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A. The Potential of Decision Analysis for the Evaluation

of Resource Assessment Expenditures

Decision theory is a powerful tool which can aid
managers in making rational decisions about problems which
involve uncertainty or trade-offs among incommensurable
objectives. It is not a normative technique. Instead,
decision theory structures our intuitive decisionmaking
processes and exposes the assumptions and internal judg-
ments that underlie our decisions.

Uncertainty about the consequences of a given
action is a characteristic of social systems; human behav-
ior is notoriously unpredictable. In contrast, physical
systems exhibit remarkable predictability on a macroscopic
scale: falling objects always obey the same law of motion.
However, our knowledge of physical systems is frequently
as limited and uncertain as our own behavior is unpredict-
able.

Throughout the course of man's intellectual
development, we havercreated numerous analytical tools.
Almost all of these deal exclusively with the world of
physical systems and omit the problems associated with
our uncertain knowledge about that world. Yet this uncer-
tainty is at the core of the difficulties associated with

rational decisionmaking about complex physical and social




problems. Decision theory explicitly incorporates uncer-
tainty into its analysis of the options available to us
as decisionmakers.

A second consideration human beings must weigh
in making decisions is the trade-off between conflicting
objectives such as safety and economy or return on invest-
ment and risk. Most of the many analytical techniques
developed to aid our internal decisionmaking processes
either ignore the necessity of balancing conflicting
objectives or artificially reduce all of the objectives
to a common denominator. The explicit valuation of a
human life in dollars and cents represents a particularly
grotesque example of such methods. Decision theory, while
analytically rigorous, permits a more flexible and, to
some, a more sensitive technique for dealing with these

guestions.

Managers in industry and government who are
responsible for the development of geothermal energy fre-
guently face decisions involving the investment of sub-
stantial sums in geothermal facilities. These decisions
entail considerable financial risk for the funding organi-

zation since the success of the facility depends upon the



existence and upon the characteristics‘of the geothermal
resource. Despite the fact that these characteristics
are determined by physical laws, our knowledge of these
characteristics is often highly uncertain.

For example, imagine a DOE official faced with
a proposal for resource assessment funding. If he rejects
the proposal, firms will decide whether to proceed with
projects at that location on the basis of current geologi-
cal information. If he accepts the proposal, firms will
be able to decide better whether to proceed and how to
design their facilities. Given that he has a limited
budget, the official wishes to fund only those proposals
which could yield potential benefits in terms of fossil
fuel savings. If the technical quality of the proposal
is not a consideration, how much should he be willing to
spend on it?

It is unclear how much one should pay for
additional information. Intuitively, we can say that
the answer depends upon the value of the information to
the decisionmaker. Setting aside the possibility of
a discrepancy between the objectives of the decision-
maker and those of his organization, this value should
be related to the usefulneés of the information. If the

information cannot affect the decision to be taken, it




Awill only be valuable to the intellectually curious. 1If,
however, the information can materially affect the deci-
sion to be made, the information may be extremely valuable.

This conclusion holds whether the decisionmaker
is an executive in a firm about to embark upon an expensive
drilling program or whether he is a program manager in the
Department of Energy reviewing proposals for resource
assessment funding. While the objectives of the decision-
makers may differ, the prindiple remains the same: one
should not pay more for information than its value in
light of the decision to be made.

Decision theory can be used to derive rigor-
ously the dollar amounts that correspond to the value of
geothermal resource information. The following sections
describe the procedure in greater detail and provide a

numerical example.



B. Value of Information

One of the most important factors involved in
the evaluation of geothermal energy is the uncertainty that
surrounds the geothermal resource itself. This uncertainty,
which relates primarily to the temperature and production
flow rate of the resource, is translated into a correspond-
ing uncertainty in the anticipated cost of the project.

A potential user of geothermal energy might wish
to reduce this uncertainty by commissioning additional geo-
logical studies or even by drilling an initial production
well. 1In the present context, these activiéies will be
termed experiments. However, the user should weigh the
cost of such experiments against the potential value of the
information to be gained from them.

