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Postmortem interval (PMI) estimation is a necessary but often difficult task that must 

completed during a death investigation. The level of difficulty rises as time since death 

increases, especially with the case of skeletonized remains (long PMI). While challenging, a 

reliable PMI estimate may be of great importance for investigative direction and cost-savings 

(e.g. suspect identification, tailoring missing persons searches, non-forensic remains exclusion). 

Long PMI can be estimated by assessing changes in the organic content of bone (i.e. collagen), 

which degrades and is lost as the PMI lengthens. Visible-near infrared (VNIR) spectroscopy is 

one method that can be used for analyzing organic constituents, including proteins, in solid 

specimens. A 2013 preliminary investigation using a limited number of human cortical bone 

samples suggested that VNIR spectroscopy could provide a fast, reliable technique for assessing 

PMI in human skeletal remains. Clear separation was noted between “forensic” and 

“archaeological” specimen spectra within the near-infrared (NIR) bands. The goal of this 

research was to develop reliable multivariate classification models that could assign skeletal 

remains to appropriate PMI classes (e.g. “forensic” and “non-forensic”), based on NIR spectra 

collected from human cortical bone. Working with a large set of cortical samples (n=341), 

absorbance spectra were collected with an ASD/PANalytical LabSpec® 4 full range 

spectrometer. Sample spectra were then randomly assigned to training and test sets, where 

training set spectra were used to build internally cross-validated models in Camo Unscrambler® 

X 10.4; external validations of the models were then performed on test set spectra. Selected 



 

model algorithms included soft independent modeling of class analogy (SIMCA), linear 

discriminant analysis on principal components (LDA-PCA), and partial least squares discriminant 

analysis (PLSDA); an application of support vector machines on principal components (SVM-

PCA) was attempted as well. Multivariate classification models were built using both raw and 

transformed spectra (standard normal variate, Savitzky-Golay) that were collected from the 

longitudinally cut cortical surfaces (Set A models) and the superficial cortical surface following 

light grinding (Set B models). SIMCA models were consistently the poorest performers, as were 

many of the SVM-PCA models; LDA-PCA models were generally the best performers for these 

data. Transformed-spectra model classification accuracies were generally the same or lower 

than corresponding raw spectral models. Set A models out-performed Set B counterparts in 

most cases; Set B models often yielded lower classification accuracy for older forensic and non-

forensic spectra. A limited number of Set B transformed-spectra models out-performed the raw 

model counterparts, suggesting that these transformations may be removing scattering-related 

noise, leading to improvements in model accuracy. This study suggests that NIR spectroscopy 

may represent a reliable technique for assessing the PMI of unknown human skeletal remains. 

Future work will require identifying new sources of remains with established extended PMI 

values. Broadening the number of spectra collected from older forensic samples would allow 

for the determination of how many narrower potential PMI classes can be discriminated within 

the forensic time-frame. 
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CHAPTER 1 

INTRODUCTION 

Medicolegal examiners are tasked with the responsibility of investigating the deaths of 

individuals in order to ultimately certify a cause and manner of death. One of the more 

complicated aspects of a death investigation is the determination of the postmortem interval 

(PMI), or the length of time for which an individual has been deceased, based on the degree of 

decompositional changes observed on the decedent (Ubelaker 1997). Estimating the PMI is 

often a difficult proposition, especially as the length of time since death increases, because the 

rate of decomposition is dependent upon many variables. These include factors specific to the 

decedent (e.g. body mass, health status at time of death, presence or absence of clothing) as 

well as the recovery context (e.g. temperature, microenvironment, level of exposure, presence 

of insects, scavenger access). The resultant taphonomic profile for a decedent is thus the sum 

of all physical and chemical changes that have occurred during the PMI as a result of both 

intrinsic and extrinsic sources; because there are many taphonomic factors, the rate of 

decomposition is highly variable. 

Although a challenge, providing a reliable PMI estimate is important for investigative 

agencies. An accurate estimate of PMI may have civil implications, including the settling of 

estates and the resolution of questions on statute of limitations. For criminal investigators, a 

decedent’s time of death may lead to the inclusion or exclusion of suspects. Additionally, a 

reliable PMI estimate can be used to pare down a large pool of missing persons to a smaller, 

more manageable number of potential matches. Likewise, remains that are of historical or 

archaeological origin must be identified and excluded from further forensic investigation so 
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that limited resources (e.g. time, labor, money) are not expended on cases in which all related 

parties are long-deceased. 

PMI estimation of skeletonized remains, or those remains which no longer have 

associated soft tissue, is often done in a qualitative manner. Living bone is largely a mineralized 

extracellular matrix of primarily collagen, a flexible fibrillar protein that is embedded with rigid 

and compression-resistant calcium hydroxyapatite crystals (Shipman et al. 1985; Hall 2005). 

Over a lengthening PMI, the properties of bone will change as the native organic and inorganic 

components degrade (Hedges et al. 1995, Collins et al. 2002, Hedges 2002, Trueman and Martill 

2002); such changes may be used to estimate the PMI, provided they are both predictable and 

quantifiable. 

An estimate of relative PMI may be assigned based on textural and olfactory 

information, or on observed gross and microscopic morphological changes (Behrensmeyer 

1978, Yoshino et al. 1991, Hedges et al. 1995, Bell et al. 1996, Collins et al. 2002, Trueman and 

Martill 2002, Nashelsky and McFeeley 2003, Swift 2006). Results from simple tests, such as the 

measurement of specific gravity, the degree of fluorescence on sectioned cortex, and the 

presence of blood residues may be deployed as well (Berg 1963, Knight and Lauder 1969, 

Introna et al. 1999, Ramsthaler et al. 2009, Ramsthaler et al. 2011). Each of these scenarios is 

rooted in bone compositional changes: specific gravity may decrease from loss of 

hydroxyapatite and replacement with soil carbonate; diminished fluorescence of cortex is 

attributed to collagen loss; and, the presence of decomposed blood products (heme) should 

indicate potentially “modern” origins. 
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Unfortunately, descriptive techniques are subjective and highly dependent on the 

experience of the examiner (Swift 2006), and are therefore not reproducible. Likewise, common 

simple tests (e.g. cortical fluorescence, specific gravity) as noted above are variable in outcome 

and are not validated. This presents a problem in the medicolegal setting, especially when cases 

are adjudicated, because non-validated techniques will likely be found inadmissible in court. 

The development of reliable, validated methods that can be used to provide a less subjective 

PMI range for skeletonized material based on the chemical and physical properties of recovered 

bone is therefore paramount.  

Of immediate importance is determining whether skeletonized remains are of modern 

origin and forensically significant or of non-forensically significant provenance (i.e. historical, 

archeological, or medical origins). The defined distinction between “modern” and “historical” is 

somewhat variable in the literature, often ranging from 50-plus to 75 years, to less than 100 

years (Knight and Lauder 1967, Knight and Lauder 1969, Swift 2006). In application, remains 

assigned to one side of an arbitrary cut-off (e.g. less than 75 years) are forensically significant, 

while those above are not. For forensic investigators, a major determination for significance of 

older remains is whether the relevant actors, such as criminal suspects or decedents’ next-of-

kin, are still alive. Equally important is the condition of the recovered skeletal remains and how 

useful the material will be for DNA extraction. In light of this, identifying a reliable, 

reproducible, and consistent set of criteria for the distinction between significant and non-

significant remains is of major importance. The processing of non-significant historical or 

archaeological remains in a forensic investigation represents wasted analytical time and cost 

because 1) the bone is often so badly degraded that the DNA yield is poor, and perhaps more 
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importantly, 2) there are likely no DNA reference samples available for comparison, all related 

parties likely being deceased.  

The goal of this research is the development of a robust classification model which can 

be used to reliably assign unknown skeletonized remains to a descriptive PMI class. Training 

sets, comprised of spectral absorbance data that were collected from cortical surfaces of bone 

specimens with known or estimated PMI, have been used for model construction. Similar 

reference (test) sets have been applied to the constructed models to perform an external 

validation. 

This project focused on comparing various classification methods in an effort to see 

which could be best used to build classification models that could accurately separate older 

skeletal material of historical or archaeological origins from forensically significant remains (i.e. 

2-class models). Selected classification techniques included Soft Independent Modeling of Class 

Analogies (SIMCA), Linear Discriminant Analysis on Principal Components (LDA-PCA), Support 

Vector Machine Classification on Principal Components (SVM-PCA), and Partial Least Squares 

(a.k.a. Projection of Latent Squares) Discriminant Analysis (PLSDA); these techniques are 

discussed further in Chapter 3. In addition to 2-class models used to assign remains to “non-

forensic” or “forensic” classes, smaller subsets with known PMI were also used to develop 

models for the discrimination of 3-PMI classes (“newer” forensic cases, “older” forensic cases, 

and non-forensic remains) and 2-forensic classes (newer and older “forensic” remains, with 

non-forensic remains excluded). This was done in order to determine if absorbance spectra 

collected from bone are sensitive enough to reliably discriminate PMI range within the forensic 
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time frame. Ultimately, the development of a validated PMI technique would provide 

significant time and cost-savings for all parties involved in a death investigation. 

This document has been organized into 6 primary chapters followed by 8 appendices 

and references. Chapter 1 serves as an introduction to the PMI, the importance of PMI within 

the medicolegal context, and the lack of robust, validated techniques available for PMI 

assessment, especially when dealing with skeletonized remains. Chapter 2 comprises a 

literature review and is organized in two primary sections. The first section presents the stages 

of the PMI as characterized by observed decompositional change. The second section of this 

chapter presents multiple PMI estimation techniques that have been attempted; an 

introduction to vibrational spectroscopy (VR) and a review of relevant VR applications using 

bone and cartilage are presented in this section as well. 

Chapter 3 presents the results of preliminary research and the methodology developed 

for the current work. Equipment specifications and software selection are presented. Bone 

sample selection and preparation is described, followed by spectral data collection protocol. 

The final section of this chapter discusses the processes followed for the construction and 

validation of classification models, by algorithm. 

Results of the research are presented in Chapter 4. The chapter begins with a 

justification for the selection of the spectral data sets used for model building, sample exclusion 

criteria, and applied data preparation techniques. The next section of this chapter presents the 

results of select classification models with associated external validation values. The final 

portion of this chapter reviews the results of tests conducted to determine if bone collagen in 
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extracted cortical samples is subject to oxidative change. A discussion of the results is 

presented in Chapter 5. 

Chapter 6 concludes the text. The first section of this chapter presents the positive 

impacts that this technique would have if it can be successfully applied within both the 

medicolegal context and the examination and identification of remains from mass death 

scenarios such as contemporary and historic conflicts. Future avenues of research are 

presented in the closing section of this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Postmortem changes have been described from the gross anatomical to the subcellular 

and chemical levels, and can be broadly grouped by relative length of time into short PMI, 

intermediate PMI, and long PMI (Nashelsky and McFeeley 2003). This chapter will be comprised 

of two major sections. The first section will review the decompositional that often occur during 

each of these PMI stages and the limitations associated with PMI assessment. The second 

portion of the chapter will focus on a review of the techniques that have either been attempted 

or are in active use for the estimation of PMI, with an emphasis on the long PMI period. 

 

2.2 Stages of the PMI 

 Short PMI 

Short-term PMI changes (hours to days) include phenomena that begin to occur 

immediately following death (Nashelsky and McFeeley 2003). These processes include the 

onset of and disappearance of rigor mortis (stiffening of the musculature), settling of the blood 

to dependent portions of the body (livor mortis), and cooling of the body following cessation of 

metabolic activity (algor mortis). These early indicators usually occur during the first 1-2 days of 

the PMI (Nashelsky and McFeeley 2003, Henßge and Madea 2004, Perper 2006). Each may be 

taken in to account when assessing PMI, but none can be used definitively because they are 

highly dependent on corporeal and environmental factors. Other short-term biological 

indicators include changes in vitreous humor composition, such as increasing [K+] and 
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[hypoxanthine] (Nashelsky and McFeeley 2003, Henßge and Madea 2004, Perper 2006), 

although these may be problematic. Swift (2006) argues that the typical range of vitreous [K+] 

in living individuals may not be well-defined owing to sampling difficulty; thus, an elevated 

postmortem [K+] may be called into question. Additionally, an assessment of gut contents (i.e. 

“last meal”) is regularly made in order to provide a rough estimate of PMI because the stomach 

is often assumed to empty at a predictable rate; however, this process is highly variable by 

individual (Nashelsky and McFeeley 2003, Perper 2006, Swift 2006). 

 

 Intermediate PMI 

Decomposition processes begin during the intermediate-term (days to weeks) and are 

the result of both autolytic activities, which initiate at the onset of death, and putrefactive 

changes, which are driven by in situ and transmigrating gut bacteria (Nehring et al. 1972, 

Nashelsky and McFeeley 2003, Perper 2006). During this period, the body is often characterized 

by discoloration and bloating as a result of bacterial proliferation and gas release (e.g. methane, 

hydrogen sulfide; Gill-King 1997, Nashelsky and McFeeley 2003, Perper 2006). The superficial 

blood vessels may take on a dark purple stain as bacteria and decomposition gases infiltrate the 

vascular network and erythrocyte components are broken down, giving the body a “marbled” 

appearance (Gill-King 1997, Nashelsky and McFeeley 2003, Perper 2006). Additional autolytic 

changes include sloughing of the epidermis from the deeper dermal layer (skin slippage) and 

purging of fluids from bodily openings as visceral tissues break down and body cavity pressure 

increases from gas release. These decompositional changes may begin within the first days of 
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PMI and extend for a few weeks, depending upon the environment (e.g. ambient temperature, 

location). 

Anamnestic evidence may also be useful for determining the PMI in the short- and 

intermediate-terms, when the life habits of the decedent are known (Nashelsky and McFeeley 

2003). Such evidence focuses on knowledge of the decedent’s normal life routines (e.g. 

retrieving the morning paper, arrival and departure times from work, daily trip to a local 

eatery). Identifying a window when an individual’s normal habits have been interrupted may 

provide investigators a better indication of when that person died, assuming the death disrupts 

a timeline composed of known, repeated events. 

Necrophagous insects, species that subsist on decomposing tissues, may also provide a 

robust method for determining PMI in the short- and intermediate-terms (Nashelsky and 

McFeeley 2003, Perper 2006). When allowed access, flies (Dipterans) are known to oviposit on 

exposed points of entry to the body (e.g. orifices, eyes, wound tracks) minutes following death 

(Goff 2009). Likewise, Coleopterids (beetles) will colonize remains later in the PMI (Goff 2009).  

Forensic entomologists may be consulted to identify the species of insects present, assess the 

developmental stages of the larvae, and determine the number of generations that have 

developed on the remains in order to provide a relatively narrow PMI window. 

 

 Long PMI 

Given sufficient time and the right environment, the body may progress through the 

above series of soft tissue decompositional changes to essentially complete skeletonization 

(Clark et al. 1997, Nashelsky and McFeeley 2003, Perper 2006). Generally, following the 
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decomposition of organ tissues, the integument and connective tissues (periosteum, articular 

cartilages, tendons and ligaments) will decompose until they are eventually lost, and the bone 

itself may begin to break down from environmental exposure and the action of microorganisms 

(Behrensmeyer 1978, Gill-King 1997, Nashelsky and McFeeley 2003, Swift 2006). PMI 

estimation is difficult in the absence of some of the earlier rate-limited changes which 

characterize the short-term PMI (e.g. fixation of lividity, loss of rigor, cooling of the body to 

ambient temperature) and the benchmarks characterizing the intermediate-PMI (e.g. bloat, 

skin slippage, marbling), and it becomes increasingly difficult as death becomes more remote 

(Gill-King 1997, Nashelsky and McFeeley 2003, Swift 2006). 

Additionally, microenvironment will directly influence long-term decomposition 

(Ubelaker 1997). It is reported that during the long-term PMI, remains may become 

skeletonized after many months (Ubelaker 1997); however, the process can occur rapidly 

(weeks) if the decedent is located in a humid environment. Alternatively, remains found in arid 

climates may rapidly become mummified due to fluid loss (Nashelsky and McFeeley 2003). The 

lower moisture content in turn retards bacterial decomposition and insect activity (Goff 2009); 

thus, some desiccated soft tissue may persist for many months to potentially years before 

remains become skeletonized (Galloway 1997). 

Another long-term postmortem effect is the formation of an adipocere coating on the 

remains. Commonly referred to as “grave wax,” adipocere is formed from the hydrolysis of fatty 

acids (Nashelsky and McFeeley 2003, Perper 2006). When encasing remains, adipocere may 

greatly retard the rate of decomposition (Micozzi 1991). The tendency to saponify (form 

adipocere) is directly related to body composition (i.e. total adipose content). Common 
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adipocere locations are found in areas of high lipid content, such as brain and viscera (Perper 

2006). Although saponification generally occurs when a body is sequestered in a wet 

environment, such as a body of water or a burial in water-rich soils, it may also develop on 

remains wrapped in protective layers of natural fabric or in loose, silty soils that are found in 

arid environments. Acting as a wick, these draw out tissue fluid and drive surface condensation 

of adipocere; likewise, the loss of moisture retards bacterial-driven decomposition, allowing 

soft tissues to persist. Thus, partial skeletonization, mummification, and adipocere potentially 

may all be found on one decedent (Nashelsky and McFeeley 2003). 

