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SECTION 1. SUMMARY

This technical memorandum compares one-, two-, and three-dimen- /

sional models for studying regional mass transpert of radionuclides
in groundwater associated with deep repository disposal of high-level
radioactive wastes. In addition, this report outlines the general
conditions for which a one- or two-dimensional model could be used

as an alternate to a three-dimensignal model analysis.

The investigation includes a review of analytical and numerical models
in addition to consideration of such conditions as rock and fluid
heterogeneity, anisotropy, boundary and initial conditions, and
various geometric shapes of repository sources and sinks. Based upon
current hydrologic practice, each review is taken separately and dis-
cussed to the extent that the researcher can match his problem condi-
tions with the minimum number of model dimensions necessary for an

accurate solution.

The primary findings of the report are as follows:

1. Dispersion and diffusion are three-dimensional phenomena. There-
fore, any model chosen that assumes dispersion and diffusion to be
negligible in any direction may result in misleading conclusions.

2. Radioactive decay is a function of time only, and therefore is
independent of the number of space coordinates chosen for model
simulation.

3. Vertical cross-sectional models that assume uniform flow condi-
tions perpendicular to the section cannot properly represent the

three-dimensional flow towards wells or nuclide repositories. Neither
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can they properly represent dispersion in the direction normai to
the plane of the cross-section unless very special conditions exist,
74, (One-dimensional models are very limited in application to field
radionuclide transport. The one-dimensional model, however, has
application to laboratory experiments such as sand columns and
possibly in combination with other formulations such as one-dimensional
flow with three-dimensional dispersion.
5. A "flow" problem may be symetrical in head distribution but
asymetrical when further consideration is given to mass transport.
Three-dimensional dispersion in a one-dimensional uniform flow field
is an obvious example of this concept where symmetry in flow and mass
transport differ. Use of symmetry conditions for reducing dimensions
depends upon both flow and transport consideration.
6. The equivalent replacement of a three-dimensional repository shape
in a ¢ .z~ or two-dimensional model study, if desired, should be a line
sink. Distortion of head distribution, mass transport velocities, and
time-related changes in flow result if a point replacement is used for
the actual three-dimensional repository shape.
7. In the event that a point, line, or area equivalent to the true
three-dimensional repository is used, one ﬁhould be aware that errors

in calculated heads or flow rates in the system will occur. The rel-

ative magnitudes of these errors should be a subject of further research.

8. Consideration of boundary and initial conditions are very important
in choosing the number of dimensions for modeling nuclide transport.
A test, by cross-section comparisons perpendicular to the coordinate
axis to be eliminated, can show when a lower order dimensioned model

may be considered for use.



9, The existence of large volumes of heterogeneous fluids presents
a moving boundary problem to be dealt with. MNot only does one need
to consider all of the dimension symmetry and uniformity criteria of
stationary boundaries, but one needs to examine the movement of the
boundary in time as the physical process takes place.

10. The existence of numerical models allows a means for solving
compTex one-, two-, or three-dimensional problems but does not help
us in deciding which dimensions to include for mass transport of
radionuclides. In fact, the approximating features of the numerical
models will increase the number of dimension problem decisions.

11. The vertical to horizontal scale contrasts in nodal placement for
fully or pseudo three-dimensional models introduces errors that we
believe are not fully understood or appreciated. Further study is

needed.
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SECTION 2. INTRODUCTION

The study of radionuclide mass transport can bhe accomplished by
making use of modeling techniques-involving analytical formulas or
numerical techniques. These modeling techniques have hzen, in the
past, developed an the basis of one-, two-, or three-dimensional
theories and considerations, Quite frequently, the researcher is
faced with choosing not only an appropriate formula or numerical
technique for solution of a probiem, but also with a choice of

the number of dimensions to include in the analysis. Under jdeal
cenditions, the researcher can simp? 'fy his work, make efficient
use of computer time and core storage, and rid himself of handling
unnecestary variables when a two-dinensional model can be used to
solve his problem just as well as a three-dimensional model. Under
further ideal conditions, perhaps the use of a one-dimensional

model may provide 2n accurate solution to a problem.

The purpose of this report is to shed 1ight on the problem of choosing
among the one-, two-, or three-dimensional models when studying mass
transport of radionuclides. The scope of work in the project task
inciuded a general evaluation of the extent a lower order model can
adequately simulate the regional flow of radionuclides and a compar-
json between one-, two-, and three-dimensional flow and quality
problems. It should be realized that what is adequate for one use
may be insufficient for another. The dimensionality of the mode!
depends on such items as the type of answers sought, the accuracy
desired, and the widely varying particulars of the problem to b2

solved. We have thus developed the necessary concepts in this



report which will Tead to the specific criteria necessary for choosing

the number of dimensions of a model for radionuclide transport,

Consideration was given in this report to such conditions as hetero-
geneity, anisotropy, and boundary geometry and various sources and

sinks as they relate to predictive accuracy. A literature search was
conducted and a reference 1ist assembled to the extent that it supports
the evaluation and comparison, This task also included studies of one-,
two-, and three-dimensional analytical solutions for homogeneous and
isotronic cases to show, in the absence of any numerical model approxi-
mations, where there is a real need for three-dimensional models. Al-
though there are conceivable regional flow cases where a three-dimensional
mode] may be necessary, an evaluation of modeling techniques (finmite-
difference versus finite element) was also included to study model approx-
imating procedures still remaining that may cause additional problems

in the needs and evaluations process. A selected number of idealized
computer simulations was carried out for those areas of particular in-
terest as illustrations of lower dimensional models as equivalents of

three-dimensional formulations.

The remainder of the report is in order of discussions concerning ana-
1ytical models, exampie soiutions, and numerical models. Comparisons

among one-, two-, and three-dimensional formulations are made within

gach of these sections and a 1ist of major conclusions and recommenda-

tions given.
The work was undertaken by Camp Dresser & McKee under Purchase Order Number
5696609 (Task 2) from the Lawrence Livermore Laboratory of the University

of California.



SECTIDN 3. ANALYTICAL MODELS

The basis for the discussion that follows stems from consideration
of groundwater flow in three-dimensions as expressed by analytical
formulas. Since many of the classical groundwater equations in
one and two dimensional form include assumptions about the third
dimension variables, we will discuss the associated validity and
possible errors therefore introduced. In the limit, we are thus
assuming that the three-dimensional analytical formulas are the
true representations of the actual situation and discuss the
possibilities of reducing the problem to simpler forms if
possible.

Analytical formulas are models themselves. On occasion, the

literature on groundwater modeling gives the impression that it is

the formula that we are modeling and not the actual physics of
the real world. This point is made because it is possible to
consider the formula the ultimate answer and forget where the
formulas come from in the first place. The formulas themselves
contain assumptions, We hegin the discussion below by examining
what is going on with full three-dimensional formulas themselves
as they relate to governing assumptions. For some situations, it
is therefore possible that the three-dimensional formulations given
in the literature themselves are inadequate for modeling radio-
nuclide transport,

The following analytical modeling part includes a discussion of
the three-dimensional formulations and when Jower order dimensional
analysis may be used, Special attention is then given to source
and sink singularity problems, effects of boundary conditions,

the separation of local versus regional effects, and the problems
associated with heterogeneity and anisotropy. This total part

1
K



of the report is then concluded by a discussion of the usefulness

of analytical formulas in the modeling of radionuclide transport

in one, two, and three dimensions. The conclusions section

includes a discussion of the difference between one, two, and

three dimensional analyses that is independent of modeling technique
and iherefore applicable to the numerical modeling that follows

in the next part of this report.

THREE-DIMENSION EQUATIONS
FLOW EQUATION AND BASIC ASSUMPTIONS

The classical partial differential equation governing the three-
dimensional unsteady~state flow of groundwater in a homogeneous
and isotropic aquifer was given by Jacob (1950} as:

ah, 2*h  3%h _Ssoh
SRt o 1 (1)

at ay?r a2?
Equation {1) is of the same form as the fundamental equation of
applied physics known as the "diffusion equation." Equations of
the same form as Equation (1) appear in the theories of unsteady-
state flow of heat and electricity from which solutions to many
groundwater flow problems may be obtained by analogy.

Equation {1) can be used, along with appropriate boundary condi-
tions, to solve for head distributions in time and space. The
head distribution can then be differentiated with respect to
distance, to produce a velocity distribution. The Pollowing
discussion is centered around the basic assumptions of the above
equation, a presentation of example selutions to three-dimensicnal
flow problems, and a review of the possible mechanisms to reduce
the three-dimensional problem solution down to either one or two-
dimensional representation.

*Please refer to the "List of Symbols" for definition of terms.



The derivation of Equation (1) was not without additional assumptions
as follows.

First, the elemental volume, used in the derivation of the equation,
remains constant in dimensions in the lateral directions but is
21lowed to deform in the vertical direction. Furthermore, it was
assumed that the volume of solid materials within the elemental
vplume remains constant. What is wrong is that a three-dimensional
flow field and a one-dimensional stress field are intermixed.

The more general approach would rombine three-dimensional flow
with three dimensional stress. Gambolati (1974) analyzes the
range of validity of Equation (1) due this basic assumption.

The results of that work indicate that this assumption is not
likely to cause problems in deep burial of radionuclides where
compaction of groundwater reservoirs is negligible. Gambolati
indicates that the three-dimensional stress effects are negligible
when the ratio of depth to thickness of aquifer is equal to or
greater than 2, The problems would occur in shallow and thick
aguifers that compact substantially when pressures of the flowing
fluids are reduced.

Secondly, the density gradients in space that exist in reality

are assumed to be negligible in Equation (1). These density
gradients can be expressed mathematically by the grouping given by
Jacob (1950):

psg[( ey @y 4 @hye

and is the pertinent missing component of the left hand side of
Equation (1). The reasoning for neglecting this term was that

it is quite smal} in comparison to the first term of Equation (1).
Supposedly it is particularly small for low-angle flow with 3h/az
being much jess than one.
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Thirdly, the specific storage coefficient, SS, is constant in

time and represents a coefficient related to an instantaneous

release of water from storage. Fourthly, the flow is confined

and therefore no draining of aquifer materials occurs. Fifthly,

flow is assumed to be laminar only and therefore turbulent flow

js assumed nonexistent. Sixthly, flow is assumed to be statistically
irrotationai. And finally, no temperature, chemical, radioactive,

ur bacterial processes are present that would change the fluid vis-
cosity or density either in space «. time,

MASS TRANSPORT EQUATION

AND BASIC ASSUMPTIONS

Based upon the derivations of Ogata (1970) and Bear (1972), the
three-dimensional equation governing mass fransport in saturated,
homogeneous and isotropic porous media with adsorption, chemical
sorption, and radioactie decay can be given as:

E [ (Dx ax ( ¥ ay (Dz Bz:l
1138 ) ) -1 . ot
- E [5; (VXD) + £ (VyC) t 3 (‘IZC)J - i = 3 (2)

Equation (2), along with appropriate boundary conditions, can be
used to obtain concetitration distributions in both time and space.

Since velocities of flow are involved in Equation (2), all of

the basic assumptions used in the derivation of Equation (1)

apply here also. In addition, further assumptions placed on the
advective-dispersion Equation (2) are outlined as follows. The
coefficient of hydrodynamic dispersion assumes that Di = divi + D*
and that the exponent on the velocity term is one. Next, there is
assumed that there is no density or viscosity difference hetween
the transported solufe and the resident groundwaters.

T~
b
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The system is assumed to be isothermal and that there is no change °
in porosity with pressure change. The retardation factor and its
associated distribution coefficient represents fast and reversible
reactipns in the presence of linear isotherms, Onsager rela-
tionships coupling various forces that can produce other transport
are neglected. :

No special significance is yet given to these particular assump-
tions other than.to show that a large group of assumptions do
exist for three-dimensional formulations. The point to be made
is that the decision on whether to use a one-, two-, or three-
dimensional model is only a part of the decision making process
in choosing a model. There are other considerations common to
all dimensions which must be kept in mind.

Let us now proceed to consider further assumptions that might be
made to reduce a three-dimensional problem down to a two-
dimensional one.

TWO-DIMENSION EQUATIONS
PLAN VIEW FLOW EQUATION
For the special case of an uniformly thick and horizontal aguifer

of thickness, b, Equation (1) may be reduced to a two-dimensional
form by setting 32h/az? to zero and rewriting the equation of flow as:

.az_h+az_h=§sglh.=§.a—|l (3)
x2 oyl Kb at Tat

The setting of 32h/32? to zero requires that all of the flow be
horizontal 9n the x and y direction. Equation (3) is thus a plan
view model of groundwater flow.



PLAN VIEW MASS TRANSPORT EQUATION

The corresponding mass transport equation for the above plan
view flow model comes from Equation (2) with v, equal to zero
and is written as

1|, %, % | 12 3
% [D" e " ay’] Ry [ax il oy (vyC)]

iy
-ac= 2 (4)

Equation (4) implies additional simplification other than setting
v, equals zero in Equation (2). Dispersion is a three-dimensional
phenomena, Setting v, equal to zero does not stop dispersion

in a two-dimensional flow field from going in the third dimension.
S0, what we have done for Equation @) is to add the additional
condition that the concentration profile in the z direction is
vertically averaged or thoroughly mixed.

