.

Having introduced the state and orientation variables  ga  as tensor

fields defined over the current element configuration we now investigate

their sensitivity to simple element rotation.  Such a rotation (Fig. 2) will,

of course, alter only the spacial orientation of the element and not its

state.  The state and orientation variables  (p,0,g,4a)' however, undergo a

change as a result of this rotation which is expressed symbolically as

L                                                                                                                                                                                                                                                              -
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+    9
(p'e'g' a) + (p'8'90'pQEloc)

'' (1.10)

where  9  represents the orthogonal rotation matrix.  Now, since a simple

T
prerotation of the rotated element by  9   will restore its original state

and orientation it follows that the unrotated and rotated elements will

t        t' +t./ t T t +t
respond identically to the respective stimuli  (Fe, E'gE)  and. (FE9 '08'ge)

+
for arbitrary specifications of  F, 0  and  g.  That is, we should observe

the same Cauchy stress, free energy, entropy and spacial heat flux vector for

each during the ensuing motion. In terms of the operator (1.1) this con-

dition requires that

t T  t
I9TgT,0 9,9d](t+E)  =  I[p,e,gg,PQga; 95e9 '0£'92 3 (1.11)

for any future stimulus whenever and provided that

+ t  t +t[T,*,n,H](t+E) = I [p, 0, ,q ; C , 0 ,Ge] 0 (1.12)a  -E  E

Since all equations must be tensor equations, i.e., valid irrespective of

coordinate system, (1.11) becomes

t  t +t
[T,$,n,d](t+£) E[p,0, ,r (P  0 );  E'06'GE] (1.13)QQ

under the coordinate transformation

Yi     Q..x. , (1.14)iJ J

 

where

ZQ(ak].....kn) = Qjlkl J"  jnknaj 1: : ·jn ' (1.15)
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By comparison of (1.12) and (1.13) we then observe that

rQC Q4a   =  4a '                                              (1.16)

provided that there exists a unique state and orientation vector  (p,0,g,qa)

for each state and orientation.  By exploiting the group property of the

transformation operator it then follows that

PQ a     r T4a                                                 (1.17)

It is thus demonstrated that, by subjecting a material element  to a simple

rigid rotation carrying a particle from spacial position  xi  to  y. =Q..x.,
1   1J J

the state and orientation fields  4a  change to  PQ4a' where

 QC k ..k       Q         Q
a (1.18)

1 n kljl     "  '        kn3 n-11" n

Another necessary feature of this general theory is the existence of an

additional operator which determines the updated state variable fields at

(t + E)    from the state variable f ields  at    t    and the deformation  and  tem-

perature history in the intervening period, i.e.,

P(t+E) p(t)/J(tte)

0(t+E) 8(t+E)

-1 T# (1.19)
i;(tte) (F  ) G(ttE)

 a(t+E) HIp'e' 'qa'E(t+E); g ,0 ,2 ]

The additional dependence on the deformation gradient is required, as

witnessed in equations (1.19) ,and (1.19)3' in order to relate the state

variables defined over the configuration at time  t  to their updated
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counterparts defined over the new configuration at  (ttE).  This dependence

is, of course, subject to the requirements of material frame indifference

which demands that a post rotation of the material element at  (t+E)  rotate

the state variable fields in the sense that

t  t +t

IpQ jl

( +E) I[[P,0'g'Ua'QF(t+E); ce'ee'Gs] 0 (1.20)

TExploiting this, notice that if we take  Q=R (t+6)  where  R  represents

the orthogonal part of the deformation gradient obtained through the polar

decomposition  F = RU, then (1.20) reduces to
-   4-

I  Tiloil (t+E) = [rR4al (t+E) = TI[p,e, ,4a'V(t+E) ;   ,0 ,G ]

t  t +t
E A[p,e,g,qa; cE,BE'Gel (1.21)

where the dependence on the right stretch tensor in the second equality is

absorbed through the expression

2  49 .  -                 (1.22)
If  A  is then assumed to be continuous and Frdchet differentiable in each

of its function arguments* it can be shown that, at time  t,

PR0a 9 +2 ..D..+D 6+0 6 (1.23)a  aiJ 1J a    ak k .'