The value of information derived from experiment
to a potential user of geothermal energy depends upon the
effect possession‘of the information will have upon his
decisionmaking. At one extreme is the situation in which
the decision to utilize geothermal energy and the choice
of plant design are made in advance. In this case, posses-
sion of information from an experiment cannot alter the ex-
pected net present value of the project. At the other ex-
treme lies the situation in which the decision to use geo-

thermal energy and the choice of plant design can be post-




poned until the information has been obtained. If no ex-
periment is performed, the user will design the plant on

the basis of the expected resource characteristics. Thus if
resource characteristics are found to differ in actuality
from their expected values, the user will have built a sub-
optimal plant. However, if an experiment is performed, the
user can design the plant to make optimum use of the
discovered characteristics of the resource.

The value of the information to the user is rep-
resented by the difference between the expected value of
the project without experimentation and the expected wvalue
of the project with experimentation.l Therefore, a rational
decision-maker who has the opportunity to perform the ex-
periment at a cost less than this value should choose to do
so. If the cost of the experiment will exceed the value of
the information to be obtained, the decision-maker should
proceed without the experiment.

This concept has important implications for the
practice of geothermal resource assessment as well. The
most important of these implications is that location-
specific assessment efforts can be rigorously justified on
the basis of the value of the information to be procured.
Furthermore, such a justification cannot be made without

consideration of a particular application, since the econo-



mics of the specific application determine in part the value
of the information to be gainéd from the experiment.

The procedure used to calculate the value of in-
formation for a given application is outlined in the next
section. An example is then presented in Sections 2 and 3.

1. Calculation of the expected value of information

Among the simplifying assumptions made in the course
of the analysis are the following. The net present value of
the project is defined as the net present value of cash flows
associated with the proposed system minus that associated
with a conventional system. It is assumed that only a geo-
thermal system can be used. Under certain circumstances,
it is possible that the net present value of the project
will be negative. If the user had the option of employing
a conventional system, the net present value as defined
here could never be below zero. It is also assumed that
the user makes decisions solely upon the basis of their
monetary consequences. It is further assumed that the user
is not risk-averse. This condition is equivalent to the
assumption that the value of a marginal dollar is constant
regardless of the user's total financial wealth.

The second and third assumptions together imply
that the net present value of the project is a sufficient

measure of its attractiveness. In the present analysis,




this figure is assumed to be a function of the geothermal
fluid temperature and of the fluid flow rate used in the
plant. [It is assumed that the plant design is optimized in
terms of all other parameters.] The temperature is consider-
ed to be a random variable described by a probability dis-
tribution. The fluid flow rate is viewed as a decision
variable under the control of the user since he is free to
drill any number of wells into the geothermal reservoir.
[The existence of this freedom depends upon the assumption
that the reservoir is large compared to the range of possi-
ble flow rates.]

Thus

v

Vi(m,t) , (1]

where
V = net present value of cash flows
associated with the geothermal
system minus that associated with
a conventional system

m = mass flow rate of geothermal fluid
purchased

t = temperature of the geothermal fluid.
To compute the value of information, one must first calcu-
late the expected value of the project without experimen-
tation and then ascertain the eXpected value with experimen-

tation.
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If no experiment is performed, the user can only
attempt to maximize the expected project net present value.

Applying the expectation operator (denoted by < >):
<V> = <V {(m,t)> . [21

The maximum figure for this expected value will occur at a
mass flow rate which can be found by differentiating with
respect to m and setting the result equal to zero:

<>

r-walii 0o . [3]

If the optimal value of m is denoted by m and the optimal
expected net present value by <V>, the expected project
net present value without experimentation can be written

as
<V> = «<v(ﬁ,t)> . [4]

The expected project net present value with ex-
perimentation depends upon the accuracy of the experiment.
If it is assumed that the experiment yields perfect infor-
mation (i.e. it determines with certainty the true value of
t, or t ), then after the experiment is performed the

actual
user can compute a precise value for V which corresponds to

any choice of m:




11

V.= V(m’tactual) ‘ [5]
The user would then maximize the net present value by set-
ting the derivative of V equal to zero,

WV _ ‘

by o . [6]

which gives the optimal value of m, m', and thus the optimal

value of V,

V' = VvV(m', t ) . (7]

actual

However, a priori the user does not know the re-
sults of the experiment and thus cannot compute either m'

or V'. Nevertheless, he can calculate an expected value:
<V'> = <V'(m',t)> [8]

This figure represents the prior expected project net pres-
ent value if a perfect experiment is performed.

The expected value of perfect information is
defined to be the difference between the expected net pres-
ent value if the best flow rate is chosen after perfect in-
formation is obtained and the expected net present value
if the best flow rate is chosen without the benefit of fur-

ther information. Thus
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EVPI <V's - <U> [9]
where

EVPI

expected value of perfect
information.