CROSS-SECTIONAL VIEW FLOW EQUATION

For the special case of a uniform cross section of an aquifer of
unit thickness, Equation (1) may be reduced to a two-dimensional
form by setting 3%h/ay? to zero and rewriting the equation of
flow as

3%h , 3%h _ 75 dh
KO ¥

Equation (5) is the cross-sectional view model when the flow in

the y direction is zero. This type of flow model is popular with
radionuclide transport studies. Most often, the right-hand side

of Equation (5) is further set to zero to represent the steady-
state condition, One can visualize the errors that could be
involved in this flow situation by considering how one would
simulate a pumping well paraliel to the z axis and hope to properly
represent the radial flow. In short wells, or any sink that has
flow in the y direction, cannot be modeled with this equation.
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One acceptable sink for this cross-sectional model would be
a horizontal drain of infinite extent Yaid along the y axis
perpendicular to the x-z plane.

CROSS-SECTIONAL VIEW MASS TRANSPORT EQUATION

The corresponding mass transport equation for the above cross-
sectional view flow model is derived from Equation (2) by setting
vy equal to zero.

2 o
p ¥, p B} _ Rl ot
d | Yax2 Tz d _

1
R

- = 't‘ (5)

Here again, the dispersion in the y direction is ignored or at
least considered averaged within the unit thickness of the cross-
section. Serious errors in mass transport modeling result in
this situation occurring since dispersien in the third (y)
dimension is restricted. Concentration distribution predicted
from point sources with this type of model are over estimated
since a diluting mechanism in one of the remaining dimensions is
ignorad.

One should note that the radioactive decay term AC in Equations (2)
and {5) does not depend upon the space coordinates retained and
therefore is properly represented in this two-dimensional simplifi-
cation of the three-dimensional formulation. Thus radicactive
decay representation does not lose significance within a veduction
of a three-dimensjonal formulation down to a two or one dimension
formulatior,
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ONE-DIMENSION EQUATIONS

LINEAR FLOW EQUATIONS

In the event that flow is restricted to one direction, the terms
3%h/ay? and 3%h/3z? of Equation (1) are set to zero to give:
al
ax?

=
w
7| 0
far
|

(6)

|

Equation (6) is for a unit thickness one-dimensional flow situa-
tion in the x direction. If one desires that flow be one~dimen-
sional in the y or z directions the coordinate of Equation{6)is
adjusted accordingly to either

Kot (7)
or

ah _ 5 3h

o (8)

These equations are most useful for looking at such problems as
the response of aquifers due to fully penetrating rivers, ditches,
and filter beds.

On occasion, researchers may desire a model in one-dimensional
flow which represents a horizontal and uniform thickness, b,
aquifer. In this case either Equation (6) or (7) is used for

example as
#h 3 ah s o (9)
ax? Kb at T3t

The main restriction on Equations (6) through (9) is that flow
is absolutely restricted to one-dimension.
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LINEAL MASS TRANSPORT EQUATIONS

Equation (2) can be reduced to one-dimensional form by setting
the vy and v, terms to zero to yield:

199€C 1] 3 %
R, DX-B-)-(;- Ry [ﬁ (VXC):I-RC =% {10)

This equation fits with the one-dimensional flow formula given as

Equation (6). Most often, Jaboratory experiments in sand or rock

columns are analyzed by the combination of Equation (6) and (10).

Here again, the coordinates y and z may be substituted in Equation
{10) to give equations for one-dimensional flow along the other

axes.

The use of Equations {6) and (10) is very limited in application
to radionuclide transport in the field. Most often, a sand
column experiment is the study area where these one-dimensional
forms are applicable.

GENERAL COMMENTS AND COMPARATIVE ANALYSIS--BASIC EQUATIONS

On the basis of the above analytical equation discussion one may
make general ¢ wments and draw some conclusions concerning when to
use one-, two-,  three-dimensional models for radionuciide
transport analysis.
1. There are a set of basic assumptions which apply to all
equations of flow and transport that should also be considered
in choosing a model besides the consideration of one-, two-
or three-dimensional flow.
2. Dispersion and diffusion are three-dimensional phenomena,
Therefore, any model chosen that assumes dispersion and
diffusion to be negligible in any direction may result
in misleading conclusions, .
3. Radioactive decay is a function of time only, and therefore
is independent of the number of space coordinates chosen for
model simulation.
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4. Vertical cross-sectional models that assume uniform

flow conditions perpendicular to the section cannot properly
represent the three-dimensional flow towards wells or nuclide
repositories, Neither can they properly represent dispersion
in the direction normal to the plane of the cross-section.

5. One-dimensional models are very limited in application

to field radionuclide transport. The one-dimensional model,
however, has application to laboratory experiments such as

sand columns or possibly in combination with other formulations
such as one-dimensional flow with three-dimensional dispersion.

EXAMPLE EQUATION SGLUTIONS

The discussion of basic equations above has been partially in-
structive in delineating the usefulness of one-, two-, and three-
dimensional equations and provides somewhat of a guide in choosing
a mode) to solve a problem. However, boundary and initial condi-
tions have not been addressed as yet, This report section begins
to look at the further restrictions of boundaries attached to the
basic equations that again have a bearing on choice of model
dimensions.

This section of the report covers comparative analyses of selected

two, and three dimensions. The comparative analyses further show
when and when not a three-dimension problem can be reduced down
to a lower order iwo or even one-dimensional solution.

A special section is included in this section that addresses the
question of regional versus local flow due to the geometry of a
typical repository. A sneak preview of the results of this part

of the report indicates that, when time is included in the flow
model, a point sink cannot adequately represent a finite-dimensioned
repository even in a regional analysis.
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0f special importance in this section is ihe inclusion of time
in the comparisons. A large part of the previous work in radio-
nuclide transport has been centered around steady-state analyses
where the flow model is in a steady-flow mode and the transport
model is transient. We will consider transient conditions in
both fiow and transport and provide guidelines for model simula-
tions in this actua) four-dimensional scenario,

We will retain the conditions of homogeneous and isotropic
porous media in this section. Comments on heterogeneity and
anisotropy will be covered later,

SPHERICAL FLOW TO A POINT SINK
IN AN INFINITE PERMEABLE MEDIA

The simplest case of three-dimensiona) flow in an isotropic-
homogeneous aquifer is that of flow to a point sink situated in

an unbounded permeable space. Although this situation is not by
itself directly applicable to radionuclide transport, it does offer
a chance to see a typical three-dimensional flow problem and study
how the aquifer response equation might be reduced to simpler forms.

The solution for the above point sink problem can be obtained by
applying the appropriate boundary conditions to Equation (1) and
solving for the head distribution. Carslaw and Jaeger, 1959, give
the nonsteady-state equation of heat flow for this situation and,
in terms of the analogous groundwater parameters of this report
the solution is:

h = (0/(4nke)) erfc (r/VARE/S,) (11)
where:
rr=(x-x")P2t+t(y-y)P+(@2-2')

%', y' z' = location of point sink in rectangular coordinate-
system
Immediately one recognizes that it is sometimes possible to reduce
a three-dimensional problem solution to 2 one-dimension equation
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by applying a rectangular to spherical coordinate system transform.
For this to be possible the problem solution must be symmetrical. about
the point source. More will be said about coordinate system
transforms as we proceed in the report.

At this junctore let us look at the steady-state solution where
t + = and proceed to discuss a convective transport problem.
Carslaw and Jaeger also give the steady solution as:

h = Q/(4nkr) (12)

One may differentiate Equation (12) to obtain the gradient dh/dr
to inspect flow velocities as a function of distance r from the
point sink. The resulting velocity-related gradient equation is:

Mo g )
4nKr?

The velocity distribution (through use of the equation v = -K 3h/ar)
is seen then to also be a one-dimensional formula in r?. Therefore,
the symetrical three-dimensional mass transport problem can, in
this case, be transformed to a one-dimensional form.

The conclusion to be drawn from this example is that ome should

look for symmetry and take advantage of it when possible in reducing
three-dimensional problems down to lower order solutions. The
coordinate system transform is thus a powerful methed of simpliflying
analysis.

SPHERICAL DISPERSION AND DIFFUSION
IN AN INFINITE POROUS MEDIA WITHIN A
UNTFORM ONE-DIMENSIONAL FLOW

Freeze and Cherry (1979) present a solution of Equation (2),
without retardation and decay, for the case of a contaminant
movement of an instantaneous slug in a one-dimensional flow field.
The contaminant is assumed to originate as an instantaneous slug
at a point source at x =0, y = 0, and z = 0. The mass of
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contaminant is then carried away from the initial source location
by transport in a steady uniform flow field moving in the x direc-
tion in a homogeneous and isotropic medium. As the contaminant
mass, M, is transported through the system, the concentration
distribution at time t was given by
_ M X ) 2
C(X,Y,Z,t) B—(-Ht)—glz-x*yz' exp [ ]'D'x—t Dyt - mz—tJ

(14)

where X, ¥, and Z are distances in the x, y, and z directions from
the center of gravity of the contaminant mass, The position of
the center of gravity of the contaminant mass at time t will be
atong the flow path in the x direction at coordinates (xt,yt,zt)
where Y= 2" 0 and Xy = vt where v is the average Tinear
velocity, Therefore in Equation {14) X =x -vt, Y=yand Z = 2.

Without using numbers, one can see that a moving coordinate
transform has been employed to simplify the concentration distribu-
tion in Equation (14). If one assumes Dx =D, =D, Equatjon (14)
can be further simplified to

Y

M r
s 1 - — 15
C(r’t) 8 ("Uxt)B/Z o ( 4DXt ) ( )

where C{r,t) is now the concentration distribution radially
varying around the mean x-direction flow point of Xy = vt. This
is an example of using both a coordinate system transform and a
moving coordinate system in combination with each other to reduce
a three-dimensional problem to a one-dimensional formulation.

One should realize that if the dispersion coefficients are greater
than 0 in Equation (14) the concentration distribution is three-
dimensional in form. Making an assumption that the dispersion
coefficient in one or more directions is zero is risky and can cnly
be done under very special conditions. We are thus re-emphasizing
that reducing a three-dimensional dispersion and diffusion problem
down to a two- or one-dimensional problem is going to be suspect.
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This is even true of long-term simulations where molecular diffusion
dominate over dispersion and velocities are very smail.

COMPARISON OF POINT AND LINE SINKS IN AN
INFINITE NONLEAKY AQUIFER

A large class of three-dimensional flow problems have been solved
for the case of partially penetrating wells. In this case the

flow is converging thrze-dimensional near the pumped well and
radially two-dimensional at some distance. One extreme case of
this situation is where the well just penetrates the top of the
aquifer. A solution to the zero penetrating case can be compared
to the fully penetrating case to show how, when, and where this
three-dimensional flow situation can be considered a two-dimensional
flow situation.

Theis (1935), starting with Equation (3), derived the solution
for non-steady flow to a fully penetrating weli in an infinite
nonleaky artesian and horizontal aquifer as:

® -y
[  w 9
u
where:
u = r?5/(4Tt) (17)

The integral of Equation (16) is known as the “exponential
integral® for which tables of values are widely available, The
drawdown, s, is uniform in the z direction and flow to the well is
thus radial, Equation (16) therefore is a one-dimensional formula
in r? describing flow in a two-dimensional flow system.

Based upon the work of Jaiswal, et al., (1977) the nonsteady
drawdown distribution along the top of the aquifer and around
a well of zero penetration and vanishing radius in a nonleaky
artesian aguifer of infinite areal extent is given by:

s = Q/2nkr{C{VU, r/b)} (18)



PN

20

where:

C(Yu, r/b) = erfc /u + | 2 erfc {/I3(2nb/r)Z 7 }//T¥(2nb/TZ]
n=1
(19)
The function C(v/u, r/b) was not published in tabular form by

Jaiswal, et al., (1977) but was given in graphical form as
reproduced in Figure 1.

A comparison of Equations (16) and {(18) is shown in Figure 2 to
illustrate the difference in aquifer response for a given set of
aquifer parameters. As seen in Figure 2 the drawdown of head

along the top of the aquifer for the nonpenetrating case is much
greater than that for the fully-penetrating case. As the distance
from the sinks increases, the drawdown curves approach each

other asymptotically. With distance the nonpenetrating response
curve approaches the fully-penetrating case from beneath. If a
figure were presented for drawdowns along the bottom of the

aquifer, the reverse conditions of less drawdown for the nonpenetrating
would be indicated as compared to the fully-penetrating case.

Aloiig the bottom of the aquifer the response curve for the non-
penetrating case would, with distance, approach the fully penetrating
case from above,

The distance to the point at which heads for the nonpenetrating
and fully penetrating cases are essentially the same has been
calculated to be about 2 aguifer thicknesses distant from the
sink.

Muskat, 1949 discusses the partial penetrating case for the
steady-state condition. Figure 3 shows a cross-sectional com-
parison of the three-dimensional versus the two-dimensional

radially symmetrical problem.

In the final analysis, there are three-dimensional flow cases
where a two-dimensional representation may suffice for describing
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Figure 3. Calculated Steady-State Potential Distribution
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Flow (Complete Well Penetration) System.
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the head distribution. However, one must be cautious in assuming
that since the flow regime may be reducible in dimensions so is
the associated mass transport problem. An examination of Figure
3 shows the variable flow path lengths associated with the
partially penetrating case and that the distributions of con-
taminants therefore are slightly different as compared to a

fully penetrating case. This may or may not be of significance--
depending upon whether a local or regional problem is under study.