*
This result depends  on A being a continuous, Fr6chet differentiable operasor
mapping the Cartesian product space of bounded, continuous stimuli {C ,6 ,G },
for some  6 > 0, into the Cartesian product space of bounded continuous state
variable response  {(4a) l.  Both the domain and range spaces are considered to
be endowed with the product topology obtained from the supermum norm

I l f i l l
=

t<T< (t+6)
sup

  4 52(T)·f(T) 1

In addition it is required that  A  map the subspace of continuously differenti-

able stimuli into the subspace of continuously differentiable state variable
response.
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where the various coefficients are tensor functions of the state variables

+-
(P'e'g'qa)·  By making use of the definition of the co-rotational derivative,

 , and the expression (1.2)3 for the referential temperature gradient,

(1.23) reduces to

D -
DE  a 9    + x    . .D.  0  + uae + 0·      -2- g. (1.24)a. al] 11 ak Vt  k  '

where

5     K  -U 'g, . (1.25)
alj aij ai J

We note. that the linearity in the stimulus rate variables is lost if the

operator  A  is assumed to be weakly (Gateaux) rather than strongly (Fr6chet)

differentiable.  Also, higher order rates may appear depending on the

precise nature of the range and' domain spaces. of the differentiable operatort

t
For instance, if  A  were a continuous, differentiable operator from the
space of bounded, continuously differentiable (Cl) stimuli, endowed  with
the higher order supremum norm

'Ift'li = 'Ift'lo +

sup
1 4  i (T)· i (T) 1      ,t<T< (t+6)

1
into the C subspace of bounded continuous state variable response, then

second order derivatives of the stimulus variables would appear.

L



2.  KINEMATICS

We assume that the continuing flow or deformation is described in terms

+
I of a velocity field  v  defined pointwise over the spacial domain currently

occupied by the body.  As is customary, the second order tensor  L  represents

the spacial gradient of the velocity field,  D, it symmetric part or rate of

deformation, and  w, its antisymmetric part or rate of rotation.  We also

recall the definition of the material derivative

3        + 4-6 -S+v·Vb (2.1)3t

representing the time rate of change as preceived by an observer translating

with a material particle, and the co-rotational derivative

D·- b           b +b +...+b (2.2)Dt  k ..k
k   k    rk2..k Wrk . k   .·.k        r rk    .'

1 n 1" n n 1 1   n-1    n:

which represents the time rate of change as seen by an observer participating

in both the translational and rotational part  of the material flow.

The remembered element configurations are now taken into account by

introducing a&ditional kinematic measures in the following way:  Lboking at

the deformed material element in its current configuration we consider the

material infinitesimals or directors associated with the orthonormal triad

A                    A                    A

of Cartesian coordinate basis vectors  (el'e2'e3).  Now, if the material

under consideration exhibits initial elastic response, instantaneous recovery

would accompany the sudden removal of supporting load.  As a consequence, the

material directors associated with  (81'82'83)  would snap to a new spacial
+ + +

configuration, say  (fl'f 2'f3).  The geometry of the recovered element relative

to the observed configuration, irrespective of orientation, would then be

- 13 -
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fixed by the positive definite, symmetric non-elastic deformation tensor

+ +n
cij

f -f (2.3)
(i)  (j)

A convenient measure for this instantaneously recoverable deformation, known.

as the elastic strain, is the elastic strain tensor defined by

2€e - f -f 6..-c.. (2.4)
+ + n

11 8(i)'e(j) (i)  (j)       1]   1]

It is also assumed that, at each instant, the material element has

memory of a rest configuration whose directional characteristics are known

and unchanging.  To take this into account we suppose that the material

directors .in the current configuration· associated with the set  (el'e2'e3)·
+ + +

correspond to the triad  (rl'r2'r32  in this preferred rest configuration.