If it is assumed that the‘experiment yvields
imperfect information (i.e. it determines only a "narrower"
probability distribution for t than that already estab-
lished), then the computation of the expected value of
information becomes somewhat more complicated.

The experiment gives a result t* for the resource
temperature. Howe&er, this is only indicative of what the
true value might be since the experiment is imperfect.
After the experiment has been performed, the user is in
an analogous situation to that if no experiment had been
performed: he can only attempt to optimize the expected

value of the project. Thus taking the expected value,
<> = ./elm,r)P(T[T*) dr |, [10]
where

P(t|t*) = probability of the actual
temperature being T given
that the experimental result
was T*.

The user would then maximize the expected value by setting

the derivative with respect to m equal to zero;

o<V> - 0

om ' [11]
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which yields the optimum flow rate m" and the corresponding
value V" in terms of the experimental result T*.
However, a priori the user does not know what

t* will be. He can take an expected value, giving
AL /v"-(T*)p(T*) at* [12]
where

<>

1

prior expected net present value
of project if an imperfect
experiment is performed.

v (t¥*) = optimum project value as a
function*of the experimental
result t°.

P(t*) = probability of the experimental

result being T .

The expected value of imperfect information is
defined to be the difference between the expected net
present value if the best flow rate is chosen on the
basis of imperfect information and the eﬁpected net
present value if the best flow rate is chosen without

the benefit of further information. Thus

A

EVIPI = <V"> - <v> |, [13]
where

EVIPI expected value of imperfect

information.
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2. Example calculation of the expected value of

perfect information

The net present value information required for
the calculation of the EVPI (and the EVIPI) is determined
by utilizing the computer model described in Reference 2.

For this example, the model is run using data
from the second part of Chapter 6 of Reference 2. One
modification is made in these data: it is assumed that
the user pays for geothermal fluid on a "per unit mass"
basis rather than investing directly in geothermal resource
development. While the assumption of a constant price
per unit mass may not be realistic over a wide range of
flow rates, it is probably reasonable for the more limited
range of flow rates of interest in this analysis.

The results for net present value as a function
of mass flow rate and fluid temperature (as shown in

Fig. 1) are represented by the following expression:

_ 2 3
v = a; + a,m + a,m + a,m ' [14]
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where for the sake of convenience V is in millions of
dollars and m is normalized by division by 162,530 kg/hr,
and where the coefficients a; are functidns of temperature.
For each fluid temperature a least-squares analysis is used
to determine the values of a ays ag and a, The coeffi-

cients are then cross-plotted against temperature. A

linear least-squares analysis is then employed to yield ex-

pressions of the form

a. = a., + a.. T ’ [15]

where

The reason for using T instead of t will become clear in
the following discussion. The coefficients determined by
the present analysis are given in Table 1.

The next step is to assume a probability density
function for the geothermal fluid temperature. On the
basis of the geological record for Ontario, Oregon (the
site of the facility in this example), it is extremely
unlikely that this temperéture would be less than approxi-
mately 60°C. A two-tailed probability function is there?

fore inappropriate for modeling the distribution of possible




Note:

\%

- j=1 =2
a1j 51.43 ~0.9132
a2j -146.79 2.5378
a3j 129.70 -2.1302
a4j -35.66 0.5€51
dlj 1.941 -8.961E-3
bi c;

i=1 -17.06 -5.632
i=2 43.54 0.535
i=3 -30.07 ~0.012
i=4 6.72 1.189E-4
i=25 -4.066E-7

= net present value in millions of dollars
_ geothermal fluid flow rate, kg/hr
162,530
= (geothermal fluid temperature,®°C) - 60
TABLE 1 - COEFFICIENTS USED IN THE

VALUE OF INFORMATION ANALYSIS
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fluid temperatures. A more suitable distribution is the

log-normal function,

P(tT) uTB exp[-vy (2n 1)2] for >0 , [16]

where

probability of the fluid temperature
being equal to T

P(T)

a,B,y = constants. Note that normalization
of the probability function forces

1/2 (ﬁii)z]

a = (&) exp[— 4.Y

3=

Since the probability approaches zero as T approaches zero
and thus as t approaches 60°C, this function has the ap-
propriate form. It can be shown by performing the follow-
ing analysis with a different probability function that
the ultimate results are relatively insensitive to the

particular functional form assumed.
For the sake of completeness, it should be noted

that use of the log-normal function implies that

<T> = exp (22—:('—31> (17]

oz(r) = exp (26;3> [exp(%;) - 1] [18]
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and
VZ(T) = exp(%?) -1 ' [19]
where
oc(t) = standard deviation of T
v(t) = coefficient of variation of =
. oft)
<T> ¢