Given access, scavengers may also reduce a decedent to skeletal elements in a short 

period of time (Ubelaker 1997). It should also be noted that scavengers often relocate portions 

of the remains from the original body deposition site. Thus, portions of the same decedent may 

be spread out in varying microenvironments (e.g. shaded area, in the sun, partially buried, in 

water), resulting in differential decompositional changes on the recovered material.  In short, as 

PMI lengthens, it becomes increasingly difficult to assess in the extended time frame relative to 

the somewhat predictable postmortem benchmarks characterizing the short- and intermediate-

terms. 

Long-term taphonomic changes in bone, including diagenesis, are well-documented if 

not completely understood (Hedges et al. 1995). Diagenesis is as an exchange of individual ions 

or charged polyatomic complexes with different complexes. Acting through a watery interstitial 

environment, exchanges between soil and bone entail the postmortem chemical and physical 

changes in the organic (primarily collagen) and mineral (apatite) phases of osseous tissue that 

occur over many decades to millennia. These may include bone surface erosion, histological 
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degradation, changes in bone porosity, infiltration (soil, water, fungi, bacteria, and rootlets), 

and mineralization (Hedges et al. 1995). The extent and types of change are highly dependent 

upon the deposition environment (Hedges et al. 1995). Often, bone apatite is lost, and the 

subsequent infiltration of water, soil minerals, and microbes further drives the loss of both 

organic and mineral phases through replacement reactions. Along with time-dependent 

decomposition of collagen, the addition of soil fungi and bacteria accelerate the degradation of 

collagen. Bone mineral is replaced by passive means (i.e. concentration gradients) as minerals 

are incorporated from the surrounding soils, ultimately leading to recrystalization (Collins et al. 

2002, Hedges 2002, Trueman and Martill 2002). 

The PMI may extend into antiquity; however, forensic investigators are generally 

interested in “modern” remains with a PMI typically less than 50-75 years (Knight and Lauder 

1969, Swift 2006). While investigators are usually consulted on medicolegal cases, remains of 

historical and archaeological origin are frequently recovered. Forensic anthropologists must 

determine whether or not such remains are of forensic interest. Although the remains of a 500 

year deceased Native American may be of scientific interest, such remains are almost never 

forensically significant. 

 It is evident that in the absence of most or all of the soft tissue, gross and microscopic 

changes in bone will characterize the long PMI (Behrensmeyer 1978, Yoshino et al. 1991, 

Hedges et al. 1995, Bell et al. 1996, Gill-King 1997, Collins et al. 2002, Trueman and Martill 

2002, Nashelsky and McFeeley 2003, Swift 2006). A review of normal bone composition is 

presented in Appendix A. Emphasis is placed on bone phases (mineral, organic), the general 

organization of compact bone, and the hierarchical organization of bone collagen. Techniques 
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used to assess these changes in an attempt to estimate PMI in the long-term are presented in 

section 2.2.2 below. 

 

2.3 PMI Estimation Methods 

 The preceding pages introduce the various PMI stages in which a decedent may be 

discovered, as determined by the degree of observed decompositional change. The so-called 

short PMI ends fairly quickly, as each of the associated changes is rate-limited; likewise, a 

transition from the intermediate to the long PMI often occurs when most or all of the soft 

tissue “substrate” has been consumed. However, it has been noted that the long PMI is highly 

variable, and therefore the most difficult phase to assess. Because of this, numerous techniques 

have been attempted to solve the long PMI estimation problem. A review of some of the 

relevant PMI assessment techniques for each of these PMI stages is presented below.  

 

 Methods for Determining Early to Intermediate PMI 

Much of the current anthropological research focuses on decompositional changes to 

soft tissues observed in the short- and intermediate-term PMI. Such studies include variability 

in decomposition patterns based on different environments, e.g. temperate versus desert (Bass 

1997, Galloway 1997, Parks 2011), as well as the effects of deposition, including exposed, 

buried, or submerged remains (Rodriguez 1997). Documentation of scavenger activity, including 

species type, activity times, and scattering patterns have been analyzed (Haglund 1997, Reeves 

2009), as have the effects of necrophagous insect colonization and species progression (Haskell 

et al. 1997, Goff 2009). The release of early- and intermediate-PMI biochemical decomposition 
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products into the soil from the breakdown of organ tissues has also been examined (Vass et al. 

2002). Another avenue of interest for predicting PMI is the examination of microorganism 

species progression on and in decomposing remains, referred to as a “microbial clock” (Metcalf 

et al. 2016). Other strategies involve quantifying decompositional changes and associating 

these with relevant environmental variables (e.g. temperature, humidity, soil pH) in an attempt 

to build predictive models that can provide reliable estimated PMI ranges (Megyesi et al. 2005, 

Vass 2011). Such PMI formulae are summarized in Appendix B, Section 1. Note that these 

approaches may prove useful for narrowing the PMI estimate during the earlier stages of 

decomposition; however, they are of diminishing use as skeletonization occurs, and as the bone 

continues to break down with time. 

 

 Methods for Determining Long PMI 

 Qualitative Morphological Assessment 

Long-term PMI estimation of skeletal remains is often a “best guess” based on the 

experience of the anthropologist or pathologist, a familiarity with the recovery context, and the 

results of the forensic investigation (i.e. potential concurrence information). Swift (2006) notes 

that long term PMI is often judged qualitatively by a visual morphological assessment. 

Relatively recent skeletonized remains may be recognized by the presence of soft tissue 

remnants such as integument and connective tissues, exuded grease, the expression of 

decompositional odor (byproducts of putrefaction, including putrescine and cadaverine), as 

well as associated live insects (Gill-King 1997, Nashelsky and McFeeley 2003, Swift 2006, Goff 

2009). Bones at this stage are also often characterized as being relatively heavy and firm. 
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Lengthened PMI may lead to the loss of grease, soft tissue remnants, and periosteum, as well as 

diminishing odor (Swift 2006). Over time, the bone may take on a weathered appearance 

characterized by superficial exfoliation and splintering (Behrensmeyer 1978, Nashelsky and 

McFeeley 2003, Swift 2006). When buried, the invasion of bone by plant microrootlets provides 

access for microorganisms to the organic and inorganic components of bone, which facilitates 

degradation via secreted collagenases and phosphatases (Child 1995, Mullen 1998). This 

ultimately results in bone becoming increasingly “chalky” when sectioned, relatively light-

weight, and increasingly friable, as PMI lengthens. 

Sectioned bone can also be examined microscopically to assess PMI.  Long-term damage 

to bone may be characterized by focal points of destruction, tunneling by microorganisms, and 

loss of normal bone histology (Hedges et al. 1995, Collins et al. 2002, Trueman and Martill 

2002). Berg (1963) noted changes in optical activity with respect to PMI when bone is examined 

under polarized light. A decrease in collagen periodicity was observed using electron 

microscopy, with a shrinkage approximately 640Å (64nm) in relatively fresh bone to as low as 

500Å (50nm) in Miocene fossil material (Shackleford and Wyckoff 1964, Shackleford 1966, Race 

et al. 1968), although the pattern of change was not sufficiently accurate to estimate the age 

fossil material (Shackleford 1966). Later electron microscopy studies attempted to describe the 

effects of the environment on both the rates and patterns of postmortem histological damage 

(Yoshino et al. 1991, Bell et al. 1996). See Appendix B, Section 2 for additional information 

about microscopic inspection. 

Although gross examination, odor, and microscopic analyses of bone provide the means 

for roughly estimating PMI, these techniques are highly variable and non-quantifiable. 
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Additionally, interpretation of material conditions is highly dependent upon the experience of 

the individual, thus raising the question of interobserver variability.  Lastly, the general 

condition of remains is not only the result of the amount of time that has passed, it is greatly 

affected by the physical and biological characteristics of the environment from which the 

remains were recovered. 

 

 Qualitative Tests 

Other qualitative methods commonly used to assign remains to the “non-forensically 

significant” category often consist in assessments of lost collagen and/or the infiltration of 

sediment resulting in bone mineralization. These include numerous methods reported by Berg 

(1963), including the following: soil carbonate infiltration as indicated by increased reactivity of 

cortex with hydrochloric acid; collagen loss, demonstrated by diminished fluorescence of 

sectioned cortex under UV light and decreasing cortical specific gravity; and, staining with Nile 

Blue (mineral affinity) and Indophenol (affinity for proteins and vitamin C associated with 

collagen). 

Nitrogen and amino acid yields from bones of different ages have also been examined 

(Knight and Lauder 1969) as well as attempts using benzidine staining to identify blood residues 

in bone (Knight and Lauder 1969, Facchini and Pettener 1977). Amino acid racemization may 

also be used for aging bone (Bada and Helfman 1975), although it should be noted that this 

method is only potentially applicable when the PMI is in the 1000’s of years or greater. These 

techniques are summarized in Appendix B, Section 3. 
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 Quantitative Methods 

2.3.2.3.1 Luminol Reaction 

Luminol can also be used to identify traces of blood. Luminol is oxidized when exposed 

to heme, an iron-containing porphyrin in blood; the catalyzed reaction drives the release of 

light (chemiluminescence) which can be viewed under an alternative light source such as 

ultraviolet light (Quickenden and Creamer 2001). Assuming that blood remnants in bone should 

decrease with increased PMI, multiple researchers have attempted to expose bone to luminol 

and quantify the reaction intensity (Introna et al. 1999, Ramsthaler et al. 2009, Ramsthaler et 

al. 2011). Although a stronger reaction is often observed in newer remains, older but still 

forensically significant remains can show little to no reaction, while some non-significant 

remains have been found to be mildly reactive.  This suggests that PMI assessment cannot be 

based on the presence or absence of luminol reaction alone. These studies are summarized 

below in Appendix B, Section 4. 

 

2.3.2.3.2 Autofluorescence 

Fluorescence of sectioned bone under ultraviolet light has been previously described 

(Berg 1963). This phenomenon is the result of autofluorescence, which occurs when 

endogenous fluorophores (e.g. the cross-links and aromatic amino acids found in collagen) 

absorb higher energy photons (UV light) and become excited; upon return to a relaxed state, 

lower energy photons are emitted or “fluoresced” (Monici 2005). Although recent 

reexaminations of autofluorescence have noted a negative correlation between the degree of 

fluorescence and PMI as well as change in fluorescent color over the PMI (Ramsthaler et al. 
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2011, Hoke et al. 2013), autofluorescence is best used as a coarse indicator of PMI and must be 

considered in conjunction with the recovery context and the condition of the remains. See 

Appendix B, Section 5 for further detail. 

 

2.3.2.3.3 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) involves incremental heating of a material within a 

furnace, followed by measurement of the associated sample weight change as burned sample 

components are evolved (Coats and Redfern 1963). Attempted use of TGA to examine PMI is 

reviewed in Appendix B, Section 6 (Villanueva et al. 1976, Raja et al. 2009). While the technique 

may work well for estimating PMI for newer remains, both reported studies suggest that it may 

be limited for estimating long-term PMI. Additionally, samples are completely destroyed by 

TGA. 

 

2.3.2.3.4 Citrate Concentration 

Citrate (i.e. citric acid) comprises 1.5-2.0% of weight in living bone and is thought to play 

a role in inhibiting excess hydroxyapatite deposition during new bone ossification. Schwarcz 

and colleagues (2010) proposed using bone citrate content as a PMI indicator. Their rationale 

was based on the following observations: 1) citrate has a relatively uniform distribution 

throughout bone in life, 2) the concentration is independent of both sex and age, and 3) 

previous research (Gibbs 1991) demonstrated that citrate is lost gradually during the PMI, with 

remains greater than 100 years of age typically yielding less than 1.0% of the original citrate 

content in living bone. Results presented by Schwarcz and others indicated that citrate loss may 
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be a good PMI indicator. However, a later attempt testing the technique on unembalmed 

remains from exhumed cemetery burials was not as successful (Kanz et al. 2014). See Appendix 

B, Section 7 for additional details. 

 

2.3.2.3.5 Radionuclide Techniques 

Because radioactive isotopes decay at predictable rates irrespective of environment, 

quantifying the levels of radionuclides in mineralized tissues (e.g. teeth and bone) could 

theoretically provide a robust method for determining PMI. Natural isotopes (e.g. 210Pb, 210Po) 

and nuclear fission products (e.g. excess 14C, 90Sr) have been considered for dating forensically 

significant material (Swift 1998, Neis et al. 1999, Swift et al. 2001, Schrag et al. 2012, Ubelaker 

2014, Speller et al. 2012, Schrag et al. 2014). Applications involving fission products are based 

on the presence of artificial isotopes released in the fallout from above-ground nuclear bomb 

testing conducted in the 1950s and early 1960s. Such isotopes were distributed worldwide and 

ultimately integrated into human tissues; thus, their presence could potentially be used to 

differentiate non-forensically significant remains from modern materials. A summary of 

radionuclide techniques are presented in Appendix B, Section 8. 

 Although attractive, radionuclide methods have significant practical limitations. Useful, 

naturally occurring radioisotopes are not uniformly distributed, so geographically specific 

curves must be developed (Swift 2006). Such techniques also assume that a decedent 

incorporates radioactive isotopes from the environment at a constant rate, which is not 

necessarily true when considering migration. Regarding artificial radionuclides, the global 

distribution is also non-uniform because much of the testing occurred in the northern 
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hemisphere. Of equal concern is the fact that atmospheric levels of artificial radionuclides 

generated from 1950s and 1960s era above-ground testing are continually decreasing. Because 

the time interval between testing and the present continues to increase, these methods will 

only be potentially useful for discriminating forensically significant from historical remains 

materials for, at most, another 20 years (Buchan and Anderson 2001). Lastly, radionuclide 

methods are time-consuming and destructive, the equipment is prohibitively expensive, and 

extensive, specialized knowledge and training are required for operation and interpretation. 

Such limitations make these techniques impractical for most investigative agencies. 

 

 Vibrational Spectroscopy Techniques 

Each of the previously reported quantitative techniques illustrates the need for 

developing reliable methods for estimating PMI in the long-term. One analytical area not fully 

explored is vibrational spectroscopy. Although frequently used in various forms within 

industrial and medical fields (Murray et al. 2001, Boskey and Camancho 2007, Spahn et al. 

2007, Spahn et al. 2008, Nagy et al. 2008, Afara et al. 2013), these methods thus far have been 

applied in a limited fashion to assessing PMI within the forensic context (Dogra 2009, Howes et 

al. 2012, Patonai et al. 2013). The following section provides an introduction infrared (IR) and 

near-infrared (NIR) spectroscopy, and relevant applications using cartilage and mineralized 

tissues. 

 Overview of Vibrational Spectroscopy 

Vibrational spectroscopy involves the study of material characteristics via the 

absorption of light (Seisler et al. 2002), taking advantage of covalent bond vibration transitions 
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between relaxed (lower energy) and excited (higher energy) states. When a bond is exposed to 

broadband light, most wavelengths will be transmitted; however, a relaxed bond may absorb a 

photon of light if the energy of the wavelength equals the bond energy vibration, resulting in 

excited bond vibrations, such as symmetric or asymmetric stretches, bends, and scissoring 

(Seisler et al. 2002). Upon emission of the photon, the bond will return to a relaxed state. If 

absorbance of a photon produces a change in the dipole moment (e.g. an asymmetric stretch in 

CO2), there is an associated absorbance peak in the infrared (IR) spectrum. These same 

stretches occur in the functional groups of large molecules such as proteins (e.g. C=O, NH, CH, 

OH); accordingly, IR spectra are useful for analyzing these proteins and associated functional 

groups (Seisler et al. 2002). 

 

 MIR Spectroscopy and Applications with Mineralized Tissues 

Alternate techniques are used to examine different parts of the infrared spectrum. One 

method, IR spectroscopy, focuses on the mid-infrared (MIR). Since most of the absorbing bonds 

begin in a relaxed state (energy level n=0), photon absorption will elevate the majority to the 

first excited state (n=1) prior to reemission (Seisler et al. 2002). Thus, MIR spectra are 

characterized by well-defined “fundamental” peaks for functional groups of interest (Seisler et 

al. 2002). 

MIR methods have been used to assess bone in medical applications to differentiate 

between natural and engineered bone (Boskey and Camancho 2007), examine cortical and 

trabecular bone (Paschalis et al. 1997), and for comparisons of pathological to healthy bone in 

human skeletal remains (Nagy et al. 2008). MIR methods have also been used to examine PMI-
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related changes in bone organic and carbonate content as well as the degree of crystallinity 

(Howes et al. 2012, Patonai et al. 2013). These studies are reviewed in Appendix B, Section 9. 