This final set of vectors clearly fixes the deformation and orientation of

the material element relative to its preferred, rest configuration. It should

also be clear that if this rest configuration is isotropic then only the

geometry of this triad, determined by the plastic deformation tensor

cP/' = + +
ij     r(i)'r(j)  , (2.5)

and not its orientation, is significant.  As mentioned previously this is

nthe case that we shall pursue. In terms of the deformation tensors  c

and c the anelastic strain tensor, which is clearly a measure of theP

recoverable strain which remains after sudden removal to load, is defined as

+ +
2Ea f   ·f -

+ +
cn »- cP . (2.6)11       (i)  (j)   r(i)'r(j)       ij    ij

Cl
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We now derive the constraints which guarantee that dilatation is a

purely elastic effect. In order to insure that this is the case we shall

require that the respective mass densities associated with the two remember-

ed element configurations be identical and constant.in time. This assumption

incorporates both the incompressibility of plastic flow as well as the

instantaneous recovery of dilatation with removal of load.

In this derivation we first observe that, at any instant, both the

current mass density  p  and the rest or initial mass density  p   are

known, the former being given while the latter is obtained'through inte-

gration of the continuity equation

0+PD 0  .                                               (2.7)kk

By hypothesis  p   will be the mass density associated with both remembered

configurations so that

»+ 4 + + +
-L dVn dVP f 1 . f 2 X  f 3 rl 'r2 X r3= (2.8)
p dV dV

0                                                     el'e2 x e3 el ' e2 x e3.

By making use of the identity

+ + +
a ·a X a ,/det{i   } (2.9)1 2 3 (i)'a   

1 -

the desired condition

D|po /det(cn) ,/det (EP) (2.10)
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is obtained.  The differential form of this results from the substitution

of (2.10) into (2.7).  Recalling Cramer's Rule and the fact that  p   is

constant we obtain

bn.an bn  t  a
*  -2tr(D) , (2.11)

bP.OP bP._v.  rp    
-- -  Dt -

where

-1               -1
bn  =  [cn]   ; bp [c ]                                 (2.12)
- - -           -

It is easily seen that (2.11) is equivalent to

bn.1 cn bP._L cP 0 , (2.13)-  6t - -  Ot -

where

D
 I 9 = vt• 9 + 99 + Dc (2.14)

represents the so called convected derivative of Oldroyd [5].

As a final kinematic preliminary we derive the necessary and sufficient

n
conditions for vanishing of non-elastic and plastic flow.  Let 8 be the

linear operator which maps the vector    associated with a material infini-

tesimal or director in the current configuration to its corresponding vector

+
representation  E  in the unstressed configuration, i.e.,

n+ t. (2.15)4 ·X

Note that this operator has the property that
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n . -* i = 1,2,3 , (2.16)8 .e(i)  -   (i)  ;

and hence it is seen that

Ei     An X (2.17)
ij j     '

where

+                    A                            +'

X     Xie(i)  '    E     E.8                                  (2.18)1 (i)

and

n- *
Aij     e(i)'I(j) (2.19)

Now, the unstressed element configuration is said to be stationary if and

only if each deforming material director has a time invariant representa-

tion in the unstressed configuration.  Stated more precisely, the unstressed

element configuration is said to be stationary if· and only if every time
+varying vector X associated with a deforming material director,  2.= L..X..1      1J  J'

is mapped by• r  into a constant vector,  Ei = 0. Upon differentiation of

(2.17) we see that this condition is equivalent to

t    =-L t i = 1,2,3 (2.20)(i) ij (j)    ;

Similarly, the rest configuration is said to be stationary if and only if

+ +
r(i)  =  -Lijr(j) ; i = 1,2,3 . (2.21)

The corresponding conditions
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6   n

TE 5         0
(2.22)

1 -P    0Ot  

on the non-elastic and plastic deformation tensors are then obtained by

differentiating (2.3) and (2.5).
+ +

In general it is easily established that if  x1  and  x2  are the time
+

varying vector representations of two deforming material directors· and  El

and  t2' Cl  and· it2  are· their respective images in the unstressed and rest

configurations, then

+ +   +   +
Xl'X2 Xl'29.X2

t.1. t2
+ n .+

Xl'29 .%2 (2.23)

,       t1 '  2 Xl'29 .Xl  '
4 Pt

where

2D    -i I         TL+L
-     6t - --

2Dn E _L en                                                 (2.24)-     6t -

2DP E 1 (P
-     6t -

The quantities  Dn  and  DP  are thus denoted as the non-elastic and
-            -

plastic deformation rate tensors.  We note also, after taking the convected

derivative of equations (2.4) and (2.6), that
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6enD     - E +D-     Ot -  -
and (2.25)

Dn   =     *  20 + Pp

These expressions replace the analogous kinematic expressions in the

theory of Hart.