It is assumed for the purposes of this analysis
that t equals 135°C * 30%. However, it is ambiguous to
state the uncertainty in terms of +30% of the temperature.
A more precise statement would be that three standard devi-

ations equal 30% of the mean, or

vit) = %x 0.30 = 0.10 . [20]

From Egs. 17 and 19,

432.40

™
I

50.25 .

<
I

Now the expected net present value of the pro-
ject in the absence of experimentation can be evaluated.

By definition, the expected value of V is

<v> =] V(m, )P (t) drt . [211]
o
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Replacing V(m,t) by Egs. 14 and 15, P(t) by Eq. 16,

and changing variables such that x = 4n 1 yields

<V> = }[a(c + Dex)eXp[(B+l)x - yxz] dx , [22]
where
4
i1
c => a;m [23]
i=1
4
_ S A i-1
D —:z aizm . [24]
i=1

Separating the two terms and completing the squares in the

exponents gives

CO

2
<V> = ./;C exp [-y(x - E%% 2 + iﬁ%%i ] dx +
i B+2,2 '(B+2)2 :
+ faD exp [-yv(x - ——2? + —Z-Y—— ] dx . [25]

If the constant term in each integral is extracted and

variables changed once again such that

r =y 2y (x-Eil [26]




and
_ B+2
s = 2y (x - ‘—Z—Y— ’ [27]1
then Eg. 25 can be reformulated as
aC (B+l) N r?
<v> = = exp [—— 1] exp [~ 5—] dr +
v2y —
2 o 2
+ _
+ ab exp [-(_i_?i ]fexp - 5-14as . [28]
Y 2
27 e
But these integrals are each /21 times the integral of the

21

normal probability distribution over the entire domain.

Since the latter integral

tegrals both equal [/27.

replacing o by its value in terms of B and ¥y

Eg. 16) yields

must equal unity, the given in-

Performing this substitution and

(given below

<V> = C + D expl 4Y3]
oxr

<v> = C + D<T> .
Thus it can be seen that

V> = V(m,<t>) .

[29]

[30]
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To evaluate Eq. 3, define

bi = ail + ai2 <T> . [31]

The values of the bi for this example are listed in Table

1. Thus
4
i-1
<V> =Z b,m* , [32]
i=1
and
I<V> _ 2 -
A = 0 = b2 + 2b3m + 3b4m . [33]

Finally, the optimal value for m in the absence of an ex-

periment, m, can be determined to be |

2
-b, - \/ -3 .b
_ 3 3 2°4 (34]

3b4

3>

i

1.239 ’

since only the smaller root is of significance in this ex-
ample. Substituting this result into Eg. 32 then yields

the expected project value without experimentation:

<V(m,7T)> = 3.521 (dollars x 10°°) . [35]

Next, the expected net present value of the
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project with experimentation must be evaluated. The opti-
mal value of m after the experiment has been performed is

found by differentiating V:

vV _ _ 2
e 0 = a, + 2a3m + 3a4m , [36]
or, solving,
-a -Vw/a 2 -~ 3a,a
3a4

where it is again the smaller root which is of interest.
This expression is awkward for the manipulations to follow.

Since m' is a function of T through the coefficients

actual
a; . the equation above may therefore be replaced by the

linear relation
m' = d + d T ’ [38]

which gives figures within 2.5% of those derived from

Eq. 37 throughout the relevant domain. [The values of dll

and d12 for this example are given in Table 1.]
Then
4
v’ =2(a fa..nd,., +a., nt [39]
il i2 11 12 !
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or, rearranging,

5
i-1
= 2 o, . [40]
i=1
where
= + d + d 2 + d 3)
€1 T 811 T 331%1 T @31%1) a41%11
¢, = (ajp + aj,d,, + ay,d;; + 2a3,d,,4d,,
2
+ agydyy
2 3
* 3a,,dy,7dy, Fa,5d007)
= (a..d..+a.d . %+2.4.4d _ +3a.4 2
€3 22%12 31%2 3F11%, * 38495,9,
+ 3a,.d 2d
42911 “12)
_ 2 3 2
S, = (agpdyy” +oag di,T 4 3a,,di0d050)
_ 3
cg = (a,dy57)