MIR studies of bone have obvious strengths, most notably spectra composed of well-defined 

fundamental peaks that can be readily interpreted. Furthermore, these techniques can be used 

to study both the organic and inorganic bone phases. However, time-consuming sample 

preparation is required, potentially including dehydration, degreasing, and pulverizing. 

Additionally, the sample must generally be mixed with a reference material (e.g. KBr) and 

compressed into a pellet before analysis. Lastly, samples under study must be relatively thin in 

order to allow for the transmission of light as the longer, lower energy MIR wavelengths cannot 

penetrate the sample as deeply as shorter wavelength light. 

 

 NIR Spectroscopy and Applications with Mineralized Tissues 

Although the bulk of absorbance events result in elevation from ground to the first 

excited state, higher levels (e.g. n=2, n=3) also exist. Elevation to one of these excited levels or a 

position between these levels produces overtone and combination bands. Because such 

excitations are relatively small in number with respect to the fundamentals, the corresponding 

overtones that appear in MIR spectra are generally reduced or overwhelmed by fundamental 

peaks. However, these bands represent the dominant features in near-infrared (NIR) spectra 

and are the focus of another method, NIR spectroscopy (Seisler et al. 2002, Manley 2014). 

NIR spectra are composed of overtone bands (e.g., n=1 to n=2) associated with an 

absorbed wavelength of light which causes a change in dipole moment (e.g., asymmetric 

stretch) and/or combination bands, which consist in overlapping transitions between higher 
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energy levels. Displayed NIR spectra consist of broad, overlapping peaks and are difficult to 

interpret directly; this is a primary limitation of NIR spectroscopy (Seisler et al. 2002, Manley 

2014). However, NIR spectroscopy is appealing because the shorter wavelength light can 

penetrate deeper into the sample than other vibrational techniques, allowing for interaction 

with the sample constituents (Seisler et al. 2002, Manley 2014). Additional strengths include 

minimal to no sample preparation, rapid data collection, and simple use with minimal prior 

training. To compensate for the less-defined spectra, NIR spectroscopic data are typically 

incorporated into chemometric models (Naes et al. 2002, Seisler et al. 2002). Such models may 

be predictive and constructed from a subset of known samples (e.g. NIR spectra and associated 

material characteristics such as pH and composition); spectra collected from unknown samples 

can be run through the model in order to characterize the sample. Alternatively, classification 

models can be developed to assign samples to specific classes based on spectral attributes. 

NIR spectroscopy has been used to analyze a non-mineralized connective tissue, 

articular cartilage, for the relationship between water content and cartilage health (Spahn et al. 

2007, Spahn et al. 2008), the prediction of collagen and proteoglycan content (Baykel et al. 

2010), and the prediction of cartilage thickness (Afara et al. 2013). Published NIR applications 

with mineralized elements (e.g. bone and teeth) are limited. NIR spectroscopy has been used to 

identify the presence of bone and meat meals artificially mixed with fish meal (Murray et al. 

2001). A related technique, NIR imaging spectroscopy, was used to map carious lesions on teeth 

(Zakian et al. 2009). Thomas and colleagues (2011) used a NIR spectrometer to discriminate a 

small sample of elk horn cores originating from two archaeological sites separated both 

geographically and temporally. Similarly, Linderholm and others (2013) used NIR imaging 
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spectroscopy to differentiate small, fragmented bone and tooth materials from other debris 

collected from a Bronze Age archaeological fire pit. Citing a need for a rapid method to identify 

ancient samples with adequately preserved organic content (collagen), Vincke and colleagues 

(2014) built predictive models using NIR imaging data and associated archaeological data for 

classifying zooarchaeological materials into two groups based on the presence of absence of 

organic content. The application of NIR to questions of PMI is currently limited to a dissertation 

(Dogra 2009) in which the researcher used NIR spectroscopy with chemometric modeling on a 

selection of defleshed porcine rib samples. This study is summarized in Appendix B, Section 10. 

As noted, there is a paucity of NIR-related applications available in the literature that 

focus on bone characterization. However, the studies cited here collectively demonstrate that 

NIR techniques can be used to analyze bone and related mineralized tissues in general, and 

collagen content within bone specifically. Thus, NIR spectroscopy presents an appealing 

analytical technique for assessing the PMI of skeletonized human remains. 
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CHAPTER 3 

RESEARCH DESIGN 

3.1 Introduction 

Living bone is a predictable composite of organic and inorganic components; it is 

therefore reasonable to assume that bone sampled from a recently deceased individual would 

display similar characteristics. Following death, the properties of bone change due to 

degradation as the postmortem interval lengthens, including the loss of organic content 

(primarily collagen) and the addition of environmental artifacts (e.g. soil carbonate, minerals) 

via diagenesis. Such changes should be accompanied by corresponding changes in the NIR 

spectra recorded from cortical bone samples representing a wide range of postmortem 

intervals. 

 

3.2 Hypotheses 

NIR spectroscopy can be used to indirectly analyze functional groups of organic 

compounds (e.g. O-H, SH, NH, amides). Because organic content is lost over an extended PMI, 

the following hypotheses are made: 

• NIR spectra should change with PMI: Older, non-forensic remains will be spectrally 
distinct from more recent materials 
 

• NIR spectra collected from cortical bone samples with a known or estimated PMI can be 
used to construct models that will accurately classify skeletal remains where PMI is not 
known 

• Developed models will accurately classify remains into 2-possible classes 
(Forensic, Non-forensic) 
 

• Developed models will accurately classify remains into 3-possible classes (Newer 
forensic, Older forensic, Non-forensic) 
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• Developed models will accurately classify forensic remains into 2-possible classes 
(Newer forensic, Older forensic) 

 
3.3 Preliminary Work 

A preliminary study was conducted in May 2013 at PANalytical in Boulder, Colorado, 

using a 350-2500nm LabSpec® 4 spectrometer on 20 samples of sectioned femoral cortical 

bone. Femoral samples examined in ASD Viewspec ProTM 6.2 (“ViewSpec.” ASD/PANalytical, 

Boulder, Colorado, USA. www.asdi.com) visualization software covered a wide range of PMIs 

broadly described as “recent” (≤ 10 years), “mid-range” (25 – 50 years), and 

“historic/archaeological.” Examined as absorbance spectra, (i.e. pseudoabsorbance, log 

[1/Reflectance]) newer material tended to separate out first, followed by mid-range PMIs; the 

historical and archeological samples consistently fell out last. This pattern suggested an 

association between absorbance and PMI. Best separation was observed primarily within the 

NIR bands from roughly 1400 – 2500nm (Figure 1). Due to the low sample sizes, no statistical 

analyses were performed. 

 
Figure 1. Selected absorbance spectra from the preliminary study (n=7). Relative PMI values by sample are 
presented in the legend. Curves separate best in the NIR bands (1400-2500nm) based on relative PMI. Diminishing 
absorbance is noted as PMI decreases. 
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To better examine this potential association, a subgroup of spectra from the current 

dataset (n=68) was plotted in Unscrambler® X version 10.4 (“Unscrambler.” Camo Software, 

Oslo, Norway. www.camo.com). Selected spectra were those collected from the longitudinally 

cut surfaces of femora that is, cut surfaces running parallel to the long axis of the bone. These 

68 samples included specimens with known PMI. Raw spectra were examined for areas of 

change and separation, and five peaks of interest were noted at around 1490nm (N-H 1st 

overtone region), 1730nm (S-H and C-H 1st overtone region), 1940nm (amide C=O 2nd 

overtone), 2040nm (O-H and amide combination bands), and 2160nm (N-H combination band). 

Spectra separated into two groupings: a narrow, low absorbing group comprising 

archaeological samples (PMI = 500-900 years), and a broader, higher absorbing group of spectra 

representing forensic cases with PMI ranging from days to 71 years (Figure 2 and Figure 3). 

Noted peaks of interest at 1490nm, 1730nm, 1940nm, 2040nm, and 2160nm were relatively 

flat in the archaeological spectra, which suggested that the relevant functional groups (NH, CH, 

amide carbonyl, and OH, respectively) were present in diminished amounts. 

 
Figure 2. Absorbance spectra (1400-2260nm) collected from cases with known PMI, five classes presented (n=68). 
Classes: 0 (days – 2 years), 1 (2-10 years), 2 (10-20 years), 3 (20-71 years), and 4 (archaeological). Class 4 forms a 
low-absorbance thin band (500-900 years PMI). Peaks of interest (bars): 1490nm (N-H 1st overtone); 1730nm (S-H 
and C-H 1st overtone); 1940nm (amide C=O 2nd overtone); 2040nm (O-H and amide combination bands); and, 
2160nm (N-H combination band). Peaks are relatively flattened in the archaeological samples (functional group 
loss). 
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Figure 3. Absorbance spectra (1400-2260nm) collected from cases with known PMI, two classes presented (n=68). 
Peaks of interest are noted at 1490nm, 1730nm, 1940nm, 2040nm, and 2160nm. Classes include 0 (“forensic 
cases”) and 1 (“archaeological”). 
 

 Figure 4 presents a smaller collection of selected spectra from the larger group of 68, 

including 7 forensic cases with PMI ranging from “days” to 71 years, and 4 archaeological cases 

with established dates of 500 and 900 years, respectively. An additional spectrum collected 

from cremated bone is included. The abscissa (absorbance) appears to be correlated with time, 

with a notable decrease in absorbance and peak flattening as PMI increases. The cremains are 

added for comparison; note that in the cremated bone, all of the organic material has been 

burned off during the cremation process, resulting in a specimen of bone that appears 

spectrally “older” than the archaeological material. 
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Figure 4. Raw spectra (1100-2300nm) collected from the longitudinally cut cortical surfaces of selected forensic 
(blue), archaeological (red), and cremated remains (dashes). PMI for the forensic and archeological samples is 
included. Peaks of interest are highlighted with dashed vertical lines. Note the diminishing peak heights with 
respect to PMI, indicating time-dependent loss of relevant functional groups. The same peaks are essentially flat 
on the cremains spectrum. 

 

Principal components analysis (PCA) was performed on the larger group of 68 spectra. 

Using a narrower bandwidth (1400-2260nm), only two PCs were needed to account for 99.7% 

of the total variation in the dataset. Archaeological samples formed a cluster that was distinct 

from the remaining forensic samples. Although no clear separation between “forensically 

significant” PMI classes (i.e. PMI ≤ 71 years) was noted, the right side of the “forensic” cluster 

was dominated by remains with a shorter PMI (≤ 5 years) while older samples were found 

toward the middle, suggesting that time influences PC1 (Figure 5 and Figure 6). It should be 

noted that Unscrambler identified many of archeological samples as outliers. This suggested 

that relative to shorter-term PMI material, the properties of many forensically non-significant 

samples are so spectrally different that, statistically speaking, they may belong to a different 

population, and thus their presence may affect shorter-PMI class separation. 
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Figure 5. PCA on spectra (1400-2200nm) collected from femora with known PMI, four classes presented (n=68). 
Classes: 0 (days-2 years), 1 (2-10 years), 2 (10-20 years), 3 (20-71 years), and 4 (archaeological). Component 1 
accounts for 97% of the total variation and appears to be influenced by time. 
 

 
Figure 6. PCA on spectra (1400-2200nm) collected from femora with known PMI (n=68), two classes presented. 
Classes: 0 (“forensic cases,” 0-71 years) and 1 (“archaeological”). 
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3.4 Methodology 

 Instrumentation 

An ASD/PANalytical LabSpec® 4 full range bench spectrometer was used to collect all 

spectral data1. The Indico® Pro Spectral Acquisition Software package version 6.3 (“IndicoPro.” 

ASD/PANalytical, Boulder, Colorado USA. www.asdi.com) was used to control the instrument. 

The spectrometer collected spectral data in the 350-2500nm range. Instrument sampling 

intervals were 1.4nm and 2nm for the 350-1000nm and 1001-2500nm bands, respectively, with 

10 spectra collected per second. The spectrometer was equipped with three detectors: a 512 

pixel silicon photodiode array for the VNIR region (350-1000nm); a cooled indium-gallium-

arsenide (InGaAs) photodiode for the SWIR1 region (1001-1800nm), and; an additional InGaAs 

photodiode for SWIR2 (1801-2500nm). Reported spectral resolutions were 3nm at 700nm and 

10nm at both 1400nm and 2100nm. Spectral data were recorded with a bifurcated reflectance 

fiberoptic contact probe with a 4mm field of view (FOV); note that 4mm was the smallest FOV 

probe available through ASD/PANalytical, and for all but a limited number of cases was small 

enough to collect bone spectra. The probe was energized by an external light source (ASD 

Fiberoptic Illuminator) and was attached via two inputs to the light source and the 

spectrometer. This analysis equipment is depicted in Figure 7. 

                                                      
1 Instrument was awarded through the 2014 Alexander Goetz Instrument Support Program and was made 
available from 4/18/2014 to 7/7/2014. 
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Figure 7. ASD/PANalytical LabSpec® 4 full range bench spectrometer and associated instrumentation. a) Typical 
instrument arrangement for data collection, labeled items include the following: 1. Spectrometer; 2. External light 
source; 3. Fiber optic contact probe; 4. Bifurcated fiber optic inputs for spectrometer (right) and light source (left); 
and 5. White reference. b) Collection end of the fiber optic contact probe with a 4mm field of view (blue asterisk).  
 

 Bone Sample Selection 

The following skeletal collections were used as sources for bone samples: 1) new case 

submissions to the Center for Human Identification’s (CHI) Laboratory of Forensic Anthropology 

(LFA); 2) previously sampled archived cases at LFA; 3) archived cortical samples at the CHI 

Laboratory for Molecular Identification (LMI); 4) previously sampled cold cases located at the 

New Mexico Office of the Medical Investigator (NMOMI) and the University of New Mexico 

Maxwell Museum of Anthropology Osteology Laboratory (MMA) in Albuquerque, New Mexico; 

and 5) fragmentary historical and archaeological long bones stored at the MMA with exposed 

broken edges (non-sectioned). A majority of the samples originated from various jurisdictions in 

Texas (n=150), New Mexico (n=105), and Nevada (n=32). To control for microenvironmental 

effects on decomposition, provenience data were collected, when available. It is noteworthy 
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that many of the samples were collected from remains found in the southwestern region of the 

United States. 

A series of 341 human long bone diaphysis cortices representing a minimum of 290 

individuals were spectrally sampled. Samples were collected from cases that were of forensic 

(n=278) and historical or archaeological origin (n=63). Those bones that were selected for 

sampling were visibly healthy with no evidence of pathology. Bone samples consisted of three 

types: 1) sections of cortex removed from a long bone via autopsy saw; 2) bones that had been 

previously sampled in similar fashion with exposed cortical windows; and 3) broken edges 

found on historical and archaeological material (Figure 8). Note that although the removal of a 

window of bone with a saw is a destructive process, the sample removed does not have to be 

processed further. 

Cortex was selected over trabecular bone primarily because of its long-term durability, 

surface regularity, and decreased susceptibility to diagenesis (Haglund 1997). Typical trabecular 

bone, including diploë, vertebral bodies, and the epiphyses of long bones, is much more 

delicate than cortex. It is thus often fragmentary or absent in older sets of remains due to 

postmortem erosion and/or destruction by animal scavengers attempting to access marrow 

(Gill-King 1997, Haglund 1997). 

Although some humeri (14) and tibiae (48) were sampled, femoral diaphyses (272) were 

selected as the primary cortical sample sites. Due to its relatively large size and dense 

construction, femora are frequently recovered; even a heavily-scavenged assemblage of 

remains will usually yield recognizable femoral diaphyseal fragments. Additionally, because the 

femur is a primary weight-bearing bone, the relatively large, dense, and thick femoral diaphysis 
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affords an extensive sampling area that is adequate for NIR spectral collection on both the 

superficial and sectioned surfaces when using a 4mm FOV contact probe. 

The majority of modern, forensically significant cases examined were originally 

recovered from a surface microenvironment (n=184), although samples were also collected 

from remains originating in clandestine burials (n=47) and exhumed pauper’s burials (n=5). 

When PMI was established for identified remains, the known PMI was recorded; otherwise, 

when available, an estimated PMI as reported in associated anthropology or pathology reports 

was included. Cortices sampled covered a broad range of PMI’s, from relatively fresh remains in 

an early state of decomposition, to dated archaeological materials from New Mexico sites for 

Pottery Mound (1350-1500 C.E.) and Mimbres (1100-1150 C.E.) which represent PMI from 

approximately 500 to 900 old (Anyon et al. 1981; Franklin 2008). It should be noted that almost 

half of the sampled forensic cases have a known or estimated PMI of 2 years or less (n=132). All 

samples were coded with unique identifiers (001-344) in order to maintain the confidentiality 

of case-related information, including investigative agency, associated agency case number, 

and decedent identification, when applicable. 