L



3.  GENERAL THEORY

The general theory for materials of this type is based on the assump-

tion that the local state and orientation is determined by the set

 0 g,q ,cn r,.,}, where  {q }N represents some set of scalar statea - (1) a a-1

variables and the dependence on  p  has been absorbed through (2.10).  We

recall from Section 1 that this implies the existence of operators  E  and

H  of the form

+ n+ t  t +t[T,*,n,H](t+E) = E[e,g,q ,c ,r,.,; C ,0 ,G ]
a - (1)  -E  E  E

(3.1)
n+ t +tIq 'cn,r,.,1(t+E) = I[[0,g,q 'c ,r,i), f(t-1-e); Ct,8 'G ]a   -         C i, a - C EC   E

for the response and updated state and orientation variables.  As noted in

+
Section 2, the dependence on the orientation vectors

r 
is replaced by

i)

' .           the plastic deformation tensor,  c.. = r in the isotropic theory.P++
11    (i)'r(j),

In addition, if viscoelastic properties are assumed to be unaltered by con-

tinued plastic flow then the relative distortions between the remembered

+
configurations, together  with .the  set (e,g), should suffice  to  fix  the  re-

sponse functional (3.1)1.  As a consequence, the scalar state variables

{qa}  are excluded as arguments of  E.  With these simplifications, together

with the additional assumptions that the material responds continuously to

continuous stimuli and that . H  is continuous and Frdchet differentiable,

the operators in (3.1) reduce to the set of equations

(a,$,n, )  =  R(0, ,cn,CP)
--

401      =      Ya +  A    ,  .D,  0  + u    6 + v         --2     2aiJ 1J a    ak vt "k
(3.2)

:&   cn                Yn +.A:.D..  +  und +  vn  -11.   e-         - 1J    1J - -k Dt -k
D P

YP + X8 .D.. + 1.,PO + „P -2-FE 5 -        -13   ll - -k Dt  k  '

- 20 -
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where the tensor coefficients in the rate equations are functions of the

n  pi
full set of state variables  (0,g,q ,c ,c j.a-  -

If we now demand the non-negativity of the internal entropy production,

·        -1+ +-pria_p*+cs.D+B g.h > 0 (3.3)
--    -

for all conceivable stimuli, then it is necessary to require that the

inequality

-PIn+112+-26- 0 un+-alp. EP]6 + Ic.. -PC-21!L· A:.+-21!L. Ap.)]D
3 0             n       -                                                       11                    n -1 1 P      - 1J         ij

3c       Dc                   3c        Dc
-

_p I_aiL+ _alt..  un + -21'L .  „p 1  -2-  0
ag     n  -k '  P  Zk Dt ek
k  3£       ac

-p [-21;i · In + ..at · yp] + 0-1;. ,0 (3.4)
ac       Dc
-            -

hold for arbitrary specification  of    6,  p    and   i  it. By standard arguments

it is thus seen that the constitutive expressions (3.2) must be specified so

as to satisfy the constraints

0

.3* ,    n    n       D    D
n                - l. 6 1-  I    .0     + T.  • U.  1

a.. PITnix:. +TP•AP.]
1J                  -     - 1J - -1J

(3.5)

-- - + Tn. Vn +  T • \1                 0
3gk  -  -k  -  -k

P e I 'rn.Ynt  T P.Y P]    -   g. h   5   0       ,
--                            --

in which we have introduced the thermodynamic tensions
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n  =  30T    -

3 n
(3.6)

T  E _21!L
asp

The incompressibility conditions (2.11) impose the further constraints

bno  I y n+  A:.D..  + Une + vn  -2-   g    ] 1
--

- 1J   1J - -k Dt  k  1
)   =  -2 tr(p) . (3.7)

b ·[y + AP.D.. tup6+ .P -2    1  1
-        -        -ll   11 - fk Dt  Zk J J

In order that these conditions hold for arbitrary specification of  D, 0,

  ..it is necessary and sufficient to require that
Dt

n n
b .Y bP·yP     o

bnoun bP·uP     0-- --

(3.8)

bnovn bp·vp             0
- -W - -K

bn.An.D.. bll' . j j Dij -2tr(D)-      - 1J    ll
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4.  SIMPLEST THEORY

We now consider a special case of this general theory which incorporates

both plastic and non-elastic (viscous) flow as strictly dissipative processes.