Values for the c; are given in Table 1. The expected

value of V' is

<V'> .[“ ZS c.th -1 Yo TB exp[-y (2n T)Z] dt . [41]
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Following the same procedure as was used above, change
variables such that x = &n T, separate terms, complete the
squares in the exponents, and extract the constants from
the integrals. Next, change variables once again such

that

r = Vv2Y (x - B+l

2Y
s = V2vy (x - %;3)

and analogous expressions are used for the remaining inte-

grals. Each integral now equals 2m. Finally, substitut-

ing for o yields

_ 2B+3 B+2
<V'> = cy t ey exp [ iy ] + Cy exp[—7—
[42]
68+15 2B+6
+ cy exp [ iy 1 + Cg exp [ ¥ 1 .
It can be shown by use of Egs. 17 and 19 that this is
identical to
<V'> = €, + C,<T> + ¢ <~c>2 (v2+l)
1 2 3
[43]
3 6
+ C <T>3(U2+l) + C <T>4(V2+l) .

4 5
Evaluation of this expression reveals that for this example,

<v'> = 3.561 (dollars x 10~°). [44]
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One can now compute the expected value of per-
fect information using Egs. 35 and 44. Substitution of

these equations into Eg. 9 results in

6

EVPI $3.561 x lO6 - §3.521 x 10

(45]

$40,700 .

3. Example calculation of the expected value of

imperfect information

The underlying data and the equations for
project net present value assumed above will also be
adopted in this section. The development below utilizes
several elements of the analysis presented in Reference 3.

The knowledge possessed by the user about the
experiment to be performed is encoded in the following

log-normal probability distribution:

*

B 2
P(t¥[t) = o¥t* expl-Y*(an )7 , [46]
where
P(t*|1) = probability of an experimental
result T* given that the true
value is T.
a*,B*,Y* = constants.

This distribution represents a "calibration" of the pre-
cision of the experiment. If this cannot be specified,

the experiment is probably poorly designed.
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Two additional assumptions about this distribu-
tion can be made. First, it is assumed that no systematic

bias is present, or

<t = T, [47]

and second, it is assumed that the relative accuracy of

the experiment is a constant, or

V(T*lT) = constant . [48]

Using the properties of the log-normal distribu-
tionmgiven in Egs. 17 and 19, one can show that for these
two assumptions to hold, the following relations must be
true:

B = 2v* an 1 - 3/2

. [49]
Y = constant .

In order to evaluate the probability distribu-

tion P(T[T*) in Eg. 10, note that by Bayes' Theorem

P(T)P (1" |1)
P(t") ) (501

P(T[T*) =

However, P(T*) must first be found to evaluate this

expression. By definition,

p(tY) = ./;(T*[T)P(t) ar . [51]

O



28

Substitution of Egs. 16 and 46 yields (upon expansion of

. *
the expressions for o and a )

o]
*';I 2 * 2
* _ YY _ (B+1) (B +1)
P(t") = ( 2) /eXP[ 2y T]
T
o
*
3] %P 2 [52]
T T exp[-Y(n 1) -
2
Y*(en t7) 1 dt
Then substitution of x = 4n T, x* = 4n T*, Eq. 49, and
finally rearrangement gives
Yy* e
*
p(ch) = (o) ]{exp - vy ) %2
Tr -0
3,k 1, (g+1)2
+ (B+5+2Y x )x - ¥t Iy
v167Y
[53]

3 * * *2>}
+ ix + Y X dx
Following the same technique of integration used previously,

this expression becomes

* A

2
p(t*) = YY exp |- 4 + (BF3/2)
T(Y+Y ) 16Y 4(Y+Y )
, [Y*(B+3/2) 3 g] (541
_ (BZ%) ] N L 2
* . 2
exp | - ——II?— (&n T )

(Y+Y )




29

Note that this is a log-normal distribution with effective

parameters
Y*
Beff __iéiglgl._ 3/2
(Y+Y )
[55]
*
¥ _ YY
eff *
(Y+Y ) '
and that as expected
*
<T > = <1> . [56]
The next step is to evaluate P(t|T*) using
Bayes' Theorem (Eg. 50). Substitution of Egs. lé, 46, 49,

and 54 into Eg. 50 yields after some algebra

*
[2“{*211 v - L (B+3/2)
(Y+Y )