 
Figure 8. Representative examples of cortical samples. Samples consisted of three types, including: a) sections of 
cortex removed with an autopsy saw; b) previously sampled bones with exposed cortical windows; and c) broken 
edges on historical and archaeological material. 
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 Acquisition of Spectra 

Prior to each data collection session, the spectrometer and light source were allowed to 

warm up for 15 minutes, after which a standard baseline was established using a Spectralon® 

white optical standard disk. The optical probe was oriented at 90° to samples, which allowed 

the 4mm FOV to completely cover the surface of interest (Figure 9). A new baseline was taken 

every 10 minutes during each session. All bone samples were analyzed using a spectrum count 

of 20, meaning that the machine calculated a reflectance spectrum from 20 separate spectra. A 

subset of five reflectance spectra, each with a spectrum count of 20, was collected from a 

particular bone surface; the subset was then used to calculate a final average spectrum for 

output. Sampled bone was lightly wiped with a dry paper towel in order to remove adhered 

bone dust and dirt. Reflectance spectra were then collected from the following surfaces: 

• Superficial bone surface 

• Cross-sectional (transverse) cut surface of the cortex 

• Longitudinal cut surface of the cortex 

The superficial cortices for samples housed at LFA were then lightly ground with a stone wheel 

Dremmel® attachment in order to remove surface debris and weathered cortex. Following a 

wipe-down with dry fabric, a second spectral sample was collected from the ground surface 

(Figure 10). 

It should be noted that not all surfaces could be sampled for every bone. Bones 

examined at the MMA and NMOMI could not be altered by grinding, and only a limited number 

provided adequately ground surfaces from prior molecular sampling. Additionally, many of the 

historical and archaeological samples at the MMA were coated superficially with preservative 
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sealant. Lastly, some of the samples had relatively narrow transverse sections; in such cases, 

the cross-sectional surface area was inadequate for covering the 4mm probe FOV, resulting in 

unusable spectra that were “saturated,” where portions of the spectrum were outside of range 

(i.e. greater than 100% reflectance). 

 
Figure 9. Fiber optic contact probe oriented 90° to samples. Presented images include a) baseline collection from a 
Spectralon® white optical standard disk and b) spectrum collection from the longitudinally cut surface of a cortical 
sample, as well as close-up images of spectral collection from c) a cortical sample and d) the exposed window in a 
previously sampled femur. 
 

 
Figure 10. Cortical surfaces selected for spectral sampling. Spectra were collected from the a) superficial cortical 
surface, b) longitudinally-cut cortex, and c) transversely-cut cortex. Note that a portion of the superficial surface 
was subsequently ground down for an additional spectral sample (blue arrow). 
 

 Spectral Data Preparation 

 Spectral files (.asd) were imported in to Viewspec for visualization, data transformation, 

and export into text files (.txt). All spectra were exported as log-transformed 
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(pseudoabsorbance) spectra. Text files were then loaded into MSExcel, and relevant variable 

columns (sex, age, element, element side, deposition, geographic location, maceration, 

PMI/PMI estimate, and PMI Class) were added and populated for each sample. 

 

 Data Analysis 

 Software Selection 

 Due to a large number of highly intercorrelated variables, spectral data are best-

analyzed using multivariate statistical approaches. Unscrambler, a platform designed to 

manipulate large datasets, was selected for this project. A full version of Unscrambler was 

purchased for a 1-year license (July 2015 - July 2016); a 1-year extension of the license was later 

purchased as well (March 2017 – March 2018). The primary strengths of Unscrambler include 

ease of user interaction, rapid processing time, and superior graphical output. Data were 

imported directly from MSExcel files into Unscrambler, where they could be subjected to a 

selection of frequently used preprocessing and statistical modeling methods (see following 

sections, this Chapter). Unscrambler is not a coding-based platform; however, selected 

procedures were customizable (e.g. sample and variable selection, sample exclusion with 

reanalysis, definition and analysis of subcategories within the dataset). 

 

 Exploratory Data Analyses 

3.4.5.2.1 Spectral Selection 

 Raw spectra were plotted by surface in Unscrambler for visualization. Line plots of 

spectra were checked for specific samples that exhibited abnormal spectral morphology 
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relative to other samples. Although spectra with atypical shape may represent unique 

signatures of interest, they could signify poor spectral acquisition as well (i.e. bad samples). 

Such spectra would decrease the robusticity of any models for which they are randomly 

selected as training samples; likewise, if used as test samples, improper classification would 

artificially lower the model accuracy. Relevant information for samples with abnormal 

morphology, including original discovery context and condition of the remains when spectrally 

sampled, was reviewed to ascertain inclusion or exclusion from further analyses. 

 

3.4.5.2.2 Data Pretreatment and Band Selection 

The line plots were examined for bandwidths that exhibited changes in amplitude (i.e. 

peaks and valleys). Such features represent overtone and combination molecular vibrations of 

relevant functional groups; please see the chart of NIR absorption bands presented in Appendix 

C. Bands that were characterized by both shape change and separation between sample 

spectra were further investigated with PCA to determine if these regions were useful for 

discrimination. 

Scattering-effect plots, a visualization tool available with Unscrambler, were generated 

as well. Scattering occurs when the reflection of light is non-specular, that is, the angle of 

reflectance is different from the angle of incidence (Jenson 2005). NIR spectra are often 

affected by additive and multiplicative scattering (Naes et al. 2002). The scattering effects plots 

produced in Unscrambler allow the user to examine spectra for evidence of additive effects, 

which are the result of variations of path lengths of light into different samples, and/or 

multiplicative scattering, which is generated from surface variability, including differences in 
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particle or grain size and texture. Spectra collected from solid samples, such as bone cortex, are 

prone to error resulting from light scattering off of sample particles. When the primary study 

goal involves studying chemical composition and not physical attributes, such artifacts must be 

removed (Naes et al. 2002, Rinnan et al 2009). Unscrambler scatter effects plots are generated 

by plotting each spectrum against the mean absorbance value at each wavelength; observed 

slope differences are indicative of multiplicative scattering, while baseline offset differences 

between spectra signify additive scattering (Brooke 2015). The data presented in these plots 

can assist the analyst in selecting appropriate pre-processing techniques that may remove most 

or all of the scattering (Brooke 2015). An examination of scattering-effect plots generated from 

some of the study samples revealed evidence of both additive and multiplicative scattering. 

Standard Normal Variate (SNV) and Savitzky-Golay derivation were thus explored as 

pretreatment methods (Rinnan et al 2009). 

SNV is a commonly used preprocessing technique that can decrease scattering effects 

(Rinnan et al 2009, Brooke 2015). Considering a group of objects under study with associated 

spectra, an average spectral value (i.e. mean absorption) and standard deviation are calculated 

for that object. SNV corrected spectra are then calculated by subtracting the mean spectral 

value at each wavelength and then dividing by the standard deviation. This process is repeated 

for each object. Thus, the resulting dataset has been corrected for scattering and normalized as 

well (Rinnan et al 2009, Brooke 2015). 

Derivations are transformation techniques that can correct for baseline as well as 

additive and multiplicative scattering (Rinnan et al 2009). Additionally, these techniques may be 

helpful in revealing hidden peaks that are in the areas of overlap on raw spectra (Brooke 2015). 



40 

Savitzky-Golay (SG) derivatives are commonly applied to spectral data (Rinnan et al 2009, 

Brooke 2015). The SG process involves defining a symmetric smoothing window of points on 

either side of a central point. A derivative is calculated for the central point by applying a 

polynomial function determined by least squares fitting to the smoothing points. This process is 

repeated for all points of the spectrum, resulting in a smoothed, derivatized spectrum; 

dependent upon the size of the window, an equal number of points are lost at the ends of the 

spectrum (Rinnan et al 2009). For this project, 1st and 2nd SG derivatives (SG1 and SG2) were 

applied to raw data. Output SG1 spectra were calculated using a 2nd order polynomial with 25 

bilateral smoothing points (51 points total); SG2 spectra were derived with a 25 point 

symmetric window and a 3rd order polynomial (Rinnan et al 2009, Brooke 2015). 

 

3.4.5.2.3 Principal Components Analysis 

 Principal components analysis (PCA) is an unsupervised technique that is often a first-

step analysis used to identify patterns within datasets (Wold et al. 1987). In general, PCA 

reduces large, complex systems comprised of many X-variables that are highly correlated into a 

limited number of uncorrelated principal components (PCs) that can best explain the greatest 

amount of variation within the data while limiting noise. Thus, this technique can be used to 

both reduce the data dimensionality and potentially reveal underlying patterns in the data. This 

is especially useful in large, multivariate scenarios because 1) it is difficult to identify patterns 

when looking at large data tables filled with numbers, and 2) it is not possible to plot more than 

three variables at a time. 
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For a series of objects (i.e. cortical samples) that each have multiple associated X-

variables (i.e. absorption values), PCA identifies the variables or groups of variables that 

account for the greatest amount of variation within the dataset: these are then used to 

compute a new directional vector (eigenvector) which defines PC1. The second PC (PC2) will be 

defined by the eigenvector that describes the second greatest amount of variation in a 

direction that is orthogonal to PC1 in the newly defined component space. These resulting PCs 

are then used to define the axes for a plot within component space as visualized on a PC scores 

plot; for example, see Figure 5 and Figure 6. Additional PCs can be calculated (i.e. PC3 through 

PCn-1, where n= the total number of variables per object); however, the goal is to identify the 

fewest number of components that can still adequately describe a defined minimum amount of 

the total variation in the dataset. The number of PCs selected will be determined by 

examination of Scree plots produced in Unscrambler (D’Agostino and Russell 2005). 

 Following initial examination of the sample spectra, PCA was applied to all spectra in 

order to examine potential group patterns and identify which portions of the spectrum 

provided the best discrimination based on PMI. For exploratory purposes, the technique was 

applied to all samples for the following spectral bandwidths: complete spectra (350-2500nm); 

near-complete spectra (460-2360nm); visible bands (400-700nm); NIR bands (800-2500nm); 

and, specific bands of interest. All PCAs were performed on mean-centered, non-weighted 

spectral data. The NIPALS algorithm, a technique which calculates PCs iteratively from largest to 

smallest, was selected with a defined maximum of 100 iterations. No rotations were applied. To 

save on processing time, the number of components calculated was limited to 7; it should be 

noted that in most cases, the first two PCs often described 95% or more of the total variation. 
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All PCAs were validated using random cross-validation and a segment count of 20, with the 

total number of samples being used per segment equal to the number of samples divided by 20 

(Brooke 2015). 

 

 Modeling 

3.4.5.3.1 Sample Stratification 

Prior to modeling, samples were assigned to either training sets that were used to build 

the models, or test sets which were used for external validation. This process was performed in 

MS Excel. A new column (RANDOM) was added to the spreadsheets. Each empty cell was then 

populated with a random number using the MS Excel RAND function and the data table was 

then sorted on RANDOM and PMI Class. A portion of the sorted samples from each PMI class 

were selected to build the training sets, while the remainders were used for the test groups. 

 

3.4.5.3.2 Training Set Exploration and Pretreatment 

Each training set was examined using line plots, scatter effect plots, and PCA in order to 

determine whether the data showed patterns similar to those observed on the full dataset. Pre-

treatments (SNV and SG) were applied to the raw training data and the resultant transformed 

data were plotted and examined as well. Note that the test sets were not pretreated. 

 

3.4.5.3.3 Model Construction and External Validation 

Models were constructed on raw data as well as pretreated data. Note that only training 

set samples were used for model construction. Model accuracy was calculated using test sets 
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with known class assignments (external validation). Selected classification models included the 

following: Soft Independent Modeling of Class Analogy (SIMCA); Linear Discriminant Analyses 

on Principal Components (LDA-PCA); Support Vector Machine Classification on Principal 

Components (SVM-PCA); and, Projection of Latent Squares Discriminant Analysis (PLSDA). 

 

3.3.5.3.3.1 Soft Independent Modeling of Class Analogy 

Soft Independent Modeling of Class Analogy (SIMCA) operates essentially as a nested 

set of PCAs. Using training samples, local PCA models are constructed for each class in order to 

best describe the variation within a given class. These disjointed class PCAs are then combined 

to build a global PCA (the SIMCA classifier) which can then be used to assign unknown samples 

to the most appropriate class, based on which local PCA best describes the sample (Wold 1975). 

Assuming a two-class global PCA, SIMCA will place the unknown test samples in to one of the 

two possible classes or potentially into both classes (Maesschalck et al. 1999). In the latter case, 

the sample shares features with both possible classes and thus cannot be properly assigned. 

Another possibility is that a sample is assigned to no class, which often suggests that it either 

belongs to another undefined class or it is an outlier (Maesschalck et al. 1999). 

Selected PCA settings for SIMCA were the same as those described in Section 3.3.5.2.3. 

Samples in the training set were selected by class to create Local PCA models based on selected 

bands, using raw or pretreated data. The SIMCA classifier was then constructed from the local 

PCA models (one Global PCA) and applied to the test set. All test set data were mean-centered, 

and, if necessary, pretreatments were applied. The output classification table was then 

imported into MS Excel where classification accuracy was calculated. 
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3.3.5.3.3.2   Linear Discriminant Analysis on Principal Components 

Linear Discriminant Analysis (LDA) is another technique that can be used to classify two 

or more descriptive classes. For each group comprising a number of samples that have multiple 

measurable variables, LDA maximizes the separation between group multivariate means while 

minimizing the variation, or spread, within each group (Fisher 1936). To work properly, it is 

assumed that the number of variables is less than the number of samples, and that the 

variables are not correlated with each other. Unfortunately, spectral datasets are often 

extremely large and the data are highly intercorrelated. Working with a genetic dataset 

comprised of a large number of correlated variables, Jombart and colleagues (2010) showed 

that such data could be reduced to a limited number of PCs, which satisfies the first condition; 

additionally, PCs by definition are uncorrelated. This same concept can be applied to spectral 

data. 

Unscrambler allows for a direct option for Linear Discriminant Analysis on Principal 

Components (LDA-PCA). Prior to model construction, the training set was analyzed with PCA 

(see section 5.3.5.2.3 for settings). The output was examined in order to identify the total 

number of PCs required to describe a minimum of 95% of the total variation in the dataset. 

Subsequently, LDA-PCA models were constructed. Descriptors consisted of training samples and 

relevant non-weighted raw or pretreated bands; classification settings were based on PMI 

Class. The band data were then used to calculate PCA scores. The number of PCs used for 

model construction was limited to the minimum number required to reach the 95% of variation 

threshold. 
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 Developed LDA-PCA models were subsequently used to classify the test sets. After 

selecting the appropriate model, pretreatments were applied to the raw test data, if necessary, 

and the band(s) of interest were selected. Output figures were saved, and the classification 

table was then used to calculate classification accuracy in MS Excel. 

 

3.3.5.3.3.3 Support Vector Machines on Principal Components 

Given a dataset with known class values (e.g. PMI Classes), a Support Vector Machines 

(SVM) algorithm constructs a classifier based on machine learning which maximizes the 

distance between two or more groups. These SVM Classifiers can subsequently be used to 

classify unknown samples, assuming that such samples 1) arise from the same population as 

the training samples and 2) sample preparations are the same. The groups of interest are 

separated by the hyperplane with maximum-margins, that is, the plane that is the greatest 

distance from the closest samples in opposing groups (support vectors), providing a boundary 

which minimizes the number of misclassified samples (Kecman 2005). 

SVM can be used on individual variables or groups of variables. In cases where the 

variable set is extremely large, it has been shown that data can be reduced with PCA, and SVM 

can be used on the resultant PCs as well (Dong and Liu 2011). Because of the large number of 

available variables in this study, SVM classification models were constructed with PCs (reduced 

data). Unlike the direct options offered with LDA, Unscrambler does not provide an automatic 

option to use PCs in an SVM Classifier Model. To compensate for this, PCA was run on 

combined training and tests sets, both raw and pretreated, using the previously described 

settings (section 5.3.5.2.3). The number of PCs required to describe a minimum of 95% of the 
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total variation was recorded; all PCA scores were then copied into the data matrix. SVM 

Classification models were constructed using training set samples and selected PC scores as 

predictors, with PMI Class variables selected as the classifiers. The SVM classification algorithm 

available in Unscrambler was originally reported by Chang and Lin (2011). PC data were left 

non-weighted. Models were constructed using a radial base function kernel type and were 

cross-validated using 10 equal segments. Default settings were used for Gamma (0) and C (1). 

The SVM-PCA models were then applied to the test sets. For a given model, the 

appropriate number of PCs was selected. Following classification, figures and tables were 

saved, and model classification accuracies were calculated in MS Excel. 

 

3.3.5.3.3.4 Partial Least Squares Discriminant Analysis 

Partial Least Squares Discriminant Analysis (PLSDA) is an application based on PLS-

Regression (PLSR). This process is similar to PCA in that the dimensionality of many X-variables 

is reduced to a limited number of latent variables (LV, similar to PC). However, the LVs are 

regressed on the Y-variables in order to explain the maximum amount of variation in those Y-

variables (Wold et al. 2001). PLSR cannot be applied to the current dataset because the Y-

variables, descriptive PMI classes, are categorical (i.e. PMI classes). In PLS-DA, the Y-variables 

are replaced with categories (“dummy variables”), and the reduced X-variables (LVs) are used 

to drive greater separation between the Y-classes (Brereton and Lloyd 2014). 