COMPARISON OF ONE-, TWO-, AND THREE-
DIMENSIONAL DISPERSION IN A ONE-DIMENSIONAL FLOW FIELD

Bear {1972) gives the one- and two-dimensional equations for
dispersion (without adsorption and radioactive decay) of a slug
of contaminant introduced into a one-dimensional flow field.
Equation (14) illustrates the three-dimensional equivalent.
Homogeneous and isotropic conditions are assumed. Inspection of
these three equations shows that the peak concentration occurs at
the center of gravity of the moving contaminant cloud as given by:

H

one-dimensjonal dispersion: Coax = s— (20)
/A ljx
. . . . M
two-dimensional dispersion: ¢ = ———— (21)
maX  4rt/D.D
Xy
three-dimensional dispersion: Cmax = M 22)

P —
3f2
8(nt) VﬁnyDz
For comparative purposes we let Dx = Dy = Dz =], t=1,andM=1
and calculate cmax to be:

one dimension C.. = 1//8% = 0,2821
two dimension cmax = 1/4n = 0,07958
three dimension Crax = 1/8(n)¥ 2 = 0.02245

The obvious conclusion is that the concentration is a function
of the number of dimensions included, all other consideraiions being
the same. Dispersion is a three-dimensional phenomena, Constructing
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ary dimension mode) and neglecting any one of the dispersion
coefficients gives the wrong answer. The trend is that lower
order models give higher concentrations.

DEVELOPMENT OF 3-D ANALYTICAL MODEL AND TEST
OF DIMENSION ASSUMPTIONS OF REPQSITORY

A distinction between regional and local effects had been made

in studying the various aspects of radionuclide transport from
waste repositories. Various definitions have been heard of what
a local or regional problem is. One prevalent definition that has
been stated is that a regional problem exists when the source of
the radionuclides can be considered a point. With this definition,
a local problem therefore exists when you can't consider the
source a point. We were concerned that this definition needed
clarification and that the true three-dimensional aspects be
Tooked into. With the regional/local and point source/repository
configuration questions in mind, we proceeded to develop two
analytical formula models that would shed 1ight on differences
involved.

The development of the three dimensional models are first
outlined, the results of the simulations given and discussed,
and then conclysions are drawn.

Development of Theory for Comparison
of Three-Dimensional Flow Analysis to and
from Repositories of Various Shapes

Analytical equations developed from point-source potential theory

can be applied to a groundwater aquifer to obtain solutions for

the potential fields around varipus sink configurations (lines,

areas, cylinders, volumes, etc.). This combined with the use of

the method of images (since potential theory is a linear system)

will enable the modeling not only of a source or sink in an infinite
aquifer but also the boundary conditions inherent to a particular aquifer.
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The starting point for the development of the analytical solutions
is the potential field of an instantaneously discharged point
sink from Carslaw and Jaeger (1959), namely
e 2
S =V0]/Ss e r'p /4£t (23)
P 8(nkt)¥?

where:

Sp = potential at point defined by rp

Vo1/S¢= instantaneous volume depletion

The term rp can be applied to a one-, two-, or three-dimensional
potential field and can be defined for each as
Fp = Xy - %' (1-D potential field)
= - ¥ )2 ¢4 - v')? {7. 2 3
o /x_ - x') (?iLg,y )2 {2-D potential field) .
' /Ti;’- x)2 + (yp -y + (zp - 7'}z (3-D potential field)

where:

xp,yp,zp = are the coordinates of the point of interest
x',y',2' = are the coordinates of the point sink

Integration of Equation (23) with respect to time yields a
salution for a continuously discharging point sink
t 2 | ]
1 J qe” /8k(t-t') __ dt
D

S =
(t_tl ) 3/2

P 8(nk)*2

Assuming q (continuous flow rate = Vo]/SSt) to be constant

@ (

2.2
§ = —1— ety T/ g
P afmk)¥ AR
where:
1= (1)

This integral and the constants can be rearranged to obtain the
complementary error function (erfc),

S N/
S 7 Ty erfc (r //AKE) (24)
_ DIS _ _DIS
or S,° ﬁiEf;ng erfc (rp/¢4g_) = 4nKrp erfc (rp/J4Kt/SS)
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This is the equation of the potential field from a continuously
discharging point sink of strength DIS.

Equation (24) forms the basis for gemeration of the potential

due any configuration of source or sink producing at a constant
rate. The following discussion explains how a potential distribu-
tion around a Vine, area, and slab are generated.

Equation {24) is now integrated to obtain the potential field of

a continuously discharging 1ine sink of length L along the x-axis.
Figure 4 shows the relationships of dimensions. The 1ine potential
equation is thus:

L
= —l-' M.S_ ]
Sp " BK Jo 2 erfc(rpl(/4Kt/Ss))dx
where r_ is as defined previously, This can be rearranged to
obtain
L
. DIS '
Sp * Tkl ! erfc(rp/03Kt7ss))/rp dx (25)

[

Integration can now oe performed in the y-dimension to obtain a
rectangular areal sink with dimensions L by W

Wl

_ DIS -

S ° TakH l J erfe(r/(VIRETS ))/rodx’ dy (26)
0 0

Likewise integration in the z-dimension enahles one to gbtain a

solution for the potential field due to a continuously discharning

volume sink of dimensions L by W by D

DML
. DIS o
Sp = TuKLWD J J J erfc(rp/(/4Kt/Ss))/rpdx. dy' dz
t ‘e ‘o (@)

In suimary, from the equation for a continuously discharging
point sink of strength DIS (Equation {24)), we were able to obtain

_analytical equations for sinks of the same strength for 1-D, 2-D,

and 3-D sinks in 1-D, 2-D, or 3-D potential fields (Equations (25)-
{27)). These equations can be applied to infinite aquifers to
obtain the potential fields.
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Boundary conditions can now be modeled by the use of the method of
images since potential theory is represented by linear partial
differential equations. The only boundary conditions modeled

were infinite planes in the x-z planes as illustrated by Figure 5.
The distance of the plane barrier boundaries are A and B respectively
for the lower and upper plane barriers. A7so illustrated.is the

sink configurations and their appropriate dimensions. The general
equation that follows for the modeling of these barriers is for a
three-dimensional sink and potential field as:

D WL
g = DIS l ‘ J{erfc(rp/(/KKt7Ss))/rp+iZ] ltE'fC(”pAi/('MSs))/rpAi

p  4nKLKWD
6 6 o

+ erfc(rpBi/( /[Kt7§s))/rmi:l} dx' dy' dz' (28)
where

roas =V, 12 - 2 RY:

pA1 (xp - X ) + (yp DA1) + (Zp 4 )

Dyp =24 - ¥

DA3=DA2-2(A+y)

Dpg = Dp3 - 2 (B-y') recursive equation for Boundary A

DA5=DA4 - 2 (A "'.Y')

"oBi © /(xp - XYY+ (yp - Dgi)? + (zp - 2')?

DB] =2B -y

Do = Dyy + 2 (A +y")

DB3 =Dyt 2 (B - y")

DB4 = DB3 +2 (A+y") recursive equation for Boundary B
DBS = DBq +2(B-y")

The solution for Equations (25)-(28) were obtained by numerical
integration since the erfc itself is not analytically integrable.
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The infinite series in Equation (28} is truncated to 100 imace
terms as the larger order image sinks were assumed to have negligible
influence on the resulting potention comparisons at (xp, Ypr zp].

The complementary error function of Equation (28) was computed
via a function subroutine which uses a rational function approxi-
mation. Numerical integration was performed by using the three-
eighths rule

X

I 3f(x)dx

%o
where

[}

3h
T (fo + 3f1 + 3f2 + f3)

f{x)
Xy X3 = integral limits
h = the equally spaced interval from Xg m Xy - Xy - Xy
f0’f1'f2’f3 = function values at Xgp Xps Xps Xg

the integrand

Since the potential at &p, Ypr za was a linear function of DIS,
DIS was assumed to be unity and then any other potential for a
different DIS (sink strength) could be computed remembering that
DIS must be steady or constant with time (3DIS/3t = 0).

Description of Computer Codes. Two computer codes were written

to study the flow to repositories of various shapes. The first
program (see Appendix A} was written on the basis of the repasitory
shapes and positioning as defined in Figure 4A and Figure 5.

The second program (see Appendix B) was written on the basis of

the origin of the coordinate system being at the centroid of the
repository shapes as defined in Figure 4B. Two programs were
written in this manner so that both asymmetric and symmetric
results could be conveniently studied.

The program codes were written in the FORTRAN IV language for
a Control Data Corporation Cyber 175 system operating on the NOS
batch time-sharing subsystem. Documentation of the program is
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included so that one may obtain an understanding of the operation
of the code or actually use it if desired.

Results of Computer Model Simulations. Two sets of computer runs
were made with the asymmetrical and symmetrical models to test
for response of the various shaped repositories. Table 1 gives
the results for the asymmetrical model and Table 2 gives the
values for the symmetrical one. The differences in aguifer

response for the various repository shapes is sometimes very
subtle. Although graphical comparisons will be given, on occasion
statements will be made strictly on the basis of tabular
comparisons.

The first conclusion that can be drawn on a basis of a scan of

the point, line, area, and volume columns of both Tables 1 and

2 is that the point sink response is the worst equivalent of a
respository that has three dimensions. This is true no matter the
time, distance from, or position of repository between the top and
bottom of the system flow boundaries. Although there are dif-
ferences that are exaggerated when the observation point is close
to the sink center, it appears that the better equivalent of a
three-dimensional sink {actual repository shape) is either a Tine
or area. Therefore, if a researcher insists upon a two-dimensional
model Study, replace the three-dimensional repository with an
equivalent line or area but not a point.

The second conclusion that can be drawn directly from the Tables
js that the point, line, area, and volume shape rasponses
approach each other with greater distances from the center of the
sink, We use the word "approach" rather than the words “be-
comes equal" since theoretically differences always exist. It
appears, for the homogeneous and isotropic conditions used, that
the same rule of partially penetrating wells of twice the aquifer
thickness distance away from the various sinks is sufficient such
that potentials approach each other there and beyond. Figures 6, 7,
and 8 help in visualizing this shape-distance-potential rela-
tionship. Figure 6 shows distance-head decline graphs for the



Table 1. Computer Model Results for Various Repository Shapes (Asymmetric Model)

Upper and lower

Coordinate d!stance Hydraulic boundary position Repository shape* and change in head
Sequence in meters conductivity Time in meters per unit flow rate, in meters/(1/sec)
number X, Yo  Zp in cm/sec in days B A Point Line Area Volume
1 14,000 100 0 ll».72x10-7 365,000 1,000 1,000 .00834 .009480 .009482 .009472
2 10,000 100 Q 4.72x10-7 365,000 500 500 .010490 .012270 .012280 .012270
3 1,000 100 0 41.72)(10"5 300 200 100 .23860 .33269 .32720 .32191
4 10,000 100 o] 4.72)(10-6 365,000 500 500 .84400 .86860 .86880 .86870
5 5,000 100 0 4.72x10°7 365,000 1,000 1,000 1.0061 1.11880 1.11900 1.11840
6 1,000 100 4] 4.72)(10'5 365,000 200 100 3.6186 3.78490 3.73580 3.72500
7 1,000 100 0 4.72x10-5 365,000 200 100 3.9213 4.08760 4.0386 4.,0278
8 3,000 100 0 4.22x10-7 365,000 1,000 1,000 4.7453 5.19790 5.19910 5.19770
9 2,000 100 0 4.72x10"7 365,000 1,000 1,000 9.6532 10.56940 10.57280 10.58070
10 1,000 100 0 4.72x10-73,650,000 10,000 10,000 15.4480 17.9460 17.9585 18.2323
11 1,000 100 0 4.72)(10‘7 365,000 1,000 1,000 20.9852 23.8367 23.85410 24.09170
12 1,000 100 0 4.72x10~6 365,000 200 100 28.0023 29.6833 29.1868 29.0789
13 1,000 100 0 4.72x10—63.650,000 200 100 36.1859 37.8490 37.3579 37.2461
14 1,000 110G o 4.72x1077 365,000 200 100G 146.9160 162.8239 159.6473 158. 6269
15 1,000 100 0 4.72x10-73,650,000 200 100 280.2410 296.8327 291.8678 290.7893
16 300 100 0 4.72x10'73,650.000 200 100 421.4970 482.7085 477.4180 --
17 0 -1000 0 4.72x10'73.650,000 10,000 10,000 15.5313 15.3633 15.2814 15.1177
18 0 0 1000 4.72x10‘73,650,000 10,000 10,000 15.5313 15.3602 15.3599 17.8121
19 1,000 0 0 4.72x10'73,650,000 10,000 10,000 15.5313 18.0767 18.0767 17.8128
20 500 100 0 4.72x10'7 365,000 1,000 1,000 38.5638 50.5847 50.7638 47.7035
21 g -500 (4] -ﬁ.72x1{)'7 365,000 1,000 1,000 41.0097 39.6778 39.3422 38.1677
22 0 -800 0 4.72)(10_7 365,000 1,000 1,000 30.7759 30.3377 30.1456 29.7309
23 0 -200 0 4.72x10'7 365,000 1,000 1,000 90.5320 76.8171 75.5081 66.6374
24 0 -100 0 l-.‘-.72x10_7 365,000 1,000 1,000 174.7815 117.1566 114.1117 88,4901

£E



Table 1. Concluded

Upper and Tower

Coordinate distance Hydraulic boundary position Repository shape* and change in head

Sequence in meters conductivity Time in _meters __per unit flow rate, in meters/(1/sec)
number Xy Yy z, in cm/sec in days B A Point Line Area Volume
25 300 0 0 4.72x10”7 365,000 1,000 1,000 62.0047 126.9282 126.7049 91.1571
26 300 100 0 4.72:(1(3'7 365,000 1,000 1,000 59,1642 96.1902 97.9269 79.4568
27 0 -1000 0 4.72x10'7 365,000 1,000 1,000 29.2830 28.9325 28.7523 28.4167
28 o -10 ¢ 4.72x1077 365,600 1,000 1,000 1693.80 265,607 240,568 118.2191
29 ] -25 0 4.72)(10'7 365,000 1,000 1,000 681.091 207.254 195.710 112.7033