In order to include this feature we shall demand that the plastic and non-

elastic dissipation inequalities

Tn.Yn.< O---

(4.1)
TPHYP < 0
---

hold independently - the respective equalities being valid whenever and

provided that the stationary flow conditions (2.22)lor(2.22)2 are met.
After writing the rate equation (3.2)3 in the alternate form

2D:     =  -1  crl     =   Y:. +  [ A:.     +c:   6.   +c:   6.   ]D      + u: -0+ vn       _0    2      -1j   6t  ij    1J  · 1Jmn im Jn Jm in mn ij           ij k  Dt   vk   '

(4.2)

it is easily seen that the equalities

n                   n                   n
I           u           V           o-      -k

(4.3)

A: .                       - [c:    6.     +  c:    6.     11Jmn im Jn Jm in

must hold for any specification of state variables for which  Tn.Yn = 0.
4 -

If, on the other hand, the state variables are specified so that  Tn.Yn < 0
- -

then it suffices to require, since the stimulus rates may still be specified

n
arbitrarily and independently, that the symmetric second order tensor  y

lie outside of the subspace spanned by the ten symmetric tensors  {(An +Bn ),
-mn -mn

pn, v }, where  B:·   = c: 6. +c: 6. .  Indentical conclusions are reached
1Jmn im Jn Jm in

P P  P Pfor the coefficients  y ,A.., u   v   appearing in the plastic rate equation
-   -11   - ' -k

(3.2)4'

- 23 -
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The simplest way to guarahtee that these conditions, as well as the

incompressibility requirements (3.8), are met is to choose the coefficients

n P n P
W   ,   11   ,   v,-,   vi     to  be  zero,   and
-              -              - r.         - &

X: ,                       - [c:    6.     +  c:    6       1
1Jmn im J n Jm in

(4.4)

Ap.                       - [c p   6,     +  cp   6,    ]
1Jmn im J 11 Jm in

identically. For this choice we obtain the much simplified set of con-

stitutive equations

0     0(8'Sp, n)

0 -6
1 -                               38

a       =   -2p[Tn     n    + TP    cP    ]
ij          r(icj) r   r(1 J)r

*
   =  *(0,  ,En,

gp) (4.5)

4£1      =      y    +  A-  .  .D. .  + 11   6 tv          -0     7a  ail 11 a   ak Dt °k

2Dn  =   n
-          Y

PP
2D   =  y
-          -

where the various unspecified· coefficients are functions of the full set

of state variables  (B,g,q ,cn,cP).  The specification of these functions
a - -

must still be consistent with the dissipation constraints ·(4.1) and (3.5)4'

and the incompressibility constraints (3.8)1.

A particularly simple choice for the functions  yn  and  yP, consistent

with these requirements, is

*
Standard notation for the symmetric part is used in the third equation.
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YL - -kl['im'l'-1"L'll,1
(4.6)

Y j     -     -k2[«l,cI„-·i   c jc nl, 1 n   .

where  kl  and  k2  are strictly positive functions of the full set of

state variables.  With this choice we identify the thermodynamic tensions

(3.6) as the driving forces for plastic and non-elastic flow.

A complete theory is then set with the identification of the scalar

state variables  qa, the fixing of their corresponding rate laws (4.5)5'

and the choice of the strictly positive scalar functions  ki  and  k2  and

the· fEee energy function (4.5)1.  We shall also demand, in keeping with

the qualitative features discussed earlier, that the free energy function

be chosen so that a fixed temperature minimum is attained at zero strain

(Ee = ea = 0)  and that Cauchy stress, determined through (4.5)3' vanish with-     -

vanishing elastic strain.