 Prior to building PLSDA models, the PMI Class column, a categorical variable with at 

least two possible discrete values, was split in order to create the new Y-variables (DUMMY). 

PLSDA models were then constructed in two ways. The first group of models used Unscrambler 
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default settings. Training set samples and select bands were used as predictors, and the 

DUMMY columns were selected as response variables. Models were built using the Kernal PLS 

algorithm on mean-centered and non-weighted data, with a total of 7 latent variables 

calculated. All models were internally validated by random cross-validation using 20 segments, 

with the number of samples per segment equal to the total number of samples divided by 20. 

 The classes under study have unequal samples sizes, which may potentially decrease the 

robusticity of the model. Brereton and Lloyd (2014) reported that when one class is larger than 

another, the resultant PLS models tend to underperform when predicting class identity for 

members of the larger group. To account for this, the authors recommend a correction for 

unequal samples sizes. This is performed by 1) calculating an average absorption value for each 

group (PMI Class), 2) calculating the overall mean of the groups, 3) subtracting that overall 

mean from each original value, 4) and, build PLSDA models using the corrected data with no 

mean-centering. This correction was applied to the full dataset. Corrected training set data 

were then used to construct additional PLSDA models with no mean-centering. Note that all 

other settings remained the same as described above. 

 Prediction of test set data was performed for each generated PLSDA model. The number 

of LVs selected was based on the number recommended by Unscrambler. Appropriate band(s) 

of interest were selected to represent the X-matrix of variables, and the DUMMY columns were 

chosen for the Y-variables. When necessary, pretreatments were applied to the corrected test 

data. Relevant figures produced by Unscrambler were saved, and the output prediction tables 

were imported into MS Excel. For a given sample, predicted DUMMY values were continuous 

and ranged from 0 to 1. All samples with predicted values less than 0.5 were assigned to class 0, 
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while those above were named as class 1; in the event Y = 0.5, a sample was deemed to be not 

classified (Brooke 2015). Using these decision rules, accuracy was calculated for all PLSDA 

classifications. 
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CHAPTER 4 

RESULTS 

4.1 Introduction 

 This chapter presents the results of the analyses described previously. The chapter is 

broken down into five primary sections. The first two sections include a rationale for the 

specific data sets selected for model building (e.g. longitudinally-cut cortices and superficially 

treated cortical surfaces) and documentation of excluded samples. The third section describes 

the steps taken in data preparation, including spectral band selections, transformations, and 

sample stratification. The fourth section presents a series of models constructed on raw 

spectral training sample data (1400-2200nm), and the associated external model validation 

results for the test sets. The final section reports on tests for potential protein oxidation that 

were conducted after the broader research was completed. 

 

4.2 Data Set Selection 

 Averaged spectra were collected from the following surfaces: the untreated superficial 

cortical surface (n=336); the superficial cortical surface treated lightly with a grinding wheel 

(n=223); the longitudinally cut cortical surface (n=333); and, the transversely cut cortical 

surface (n=281). Line plots presented for the two superficial series are described below (Figure 

11 and Figure 12). To allow for a direct comparison, spectra presented in these plots were 

collected from samples for which both surfaces could be examined (n=220). Note that the 

separation between the “forensic” and “non-forensic” spectra is poor for the untreated set 

(Figure 11a), while better separation is observed with the treated surface spectra (Figure 12a). 
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A subsequent PCA of these two series demonstrated class overlap for the untreated materials 

and partial separation into two clusters for the treated sample spectra; PCA scores plots are 

presented in Figure 11b and Figure 12b. 

 
Figure 11. Line and score plots, superficial bone surfaces. a) Raw spectra (1100-2300nm) collected from the 
untreated superficial bone surface, n=220. The associated PCA scores plot (1400-2200nm) is presented in (b). Note 
the poor separation between the forensic and non-forensic samples. 
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Figure 12. Line and score plots, superficial bone surfaces. a) Raw spectra (1100-2300nm) collected from the treated 
superficial bone surface, n=220. The associated PCA scores plot (1400-2200nm) is presented in (b). Note that 
separation between the forensic and non-forensic samples is more pronounced that what is observed on the 
untreated superficial surface. 
 
 

Comparisons between spectra for transversely and longitudinally cut cortical surfaces 

were made as well (common samples n=159). Line plots for both sets of spectra demonstrate 

similar separation patterns between forensic and non-forensic spectra (Figure 13a and Figure 

14a). Likewise, PCA scores plots reveal similar clustering patterns between the two classes 

(Figure 13b and Figure 14b). 
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Spectra collected from the longitudinally-cut surface and from the treated superficial 

surface were selected for future analyses, included model building. Spectra collected from the 

untreated superficial surface (i.e. no grinding) produced poor separation between forensic and 

non-forensic classes in both line and PCA score plots and were thus excluded. Conversely, the 

transverse and longitudinal cut cortical surfaces yielded spectral data that can be separated 

into classes, although the information is ultimately redundant because the same level of 

separation is observed. Because there are a greater number of spectra collected from the 

longitudinal cut surface, the transverse set was not included in further analyses. 
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Figure 13. Line and score plots, sectioned bone surfaces. a) Raw spectra (1100-2300nm) collected from the 
longitudinally cut cortical surface, n=159. The associated PCA score plot (1400-2200nm) is presented in (b). Good 
separation is achieved between the forensic and non-forensic samples. 
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Figure 14. Line and score plots, sectioned bone surfaces. a) Raw spectra (1100-2300nm) collected from the 
transversely cut cortical surface, n=159. The associated PCA scores plot (1400-2200nm) is presented in (b). Good 
separation is achieved between the forensic and non-forensic samples. 
4.3 Sample Exclusions 

 A total of 11 samples were excluded from the final study sets. Four of these samples 

came from remains that showed evidence of perimortem thermal damage. This included 

sample 35, an LFA femoral sample extracted from remains recovered from a structure fire, as 

well as samples 236, 239, and 243. The latter three specimens were scanned at the MMA, and 
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the line plots of these three spectra appeared within the band comprised primarily of historic 

and archeological materials even though these cases were of forensic origin (Figure 15). 

Although the spectra were collected from cortical regions that presented no gross evidence of 

thermal damage, it is likely that the heat disrupted the collagen even in remote areas of bone 

with no apparent scorching or visible heat-related damage; recall the cremains spectrum 

presented in Figure 4 (see Chapter 3), which can be thought of as an extreme example of this 

phenomenon. While sample 35 fell within the group of forensic spectra, spectra collected from 

all burned samples were excluded from further analysis for consistency. 

Five additional forensic samples, including MMA specimens 241, 244, 265, and 268, as 

well as CHI archived sample 203, also produced spectra which grouped with the historic and 

archaeological materials (Figure 15). It was noted when the spectra were collected that each of 

these specimens was coated in a thin layer of adipocere, which likely resulted from incomplete 

drying following maceration. These five samples originated from the MMA and LMI and thus 

could not be cleaned prior to spectral collection. Because these spectra grouped 

inappropriately with the older, non-forensic material, and the commonality of adherent 

adipocere was observed, these samples were also excluded. 

Sample 30 was a fragment of occipital bone originating from archaeological remains 

housed at LFA. Although the spectral shape was consistent with spectra collected from other 

archaeological materials, the sample was excluded because it did not originate from a long 

bone. Lastly, sample 308, a LMI specimen, was excluded because the associated case data were 

not recorded at the time of spectral collection. 
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Figure 15. Raw absorbance spectra collected from the longitudinally-cut surface, 1400-2200nm band selected, 
included and excluded samples. Line plots present a) spectra selected for model building (n=314) and excluded 
samples (n=9); b) spectra for the 9 excluded samples. 
4.4 Data Preparation 

 A closer examination of the line plots for both the superficial treated surface and the 

longitudinal cut surface revealed that the terminal ends of the spectra were noisy relative to 

the remaining central bands. Noisy bands are highlighted in Figure 16a below. These regions 

were cropped prior to further analysis, resulting in abridged spectra of 460-2360nm (Figure 
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16b). Note that separation between forensic and non-forensic spectral classes is relatively poor 

between 460-1200nm, while clearer separation is observed between 1400-2200nm. 

 
Figure 16. Line plots collected from the longitudinally cut cortical surface, n=314. a) The lower and upper ends 
(dashed boxes) of the raw absorbance spectra (350-2500nm) are noisy. b) Noisy areas have been cropped, 
resultant spectrum is 460-2360nm. 
 

 Data Transformations 

 Scatter effects plots generated in Unscrambler revealed evidence of both additive and 

multiplicative scattering in the spectral datasets; these plots are presented in Appendix D. The 

following pretreatments were applied (Rinnan et al. 2009, Brooke 2005): 
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• Standard Normal Variate (SNV) 

• Savitzky-Golay 1st derivative (SG1): 25 bilateral smoothing points with a 2nd order 
polynomial 

• Savitzky-Golay 2nd derivative (SG1): 25 bilateral smoothing points with a 3rd order 
polynomial 

No tandem transformations (i.e. SNV followed by SG1) were performed as previous attempts 

yielded transformed spectra which separated poorly with PCA. 

 Following transformation, raw and transformed line plots were examined in order to 

identify areas in which best separation between forensic and non-forensic classes occurred. 

Raw data demonstrated best-separation from 1400-2200nm; SNV-transformed data also 

showed good differentiation between these classes for 1400-2200nm, especially within a 

subset band of 1425-1750nm. Line plots for SG1- and SG2-transformed data showed class 

separation in the 1400-2200nm band as well. In addition, the following SG subsets were 

identified: 

• SG1 specific bands: 1120-1185nm and 1530-1720nm 

• SG2 specific bands: 1235-1330nm and 1535-1585nm 

Examples of raw and transformed spectral data are presented in Figure 17. 
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Figure 17. Line plots of raw and transformed spectral data collected from the longitudinally cut cortical surface, 
n=314. Presented plots include 460-2360nm (a) raw and (b) SNV-transformed absorbance spectra, as well as 1100-
2300nm Savitzky-Golay (c) first and (d) second derivative absorbance spectra.
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 Variable Definitions 

 Prior to model building, spectral variable row sets (i.e. bands) and PMI class 

designations were defined. Spectral bands included the following: 460-2360nm; 1400-2200nm; 

1425-1750nm; SG1 specific bands; and, SG2 specific bands. PMI class designations were as 

follows: 

• PMI 2-class groupings: Forensic (class 0) and Non-forensic (class 1) 

• PMI 3-class groupings: Forensic 1 (class 0), Forensic 2 (class 1), and Non-forensic 

(class 2) 

 “Forensic” samples in the 2-class column represent cases with a known or estimated PMI 

ranging from “days” to 71 years. “Non-forensic” samples are those estimated to be of historic 

or archeological origin, as well as the dated material examined at the MMA with a PMI 500 and 

900 years, respectively. Specimens with values assigned in the 3-class column were those with 

known PMI only, with “Forensic 1” representing PMI of “days” to 4.9 years, “Forensic 2” 

comprising 5 to 71 years, and “Non-forensic” including the dated MMA specimens. Note that 

the “Forensic 2” class is broadly defined (5 – 71 years) owing to the limited of documented 

older forensic cases. 

 

 Sample Stratification 

 After spectral bands of interest and PMI class variables were defined, the longitudinal 

cut surface raw data set (Set A) and the treated superficial cortex raw set (Set B) were each split 

into training and test sets. For Set A, 70% of the samples were randomly assigned to the model 
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training sets, while the remaining 30% comprised the test sets. Resultant samples sizes used to 

train and test each group of Set A models are presented below: 

• 2-class model (Forensic, Non-forensic): 2Cl_FN 
• Train: Forensic = 175, Non-forensic = 45 
• Test: Forensic = 75, Non-forensic = 19 
 

• 3-class model (Forensic 1, Forensic 2, Non-forensic): 3Cl_F1F2N 
• Train: Forensic 1 = 29, Forensic 2 = 11, Non-forensic =4 
• Test: Forensic 1 = 20, Forensic 2 = 8, Non-forensic =3 

 
• 2-class Forensic, Non-forensic samples excluded (Forensic 1, Forensic 2): 2Cl_F1F2 

• Train: Forensic 1 = 29, Forensic 2 = 11 
• Test: Forensic 1 = 20, Forensic 2 = 8 

 
Stratification of Set B was carried out in similar fashion; however, because the overall sample 

size was lower, it was decided that the training set would comprise 60% of the samples and the 

test set the remaining 40%. Sample sizes for Set B training and test sets are as follows: 

• 2Cl_FN 
• Train: Forensic = 132, Non-forensic = 25 
• Test: Forensic = 56, Non-forensic = 10 

 
• 3Cl_F1F2N 

• Train: Forensic 1 = 16, Forensic 2 = 5, Non-forensic =4 
• Test: Forensic 1 = 10, Forensic 2 = 3, Non-forensic =3 

 
• 2Cl_F1F2 

• Train: Forensic 1 = 16, Forensic 2 = 5 
• Test: Forensic 1 = 10, Forensic 2 = 3 
 

See Tables E.1 – E.6 in Appendix E for a list of sample numbers assigned by class for all training 

and test sets. Note that the sample sizes in the 3Cl_F1F2N and 2Cl_F1F2 models are low, 

especially with the Set B models. This is due to the fact that only cases with known PMI were 

included for these models. Although far from optimal, these models were constructed in order 

to determine if it is possible to discriminate within the forensic time frame. Following 
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stratification, selected pretreatments (SNV, SG1, and SG2) were applied to the raw training sets 

only. 

 

4.5 Model Building and Validation 

 Training sets were used to construct the selected classification algorithms (SIMCA, LDA-

PCA, SVM-PCA, and PLSDA). Alternate models were built using both raw and transformed data 

with the following spectral bands: 

• Raw data models: 460-2360nm; 1400-2200nm 

• SNV-transformed data models: 460-2360nm; 1400-2200nm; and, 1425-1750nm 

• SG1-transformed data models: 1400-2200nm; 1120-1185 and 1530-1720nm 

• SG2-transformed data models: 1400-2200nm; 1235-1330 and 1535-1585nm. 

For brevity, the results reported in this section will be limited to the “raw 1400-2200nm” 

models constructed for Sets A and B (see Tables 1 – 3, below). The remainder are reported in 

Appendix F. Note that the cross-validated model accuracies and external validation rates for 

transformed data models were generally similar to or poorer than those seen with many of the 

raw data models presented below, although there are some better performing exceptions. 

Further discussion about the transformed models will be presented in the following chapter. 

 

 Two-Class Models (Classes: Forensic, Non-forensic) 

 SIMCA 

 The global SIMCA 2CL_FN classifier was built from two local PCA models describing Set A 

training set Forensic (Class 0, PMI = “days” to 71 years) and Non-forensic (Class 1, “historic and 
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archaeological” origins) samples; both local models required two components to describe a 

minimum of 95% of the group variation. Overall accuracy for this model as calculated from the 

test set classification was 67.0%; 64.0% of Class 0 samples were properly classified, while Class 

1 accuracy was 79%. For the remaining samples, 28.7% were identified as belonging to both 

classes, and 3.2% remained unclassified. The results of this model are presented in a Coomans 

plot (Figure 18a), which plots orthogonal distances between a pair of disjointed PCA models. 

Properly classified test samples fall within the correct model boundaries, while those samples 

classified to both groups fall within the area of overlap (lower left quadrant); non-classified 

samples and outliers are assigned to the upper right quadrant of the plot. 

 The corresponding Set B SIMCA classifier was built from two component local PCA 

models for Group 0 and Group 1 as well. Model accuracy as calculated from test set 

classification was much lower (33.3%); 33.9% of Class 0 samples were properly classified, while 

30.0% of Class 1 was correctly assigned. The remaining test samples were classified as 

belonging to both (54.6%) or neither class (6.1%). The output of this model is presented in 

(Figure 18b). 

 

 LDA-PCA 

 The Set A 2Cl_FN LDA-PCA model was constructed with two components. Cross-

validated model accuracy was 95.6% (Figure 19a). Overall classification accuracy for the test set 

was 94.6%, with 96.0% of the Class 0 samples being properly classified. Class 1 accuracy was 

slightly lower at 82.2%. 
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Two components were used to build the Set B model as well, with a reported model 

accuracy of 94.3% (Figure 19b). The test set was correctly classified at a rate of 89.4%, with 

98.2% of Class 0 samples being accurately classified. Class 1 accuracy was in contrast much 

lower than that observed in the Set A model (40%). 

 

 SVM-PCA 

 Two components were used to construct the 2Cl_FN SVM-PCA model for Set A. Model 

accuracy was reported at 95.9% (Figure 20a). External validation shows that the model properly 

classified 95.7% of the test set samples, including 98.7% accuracy for Class 0. Similar to the LDA-

PCA model, Class 1 accuracy was somewhat lower (84.2%). 

The Set B model was also built from two components; reported cross-validated accuracy 

was 94.3% (see Figure 20b). The model correctly classified all Class 0 test samples, but only 20% 

for Class 1. Overall accuracy for the test set was 87.9%. 