30 1,000 100 0 4.72:(10"5 36.5 200 100 .0005694 .00253612 .0025162 .0022373

31 -1,000 100 0 4.72x1077 365,000 1,000 1,000 20.9769 18.8123 18.8222 18.6719
32 125 0 1000 4.72x10°7 365,000 1,000 1,000 20.8791 20,9809 20.9810 23.8502
33 125 5 1000 4.72x107 365,000 1,000 1,000 20.8790 20.9808 20,9815 23.8509
34 125 5 1125 4.72x1077 365,000 1,000 1,000 18.6737 18.7487 18.7493 21.0656
35 0 0 1000 13.72x10'7 365,000 1,000 1,000 21.0321 20.8311 20.8311 23.6304

*L = 250 m, W = 10m, and D = 250 m, when applicable S = 3.281x10"om"1

13
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Table 2. Computer Mcdel Results for Various Repository Shapes
(Symetrical Model)

Coordinate distances Repository shape™ and change in head

Sequence in meters per unit flow rate in meters/(1/sec)
number Xp Yo ¥ Point Line Area Volume
36 0 900 0 29.6417 29.5469 29,5473 29.4534
37 0 700 0 32.7893 32.6406 32.6412 32.4945
38 0 500 0 41.0015 40.6434 40.6446 40,2966
39 0 200 0 90.5249 85.8059 85.8190 81.7593
40 0 100 0 174.7745 147.4298  147.4917  128.9628
4] 0 50 0 343.5274  228.2399  228.474%  173.8912
42 5000 0 0 1.0034 1.0051 1.0051 1.0047
43 3000 0 (] 4.7493 4.7582 4.7553 4.7523
4 2000 0 0 9.6541 9.6677 9.6677 9.6588
45 1000 0 0 21,0321 21.1182 21.1182 21.0657
46 550 0 0  36.0009 36.5391 36.5388 36.2429
47 0 0 5000 1.0034 1.0030 1.0030 1.0047
48 0 0 3000 4.7493 4.7463 4.7464 4,7523
49 0 0 2000 9.6541 9.6452 9.6452 9.6588
50 0 0 1000 21.0321 20.9809 20,9810 21.0657
51 0 0 550  36.0009 35.7329 35.7326 36.2429
52 0 0 260 73.2637 70.71819  70.71423  75.90547
53 0 0 150 118.3480 108.2366  108.2205  129.72777
54 150 0 . 0 118.3480  168.47071 168.2202  129.72777
55 150 150 150  70.8651 70.61156  70.61224  70.64081

%, = 250 m, W=10m, and D = 250 m, when applicable Ss = 3.281x10°
A=1000m, B =1000m, K=4.72 x 10" cn/sec, t = 365,000 days

5 -1
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asymmetrical model runs. In the case shown the flow system thick-
ness is 2000 meters and the curves approach each other in the
range of 4000 meters.

Although the response curves approach one another with distance,
Figure 6 illustrates clearly that the curves "are" different.
First of all, the magnitudes of head declines are different and
secondly the siopes of the various curves are different. Notice
in the group A curves of Figure 6 that the point response is,
in magnitude, smaller than the other shapes. Since the curves
of group A are approaching one another with distance, one can
realize that the slope of the point response curve is Tess than
the other response curves {at least along the x axis with y = 100
and z = 0}. The slope comparison relates to the mass transport
velocities in that flow to the point sink, along the axis
displayed, is less than those towards the line, area, and volume
sinks. Although the velocities toward the point sink are less
than the other shapes along the axis displayed, there are other
axes along which the point sink related velocities are greater
than the other shapes (see group B on Figure 6 ). The main
conclusion to be drawn from this discussion is that the velocity
distribution around the various shaped sinks is asymmetrical.
Although by conservation of mass principals, the total flow
towards the sinks of various shapes is equal, the <low velocity
distribution is distorted in three-dimensional space.

Figure 7 illustrates the time-response and permeability related
response associated with the repository shapes as viewed at a point
about 3 aquifer thicknesses from the sink centroids. The main
conclusions to be drawn from this comparison is that the point
sinks, in all cases of varying permeability, always have less

head declines than the other shapes and that the comparative
difference in heads decreases with time. During early times,
Figure 7 shows significant differences in heads between the point
and other repository shapes. Excess water taken from storage
elsewhere in the immediate vicinity of the point sink accounts
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for this difference. Not only is there a space distortion (see
previous paragraphs) but there is also a time-wise variation
involved.

Figure 8 illustrates a selected group of distance-response
curves for the symmetrical model. Figure 8 shows the distance-
head decline relationships from the views of along the major
coordinate axes. From these views, the comparative distortions
of head declines for the various repository shapes is Tess than
the asymmetrical case (compare Figures 6 and 8 ). Notice also

in Figure 8 that the distance out to which all shapes have
essentially the same head decline is considerably less than twice
the aquifer thickness.

The explanation for the relative magnitudes of head declines with
distance, as illustrated in Figures € and 8 may be generalized
by considering where the centroid of the sink shape is lacated
relative to the observation point. The head declines will
generally be greatest the closer one is to this centroid.
However, as the observation point gets close to the sink, it
becomes a matter of the relative magnitudes of the dimension L,
W, and D and the closeness of the observation point to the edges
of the repository boundaries.

An important concept should be made concerning whether a flow-
rate versus a head condition should be specified on the equivalent
point, line, or area replacement of the actua) three-dimensional
repository. The model simulations of this section used a constant
and equal flow-rate boundary condition on the repository shapes.
An exanination of the head decline distributions close to the

sink boundaries show the large differences that are experienced
{see Tables and Figures). As one goes away from the various
shaped sinks, the head distributions approach one another. Now,
it should not be difficult to imagine the relative magnitudes of
sink flow rates that would result if one would specify a constant
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and equal head on each of the sink shapes. It is beyond the scope
of this project to describe the proper way to adjust the size of

each of the equivalent shaped sinks such that both the head and

flow rate properly simultates the three-dimensional repository.

It may be mentioned, however, that this type of study could be

made (see Prickett and Lonnguist, 1972, page 61 for a similar
analysis). The results of this shape equivalent study indicates

the importance of looking into this question in some future research.

GENERAL COMMENTS AND COMPARATIVE ANALYSIS -- SOLVED EQUATIONS

On the basis of the above example solved equation discussion one may
make further general comments and draw some conclusions concerning
when to use one-, two-, or three-dimensional models for radionuclide
transport analysis.

1. The use of the coordinate system transform is again illustrated
to be a powerful technique for reducing a three-dimensional "flow"

problem down to either two- or one-dimensional forms. The problem

must, for these cases, be strictly symmetrical in the directions

of one or more of the axes.

2. A "flow" problem may be symetrical in head distribution but
asymmetrical when further consideration is given to mass transport.
Three-dimensignal dispersion in a one-dimensional uniform flow field
is an obvious example of this concept where symmetry in flow and
mass transport-differ.

3. The use of a moving coordinate system, on occasion, simplifies
the equations of mass transport. An example of this would be in
having the coordinate system origin move with the mean flow and
having the dispersion equation in terms of distances from this
mean-flow center. Application of this concept is restricted to

straight line steady flow, however.
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4. There are problems which result in part of the flow field
being three-dimensiona’ while other parts are essentially two-
dimensional. The effects of partial penetration of a well or
repository in an aquifer is an example of this case wherein
flow beyond about two aguifer thicknesses can possibly be
considered a good approximation of two-dimensional flow.

5. As with the conclusions drawn from the basic equation section
of this report, a reaffirmation of the concept of error arises
again in ignoring one of the directions of dispersion. A com-
parison of concentration distributions of three-dimensional
dispersion in a one-dimensional flow field reconfirms this
conclusion. Ignoring any direction of dispersion yields a higher
concentration distribution than the actual true three-dimensional

phenomena,

6. The equivalent replacement of a three-dimensional repository
shape in a one- or two~dimensional model study should be a line
sink. Distortion of head distribution, mass transport velocities,
and time-related changes in flow result if a point repliacement is
used for the actual three-dimensional repository shape.
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SECTION 4, GEQOHYDROLOGIC CONSIDERATIONS

The entire discussion above concerns the hydrology of groundwater
formations that are homogeneous and jsotropic, Thus, the com-
parative analyses of three-versus two- and one-dimensional flow
in the above work shows where a three-dimensional representation
is needed for the homogeneous and isotropic cases only. In
reality, homogeneous and isotropic conditions are rare, if not
nonexistent. The comparative analyses above show even under
certain ideal and simplified conditions, that there is on
occasion a need for full three-dimensional representation of
mass transport of radionuclides,

The above analyses also assume that the flowing fluid is homo-
geneous. We can come closer to ideaiizing the fluid conditions
to homogeneoys situations than we can geologic formation
homogeneity. However, consideration of heterogeneous fluids
must be addressed as it relates to dimensions used in modeling
radionuclide transport. The existence of density gradients,
multiphase flow, and temperature related viscosity variations
demand attention,

External boundary conditions and configurations are also extremely
important in the choice of one-, two-, or three-dimensional

models for radionuclide transport since these boundaries produce

a direct control over the flow directions.

The following discussions thus address these further complications
to the modeling of radionuclide transport processes and outlines
the dimensionality problems that accompany such complications.

HETEROGENEITY OF GEOLOGIC FORMATIONS
Freeze and Cherry, 1979, give an adequate definition of formation

heterogeneity for our purposes as follows. If the hydrawlic con-
ductivity is independent of position within a geologic formaticn,
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the formation is homogeneous. Freeze and Cherry continue by
defining three broad classes of geologic enviromments that
represent heterogeneous environments as 1) layered heterogeneity,
2) trending heterogeneity, and 3) disconiinuous heterogeneity.
Expansion in discussion of these three types of heterogeneity
follows.

Layered haterogeneity is common in geologic formations and

most frequently is related to essentially horizontal sedimentary
and unconsolidated deposits and the process by which the layers
were formed, 1n this case, each horizontal layer might be
considered homogeneous, but heterogeneous in the vertical direc-
tion as one passes from one layer to the next, each layer having
a different hydraulic conductivity as shown in Figure 9 A.

Trending heterogeneity, as illustrated in the horizontal plan
view of Figure 98 is a typical result of sedimentation processes
that create deltas, coastal plains, and alluvial fans. Freeze
and Cherry, 1979, indicate that trending heterogeneity in large
consolidated sedimentary formations can attain gradients of 2-3
orders of magnitude in a few miles. Formations whose conductivity
is a function of joint and fracture concentra*icn are further
examples of this type of trending heterogeneity.

Discontinuous heterogeneity occurs in the presence of faults or
other large-scale stratigraphic features as illustrated by
Figure 9C as an example. These discontinuities may occur in
the vertical section as well as the horizontal plan view,

The existence of heterogeneous hydraulic conductivity adds a |
further complication to the modeling of radionuclide mass transport.
Heterogeneity is one of the principal reasons why researchers

turn to numerical techniques for solutions rather than to struggle
with highly complex mathematical or analytical formulations.
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K =100

K= 1,000

K=10

Vertical Cross Section Showing Layered Heterogeneity (A),
Horizontal View Showing Trending Heterogeneity (B), And
Fault-Type of Heterogeneity (C).
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The number of analytical solutions to flow problems in heterogeneous
geologic formations is small as compared to the homogeneous
counterpart. Most of the analytical formulas available in the
Titerature (see Walton, 1970, for examples up to that date)

apply to the layered heterogeneity type. Leaky artesian condi-
tions {layered aquifer, confining layer, and source bed
properties), storage from confining layers (aguifer and con-
trasting confining bed properties), and the multilayered
aquifer/confining layer sequence are examples of the available
layered hetercgeneity analytical solutions. However, two of the
basic assumptions that appear in most of these theories and
solutions is that radial symmetry in the plan view exists and
vertical flow only occurs in the cross section of confining

layers. In other words, a three-dimensional analytical representa-
tion of radionuclide transport in a heterogeneous environment is
very restrictive.

One may draw the conclusion at this point in the report that the
existence of heterogeneity is a condition which forces the
researcher to consider three-dimensional models more than he
would when dealing with homogeneous environments. The general
rule for neglecting one or more of the dimensions in a flow
mode] still, however, is generally the same as before. If all
of the flow is parallel to the iayer or discontinuity or
perpendicular to the trend heterogeneities, then one may consider
dropping one of the dimensions from a full three-dimensional
analysis. However, the existence of dispersion and diffusion
phenomena in a heterogeneous formation still presents problems
that may not be ignored.

Symetry and moving coordinate systems can also be utilized in
studying flow in heterogeneous environments, On occasion, a
curvilinear coordinate system laid out along the axes of the
heterogeneity configuration may eliminate the necessity of even

another dimension in the analysis of sinugusly varying heterogeneities.
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ANISOTROPY

According to Freeze and Cherry, 1979, if the hydraulic conductivity
is independent of the direction of measurement at a point in a
geologic formation, the formation is isotropic at that point.

If the hydraulic conductivity varies with the direction of
measurement at a point in a geologic formation, the formation is
anisotropic at that point.

In an anisotropic formation there are three principal directions
of anisotropy which are always berpendicular to one another.

The hydraulic conductivities in these directions are maximum.

If the magnitudes of the three principal direction hydraulic
conductivities are equal, the formation is isotropic, whereas

an anisotropic formation will have differing magnitudes.

The primary cause of anisotropy on the small scale is the orienta-
tion of clay minerals in sedimentary rocks and unconsolidated
sediments. On a large scale there is a relationship between
layered heterogeneity and anisotropy. In the layered case,

each layer may be homogeneous in two directions but anisotropic
considering flow in the remaining direction.