T
* (57]
exp (%¢n 1T - (Y+Y ) (&n T) -
%2
2 2
_Y——T (an T*) - _M%_)._ .
(Y+Y ) 4 (Y+Y )

With these results in hand one can evaluate
Eg. 10 for the posterior expected value of the project
*
given an experimental result v . Since from Egs. 23 and

24

v(m,T) = C + Dt , [58]
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where C and D are functions of m, Eg. 10 can be written as

V> = ﬁC+DT)P(T]T*) dar . [59]

Substitution of Eqg. 57 into this equation, transformation
of variables such that x = &n T and x* = 2n ™ and com-
pletion of squares in the exponents finally yields after

some manipulation

o]

*;2
*
<V> = <Yt: > /ﬁ C exp [-(Y+Y ) (x -
x * 2 o
2Y_x +B:3/2 Codx + D exp
2(Y+Y ) J o

‘* * % 2
= rer™) (X _2Y'x +B:5/2>
2(Y+Y )

* %
exp u_ﬁ_&l dx .

[(60]

*
(Y+Y )

Integration then results in the interesting and remarkably

simple expression
<v> = C + Dt" [61]

where

* * 1
o = exp[Y n T*+%B+l . [62]
(Y+Y )
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Next, the maximum value of <V> must be found

by means of Eg. 1l. First, however, define

fi = aj; * a;, ™, {63]
so that
4
<> = £.m1 [64]
1 -
i=1
Then
5<V> _ 2
et = 0 = f, + 2fm + 3f,m , [65]
or solving
- £, - \/f2—3ff [66]
ot = 3 3 274
3E, !

where m" is the flow rate which maximizes <V> and m" is a
function of t" through the coefficients fi'

Note here the analogy between Eqg. 37 and Eq. 66.
The expressions are identical if t" in the latter case is
considered to be analogous to Tt in the former. This
analogy can then be exploited by recognizing that the
linearization of Eq. 37 will also hold for Eq. 66 if t"

is substituted for T:

m" = dll + d12 ™ . [67]
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Following the analogy through Egs. 39 and 40 demonstrates

that

5
v o= 25 ci(r")i‘l , [(68]

i=1

where the coefficients c; have the same numerical values

as before.
The last step is to evaluate Eqg. 12 for the
prior expected value if an imperfect experiment is per-

formed by use of Egs. 54, 55, 62, and 68. Substitution

of these latter gives

@ 5 * * i-1
V"> = ./. :S C; | exp <Y n T +%B+l>
o |

v *
i=1 (Y+Y )

[69]
» * 2 *
aeffT exp a-Yeff (2n T ) dTt .

After expansion term-by-term, a change of variables such
that x = ¢n T and X" = 2n t~, completion of the squares
in the exponents, another change of variables as in Eq. 26,

integration, and further algebra involving Eq. 55, this

equation becomes

Ny = 2B+3 B+2  _
<yY"> = ¢y + c, exp | Ty ] + Cy exp [ Y

*
1 b oy exp [62;9 .37 }
2 (Y+Y ) 2Y (Y+Y )
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* *

2R+4 2BY +6Y -6
*+ *
Y+Y Y (Y+Y )

+ cg exp [ . [70]
Finally, by utilizing the definitions of Egs. 17 and 19,

this equation can be shown to be identical to

* *
"> = +oeo<t> + o<t (vl Y /(Y )]

€1 2 3

137"/ (v+v") 1 [71]

+ c <T>3(U2+l)

4

* *
+ <'r>4(\12+l)[6Y /Y ) ]

s
Note from the form of the definition of v(t™|t) that as the
precision of the experiment improves, u(r*{T) decreases

and Y* increases. Thus, in the limit as the imperfect
experiment approaches the precision of the perfect experi-
ment, Eg. 71 approaches the form of the analogous expression
Eqg. 43.

If it is assumed as before that

<t> = 75
[72]
2
vi(t) = 0.01
and additionally that
2 *
vei(t |t) = 0.005 , [73]

then

*
Y = 100.25 [74]
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and

«v"s = 3.547 (dollars x 10°8) . [75]

Finally, from Eq. 13 the expected value of
imperfect information is

$3.547 x 10° - $3.521 x 10°

EVIPI
[76]

$26,600
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