 

 PLSDA 

 PLSDA models were constructed on mean-centered spectral data (PLSDA-MC) as well as 

non-centered data that was corrected for unequal sample sizes (PLSDA-CO). Results for both 

attempted model types follow: note that because PLSDA is a modified regression technique, 

root mean square error of cross-validation (RMSECV) and R2 are reported. Note that a relatively 

low RMSECV is desirable because it indicates a good fit of the training data to the model (i.e. 

lower residuals); higher R2 values approaching 1.0 indicate a more accurate prediction (Naes et 

al. 2002). 



66 

 The 2Cl_FN PLSDA-MC Set A model (4 factors) had a reported RMSECV of 0.2208 and an 

R2 value of 0.7013 (Figure 21). This model properly predicted 94.7% of all test samples, with 

98.7% accuracy for Class 0 and a relatively low prediction rate of 78.9% for Class 1. The PLSDA-

CO model (4 factors) yielded a RMSECV of 0.2364 and an R2 value of 0.9303 (Figure 22). 

Prediction accuracy for the test set was the same for this model (94.7%). Class 0 assignment 

was predicted accurately at 100.0% while Class 1 was prediction rate was also low (78.9%). 

 The 2Cl_FN Set B PLSDA-MC model required 5 factors; reported RMSECV and R2 values 

are 0.2041 and 0.6888, respectively. Test set sample assignments were properly predicted at 

90.9% accuracy. While 98.2% of Class 0 samples were correctly classified, Class 1 sample 

assignment was again low (50.0%). RMSECV and R2 values reported for the alternate Set B 

PLSDA-CO model (4 factors) were 0.2252 and 0.6815. Overall, 90.8% of the test samples were 

properly classified; however, Class 1 prediction rates were again low (40.0%) relative to the 

higher accuracy observed for Class 0 (98.2%). See Figure 23 and Figure 24 for these two models. 

Table 1. Model and test set classification accuracies for select two-class models (1400-2200nm). 
Class 0 represents forensic samples with known or estimated PMI of less than 71 years; Class 1 
represents non-forensic specimens (historic and archaeological origins). Numbers in “( )” 
represent the number of components or factors used in a given model. Cells in white represent 
cross-validated model accuracies as a percentage (LDA-PCA and SVM-PCA) or as RMSECV and R2 
for PLSDA. Areas in grey represent accuracies (%) from model application to the test set.  

Model LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 

2-class 95.9 (2) 95.9 (2) RMSE = 0.2208 (4) RMSE = 0.2360 (4) Overall = 67.0 
(Set A)          R2 = 0.7013      R2 = 0.9303 Class 0 = 64.0 
  Overall = 94.6 Overall = 95.7 Overall = 94.7 Overall = 94.7 Class 1 = 79.0 
  Class 0 = 96.0 Class 0 = 98.7 Class 0 = 98.7 Class 0 = 100 Both = 28.7 
  Class 1 = 82.2 Class 1 = 84.2 Class 1 = 78.9 Class 1 = 78.9 Neither = 3.2 
2-class 94.3 (2) 94.3(2) RMSE = 0.2041 (5) RMSE = 0.2252 (4) Overall = 33.3 
(Set B)          R2 = 0.6888      R2 = 0.6815 Class 0 = 33.9 
  Overall = 89.4 Overall = 87.9 Overall = 90.9 Overall = 90.8 Class 1 = 30.0 
  Class 0 = 98.2 Class 0 = 100.0 Class 0 = 98.2 Class 0 = 98.2 Both = 54.6 
  Class 1 = 40 Class 1 = 20.0 Class 1 = 50.0 Class 1 = 40.0 Neither = 6.1 
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Figure 18. Coomans plots for two-class SIMCA models, raw 1400-2200nm. Models with classified samples (green) 
for Set A (a), n=220, and Set B (b), n=157, are presented. Classes include “Forensic” (Group 0: known or estimated 
PMI ≤ 71 years) and “Non-forensic” (Group 1: historical or archaeological). 
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Figure 19. Two-class LDA-PCA models, raw 1400-2200nm. The Set A model (a) training set is n=220; Set B (b) is 
n=157 samples. Classes include “Forensic” (Group 0: known or estimated PMI ≤ 71 years) and “Non-forensic” 
(Group 1: historical or archaeological). 
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Figure 20. Two-class SVM-PCA models, raw 1400-2200nm. The Set A model (a) training set is n=220; Set B (b) is 
n=157 samples. Classes include “Forensic” (Group 0: known or estimated PMI ≤ 71 years) and “Non-forensic” 
(Group 1: historical or archaeological).
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Figure 21. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
model is built with mean-centered Set A training set sample spectra, n=220. Classes include “Forensic” (Group 0: 
known or estimated PMI ≤ 71 years) and “Non-forensic” (Group 1: historical or archaeological). 
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Figure 22. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
alternate model is built with Set A spectral data corrected for sample size differences, n=220. Classes include 
“Forensic” (Group 0: known or estimated PMI ≤ 71 years) and “Non-forensic” (Group 1: historical or 
archaeological). 
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Figure 23. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
model is built with mean-centered Set B training set sample spectra, n=157. Classes include “Forensic” (Group 0: 
known or estimated PMI ≤ 71 years) and “Non-forensic” (Group 1: historical or archaeological). 
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Figure 24. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
alternate model is built with Set B spectral data corrected for sample size differences, n=157. Classes include 
“Forensic” (Group 0: known or estimated PMI ≤ 71 years) and “Non-forensic” (Group 1: historical or 
archaeological). 
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 Three-Class Models (Classes: Forensic 1, Forensic 2, Non-forensic) 

 SIMCA 

 Three-class models were designed to see if bone cortex could be discriminated into one 

of three classes when PMI is known; classes included “Forensic 1” (Class 0: PMI = days-4.9 

years), “Forensic 2” (Class 1: 5-71 years), and “Non-forensic” (Class 2: 500 or 900 years). Local 

PCAs used to build the Set A SIMCA model included a two component local PCA for Class 0 and 

one component PCAs for both Class 1 and Class 2. 48.4% of the test samples were correctly 

classified, including 65.0% of Class 0 samples and 67.0% of Class 2. However, no Class 1 samples 

were properly classified. 25.8% of samples were assigned to two classes, while 16.1% remained 

unassigned. 

 Results were similar for the Set B model. Components used for each class are as follows: 

Class 0 (2 PCs), Class 1 (2 PCs), and Class 2 (1 PC). 60.0% of the Class 0 and 33.3% of Class 2 test 

samples were correctly classified, while no Class 1 samples were properly assigned. Overall 

model accuracy was 43.8%, with 18.8% of samples being assigned to two or three classes and 

an equal amount remaining unassigned. Coomans plots for both three-class SIMCA models are 

presented in Figure 25 and Figure 26 below. 

  

 LDA-PCA 

 Two components were used for the Set A LDA-PCA 3Cl_F1F2N model. Cross-validated 

model accuracy is 88.6% (see Figure 27a). The model accurately classified 80.6% of the test set, 

including 80.0% of Class 0, 75.0% of Class 1, and all of the Class 2 samples. Reported accuracy 

for the Set B model (two components) is 88.0%; this model is presented in Figure 27b. Test set 
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classification accuracy for each class is identical to the Set A model (80.0, 75.0, and 100.0%, 

respectively). Overall test set classification accuracy using this model was 80.7%. 

 

 SVM-PCA 

 Two components were used for the three-class SVM-PCA model (Figure 28a). Internal 

cross-validated model accuracy (86.4%) was much higher than the actual model performance 

on the test set (71.0% accuracy). Although high classification accuracy was achieved by this 

model on samples belonging to Classes 0 (85.0%) and 2 (100.0), Class 1 accuracy was poor 

(25.0%). 

Similarly, the two component Set B model validation is reported at 92.0% (Figure 28b). 

However, overall test set classification accuracy was much lower (68.8%). While 90.0% of Class 

0 samples were properly identified, the model performed poorly at classifying samples in 

Classes 1 and 2 (33.3% for each). 

 

 PLSDA 

 Two-class PLSDA models perform by classifying samples into an “in” group (i.e. in Class 

0) or an “out” group (i.e. not Class 0, then Class 1); an equivalent and redundant model for 

these two classes would assign a sample based on the rules of “in Class 1” or “not Class 1, then 

Class 0.” When dealing with more than two classes (e.g. Classes 0, 1 and 2), an individual model 

is used for each class, where: 

• Model 1: Sample is in Class 0 or “not” Class 0 (in Class 1 or 2) 

• Model 2: Sample is in Class 1 or “not” Class 1 (in Class 0 or 2) 
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• Model 3: Sample is in Class 2 or “not” Class 2 (in Class 0 or 1) 

Note that these “submodels” will each be constructed from a recommended number of factors, 

and each will have associated RMSE and R2 values as well. 

 The Set A three-class PLSDA-MC model consisted of the following three submodels: 

Class 0 (4 factors, RMSECV = 0.3344, R2 = 0.5022), Class 1 (4 factors, RMSECV = 0.3498, R2 = 

0.6474), and Class 2 (4 factors, RMSECV = 0.1043, R2 = 0.8683). See Figure 29. Overall prediction 

accuracy for the test set was 80.2%. The model performed well for test samples in Classes 0 and 

2 (90.0% and 100.0% respectively); performance on Class 1 samples was much lower (50.0%). 

Relevant PLSDA-CO Set A model (Figure 30) statistics are as follows: 

• Class 0: 3 factors, RMSECV = 0.3845, R2 = 0.4086 

• Class 1: 3 factors, RMSECV = 0.3424, R2 = 0.8221 

• Class 2: 3 factors, RMSECV = 0.1531, R2 = 0.7442 

 
The model performed similarly on test set samples for Class 0 (85.0%) and Class 2 (100.0%); 

Class 1 assignment was poor (12.5%). Overall test set classification accuracy was 67.7%. 

 The Set B 3Cl_F1F2N PLSDA-MC model consisted of three submodels, each comprised of 

four factors with reported RMSECV and R2 for each class as follows: Class 0 (0.3086, 0.5867), 

Class 1 (0.3122, 0.3910), and Class 2 (0.0837, 0.9479). This model is presented in Figure 31. 

93.8% of the test samples were classified by the model, including 90.0% of Class 0 and all of 

Classes 1 and 2. The alternate Set B PLSDA-CO model consisted of three-factor submodels with 

reported RMSECV for Classes 0 through 2 being 0.3696, 0.3358, and 0.1810; associated R2 

values are 0.3171, 0.8238, and 0.7952, respectively (Figure 32). This model performed poorly 

relative to the mean-centered alternate, with only 68.8% of the test samples being accurately 
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classified. While Class 0 accuracy was high (90.0%), no Class 1 samples were identified, and 

Class 2 accuracy was relatively low as well (66.7%). 

Table 2. Model and test set classification accuracies for select three-class models (1400-
2200nm). Classes 0 and 1 represent forensic samples with known PMI (days-4.9 years and 5-71 
years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 900 years). 
Numbers in “( )” represent the number of components or factors used in a given model. Cells in 
white represent cross-validated model accuracies as a percentage (LDA-PCA and SVM-PCA) or 
as RMSECV and R2 for PLSDA. Areas in grey represent accuracies (%) from model application to 
the test set. 

Model LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 

3-class 88.6 (2) 86.4 (2) Class 0: RMSE = 0.3344 Class 0: RMSE = 0.3845 
Overall = 
48.4 

(Set A)          R2 = 0.5022  (4)      R2 = 0.4086  (3) Class 0 = 65.0 
      Class 1: RMSE = 0.3498 Class 1: RMSE = 0.3424 Class 1 = 0.0 
           R2 = 0.3474  (4)      R2 = 0.8221  (3) Class 2 = 66.7 
      Class 2: RMSE = 0.1043 Class 2: RMSE = 0.1531 Both = 25.8 

           R2 = 0.8683  (4)      R2 = 0.7442  (3) 
Neither = 
16.1 

  Overall = 80.6 Overall = 71.0 Overall = 80.2 Overall = 67.7   
  Class 0 = 80.0 Class 0 = 85.0 Class 0 = 90.0 Class 0 = 85.0   
  Class 1 = 75.0 Class 1 = 25.0 Class 1 = 50.0 Class 1 = 12.5   
  Class 2 = 100 Class 2 = 100 Class 2 = 100 Class 2 = 100   

3-class 88.0 (2) 92.0 (2) Class 0: RMSE = 0.3086 Class 0: RMSE = 0.3696  
Overall = 
43.8 

(Set B)          R2 = 0.5867  (4)      R2 = 0.3171  (3) Class 0 = 60.0 
      Class 1: RMSE = 0.3122 Class 1: RMSE = 0.3358  Class 1 = 0.0 
           R2 = 0.3910  (4)      R2 = 0.8238  (3) Class 2 = 33.3 
      Class 2: RMSE = 0.0837 Class 2: RMSE = 0.1810  Both = 18.8 

           R2 = 0.9479  (4)      R2 = 0.7952  (3) 
Neither = 
18.8 

  Overall = 80.7 Overall = 68.8 Overall = 93.8 Overall = 68.8   
  Class 0 = 80.0 Class 0 = 90.0 Class 0 = 90 Class 0 = 90.0   
  Class 1 = 75.0 Class 1 = 33.3 Class 1 = 100 Class 1 = 0.0   
  Class 2 = 100 Class 2 = 33.3 Class 2 = 100 Class 2 = 66.7   
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Figure 25. Coomans plots for three-class SIMCA models, raw 1400-2200nm. Models with classified samples (green) 
for Set A, n=44. Classes include “Forensic 1” (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 
years) and “Non-forensic” (Group 2: PMI 500-900 years). Presented plots show class assignment comparisons for 
groups (a) 0 or 1, (b) 0 or 2, and (c) 1 or 2, respectively. 
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Figure 26. Coomans plots for three-class SIMCA models, raw 1400-2200nm. Models with classified samples (green) 
for Set B, n=25. Classes include “Forensic 1” (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 
years) and “Non-forensic” (Group 2: PMI 500-900 years). Presented plots show class assignment comparisons for 
groups (a) 0 or 1, (b) 0 or 2, and (c) 1 or 2, respectively. 
 

 



82 

 
Figure 27. Three-class LDA-PCA models, raw 1400-2200nm. The Set A model (a) training set is n=44; Set B (b) is 
n=25 samples. Classes include “Forensic 1” (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 
years) and “Non-forensic” (Group 2: PMI 500-900 years). 
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Figure 28. Three-class SVM-PCA models, raw 1400-2200nm. The Set A model (a) training set is n=44; Set B (b) is 
n=25 samples. Classes include “Forensic 1” (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 
years) and “Non-forensic” (Group 2: PMI 500-900 years). 
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Figure 29. Three-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
model is built with mean-centered Set A training set sample spectra, n=44. Classes include “Forensic 1” (Group 0: 
PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 years) and “Non-forensic” (Group 2: PMI 500-900 years). 
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Figure 30. Three-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
alternate model is built with Set A spectral data corrected for sample size differences, n=44. Classes include 
“Forensic 1” (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 years) and “Non-forensic” (Group 
2: PMI 500-900 years). 
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Figure 31. Three-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
model is built with mean-centered Set B training set sample spectra, n=25. Classes include “Forensic 1” (Group 0: 
PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 years) and “Non-forensic” (Group 2: PMI 500-900 years). 
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Figure 32. Three-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
alternate model is built with Set B spectral data corrected for sample size differences, n=25. Classes include 
“Forensic 1” (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 years) and “Non-forensic” (Group 
2: PMI 500-900 years).
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 Two-Class Forensic Models (Classes: Forensic 1, Forensic 2) 

 SIMCA 

 The last set of models was designed to determine if two classes of forensic samples 

could be accurately discriminated from each other. Forensic samples from the training and test 

sets used in the three-class models were applied for these models as well; the non-forensic 

samples were excluded. The Set A 2Cl_F1F2 SIMCA model was built with two local PCAs, a four 

component PCA for in Class 0 (Forensic 1), and a three component PCA for Class 1 (Forensic 2). 

Classification accuracy for Class 0 test samples was relatively low at 65.0%, while no Class 1 

samples were properly classified. 28.6% of test samples were placed in both classes and the 

remainder were unclassified (10.7%). Overall classification accuracy was 46.4%. 

 Results were similar for the Set B model, which consisted of a four component Class 0 

local PCA and three component Class 1 local model. Overall test set classification accuracy was 

46.2%, with 60% of Class 0 samples being properly classified and no Class 1 samples with proper 

group assignment. The remaining samples were placed in either both (23.1%) or neither classes 

(7.7%). Coomans plots for the above models and resultant classified samples are presented in 

Figure 33. 