The usual mechanism for dealing with anisotropic hydraulic
conductivity is to align the coordinate system axes along the
principal directions of anisotropy. Derivation of analytical
formulas is made Simpler by this mechanism. In actuality,
considering the cross products possible there are six components
of hydraulic conductivity in addition to the three principal
components. The authors of this report know of no analytical
solution for flow or mass transport that includes all nine
components applied to a real field problem. What you do see

in the literature are solutions for anisotropic conditions

that consider only principal anisotropy directions aligned
coincident with the coordinate axes and the assumption of cross-
product permeabilities equaling zero.
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In homogeneous but anisotropic groundwater formations analysis
is complicated by the fact that streamlines and equipotential
are not orthogonal. It may be mentioned that a “transformed
section" may be constructed for some anisotropic flow problems
that allows application of orthogonality of streamlines and
equipotential lines (see Freeze and Cherry, 1979) for solutions.
This technique involves expanding one of the scales of the
region of flow, applying isotropic equations, and then inverting
the results. This technique does not reduce a three-dimensional
problem down to a two- or one-dimensional form and therefore, is not
totally applicable to the problem at hand.

The main conclusion to be drawn herein is that the presence of
anisotropic conditions puts additional restrictions on the use of
two- or one-dimensional models in place of full three-dimensional
ones. Here again, as above, one must examine flow directions of the
problem and judge whether any component of flow can be neglected
along one or more of the principal directions of anisotropy.

If the resulting judgment in flow is anything but zere, errors will
occur in lower order dimension models.

Anisotropic conditions not only apply to hydraulic conductivity but
also to dispersivity and its effect on mass transport. The directional
properties of the coefficient of dispersion is also (like conductivity)
a nine component problem al.hough the natyre of the dispersion

process is the cause rather than the permeability variations. No
mathematical solutions are known for the situation involving both
dispersion and hydraulic conductivity anisotropy. As has been said
repeatedly dispersion is a three-dimensional phenomena and adding to
the problem, the complication of anisotropic conductivity can make

the choice of one-, two-, or three-dimensional models lean toward

the higher order simulations.
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DELIMITING BOUNDARY CONDITIONS

The equations discussed above were derived mainly on the basis of
infinite extent groundwater formations and geologic strata. Scme

of the equations assumed parallel upper and lower no flow boundaries.
The presence of delimiting boundaries, whether they for example be

no flow, constant flux, or constant head vastly controls the direction
of flow in the problem under study.

We have seen above that the geometry of sources and sinks have a
profound effect on whether a problem can be reduced from a three-
dimensional representation down to either a two- or one-dimensional
formulation. The keys to choosing minimum dimensions for flow
modeling were based on the flow directions produced by the source

or sink and the degree to which one could take advantage of symmetry.
The same sort of keys apply to boundary conditions as they also
affect flow directions.

External or delimiting boundaries come in a variety of forms and
sh»~as with prescribed conditions. There are three basic types of
prescribed boundary conditions; first the prescribed potential,

second the prescribed flux, and third the free surface boundary.

The prescribed potential boundary exists in groundwater situations when
the porous formation is in contact with a fluid continuum--a

boundary along which there is no change in potential such as a tunnel,
the sea, large lake, or perennial river. The prescribed flux boundary
exists in groundwater situations where the flow normal to the boundary
is fixed in space and time. The condition of vanishing flux or

zero flow is a special case of the prescribed flux boundary and

js called -an impervious boundary. In two-dimensional flow, an
impervious boundary is also a streamline. The free surface boundary
js used to denote that surface on which the pressure is atmospheric,

Although the prescribed conditions along the above types of boundaries
are important in the solution of problems it is more important,
in our task, to consider the geometric shape of the boundaries as
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it relates to dimensions needed for medeling radionuctide transport.

The shape of the boundaries delimiting the region being medeled can
be made up of an infinite variety of shapes. For a simple example
in a typical vertical cross-sectional model in two-dimensions, the
missing third dimension is usually prescribed to be of unit thick-
ness. “his amounts to specifying two limiting and parallel
impervious boundaries spaced either side of the unit thickness.

At the sther extreme the two-dimensional plan view groundwater model
may be confronted by edge boundaries such as fully penetrating
meander ng rivers, coastal shore lines, or lakes. In this type of
plan view model one may assume that the top and bottom conditions
are no flow boundaries so that the flow in the vertical third
dimensi n can be ignored.

Strictl; speaking, if the boundary shapes have variability in any

one of he three dimensions, then one must use a medel that

incTudes the capability to map that variability. A first test to

check or, this would be to slice numerous cross-sections of the ground-
water system normal to the axis desired to be eliminated in the
analysis, If all cross sections produce identical boundary shapes,
then you can then further consider elimipating that dimension--the
further exceptions would be made on the basis of heterogeneity, aniso-
tropic conditions, source of sink configuration, and dispersion effects.

Just as the viewing distance from the source and sink has something
to do with whether one can adequately model a three-dimensional
with a Jower dimension model, so does the viewing distance from the
boundaries. If one is sufficiently removed, spatially, from a
boundars of complex shape, the solution to a three-dimensional
problen. may be reduced to consideration of a lower number of dimen- I4
sions. Despite the information available about viewing distance

from such items as partially penetrating wells where a three-dimen-

sional problem becomes a two-dimensional one (beyond two aquifer

thicknesses), no generalization can be offered for equivalent

acceptable distances from shaped boundaries.
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According to Freeze and Witherspoon (1967), in a comn'~: topographic
and geologic system, small differences in the location of points of
recharge can make the difference between recharge water entering a
minor local system or a major regional system. The implications of
this are thus disturbing when considering eliminating ever one-
dimension from a radionuclide waste repository modeling study.

INITIAL CONDITIONS

When the problem under study is time dependent (unsteady flow),
certain conditions, called initial conditions, must be specified
everywhere in the region being considered at the particular instant
of time at which the physical process begins. Example initial
conditions would be hydraulic head or pressures existing at every
point in the domain under study. Usually, the head or pressure
distribution used as initial conditions represents a steady-state
condition.

In the event that one would iike to eliminate one or more dimensions
from the analysis on the busis of initial condition symmetry or
uniformity, the same cross-sectional test can be used as was
described in the delimiting boundary candition section above.

HETERQGENEQUS FLUIDS

The above discussions have been made on the basis of an assumed
homogeneous fluid. There is the distinct possibility that the
regional and local flows related to radionuclide transport will
involve more than one type of fluid. Existence of steam, gas, oil,
and water of varying density are all to be expected somewhere in
the hydrogeologic system.

The coexistence of more than one type of fluid in a porous medium
such as gas and water does not of itself invalidate the concept of
homogeneous fluid flow. Fiwst of all one of the fluids may be
immobile while the other is mobile. In addition, if the water and

gas mixture is flowing at pressures that maintain the gas in solution,
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its only effect will be to reduce the viscosity of the water as it
flows from place to place.

According to Muskat, 1949, as Jong as other phases are immotile,
the flow of the water phase may be considered as eguivalent to that
of a homogeneous fluid, except that the numerical value of the
hydraulic conductivity must be adjusted to take account of the
effect of the other prases. What Muskat was getting at was a
description of a moving boundary problem. In particular a per-
meability must be associated with each fluid phase as if the
individual phases were flowing separately in parallel channels.

And their interaction is expressed by the fact that the numerical
values of the permeability for the separate phases are determined by
the volumetric distribution of the fluid saturation of the rock
among all the phases. The permeability is no longer a constant but
is a separate function for each phase of the local phase distribu-
tion within the porous medium. Thus, superposed on its granular
structure, which is dynamically characterized by its homogeneous-
fluid permeability, a porous medium carrying a heterogeneous fluid
mzy be considered as possessing a Jocal structure defined by the
saturation distribution of the several fluid phases, which in

turn determine the local permeabilities for the individual phases.

The sensitivity of the heterogeneous fluid possibilities as it
relates to regional {as opposed to laocal) transport of radionuclides
is controversial. Certainly the volume of the overall system being
studied, in relation to the volume of rocks actually containing
other phases of fluids, must dictate to a large extent the overall
accuracy loss if one were to ignore these complications.

Although not totally a problem of different phases, the density gra-

dients due various solute concentrations or temperature variations

(due both the earths' natural thermal gradient and heat produced at
the repository site) cause additional viscosity and buoyant forces

that lead to heterageneous fluid flow concepts.
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Much like any other boundary condition, the symmetry or uniformity
of the areas of heterogeneous fluids must be accounted for if it is
desired to reduce the three-dimensional scenario down to two or one-
dimensional form.

GENERAL COMMENTS ON GEQHYDROLOGIC CONSIDERATIONS

On the basis of the above discussions, one may make general
comments and draw conclusions concerning when to use one-, two-, or
three-dimensional models for radionuclide transport analyses.

1. The existence of heterogeneous and anisotropic conditions may
cause flow in unexpected directions and thus complicate an analysis.
The use of two- or one-dimensional flow models in this instance
must be predicated upon the third dimension flow being zero.

2. Consideration of boundary and initial conditions are very
important in choosing the number of dimensions for modeling nuclide
transport. A test, by cross-section comparisons perpendicular to
the coordinate axis to be eliminated, can show when a Tower order
dimensioned model may be considered for use.

3. The existence of Targe volumes of heterogeneous fluids presents
a movine boundary problem to be dealt with. Not only does one need
to consider all of the dimension symmetry and uniformity criteria of
stationary boundaries given in 2 above, but one needs to examine the
movement ¢f the boundary in time as the physical process is Tikely
to take place,
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SECTION 5. NUMERICAL MODELS

The basic concepts of one-, two-, and three-dimensional mode)ing of
radionuclide transport and when a three-dimensional scenaric may

be reduced in dimensions has been essentially outlined by the
discussions given in Parts 1. aad 2. above. In actuality, the
model used is of seccndary concern in the study of radionuclide
transport. The choice of one-, two-, or three-dimensional models
of any sort should be based first upon the problem boundary and
initial condition scenario.

It is of interest to note while numerical techniques aliow solution
of extremely complex problems, that numerical models all contain
sets of approximations that may affect the accuracy of the solution.
Some of these approximations concern space dimensions and thus have
a bearing on the two- versus three-dimension model comparisons
addressed in this report.

The purpose of this section of the report will be to outline the
problem areas of model approximating procedures to the extent that
the one-, two-, and three-dimensional solutions are fully under-
stood. The discussion is in order 0~ a brief description of the
major techniques used in numerical simulation of mass transport,

a library and description of present three-dimensional models used
for both flow and mass transport, and then a discussion of the
approximating procedures for the various techniques and how they
affect the dimension subject accuracy.

BRIEF BACKGROUND ON NUMERICAL TECHNIQUES

Briefly, there are two major types of numerical techniques avaiiable
for studying radionuclide transport problems: i.e., the finite-
difference and finite-element techniques. A cursory bac"~round of
these two techniques is given below as a beginning point for further
discussion concerning these techniques.



et

55

In the case of finite-difference models, the continuous derivatives
of the appropriate differential equations are replaced by ratios of
the changes in variables over a small finite interval defined by

a finite-difference grid. The intersections of the grid are called
nodes. The scheme here is an approximation of the true aquifer but
reduces a continuous boundary-value or initial-value problem to the
solution of a set of algebraic eguations. Since there is one
algebraic equation for each node of the model grid, a large set

of simultaneous equations must be solved. Recently, the finite-
difference method has been applied to almost every conceivable
groundwater flow problem imaginable. The method is essentially
fully developed and numerous publications are available which
describe and apply the technique to problems in one-, two-, or
three-dimensions. Presently, finite-difference models are very
popular, are easily understood, and are applied to nearly the full
range of groundwater flow problems that exist.

Two main approaches are available for selving the differential
equations of groundwater flow using the finite-element method.
Finite elements may be used in conjunction with either a variational
formulation of or a Galerkin method of generating approximate
integral equations.

The variational foriiulation is where some quantity F, when minimized,
yields the solution to the differential equation of interest. The
quantity F is defined as an integral functional of the unknown heads
over the whole aquifer domain. The process.of minimizing the
functional of the whole aquifer domain is usually accomplished

by the Ritz method in conjunction with subdividing the aguifer into
finite elements. The finite elements generally consist of simple
shapes such as triangies or quadrilaterals joined by nodes at the
boundaries of each element. The functional is then minimized by
writing the functional as piecewise Tinear functions applicable to
each element, differentiating the element functionals with respect
to the heads, and solving the resulting set of algebraic equations.
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Briefly, Galerkin's method assumes there exists an infinite

series which exactly represents the solution of the differential
equation of interest. The infinite series solution is made up of
unknown coefficients, to be determined, and a set of known basis
functions, The original Galerkin formulation assumed that each
basis function was defined over the entire domain of interest.
However, with the computer, the basis functions are defined as
piecewise continuous functions over subdivided areas (finite
elements) of the total region. The finite elements most often
used here are the triangular and the deformed isoparametric
quadrilateral. Since digital computers work with finite numbers,
the exact solution is not realized and an approximation is thus
sought. The difference between the exact and the approximate
solution is called a residual R. The Galerkin method continues by
attempting to minimize the residual R by considering yet another
set of known basis functions. In the Galerkin method the two sets
of above basis functions are the same, Using the theory of orthogonal
functions, the residual R is forced to a minimum by requiring that
R be orthogonal to all possible values of the chosen basis functions.
The result of this total process is a set of N approximating
integral equations where N is the total number of element nodes of
the model. The N equations are solved by numerical integration
yielding the unknown coefficients spoken of above completing the
series type of solution.