0
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5.  SMALL STRAIN LIMIT

D ·
n PIn the small strain limit the deformation tensors c and c may,

by virtue of (2.4) and (2.6), be approximated b9 the unit tensor  I.  Thus,

to lowest order in strain, the non-elastic and plastic deformation rate

equations (4.5)6 and (4.5)7 with (4.6) reduce to

2Dn _ *    -klfn
(5.1)

2DP  z  -k2   ,

where the prime denotes the deviatoric part. In addition, the Cauchy stress

equation (4.5)3 is approximated by

0        -2p  (Tn + TP) . (5.2)-             0  -

These approximate equations reduce to the familier forms

a antap
-     -

Pn     air  ;  'a1 kl/4PO (5.3)J.

P .       'PD   =  a,g   ;
a2 k2/4PO»

with the introduction of the new stress components

an     -29 Tn0-

(5.4)

gp     -2POTP

In order to expand the free energy function  0  we first introduce the

change of variables

- 26 -
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 Ce,ge,fa) *[0,I-2Ee,I-2(se+Ea)] (5.5)--- --

and note the identities

-3£ -2(In+IP)     9/Po
3ee

(5.6)

33   -219    0_ 19° ·
3 Eia-

With this it is easily seen that an admissible free energy function is

necessarily of the form

111     0 +- K    E E +- K..   E .E + 0(E ) (5.7)
le ee la aa  3

0  2  ijmn ij mn 2 ilmn il mn

where the fourth-order tensors  Ke  and  Ka  are positive definite isotropic

and all scalars are functions of the scalar state variables. The absence

of terms linear in strain and the positive defipiteness of the fourth-order

coefficient tensors is a consequence of requiring that the zero strain con-

figuration yield a fixed temperature minimum for free energy.  The approxima-

'

tion (5.6)1 and the requirement that Cauchy stress must vanish with vanishing

elastic strain eliminates the possibility of a second-order cross term and

the isotropy of the zero strain or rest configuration fixes the isotropy of

the coefficient matrices.

After combining equations (5.6) and (5.7) we then deduce the approximate

i forms

g = lee+.2TItr(se)
- -

(5.8)

ap   -   1*Ea + 2U*Itr (ea)
- - --
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for any choice of energy function consistent with the stated requirements.

A final simplification is achieved by noting that it is possible, as a

result of the incompressibility condition (2.10), to establish that the

trace of the anelastic strain tensor is itself·a higher order term, i.e.,

tr(Ea) 0(E ) (5.9)
2

Thus, after collecting results

a            an + aP
-     -

D          6.  ee + Dn
-     6t -   -

bn  =    _i.  Ea + DP
-     6 t-   -

G       lEet 2UI tr(ee) (5.10)
-      -

a  = .A*ea-           -

Dn - -n

-     a19

'PP = a2E   '

we observe the exact analogy between the small sttain limit of the simple

finite strain theory set forth in the previous section and the equations of

Hart.
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6.  CONCLUSION

A precise thermomechanical model based on the notion of "selective

memory" has been proposed as a theoretical foundation for the inelastic

state variable theory of Hart.  We note, however, that the general technique,

which is based largely on the state variable structure of Onat and the con-

cept of remembered element configurations, has more general applicability.

In particular, this technique may be used to generate three-dimensional,

finite strain constitutive theories from any one-dimensional viscoelastic

or viscoplastic model composed of basic elements.  The remarks in Section 1

regarding the discontinuous response of the Kelvin-Voigt model to continuous

stimuli become pertinent when the selected model does not exhibit initial

elastic response.

It is also noteworthy that the small strain limit of the simple theory

proposed in Section 4, although identical in form to the theory of Hart, is

significant in its own right.  We observe that the equations (5.10) as they

stand are fully frame invariant and all fields are defined over the current

element configuration and related to the observables  a  and  D.  Moreover,

since small elastic and anelastic strain does not imply small deformation,

nor are any restrictions imposed on the velocity and velocity gradient fields,

these equations apply in certain extended regimes. For instance, it is

conceivable that these equations could be used to accurately model certain

large deformation metal forming processes.

- 29 -
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Fig. 1. Schematic model representation of Hart's constitutive relations.
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Fig. 2. Effect of rigid rotation on state variable fields.
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