 

 LDA-PCA 

 The LDA-PCA 2Cl_F1F2 model on Set A samples used two components; model cross-

validated accuracy is reported at 85.0% (Figure 34a). Overall test set classification accuracy was 

78.6%. Class accuracies were 80.0% and 75.0% for Class 0 and Class 1, respectively. 
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 Two components were used for the Set B model as well, with a resultant model 

accuracy of 90% (Figure 34b). Model performance on the test set was poorer than that 

observed in the Set A model; overall classification accuracy was 69.2%, with 80% of Class 0 

samples being properly classified. Class 1 assignment was much lower (33.3%). 

 

 SVM-PCA 

 Cross-validated accuracy for the 2Cl_F1F2 SVM-PCA model on Set A samples was 

reported at 87.5% (Figure 35a). Two components were used to build the model. Test set 

classification accuracy was 60.7%, with Class 0 and Class 1 samples classified at rates of 75.0% 

and 25.0%. 

 Accuracy was much higher (100.0%) for the two component Set B model (Figure 35b). 

However, the model performed poorly on the test set; while 80.0% of Class 0 samples properly 

classified, only 33.3% of Class 1 samples were assigned to the correct class. Overall classification 

accuracy of the test set was 69.2%. 

 

 PLSDA 

 The Set A PLSDA-MC model required one factor; reported RMSECV and R2 values are 

0.3439 and 0.3719, respectively. 82.1% of test sample classes were properly predicted, 

including 85.0% of Class 0 samples and 75.0% of Class 1. For the alternate model on corrected 

data, two factors were used; RMSECV is reported at 0.3594, and the resultant R2 was much 

higher (0.8218). However, overall prediction accuracy of the test set was much lower for this 

model (71.4%) rather than the mean-centered counterpart. Although 90.0% of Class 0 samples 
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were properly assigned, the model performed poorly on Class 1 samples (25.0%). See Figure 36 

and Figure 37 for these models. 

 Similar results were observed in the Set B 2CL_F1F2 models. RMSECV and R2 for the 

mean-centered model (one factor) were 0.3567 and 0.3215, respectively. The model accurately 

predicted only 76.9% of test samples, including 90.0% of Class 0 and 33.3% of Class 1. The one 

factor PLSDA-CO model reported a RMSECV of 0.3475 and a higher R2 value of 0.8491. Overall 

test set prediction was the same with this model (76.9%). Although prediction accuracy for 

Class 0 was 100.0%, no Class 1 samples were properly identified. These models are presented in 

Figure 38 and Figure 39. 

Table 3. Model and test set classification accuracies for select two-class models where non-
forensic samples excluded (1400-2200nm). Class 0 represents forensic samples with known PMI 
of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. Numbers in “( )” represent 
the number of components or factors used in a given model. Cells in white represent cross-
validated model accuracies as a percentage (LDA-PCA and SVM-PCA) or as RMSECV and R2 for 
PLSDA. Areas in grey represent accuracies (%) from model application to the test set.  

Model LDA-PCA SVM-PCA PLSDActr PLSDAcorr SIMCA 

2-class 85.0 (2) 87.5 (2) RMSE = 0.3439 (1) RMSE = 0.3594 (2) Overall = 46.4 
Forensic          R2 = 0.3719      R2 = 0.8218 Class 0 = 65.0 
(Set A) Overall = 78.6 Overall = 60.7 Overall = 82.1 Overall = 71.4 Class 1 = 0.0 
  Class 0 = 80.0 Class 0 = 75.0 Class 0 = 85.0 Class 0 = 90.0 Both = 28.6 

  Class 1 = 75.0 Class 1 = 25.0 Class 1 = 75.0 Class 1 = 25.0 
Neither = 
10.7 

2-class 90.0 (2) 100.0 (2) RMSE = 0.3567 (1) RMSE = 0.3475 (1) Overall = 46.2 
Forensic          R2 = 0.3215      R2 = 0.8491 Class 0 = 60.0 
(Set B) Overall = 69.2 Overall = 69.2 Overall = 76.9 Overall = 76.9 Class 1 = 0.0 
  Class 0 = 80.0 Class 0 = 80.0 Class 0 = 90.0 Class 0 = 100.0 Both = 23.1 
  Class 1 = 33.3 Class 1 = 33.3 Class 1 = 33.3 Class 1 = 0.0 Neither = 7.7 
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Figure 33. Coomans plots for two-class SIMCA models, raw 1400-2200nm. Models with classified samples (green) 
for Set A (a), n=40, and Set B (b), n=21, are presented. Classes include “Forensic 1” and (Group 0: PMI “days” - 4.9 
years), “Forensic 2” (Group 1: PMI 5 - 71 years). 
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Figure 34. Two-class LDA-PCA models, raw 1400-2200nm. The Set A model (a) training set is n=40; Set B (b) is n=21 
samples. Classes include “Forensic 1” and (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 
years). 
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Figure 35. Two-class SVM-PCA models, raw 1400-2200nm. The Set A model (a) training set is n=40; Set B (b) is n=21 
samples. Classes include “Forensic 1” and (Group 0: PMI “days” - 4.9 years), “Forensic 2” (Group 1: PMI 5 - 71 
years). 
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Figure 36. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
model is built with mean-centered Set A training set sample spectra, n=40. Classes include “Forensic 1” (Group 0: 
PMI “days” - 4.9 years) and “Forensic 2” (Group 1: PMI 5 - 71 years). 
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Figure 37. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
alternate model is built with Set A spectral data corrected for sample size differences, n=40. Classes include 
“Forensic 1” (Group 0: PMI “days” - 4.9 years) and “Forensic 2” (Group 1: PMI 5 - 71 years). 
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Figure 38. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
model is built with mean-centered Set B training set sample spectra, n=21. Classes include “Forensic 1” (Group 0: 
PMI “days” - 4.9 years) and “Forensic 2” (Group 1: PMI 5 - 71 years). 
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Figure 39. Two-class PLSDA models, a) scores and b) explained variance plots, raw 1400-2200nm. The presented 
alternate model is built with Set B spectral data corrected for sample size differences, n=21. Classes include 
“Forensic 1” (Group 0: PMI “days” - 4.9 years) and “Forensic 2” (Group 1: PMI 5 - 71 years).
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4.6 Tests for Protein Oxidation 

Following completion of the analyses reported above, a secondary study was conducted 

on a limited number of samples in order to determine if the protein content of extracted bone 

samples oxidizes over time. Experiments were conducted in February 2017 at ASD-PANalytical 

in Boulder, Colorado, and involved the collection of spectra from two groups of cortical 

samples, including the following: 16 samples used in the May 2013 preliminary study 

(“Resampled Set”); and, six samples of femoral cortex that were treated with a hydrogen 

peroxide H2O2 dilution series for a fixed period of time (“Dilution Set”). Resampled Set samples 

“Time 2” spectra were compared with “Time 1” spectra from 2013 (approximate time interval 4 

years) in order to 1) determine if the spectra change with time and, if so, 2) identify the 

changes and tie them to potential chemical oxidative changes. Spectra collected from Dilution 

Set samples were analyzed to see if there were changes in absorbance spectra with respect to 

H2O2 concentration vs. control samples stored in water and air. 

Minor peak changes were observed on some of the Resample Set spectra (SNV-

transformed) at positions 1490nm, 1730nm, and 1940nm. Similar changes were observed in the 

Dilution Set series. These observed changes may be related to the presence of elevated 

carbonyl (1490nm, 1940nm) and methyl-related oxidative products; however, this currently 

cannot be determined without performing composition analyses, which were not a part of the 

broader study. It should be noted that the observed changes were relatively small and would 

likely not have a negative effect on the classification models reported above and in Appendix F. 

A more in depth discussion, including background, procedures, interpretation, and relevant 

figures, is presented in Appendix G.  



99 

CHAPTER 5 

DISCUSSION 

5.1 Introduction 

This chapter discusses the results previously reported. The first sections of the chapter 

present explanations regarding why 1) treating the superficial surface with a grinding wheel 

prior to spectral collection is optimal and 2) why the spectra collected from the longitudinally 

and transversely cut cortical surfaces are essentially the same. This section is followed by a 

discussion of the models presented in Chapter 4. The next portion of this chapter will describe 

the use of transformed-data models and when data transformation may be desirable. The final 

segment will discuss the limitations regarding the tests for protein oxidation that were 

conducted after the broader study was completed. 

 

5.2 Superficial Surface Comparison: Untreated versus Treated 

It has been noted that spectra collected from the untreated cortical surface yielded poor 

class separation, as observed on the spectral line plots, in comparison to spectra collected from 

the same surface following treatment with a grinding wheel. This is most likely due to the 

presence of postmortem artifacts that artificially affect the spectral signature, e.g. the presence 

of soil staining, plant debris, and rootlets. Additionally, weathering and exfoliation of the outer 

cortex tend to make the spectrum appear more consistent with those of older specimens 

(Figure 40). Remnants of detergents used for maceration, or, accumulations of adipocere also 

frequently resulted in somewhat abnormally shaped spectra. The removal of superficial cortex 

by light grinding allows for direct scanning of the bone itself absent soil stains, plant material, 
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flaking cortex, and other non-bone materials. This is most pronounced when the bone is 

weathered in appearance but the PMI is relatively short: relatively new bone looks much more 

“fresh” when the flaky outer cortex is removed. In many ways, the treated surface 

approximates what is observed on sectioned longitudinal and transverse cortical edges, and 

better class separation is achieved both grossly in the line plots and statistically via PCA with 

spectra that are collected from the treated surface. 



101 

 
Figure 40. Comparison of raw spectra collected from the superficial (yellow arrow) and treated superficial (green 
arrow) surfaces of 3 cortical samples, 1400-2200nm selected. Images of the cortical samples (left) and associated 
spectra (right) are presented. Samples include a) a weathered femur (PMI<1 year), b) a non-weathered femur (PMI 
estimated 20-50 years), and c) an archaeological specimen. 
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5.3 Sectioned Surface Comparisons: Transverse versus Longitudinal 

Bone is a biphasic composite of primarily collagen and mineral apatite. In compact bone, 

the mineralized collagen fibrils are organized into osteons which are arranged such that the 

bone can compensate for suite of applied forces. Osteons, and thus the collagen fibrils that are 

a major component of them, can be organized in longitudinal, transverse, and oblique 

orientations, and the ratio of these orientations will ultimately be dependent on both the bone 

in question and the position on the a given bone. 

The diaphysis of a long bone, such as the femur, will contain many osteons (and fibers) 

that are longitudinally oriented in order to compensate for compressive forces, although other 

orientations are present as well. Thus, spectra collected from the longitudinal sectioned surface 

are the result of fibers that are oriented primarily parallel to the long axis, while those spectra 

collected from the transversely sectioned cortex result from viewing the fiber termini. Slight 

differences between the longitudinal and transverse section spectra are expected owing to 

fiber orientation and slight variations in their anisotropic properties. However amino acid 

composition along a collagen fibril is highly consistent; thus, longitudinal and transverse spectra 

are essentially the same morphologically and would be expected to provide redundant 

information (Figure 41). From a practical standpoint, sampling the “long cut” on the cortex is 

preferable because there is a greater amount of sampling surface available, and the anterior 

diaphyseal curvature can be avoided. 
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Figure 41. Comparison of raw spectra collected from the transverse (yellow arrow) and longitudinal (green arrow) 
cut surfaces of 3 cortical samples, 1400-2200nm selected. Images of the cortical samples (left) and associated 
spectra (right) are presented. Samples include a) a weathered femur (PMI<1 year), b) a non-weathered femur (PMI 
estimated 20-50 years), and c) an archaeological specimen. 
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5.4 Discussion of the Models 

 Performance of the SIMCA Models 

A review of all developed models revealed that of the selected algorithms, SIMCA 

consistently performed the poorest on both raw and transformed data. The primary issue was 

that many samples were ultimately assigned to multiple classes or were given no class 

assignment at all. The best SIMCA results were observed with 2Cl_FN, although classification 

accuracies for both classes were low. When non-forensic samples were excluded, older forensic 

test samples run through two-class forensic models often classified at rates approaching 0.0%. 

These older forensic cortices were poorly classified in the three-class models as well. The 

consistently poor results achieved with SIMCA suggest that this classification method is not 

robust enough to use in this PMI classification application. Accordingly, the remainder of the 

discussion will focus on models built with the other selected classification algorithms (LDA-PCA, 

SVM-PCA, and PLSDA). 

 

 Performance of the 1400-2200nm Band Raw Models 

2Cl_FN, 2Cl_F1F2, and 3Cl_F1F2N models were built using raw spectral data (1400-

2200nm) collected from the longitudinally-cut cortical surface (Set A) and the treated 

superficial surface (Set B) of training samples. In most cases, Set A models outperformed Set B 

counterparts when classifying the test sets. For the 2Cl_FN models, LDA-PCA and SVM-PCA 

performed nearly the same on the Set A data. Both PLSDA models (mean centered and 

corrected) performed well at classifying Class 0, but yielded lower classification rates for Class 1 

with respect to the LDA-PCA and SVM-PCA models.  
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For the Set A 2Cl_F1F2 and 3Cl_F1F2N models, the LDA-PCA models performed well, 

although class accuracies were lower than those in the 2Cl_FN model. The corresponding SVM-

PCA models performed poorly at classifying Class 1 (25% correct classification in both models). 

Likewise, the PLSDA-CO models poorly classified Class 1 in both cases, 25% and 12.5%, 

respectively. The Set A PLSDA-MC 2Cl_F1F2 model outperformed the corresponding LDA-PCA 

model. Similar results were not observed in the three-class PLSDA-MC model; although 

classification accuracy for Class 0 exceeded that seen with the LDA-PCA model, Class 1 accuracy 

dropped to 50%, vs. 75.0%. These results indicate that for the raw 1400-2200nm band, LDA-PCA 

models appear to provide the most consistent classification results for the Set A samples. 

As noted, Set A models outperformed Set B counterparts in all but one case. The 2Cl_FN 

models poorly classified non-forensic Set B samples. Older forensic samples were generally 

classified at lower accuracy in the 2Cl_F1F2 and 3Cl_F1F2N models as well. The exception to this 

was the three-class Set B PLSDA-MC model, which provided high overall accuracy of 93.8%, with 

90% of Class 0 properly classified 100% accuracy for the other two classes; however, the results 

of this external validation are suspect. Although the model accurately classified all of the older 

forensic test specimens, Class 1 performed poorly during the internal cross-validation phase 

(40% accuracy). This, along with the generally observed lower classification rates for “older” 

forensic specimens, suggests that this class is poorly defined. Please see section 7.3.3 for 

further discussion about this issue. 

Alternate PLSDA models were built using mean centered (MC) spectral data or spectral 

data that had been corrected (CO) for different sample sizes. In all cases (Set A and Set B 

models), the PLSDA-MC models outperformed corresponding PLSDA-CO models for the raw 
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1400-2200nm spectral band. This suggests that a correction for differing sample sizes may not 

be necessary in the application under study. 

Additional models constructed with a broader raw spectral band (460-2360nm) are 

reported in Appendix F. There is a slight increase in classification accuracy for all LDA-PCA 

models for both Sets A and B. The most notable increase was observed in the Set B 2Cl_F1F2  

PLSDA-MC model, which classified 90% of Class 0 and all of Class 1 test samples, with an overall 

accuracy of 92.3%. The corresponding 1400-2200nm model identified only 33.3% of Class 1. 

Overall, poorer performance by the Set B models can likely be attributed to inadequate 

grinding of the superficial cortical surface. Sectioning the long axis of the bone diaphysis reveals 

clean, unblemished cortex with minimal environmental artifacts, thus making the Set A spectra 

optimal. The purpose of grinding down the superficial surface was to expose a comparably 

clean, underlying cortical layer. Grinding removed much of the environmental debris (soil 

staining, weathered cortex, etc.); however, some adherent material likely remained. This may 

have lead to a potential increase in scatter-related noise in the raw spectra. This is particularly 

true of the older, more altered bone, and is likely a contributing factor in the poorer observed 

classification accuracy of older Set B samples. An improvement of the method might include 

identifying an optimal amount of bone to grind off prior to spectral sampling 

A final review of the 2Cl_FN raw models revealed that the SVM-PCA models typically 

underperformed all others, and PLSDA appeared to classify adequately without a correction for 

sample size. LDA-PCA was, in general, the most consistent method when applied to these data. 

It was also observed that Class 1 accuracies were often lower than desired, even when 

using Set A data. Correct class assignments generally ranged from approximately 79-84%. In 
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contrast, the forensic test sample classification accuracy is consistently high (roughly 95% or 

greater). A subsequent review of the misclassified Class 1 samples reveals that the wrongly 

assigned samples were likely “historic” burials, that is, remains that are outside of the 

“forensic” time-frame but not within the more “archaeological” group of samples. It should be 

noted that, from a medicolegal perspective, the misclassification of a non-forensic case is of 

lower importance. However, improper classification of a forensic case is clearly undesirable, as 

this would represent the exclusion of an actual missing person from further investigation.  

 

 Limitations of the 3Cl_F1F2N and Cl_F1F2 Models 

 Although the primary goal of this study was to develop classification models that could 

assign unknown remains into “Forensic” and “Non-forensic” classes, a secondary goal was to 

determine whether “forensic” cases could be accurately placed into different subclasses (e.g. 