Each of the above techniques have their advantages and disad-
vantages. There are also several numerical models existing that
combine the best parts of each technique. And on occasion,
numerical models of the above type are extended in their application
by the addition of subsidiary techniques such as random walk,
discrete kernel generators, and stochastic mode subroutines.

In any event, we shall concern ourselves only with the types of
approximating procedures that are inherent in the two major
techniques and applicable to three versus two dimensional models.
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SELECTED THREE-GIMENSIONAL MODEL CODES

It is of some interest to note that considerable progress has been
made in the development of three-dimensional numerical models in

the Tast five years. Most of the development came during the

years 1975-1976. It seems as though, prior to this time, that
researchers were still getting accustomed to one- and two-dimensional
models, arguing about the superiority of one numerical scheme over
the other, and racing toward two-dimensional development of mass
transport models.

Table 3 is a 1isting of three-dimensional models that were found

as a result of a selected search of the groundwater literature

and the Holcomb Research Institute (Butler University, Indianapolis,
Indjana) International Clearinghouse on Groundwater Models. The
models listed in Table 3 range in complexity from quasi 3D
saturated-stzady-flow models up to saturated/unsaturated transient
models with solute transport, radicactive decay, compaction, and

jon exchange reactions. The list of madels and the solved processes
claimed is impressive.

A comparable 1ist of two-dimensional models is not given since
they are not only voluminous but are readily available in Bachmat,
et. al., 1978. Very little is lost here in the comparison since
the three-dimensional models of Table can be reduced to two-
dimensional form by setting appropriate parameters to zero.

Forty-eight three-dimensional groundwater models are listed in
Table 3 of which twenty-seven are flow models. Of these, 20
handle only the saturated zone, and seven can handle either the
saturated or the unsaturated zone. Specializations include two
agricuTtural models, one cost and pumping optimization model, two
models connected to surface water systems, one model that handles
seepage faces, five models that specify themselves as quasi
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vection & conduc- with Galerkin licatien porosity-fractures & pares,
tion, coupled with solution temperature & flow coupled
#low thru viscasity, specisl solu-
tfon scheme, different
velacity §n pore & fractures
Sarey saturated conservative, con- Integrated FO yes research & fleld complete June 1974 UsGS heterogeneous, {sotropic,
vection & conduc- compressible parous medium,
tion, coupled flow no sources or sinks, con-
ductive 1011d phase, non-
homoganecus 11quid, thermal
equilfbrigm between solid &
11quid. numerical dispersion
rastricts step sirze, user
orfented
Karasimhan taturated zons flow, coupled elastic Integrated FD yes none wanual & ref- 1976 UC Berkeley noenlinear state functions,
of compressible and nonelastic defor- erences stress dependent parweabil-
groundwater mation ity and woid ratio, arbi-
trary sources and sinks,
general coordinates
Pinder saturated subsurface flow & general FE yes 1976 Princeten eneral purpose code for .
transport scheme com- 4 complete (7 University =a|u|nq transient. nonlinear,
pleted with a partial differential equa-
block {tera- tions in one or two depen-
tive equation

1 dent variabies
solver
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Table 3. Continued
- "~ wydrologte
20883 Or Hethod of Past Date
Hodeler phases Processes solution Availability applications Docum ntation completed Institution Special features
n;rnlluhhn [} saturated, single coaduction, con- {ntegrated FO, yes nore complete 1976 UC Berkeley Arbitrary hezerogenity, fso-
itherspoon comprestible vection, elastic ar sccelerated fter-. tropy. nonl Inear state func-
[a DY) ponpiastic vertical ative scheme tion, coupled *low, heat &
deformation defarmatian, automatic ad-
Justmen: of time step
Lantz et al saturated, heter= nonsteady flow, con- FD, 1ine suc- yes some by USGS complete 1975 INTERA 2 scurce-sink terms, single
ogeneaus confined vectfion, dispersion, cessive~relaxa- INTERCOM® solute, concentration &
layer radioactive decay, tian or directfon temperature dependent density
adsorption desorp- inversion & viscosity, new option of N
tian; farced & nat- constituents, first order
urdl thermsl convec- reactions, pressure affects
tion, conduction & on enthalpy, usér orfented
dispersion
3daradat Blanc saturated, water cost determination. LP ? ? ? ? Arlab. France cost includes dritling,
supply System Clow puamps & surface network,
conjunctive sisulaticn &
optimization, static
Prickett & seturated. con- steady or unsteady FD, iterative yes many field complete 1971 1111nois State quasi=3D, user oriented.
Lonnquist fined or uncon- flow, leakage thru alternating di- Water Survey mul tilayered
fined confining layer rection implicit
Kitching two layers sep- steady or unsteady FD. alternating no some field complete 1974 Institute of isotropic aquifer
arated by clay, flow, Teakage thru direction expli- Geolugical
phreatic or sat- clay it Sciences
urated
Sarriere, saturated & un- steady or unsteady FD, Gauss elimi- no some Fleld complete 1975 SOGREAH, France uslglned for agricultural
Gafllard, saturated root flow to determine nation for steady studies, input includes crop
Jardia, Jovhet zone frrigation distribu- filow, alternating information, cantrol card
8 Normand tion direction implicit optians, user eriented
for unsteady flow
weCracken & taturated transient flow 3 FE Vimited ? 7, Vimited 1976 Princston genaral purporsa code, user
Yos3 transport avatlability University must prepars “driver® pro-

gram to extabdlish form of

partial differential equation

o
—
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Table 3. Continued
- Rydrologic
rones ar Method of Past Date
Medeler phases Processes solution Avatlabitiey applicetions Cocumentation completed Institute Spacial features
Robertson saturated & un- steady or unsteady ponds to perched- praperty of gne Description pub- November 197§ usGs Several reacting solutas,

. saturated flow, verticsl perc, analytical to USGS, unpub- Tished, 1isting perched water bodies, qui -
from ponds or perched  transport eqs; lished and instructions 30. custom designed to Idaho
groundwater, disper- percheqd flow-20 unpubl)ished sight
sion, radioactive de- FO enplicit;
cay, Tinear adsorption unsat-If) expii-

cit hop-scotch
pracedyre
tevassor mono or multf- Flow, tinearity of FE. sSmplex yes Iittle field operating in- 1575 Ecole des Mines wultilayersd connected to
laysred con- system, superpositien structions de Paris rivers, optim{zation of well
nected ta sur- programmer field, exploitation, quasi-
face water oriented Ll
Shibasaki. saturated, 2 flow, leakage, FO, alternating ? ? ? two versfans: Research Group  quasi-30. subsidence cavsed
X. aquifers squeezing & subsi- direction impli- March 3970 far Hater Eal- by soqueezing from s semi-
dence ct March 1971 ance, Japan pervious canfining layer
Kamats, multi-gquifer flaw & subsidence FE, Galerkin 1 unger testing 1 Cctober 1976 Research Group quasi-ID, forecasts heady
Fujisaki & Oka system for Water 8al- and Yand subsidence in a
ance, Japan multiaquifer system
Cooley & Peters saturated, semi- steady flaw FE L4 7 7 1972 Army Corps of unisywmetric cylindrical
conf ined aquifer Engineers coordinates
Heuman, Feddes. saturgted-unzat- unsteady flaw, soil FE and Gaussian yes many Tield complete 1974 Agricultural several plant species, 10
Bresler urated system evaporation., evapo- elimtnation Ressarch Or- with a 1 symmetry, Sax-
with gr withaut transpiration due to ganization, fmize rate of evaporation
plants plant yptake Isras} or evepotranspiration sub-
ject to Darcy’s law, user
oriented
Reuman L saturated gropund- nonsteady seepage tmplictt tntera- yes, but 1d - e 1970 Ue Berkele: 3D with axial symmetry, .
Withersooon water with free tive FE with author's atd 0% widely 4o complee 4 seepage faces, user orientsd
surfaces Gaussian elintna- ts recom-

tion nended used with cautton
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- Hydrologic
. ranes ar Method of [ Oate
Modeler phases Processes splution Availabidity  applications Documentation completed Institution Special features
Narasimhan & saturated, unsat- steady or unsteady mixed explicit- 1 tested against under preparation 1576 Lawrence Berke- vuser oriented, any desirsd
Keuman urated, confined, flow, Teaky, nonTeaky implfcit finite theoretical & ex- ley Lab 8 1= Tinesr ar nontinesr ralation-
- uncentined elements parimental results vertity of ship betwaen dependent var-
Arizona fables & parameters
Chorley & Frind saturated, multi- flow, Teakage iterative FE in ? ? ? 1978 Unfversity of aquast 30, wultiple aguifers,
aquifer aquifers and Waterico, permeability centrast of at
aquitards Gntario least 2 orders af eaugaitude
batween aquifers & aquitards,
storage in aquitards
Winter saturated steddy flow FD strongly im- ? ? ? 1978 usGS flow nesr lakes
B plicit
(=2
Charbeneau & confined or steady or unsteady FE, Galerkin 7 7 ? 1979 stanford handles poine singularities, o
Street Teaky aguifers flow & transport- University artificial recharge
convection & disper-
sion
Harastmhan & saturated or un-  flow, elastic or non-  integrated FD, 1 10 examples at Teast ref- 1979 UC Berkeley hysterasis, handlies soil
Witherspoon saturated fiow elastie deformation mixed implicit- gsven erences on consol {dation, infiltration,
in deformable explieit theary alga~ drainage § generation of
porous medium rithm & appli- fluid pressures
cations
Gambailatd saturated time dependent flow, FE ? ? ? 1977 IB3M Scientific deviations from Theis
cansalfdation Center, Italy
Duguid & Lee saturated flow through frac- FE, Galerkin 4 ’ ? 1977 Princeton isotropic primary porosity,
tured parous aedium

University wnisotropic fractures
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Table 3. Concluded
Hydrolegie
. tones or Method of Past Date
Nodeler chasas Processes salytion Availability applications Documentation complered Institutes Specia® features
Frind & Yerge saturated, unsat- steady or unsteady Galerkin, FE 7 ? ? 1978 University of flexible, convenient for
urated flow Waterloo. user, choice of integration
Ontario schemes 8 matrix solvers
Rodarte muitiple Teaky flow theory only ? ? ? 1976 Unfversidad equations for large b smail
aquifers Autanoma Met- values af time
ropolitana,
Hexico City
GamboTatq seformable flow, horizontal theory only ? 1 ? 1974 IBM Scientific saall deformation in com-
aquifer deformation Center, Venice parison to stress, homogen-
eous & 1sotropic media
Sredehoert & muitipla leaky steady & unsteady iterative FD yes many field complete 1970 UsGs quasi-3b, storage in con-
Pinder aquifers flow, leaky thru scheme fining layers
aguitards
Neuman & confinged 2- flow FE ? ? ? 1969 YC Berkeley 1afinite, radial aquifer
uitherspaon aguifer system
Jovandel § muitilayered transient fiow FE 1 7 7 1969 Pahlavi Unf- handles up to I3-layer
wietherspoon aquifers

versity. Irani
uc Berkeley

1sotropic or anisotropic
aquifer
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3D or axially symmetric, ejght that are miitiaquifer and Yayered
with Teakage between layers, one that models flow through fractures,
one model that is designed to specifically analyze pump tests, and
one model which determines flow nets. Of the total, at least

eight consider themselves completely documented and available.

One of these (see Frind and Verge) has been used for flow in the
vicinity of a radioactive waste disposal facility.

There are thirteen solute transport models, all of which handle
convection. Of these, eleven handle only the saturated zone, while
two handle both saturated and unsaturated flow. Other processes
are handled by fewer models. Five handle conduction, seven handle
dispersion, four account for adsorption, one allows desorption,
four allow radicactive decay, one allows compaction, one handles
thermal processes, one is coupled to surface water, one handles
fractures, and two are designed for multiple leaky aquifers.

Some of the models handle several of the above processes and one
says that it can also handle more than one contaminant. At least
five models are considered available and completely documented.
The model by Robertson and Grove was designed for studying a
nuclear waste disposal site in Idaho.

The remainder of the three-dimensional models include ivems such
as compaction and geothermal processes.

A study of the literature concerning these models shows that the
main reasons for using a three-dimensional model are because of
real-world variability in three dimensions of the geologic and
hydrogeslogic flui¢ environments, the three-dimensional variations
in shapes of 1imiting boundary conditions, and the three-dimensional
flow to partially penetrating sources and sinks. These conditions
have already been discussed in previor sections of this report

and do not differ appreciably from the reasons behind the develop-
ment of the 3D models included in the references and in Table 3.
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The items that haven't been discussed are some of the approximations
still remaining in the full three-dimensional numerical techniques
that influence further thought about three- versus two-dimensional
models. That discussion now follows.

FINITE-DIFFERENCE APPROXIMATIONS

One of the basic assumptions used in a rectangular grid finite-
difference approximation of a two-dimensional flow equation 1ike
Equation (3) is that flow is restricted to the x and y directions
only. What this means is that the Finite-difference representation
of head differentials are in terms of heads measured only at grid
intersections, or nodes, lined up at discrete points along the
major axes. In this case, the end result of this approximation
process is that flow in the finite-difference mode] is not a true
two-dimensional situation but a restricted x-y flow direction
situation, The errors involved in this approximation are kept at

2 minimum by either making the grid interval small in areas where
the actual flow is other than strictly in the x and y directions

or by lining up the coordinate axes of the grid along the major flow
divections. The first Tesson to be learned here is that reducing

a three-dimension system down to a2 two-dimensional formulation and
then approximating the remainder with a finite-difference scheme
involves further consideraticn of directions of flow. Ignoring
this situation may make a perfectly fit three-to-two-dimensional
transformed model totally inaccurate because of the x-y finite dif-
ference direction assumption. Secondly, it should be realized that
even a full three-dimensiona) finite-difference representation
assumes flows are restricted to the x, y, and z directions only.
The same type of alignment errors in the three-dimensional modei
occur as in the two-dimensional representation.

The size of the finite-difference grid also controls, on occasion,
the accuracy of the finite-difference approximation. There are
occasions where the size of the finite-difference grid does not
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affect the accuracy of the problem being solved. The key to whether
accuracy is impaired by size of grid is dependent on the head,
pressure, or concentration distribution. If the variables are
straight Tine functions along the major axes of the coordinate
system, there is no error in the finite-difference approximation.
For three- or two-dimensional groundwater problems this no error
situation is uncommon. For one-dimensional flow problems it is
more common. Flow around wells, repositories, lakes, outcrops, and
other discharge or recharge points or areas are common instances
where close attention should be given to reducing the size of the
grid interval to minimize discretization error problems.

Approximating boundary conditions with finite-difference approxima-
tions is more difficult than finite-element techniques. Usually,
rectangular step-wise changes are made with finite-difference grids
along the equivalent smooth or complex real world boundary. A three-
dimensional problem is distorted via this type of approximating
procedure and is not reduced in importance when passing to a two-

dimensional form.

The usual procedure for modeling a three-dimensional groundwater
prablem is to include a scale distortion in the vertical dimension

as compared to the horizontal. Serious errors are commonly involved
with this scale distorting procedure particularly where head gradients
vary steeply. For example, typical horizontal scales for a regional
flow problem are one node per several hundred feet or meters. Typical
vertical scales might be only a few feet or meters per node. As a
result, vertical transfer of water between layers is concentrated

on the basis of large horizontal area contributions from one over-
lying aquifer to the next. In the event that a repository is

located at one of these large scale nodes (where normally gradients
would be steep and directionally influenced) errors in flow-rates

to or from the repository will occur. As the vertical to horizontal
scale contrast increases, so does the error. Quite frequently the
situation is somewhat overcome by reducing a three-dimensional
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problem down to a two-dimensional cross-section problem. In this

case more nodes in the vertical section can be used without exceeding
core storage. However, you still lose the third dimension when cross-
sectional models are used for analysis.

In the mass transport category of study, the scale distortion
problems are extremely important since the finite-difference approx-
imating procedures are much the same as the flow procedures.

The accuracy of the mass transport model is directly related to the
accuracy of the flow model used for convective and dispersive
components of the mass transport model. An accurate representation

of gradients (flow velocities) is thus all important. While head
distributions may be quite close to the correct values, it is the
gradient distribution that is more important in mass transport studies.

Finite-difference grids come in many shapes and forms. The literature
includes approximations available for squares, rectangles, triangles,
polygons, cylinders, spheres, and curvilinear nets. In general, the
use of higher order grid shapes will yield higher accuracy since flow
directions and boundary configurations may be modeled more closely.

The time-related discretizing approximations in finite-difference tech-
niques vary from backward, to forward, to central differences along the
time axis. Not only is the size of the time increment related to ac-
curacy but so is the method (central differences as an example).

Remson et al., 1971, and Pinder and Gran, 1977, give ezcellent eval-
uations of the above approximating procedures and their resulting er-
rors with the exception of the vertical/horizontal scale distortion
errors. Further study appears to be needed in the scale distortion
area.

FINITE-ELEMENT APPROXIMATIONS

Many of the same approximating errors mentioned above in the finite-
difference section also apply to the finite-element approximating
process. For instance, the spacing size of the element nodes and
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the overall number of nodes is proportional to the accuracy of the
results. Since the finite-element technique is essentially a
polynomial fitting procedure, a genera) increase jn accuracy is
however experienced compared to the same number of node finite-
difference procedures.

The same type of errors in the vertical versus horizontal scale of
node spacing is experienced in the finite-element method as the
finite-difference method.

Use of higher-order geometric elements such as isoparametric
quadrilaterals allows the finite element technique to model more
closely complex boundary, source, and sink geometrics. When the
geometry of the real world problem is cumplex, finite elements are
superior to finite-difference techniques.

The finite-difference schemes are used primarily for the time-
domain in the finite-element technigue and have the same approximating
grror problems associated with them.

Generally speaking, the use of higher order basis functions gives
higher accuracy in the finite-element method. In the authors'
opinion, however, these higher order basis functions are of dubious
value in the vicinity of singularities. The recent paper by
Charbeneau and Street, 1979, addresses special problems around
singularities.

One may note by reviewing the literature that finite-element models
have a tendency to be designed to be special purpose models. In
particular, finite-element nets are usually lined up along the
likely flow paths. One must be very cautious about this flow-path
alignment tendency in that it does not 1411 the researcher into
believing that all solutions, independent of changes of boundary
potentials and sink Flow rates are of equal accuracy. Since the
modeling of radionuclide mass transport may involve a large number
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of flow direction unknowns, one must be cautions about predesigning
the finite-element grid in preferential directions. It would be
better to use more elements of uniform spacing rather than fewer
elements aligned in specific directions.

USE OF COMBINED NUMERICAL AND ANALYTICAL MODELS

One idea for reducing the number of dimensions needed for modeling
mass transport of radionuclides is by combining a three-dimensional
analytical formula with a two-dimensional numerical model, For
axample, a partially penetrating well may be simulated in a two-
dimensional plan view model by making an adjustment to the computed
nodal head value for fully penetrating conditions. The adjustment
for additional drawdown due the partially penetrating condition
would come from a standard analytical formula. This combination
method works as Tong as the boundary and initial conditions of the
analytical formula and the specified homogeneity/anisotropic
parameters mesh with the numerical model. Prickett and Lonnquist,
1971, show how this analytical and numerical model combination
works for simulating wells of various radii.

It may be possible to combine a vertical cross-sectiona two-dimen-
sional flow model with one-, two- or three-dimensional dispersion
formula to map the dispersive movement of a contaminant in the
dimension excluded from the flow model.

Jacob, 1950, developed an analytical method for adjusting the height
of the water table in a plan view model to account for reduction in
the saturated thickness of flow due pumping from a phreatic aquifer.
One must be cautious with this adjustment since the law of conserva-
tion of mass is not obeyed.

It 95 also possible to combine one numerical technique with another
to arrive at 2 solution of a three-dimensional problem with a two-
dimensional model. As mentioned ahove, a random walk model may be
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coupled to a two-dimensional flow model to allow dispersive solute
movement in the direction excluded from the flow model.

GENERAL COMMENTS AND CONCLUSIONS ON NUMERICAL MODELS

Based upon the discussion above, some main conclusions may be drawn
as they relate to one-, two-, or three-dimensional modeling.

1. The existence of numerical models allows a means for solving
complex gne-, two-, or three-dimensional problems but does not help
us in deciding which dimensions to include for mass transport of
radionuclides. In fact, the approximating features of the numerical
models will increase the number of dimension problem decisions.

2. The vertical to horizontal scale contrasts in nodal placement
for fully or pseudo three-dimensional models introduces errors that
we believe are not fully understood or appreciated. Further study
is needed,

3. It may be possible to combine a numerical technique in two-
dimensional representation with a three-dimensional analytical
formula to arrive at a solution to a fully three-dimensional

problem.
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SECTION 7. LIST OF SYMBOLS

b = aquifer thickness

C = concentration

Di = djspersion coefficient = divi + D* in the i direction
D* = diffusion coefficient
di = dispersivity in the 1 direction

e = base of the Naperian logarithm = 2.71828
g = gravitational constant

h = head
hR = head at radius R from point sink
hw = head at radius rg from well or sink

K = hydraulic conductivity

k = aguifer diffusivity = K/S5

M = mass of contaminant per unit dimensions
m = aquifer thickness

Q = flow rate
Rd = retardation coefficient

r = radjal distance
rp = vadial distance from observation point to point sink
r S radius of well or spherical sink

S = storage coefficient
S, = specific storage = y08(1 + o/68)

s = drawdown
potential at a point defined at r

]

? = aquifer transmissivity P
t = time
Vol/S. = instantaneous volume discharge (L)
v ® specific discharge in i direction unless otherwise noted
X,Y;2 = space coordinates
a = reciprocal of the modulus of elasticity of skeleton of aguifer
8 = reciprocal of the modulus of elasticity of water

= unit weight of water

A = radioactive decay constant
u = dynamic viscosity

6 = porosity of aquifer

p = density of water

-<
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SECTION 8. APPENDICES

s
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APPENDIX A

ASYMMETRICAL REPOSITORY MODEL FORTRAN CODE
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FRIHTes " OBE FOINT COOFTINSTES e uPa"o"a¥Fa s s ZFa "

LOHET=1, 37
TTT=0.10

FTFeT 310
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Cawoo DEFINME -2 c o PEF OF DIVITIOND FOF HTESFATION IM EFACH DIMEMZIOM
Coves HOTE: hbi* MUZT BE DIVIZRELE EY > FOF 3-8 THZ FULE INTEGFATION.
I

NDIY=12
HUP=HOTY -2

eewo  Z-DIMENZIOM INTEGRATION LDOF

L}

IO 20 I1I=1+MUP

0 51 I1d=1+4
L IFCIILER 1 ANDLITT. ER. 1
IFCITLER 1. AMDL ITTERL
IFCTT L ER 1L ANDL ITT.RT. 1
IFCII T ol sHekclld=
TTRFE=0. 11

I100=1E-50
II1dv=0, 0

113 =ExE 4
(ITJ=14+DEPTH-FLOAT ¢NDI%

W-DIMENZION INTEGRATION LODF

P ]
H
.

IO 40 I=1+NUF

00 41 1l1=1.4
[ IF<IJ.ER 1. AND. TLER, 12
IFCILLER. L ARD, TLER. 10
IFCTAER. 1 ARD, 1.6T, 1
IFCIJ BT 10 Heilld=y
migr=1E-50
=00
2 ORETCixP~0, Dheez+ OF = Tdv s eez+  FR=RER T v eeds
Tida=114, feERFC CCONE TR sFF K
Cewwe HRID EFFELT OF 100 IMRREZ IUE TO EACH DOF THE TWO EOUMDRRIEZ FOR THE FDOIN:

Ll =1E-50)
cI =010

o]
J =13+ IDTHAFLOAT iNDIY»

D

10 7 Ikl=1s50
IF Ik 2 HE. TR T4 2 Ex:
IFQIEL -2 B0, Tk 1oz EY
IFilk -2, HE, Tk Te2n EX
IF eIk 12, EQ, Ir1ec E:
FRPIA=ZMRT i+ “Rex i dr coal SR-TE 2 TRl SR O (I RIR X F=X]
FRIE=TORT itaf=Hrd vaale yF-LL L Ervad+ TP o [T Hrieels
Toyidrs ida+119, eeERFFC(CONETeRFFIA -BFIF -}
T4114, CeERFC (COMET#RFIE - FRIE-*
Cewe. QUTPUT FOF FOIMT ZIMF IH MALFT
IFCPOIHTIFRIHT e« FOTMT ZIHE DFAMDOME N LRI s "o ods
SRE NS
FOINT=.FALZE,
THEER=11. 1

Fu. .. W-DI™" 10N INTEGRATION LOOF

|€1J-| Y
ID 103 II=2+4
Be11a=k 0 I=1 0 +LENGTHAFLDRT (DT 4
{veee DETERMIME THE EFFECT OF THE FEAL WELL
FRP=iReTorsfeae T i eel+ryF T el TR A eeld
Yilla=114, CeERFL CTOHE TeRFY <FF -k
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C.o... ADD EFFECTE OF 100 IMAGES DUE TO EACH OF THE TWO EOUNDARIES

‘T

o w“elds

A=AOTET+ <% T e

B=RLIET-1E a1 b

I0 5 IKI=1.50

IF Ik 2 HE. IK T e 2D EXUA=EXAR~C . F

IFCIKT A2 HE, K] e@) EXXE=EXNE+E, ¢F
IFCTKI 2 ED, IK162) EXAB=EXAE+Z, #A
PRIR=ZORT ¢ CAP=Z (110 1 b2+ CPP-EXKRI 02+ (ZP~KKK (11 01 ) 02
FPIB=SORT ¢ (4P=X 111 ) b+ CYP=EXKEI @2+ (2P~ 25% ¢ 11 015 0823
SOrCIIr=Y 1134114, GeERFLCCONETSRPIA RPIAAE
F+114, 0eERFC(CONETORPIR -RPIE/K
COMT IHUE
CHLL INTEG CXs s ARERs LEMGTH-FLOAT (I e
TAREAR=TAREM+AFER
COMT INUE
Coweo DUTPUT FOR 1-0 ZIME IM MALF%
IFCLINEPRINT#« " L .0 *IHE DRAWDOWMNM-LFZs= “+TARERA
T4, 230842995 LEHSTH. * LEMGTH=" e % 143
LINE=,FALZE.
41 ol =TAFERA
CALL INTER (x¥a e B o MIDTHAFLOAT cHD Y
401 TTARE=TTARE+AFE
Cawoo. OUTFUT FOF 2-D ZIHE IN M-LFZ
IFCOE PR IHTes " ARFEAL ZIME DFAWIDOWH M-LPS ="« TTHFE
Teq, 23 SRS LEMETHeMIDTHY » " LEMETH="sx¢ds s ™ WIDTH=" s k31 40
DI&=,FALZE.
1 LI L =TTRRE
CALL INTER s
0 i TT=TTT+R
C.... DUTPUT FOF 2= ZIMF IH WoLFX
FRIMTes" 30 ZItb DERAMOOMMH M- LES ="« TTT 44, Z2024 2455 (LEHETHe
+HAJUTHOLEFTH a " LEMETH="v:ig s WMIDTH=" s g " DERPTH=" ;w5 rgs
ZTOF
ERD

10

£La
n

+W  As DEPTHAFLDAT (NI T4




i

L]

COAT Ty

—t

81

SUEPOUTINE INTEG(Xs¥«AREAs HY
ZUBFDUTINE TO IWTEGFATE A FUMCTION DEFINED AT DISCRETE ARRAY
AT ESUALLY ZFACED IHTERPYALS H.
THREE-ETAHTE FULE INTEGRATIONCCUEIC POLYNOMIAL FIT)
POINTZ #ey AFFROZAIMATED BY H CUEIC EQUATIONM. THE ARPROXIMATION
OF THE IWTEGRAL 15 THEW COMPUTED BY THE INTEGRATION
DF THE FITTEDR CUEIC OYEF THE INTEFYAL EETWEEN ¥<1> HND X4y,
DIMEMEION i41yFidraC 405 e COEFF 141
FRER= ' (1 42, ¢7 (2r+%, (204 (41302, ¢H-E,
FETURN
EHI
FUHCTION ERFC 0
FLHCTION ZUEROUTINE TO AFFFOXIMATE THE COMFLEMENTARY ERFDOF FUNCTION.

FERD®

IFGL BT S, 00 30 TO 14

ERFO=1, 4+, 270233054 2203020 x e+ (N0YT e e K0 + TSI (IS Kexe e
EFFC=ERFI*ERFC®EPFL$ERFT

EFFC=1.-EFFC

FRIMT#e s EFFL

FETURM

FI=ACOZ.-1,?

FRIHTe.F]

sH= e R ee T 4T (de e eS =5 (HeesT I+ (15 VL eLeed

COM=ERF c=HMTMHT Cuea SO0, 0 o LORT R
EFFC=EFFC0OH

FETLIFH

ENHD
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FEOBRAN FOF EXECUTION On CIC CVEBER 195 TIME-THAFING

=D Iy I OF EoUAL STRENGTH WITH FAFALLEL FLANE IMPERMERELE BOUNDAFIES

I THE -2 PLAWE AT DITTANCES OF ADIST AMD EDIST.

ANMOTATED DEFINIT ON DOF YAFTIARBLEC:

wF=--CO0FDIMRTE OF DEZEFYATION POINT IN FT
~L0OFDIMATE OF OETEPYRTIOM FOINT IN FT
JF=Z-CO0FDIMATE OF ORZEFYATION FOINT IN FT
< =YAFIAELE OF INTEGPATION ALOMG X-HXI%

A =YRFIAELE OF INTEGRPATION ALONG THE r-A<1:

#HFIHELE DF ]NTEFFHT]DH HLDNH THE T-HPI'

LENHATH= LEHhTH (3 ’IHr ]H FT HLUHH =
WITTH=MIDTH OF 1My IN FT ALOMG - :
DEFTH=DEFTH OF ZIMk IM FT ALOWG Z-R41°C
FP=FEFMEREILITY IN GFI-FTeer

T=TIME I DFY:

T=ATOFRGE COEFFICIENT IN FT-1
THEER=TEAWMDOMY TUE 7O LIME It IM FY
TTAFE=DFAMDONMS DUE TO AFEAL ZIMF IN FT
TTT=TFHUOGMH DUE TO =-00 21k IM FT

IYSTEM AT W OF 1.
IHTERFACTIVE FROGFAN TD DETEFMINE THE DPAWDDWN AT A FOINT WITH
COGFIOMATE. P fFeZF« DUE TO A POINTe LINE« AREAL.

ANT

v =INTEGRAND ARPAY UTED FOF INTEGPATION ALONG THE X-FAXIS

]u—]HTEhFHHD ARFFRY UZED FOP INTEGFATION ALONG THE Y-Ax1:

EDIZT=RE. DIZTAMCE TO UFFER IMFINITE FLAIN EDUWDARY 4% DIRECTIOM:
ARTZT=RED LIZTAMCE TO LOWER IMFIMITE FLAIM EQUHDAFY =% DIFECTIOM?

EVACENSE
FROGFAR 1Rl THFUT S DUTFUT
DIMEMTION v ey d e lndn w5 d o 00 g e Yy d
FERL  «LEH=TH
LOGICAL LIMECDE«Lne DERI-

LIte=li=l = 7Ris,

H-FLT LATE R FREATETES

=, 01E JI={E-05 1 T=ILE000,

DEELB=,FALIE.

FEIMTes" OFD POIMT COGRDIMATE. @ wiFe v v YFe e s ZFe "

COMZT=1,37 Z0RTikeT Iz

COMFUTE THE FOINT DFALDOWY WITH EOURLAFIE:
FF-?HPT-n”F O, eel4 e VRP=0, (1 eel+ JF=1), {1 4e2
=113 CeERFC LN TeRF R}

i LEHGTH=S0, ¢ WMIDTH=22,
YR= 0000 E ZF= 3ZE1.1 DEFTH=220. 4 BDIST=32%1. ¢ ADIET=

FRIASFFIE-UZED FOF TMASE WELL COMPUTATION

G 00an,

N FT

IN

FT



..., HADDEFFECTZ OF 100 JMAGES DUE TD ERCH OF THE TWO BOUWDARIES FOF THE FOIMY
ExxA=1, 0
Exak=0.0
H=HDIZT+0. 10
. E=ELIZT-0.0
. DO 7onn JKI=1s50

IF{IK]1-2.ED. IkTeZ: E
JFUIKI-2.HE, IETeZr E
IFeIk -2 EQ Ik Tedy EXKE=EXSE+E, #A
TORT CCAP=0, e+ CYP-EXAH oo+ (ZP—(1, (th o2
FT AR~ 0 eed+ (YP-ELSEr @02+ (TR = (1, (11 @02
TOON Yooy oar+113, ceERFL CLONTTeRFIRAY +FFIASK

F+113, eERFCICONTeRPIE) /RPIEAE
Co... DUTPUT FOR POINT ZIME IN W-LFE

FEIMTe" FOINT SIHE DRAWDOWMNSMALPZN= “afidh

o Tas

Y

«ev. UEFINE THE HWUMEER OF LI%IZI0NE FDR IMTESRATION IM EACH DIMENZIION
. WDTE: WOIY MUZT BE DIMIZAELE EBY 2 FOF 28 THE RULE INTESFRTIOH.

HITY=1z2
1 HUF=HT Y

«o.  Z-DIMEMIION IMTEGRATION LOOF

TTT=0.10

0 20 I1I=1«HUF
q 00 21 Ild=1e4

IFVIT L ER L AMDL TTTLER, 1y

IFSIT L EG, 1. ARD.TIIT.GT. 10

TRl L GT 1 eI des

Tl le=0.0
1 Ide= 3
T =1+ HERTHAFLORHT «BITY

Y=DIMENITION IWTEGRATION LODF

-

TTREE=0.

I0 40 I=s1«MHUF

I0 41 1i=1.3

IF ol LER 1L AND T B, 1 B L

IFCT L EC L ANDL TLiaT 1y e Dl =ER 04

1 TFeT A GT 10 e T s (] d=1 0 +W I ITH«FLOAT (MDY

Avda=(, 0

FR=L0RT CEF+LENGTH -2, e+ VP— il Lo-WTHTHAZ. 02 eel
F+iZF- i i I T =DEFTH -2, Dr i eeds

Yrgi=114, ceERFLCONITORFY AR}
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EXXE ']J'-MIDTH
+ fIl\—MIDTH E,ﬂ
ET=~E T v +WIDTH 2, 10
g v IPI 1250

IFCIKI-2.HE. Ik 12} E
IF‘IPI,c.EU IbI*c' E‘

EXKA-2. A

IF« IkI L.Eu Irloc- E E E I+c.oH

FRIA=ZQRT ¢ CiP= O 0d) GTH- 2. (1 +42+ CYP-EKEA oog
F42F 1T -DEPTH 2 H--OOc'

ppIP FTfr<P—f&'4'-LEHFTH L [ 9904 (P -EXNEr w02
3 VTI -DEFTH &, (13 ) e

7 V4V 40 4114, BOERFL (LONSTORR 1ot AFRTRK

4114, BeERFC (COMZTSRPIED ~FFIE-F
“=~DIMENZI0ON IMTEGRATION LOOF

TAFER=M, i
IO 45 Jd=lNUF
Hilr=idn
Bla= g
IO 10 T1=Z+4
AT =60 1=+ LEMGTH-FLOAT tHDT 4
DETEFMINE THE EFFECT OF THE REAL WELL
FP=EORT CisP— s I T ~LERGTH 2, 0v s e23 0B =0 580 T 1y =WMIDTH- 2
1 HEE eIl =DERPTH 2, 011 ee2y
r'II'-114 EEFFC ICONEToRFY FR oK

i eer

ALY EFFECTZ OF 100 TMAGES DUE TO EACH OF THE TWO EDUMDRRIES

E VI =WIOTHA 200
] =WIDTH: 200
R=A0I=T Th=IDTH- &0
E=BOIZT-25 T 0o 4Wl1DTH: 2, 0
00 % Ikl=f(.5n
IFiTR Q-2 HE, TRT#20 Ebx
JFCIRT <2 B0 TR] 2
T2 HE, Tk Tezy EluB=E:
e ER IETeZs ExiE=E:
Tk F-'ﬁ-JI~-LEHhTH TR L7 Ry e S TR Ly
Sl =DEFTH- &, N eel
-fﬂFTr-:F--HIII-~LEHuTH S eeZ+ YRF=ERKE a8l
HilT I -DERTH-Z, 011 eezn
T +1 14, 0eERFC COMTTRFIAY . FRIA -k
34114, ceERFC/CON S TORFPIE: -FRIE- ¢

=

T T
w o

i}

10 CONTINUE
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CALL IMTEG cie e AREFs LENSTH-FLOAT (NI Y o
THEER=TAFER+RAFER
IF DEELG, AHDL LINEPRINMT# " RRER="sHRER." THRER=".TRAERA
IF{DERUG, ARDLLINEX FRINT ¢ S~EPRAY "o
IF (DERLG.AMD,LINEXPRINT¢0 " =RAREAY “sY
[ DUTFHT FOF 1-I1 ZIHE IN MALFE
L =WMTIDTHA 2, 0 LT LE- 05, AND,
1150 -0EFTH 2.0 LT . 1E-0S, ANDLLINE, AND. AES (X 40 -LENGTH: L LT,

FPFINTes " LINE ZIHE DFAWDOWH M- LF
QJE'LEHFTH~“ LENGTH="+

"y THEER

3
IF ¢HE VT =RIRTH 2L LT JE=05, AND,
S III'"DEFTH-L.UJ.LT.IE—UE.HHU.LIHE.HHH.HEI

Bogy ~LENGTH LT,

FLINE=.FALZE,

4% COMTIMUE

41 VT =TRFER
CALL IMTEGY "y HREMIDTH-FLOAT ¢HOTY s
TTAFE=TTRFE+RAFE

Coves DUTRUT FOF 2-T0 SIME 1M M LFE
IF«
THES el -DERTH 2. 00 LT 1E=-05, AMDL T, ANDL AES Cik 4y —WIDTHY L LT,

F1E~S0
FFREINT#« " AFEAL SNk DEAMIOWHM-LFZr ="+ TTHRE
Tod, 230032935 T LEMRTHeWMIDTH v " LENSTH="s4 47y " WIDTH=" s 55 (45
40 IF
BRBL i L W=TERTH 2, 30 LT L AE~ 0%, AHDL D2, ANDL BTS00 18 ~WIDTHY L LT,
F1E~ 050
Fhz=.FALZE
21 ¥Vl =TTHFE
CAHLL IMTEG:
A0 TTY=TTT+AA
Caews OUTRUT FOF =D 2IME IN MoLFT
FRINTes" 21t ZIHk DFHHDDMH'H LF'%-'-TTT04 2308 4L44‘ 'LEHHTHQ
HUIITHOLEFTH o " LEMGTH=" v« dda " WINTH="y i} N
TOF
EWHD

S AR DEFTHAFLORT (M 4o




ZUBFOUTINE INTEG xsy s ARERsH?

SUDRDUTINE TO INTESRATE & FUNCTION DEFINED AT DISCRETE ARFAY

AT ERLALLY ZFACED INTERYALZ H.

THFEE-EIGHTZ RLILE INTEGRATIONGCUEIC FDLYNDMIAL FIT)

FOINTE W% APPROXIMATED B¢ B CUEIC ECUATION. THE APPROXIMATION

DF THE INTEGRAL IS THENW COMFUTED EY THE INTEGRATION

DF THE FITTED CURIC DYER THE INTERYRL BETWEEN X<1} AMNI X4,
DIMENZIDN <4y oY (4 e Lcdn Sy o COEFF (40
AREA= Y E1Y 43, oY (T 45, 97 (R4 (41103, o5,
RETURN
ENTI
FUMCTION ERFC (X

FUMCTION SUEROUTINE TD APPROXIMATE THE COMPLEMENTAEY ERROR FUNCTIOH.
FEADi®s
IFCART.S. 00 G0 TO 10
EFFL=], 4. ZVEIREe 4 22030 Ne e+, DONET R e e e+, ITE1DECK oK e o)
EFFC=ERFUeERFCeERFLeERFT
ERFCs1, 7EFFC
FRINTes = ERFC
FETURN

10 Pl=ACOSC-1.2

FFINTeF]
ERFI=] -1  iZeneelia i i dexesSi =15 (SekeeT 1+ IS (Inexeetn
+-UQGoIcesee ] 1

CON=ERF C=AMIH] vee e SO0, 3 53R T ORI

EFFC=ERFCeCON

FETLFH

END