F1, F2). As noted in section 6.3.3, sample sizes for the 3Cl_F1F2N and Cl_F1F2 models are small, 

especially for Class 1 (“older forensic cases,” PMI 5 – 71 years). At issue was the limited number 

of available “older” forensic cases with an established PMI values. As observed in the results of 

these 3Cl_F1F2N and Cl_F1F2 models, classification accuracy for Class 1 test samples was 

relatively low; although none of these samples was misclassified as non-forensic (i.e. Class 2), 

many were misclassified as Class 0 (“newer forensic cases,” PMI “days” – 4.9 years). This 

suggests that Class 1 is either poorly defined, or the samples used for model building and/or 

external testing are poor candidates; both are likely contributors. Some of the “older” samples 

used included exhumed paupers burials, which consistently classified as “newer,” suggesting 

that these remains might be better preserved than an extended PMI would suggest. Likewise, 
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the Class 1 PMI distribution of 5 to 71 years is overly broad; it is likely the addition of more 

samples with established, extended PMI values will reveal that this broad class can be further 

subdivided. 

 

5.5 Data Transformations 

 Standard Normal Variate (SNV) Transformed Data Models 

Selected bands of raw data were subjected to three transformations, including SNV as 

well as first and second SG derivations. The resultant model classification accuracy tables for 

each of these models are presented in Appendix F. SNV transformed models were constructed 

using the following bands: 460-2360nm, 1400-2200nm, and 1425-1750nm. On the whole, 

2Cl_FN models and associated test set classification accuracies were the same as those 

reported for the Set A and Set B raw data 1400-2200 models reported in the previous chapter. 

The exception to this was the Set B PLSDA-MC models using the SNV 1400-2200nm and 1425-

1750nm bands, both of which underperformed the raw model for non-forensic test samples 

(Class 1 accuracy = 30.0%, Overall accuracy 87.9%). 

Discriminating power also decreased for the Set B LDA-PCA and PLSDA-CO three-class 

models using both SNV bands reported above. However, an increase in classification accuracy 

over the raw data models was observed in some cases for all three SNV model types. In many 

cases, the same increase was observed when using either SNV 1400-2200nm or 1425-1750nm, 

although the latter band provided additional models that outperformed the former. The better 

performing SNV 1425-1750nm models are reported below. 
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The 2Cl_FN Set B SVM-PCA model yielded an overall accuracy 90.9%, with 96.4% of the 

forensic test samples being properly classified; non-forensic test sample classification was a 

relatively low 60.0%, although this is considerably higher than that observed with the 

comparable raw data model (20% accuracy, Overall accuracy 87.9%). 

Improvements were also noted in the 2Cl_F1F2 models. The Set A SVM-PCA model 

properly classified all newer forensic samples but only 37.5% of the older (Class 1) forensic 

material (Overall 82.1%). Similar to the above, although Class 1 accuracy remains low, it is 

higher than the corresponding raw data model (Class 1 = 25%, Overall 60.7%). All Set B models 

improved, with the greatest improvement noted on the PLSDA-MC model. An overall 

classification rate 92.3% was achieved, with 90% of the newer forensic test samples being 

properly classified; all older forensic test samples were assigned to the correct class. 

Improved accuracies were also noted with three-class SNV transformed Set B data for 

models using SVM-PCA and PLSDA-CO. The overall accuracy for the SVM-PCA model was 81.3% 

(Class 0 = 100%, Class 1 = 33.3%, Class 2 = 66.7%), while the PLSDA model correctly classified 

87.5% of the Set B test samples (accuracies of 100%, 33.3%, and 100% by class, respectively). In 

both cases, Class 1 (older forensic samples) was poorly classified, as seen in the reported raw 

data models. 

Full band models were attempted as well (SNV 460-2360nm). Improvements in overall 

and class accuracies were noted in models that correspond with the better SNV 1425-1750nm 

performers. However, increased accuracies achieved using full bands were not as pronounced 

as those models built from narrower band. 
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 Savitzky-Golay (SG) Transformed Data Models 

SG first and second derivatives were performed on selected raw spectral data bands. 

The following derivatized bands were used for model construction: 

• SG1: 1400-2200nm; 1120-1185nm and 1530-1720nm (SG1 “specific bands”) 

• SG2: 1400-2200nm; 1235-1330nm and 1535-1585nm (e.g. SG2 “specific bands”) 

In all model types (2Cl_FN, 2Cl_F1F2, and 3Cl_F1F2N models), both Set A and Set B SVM-PCA 

models built from SG1 and SG2 derivatized data were the worst performing models. SVM-PCA 

models were only successful at classifying Class 0 samples; remaining classes consistently 

classified at 0%, with the same outcome noted on repeated attempts. These results suggest 

that applying SVM-PCA to principal components derived from SG transformed data is not 

appropriate. 

In contrast, the other 2Cl_FN models (LDA-PCA, PLSDA-MC, and PLSDA-CO) constructed 

with SG1 and SG2 derivatized data were of comparable accuracy with the reported raw 1400-

2200 data models. These models also performed the same on both the Set A and Set B test 

sets. The three-class SG1 and SG2 derivatized LDA-PCA models showed decreased 

discriminating power for both Sets A and B test sets, similar to what was observed with the SNV 

transformed models. As with the SNV transformed 3Cl_F1F2N models, the primary driver for 

decreased classification accuracy was poor assignment of Class 1 test samples (older forensic 

material) samples. 

Although most models built with derivatized data yielded classification accuracy results 

similar to or worse than models constructed with raw data, some exceptions were noted with 

SG1 and SG2 1400-2200nm attempts. The Set B 2Cl_F1F2 models (LDA-PCA and both PLDSA 
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methods) each classified 90% of Class 0 and 100% of Class 1 samples (overall 92.3%). The three-

class Set B PLSDA-CO was an improvement as well, classifying 90% of the newer forensic test 

samples and all of the older forensic material; non-forensic test samples (Class 2) classified at 

only 67% accuracy (Overall = 87.5%). While Class 2 accuracy is still the same as that seen in the 

raw model, accuracy for older forensic cases in that same model was 0.0%. Note that 

corresponding SG1 and SG2 “specific band” models also showed increases in classification 

accuracy, although the improvements were not as pronounced as the above models built with 

the broader SG1 or SG2 1400-2200nm band. 

 

 Data Transformation: Interpretations 

The present study suggests that spectral data transformations may be of some use in 

limited situations. When SNV transformation is applied to the raw spectral data, it appears that 

transforming and building classification models with a narrow spectral band (e.g. 1425-

1750nm) is more beneficial. In contrast, SG1 and SG2 derivatives should be applied to a 

somewhat a broader spectral band (1400-2200nm) to improve model accuracy. 

One of the more intriguing outcomes of the transformed data models is that in some 

cases, these models appeared to be better at discriminating between samples that were within 

the forensically significant time-frame; that is, differentiating between newer and older forensic 

samples. This was especially the case for transformed Set B spectral data. Some of the SNV- and 

SG-transformed data models showed notable increases in classification accuracies with respect 

to the corresponding raw data classification models. 
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It was previously suggested that the relatively poor performances of the raw 1400-

2200nm Set B models may have been the result of inadequate surface preparation (grinding) 

and subsequent light scattering resulting from surface particulates. As noted by Rinnan and 

colleagues (2009), transformations such as SNV and SG can correct for scattering. Thus, it is 

possible that the application of these transformations to the raw Set B spectra may be 

removing scattering-related noise from the spectral signal, leading to increased classification 

accuracy in the final model. In order to determine if this is the case, additional work must be 

done in the future with a larger number of “forensic” samples that have a longer PMI. 

 

5.6 Protein Oxidation Tests: Interpretations and Limitations 

 A limited number of tests for the potential of protein (collagen) oxidation were 

conducted in February 2017 upon completion of the broader study. This was done in order to 

determine if the collagen in archived bone samples oxidizes in the postmortem interval. 

Oxidative changes would likely lead to changes in associated spectra collected from the bone 

surfaces, which would thus need to be accounted for if such samples are reused in future 

research. 

 A review of the inventory of cortical samples used in the 2013 preliminary study 

revealed 16 samples that were reused for the current project. During a return trip to the ASD-

PANalytical laboratories in Boulder, Colorado, new average spectra were collected from these 

16 samples (i.e. resampling) using the same model spectrometer as used in the preliminary 

work. Following SNV transformation, comparisons were made between the “Time 1” spectra 

(2013) and “Time 2” spectra, with minor changes spectral changes noted for some samples. 
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This suggests that little to oxidative changes may be occurring, at least over a relatively short 

term of approximately 4 years; however, the potential for oxidation and resultant spectral 

differences at longer intervals (e.g. 10 years, 20 years) cannot be excluded. Due to the currently 

limited availability of the necessary analytical equipment, as well as time limitations with 

respect to completing the current research, these are questions that must be answered with 

future study.  

In addition to the above 16 resampled cortices, an alternate set of cortices were 

examined for oxidative changes. Six adjacent samples of femoral diaphysis cortex were 

removed from one common femur and were treated with varying concentrations of diluted 

hydrogen peroxide (H2O2), ddH2O (control), or air (control), over the defined time period of 10 

days. This was done in order to determine if H2O2, a strong oxidizer, could lead to discernible 

spectral differences between these 6 samples. As with the resampled set, only minor changes 

were noted in SNV transformed spectra. It should be noted that, due to time limitations, the 

samples were only kept in solution for 10 day period, and it is not currently known what the 

resultant spectra would have looked like if the treatment was extended and the H2O2 solutions 

were periodically replaced. Additionally, H2O2 concentrations in the tubes were not measured 

over the 10 day course, so diminished H2O2 efficacy cannot be ruled out. Also note that 

alternative oxidizers of proteins (e.g. ozone, superoxide, and oxygen gas) were not tested in this 

study, and thus the effects or lack thereof of these oxidizers on bone and its collagen phase 

cannot be determined at this time. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Project Impact 

There are “as many as 100,000 active missing persons cases in the United States” with 

“tens of thousands” more disappearing yearly (Ritter 2007, p. 2).  Recovered remains must be 

examined for PMI to maximize the possibility of association with a missing person. Coupled 

with remains from both historical conflicts (e.g. World War II, Korea, Vietnam, Laos, Peru, 

Guatemala, El Salvador, Vukovar, Rwanda, Cyprus) and contemporary warfare (e.g. Libya, Syria) 

that fall within a “time interval of interest,” there are potentially millions of cases pending 

worldwide in which an accurate PMI assessment could ultimately help lead to identification 

(Budowle, personal communication). 

The ability to rapidly assess the PMI of skeletal remains using a reliable and validated 

technique is of the utmost importance. Because NIR spectroscopy requires minimal sample 

preparation, it provides an avenue for rapid data collection and analysis. Additionally, because 

the spectral data produced can be incorporated into multivariate statistical models that can be 

validated, the technique is clearly appealing from an admissibility standpoint. 

This project applied NIR spectroscopy to address the question of PMI for skeletonized 

remains. Multiple classification algorithms were used to construct models that could assign 

skeletal remains to an appropriate PMI class. Of the algorithms tested, LDA-PCA, followed by 

PLSDA on mean-centered data, appears to be the best overall option. NIR spectra collected 

from samples with known or estimated PMI were used for model construction; the models 

were subsequently validated on separate “unknown” test samples. Resulting models appear to 
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be well-suited for differentiating a large sample set of forensic and non-forensic material. 

Working with a much smaller set, there is some indication that samples may be discriminated 

spectrally within the “forensic time frame,” i.e., remains with a PMI of less than 50 to 70 years, 

as well. To further assess this, additional work must be done with a larger sample of older 

forensic material. 

Two surfaces were ultimately explored for model building in this study, the 

longitudinally cut cortical surface of long bone diaphyses and the ground superficial diaphyseal 

surfaces. In most cases, classification models involving spectra collected from the longitudinal 

cut surfaces performed better than superficial surface counterparts, although some exceptions 

were noted, especially when using transformed data. While it may eventually be determined 

that sectioned cortex produces the most dependable models, additional research must be 

conducted using treated superficial bone. Relatively speaking, cutting and removing a sample of 

cortex is more destructive and is thus likely unappealing to institutions that house osteological 

collections. If equally accurate models can be constructed from spectra that are collected from 

cortical surfaces that are only lightly ground down, this increases potential access to a much 

greater number of specimens with known PMI. Ideal samples would include forensic cases with 

known PMI ranging between 10 and 70 years, remains originating from modern and historic 

armed conflicts (“timed events”), as well as historic remains with documented PMI. 

Ultimately, the successful application of this technology to the estimation of PMI would 

produce substantial future cost savings. Accurate assessments of PMI would allow law 

enforcement investigators and triers of fact to include or exclude suspects in specific instances 

and thus redirect investigations, reducing costs in both manpower and laboratory analyses. 
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Agencies can also triage forensically significant material, thereby focusing greater resources on 

more contemporary cases for which reference samples may be available. 

Because many unidentified skeletal remains cases have profiles uploaded to the FBI 

Combined DNA Index System (CODIS), significant savings can also be realized in relevant 

molecular laboratories as well. An accurate determination of the PMI offers a significant savings 

for CODIS analytical work in multiple ways. First, expensive laboratory manipulations on non-

significant material can be prevented. For example, the LFA was able to exclude 190 non-

significant cases between 2006 and 2016; at a minimum cost of $2,000.00 per case, these 

exclusions represented a savings of at least $380,000.00 over a decade for the CHI and the 

taxpayers who fund it (Larose, personal communication). Second, additional cost savings are 

realized when CODIS analysts can avoid filtering and excluding meaningless molecular 

associations between non-significant remains and missing person profiles. Lastly, PMI can be 

used as metadata to filter through spurious potential matches. 

 

6.2 Future Research 

Classification modeling should be continued and refined, dealing with both sectioned 

and ground superficial cortex. To do this, a much larger collection of cortices will be required 

spanning multiple PMI groupings, including older forensic samples, historic samples with known 

PMI, and additional archaeological samples with known PMI. Ideal sources for such samples 

would include remains recovered from “timed events,” such as the numerous conflicts listed 

above. It is suspected that as these sample sizes are increased and PMI classes are more 

narrowly defined, group patterns will be discernible using techniques such as PCA. 
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A controlled examination of environmental and deposition effects on bone NIR spectra 

should be performed as well. Multiple scenarios could be set up in a controlled laboratory 

environment, including exposure to artificial sunlight, burial of remains in different types of soil 

and at different depths, submersion in water, treatment with acid, or exposure to heat. Spectra 

could be collected at defined time intervals and compared with the spectra of untreated 

control samples to see how they vary from each other. 

Another area of interest is the effect of intraindividual variation on bone absorption 

spectra. A series of skeletal remains cases that are relatively complete can be identified for the 

study. Bone samples can be collected from multiple sites of antemere elements from the same 

individual (e.g. right and left humeri, femora, and tibiae). Additionally, multiple locations on the 

same bone can be sampled and compared (e.g. proximal, middle, and distal aspects of the 

anterior and posterior femoral diaphysis). Comparisons should be made between trabecular 

and cortical bone as well. 

Lastly, predictive modeling for bone composition should be explored. The current study 

has demonstrated that NIR spectroscopy is a viable technique for developing classification 

models from spectra collected from cortex; predicting the composition of a sample of bone is a 

logical next step. To do this, a large set of cortical specimens with known background 

(demographics, deposition, location, PMI, etc.) should be gathered and randomly sampled into 

training and test sets. Spectra would be collected from all samples. Subsequently, all samples 

would be processed and analyzed to determine actual composition, including water, lipid, 

collagen, non-collagenous proteins, and DNA content. The training samples can then be used to 

construct PLSR models, where the X-variables are composed of spectra, and the Y-variables 
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consist of the composition data. The resultant models can then be used to predict test set 

composition. Model validations can then be performed by comparing the predicted values with 

the known composition data. 

An accurate predictive model would be especially useful for predicting DNA content in 

bone prior to the processing UHR samples that are to be uploaded into the FBI Combined DNA 

Index System (CODIS). Samples that are predicted to yield no recoverable DNA can be excluded 

from further processing, preventing the waste of expensive reagents. Likewise, analysts can 

better plan the required extraction technique for yielding partial or complete sets of loci from 

samples in which there are detectable amounts of DNA present. Both scenarios would provide 

significant cost savings for CODIS analytical work. 
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APPENDIX A 

MATERIAL CHARACTERISTICS AND COMPOSITION OF BONE



120 

Bone, or osseous tissue, is a mineralized, dense connective tissue. It is a biphasic 

material, composed of a large mineral phase (~65%) of calcium hydroxyapatite (Ca5(PO4)3OH) 

and an organic phase (~35%). The organic phase is primarily type I collagen (85-90%), a major 

structural protein, with the remaining component (5-10%) comprised largely of non-

collagenous proteins (e.g. osteocalcin, osteopontin, proteoglycans). Bone rigidity is due to the 

mineral phase, while flexibility results from the large amount of collagen (Shipman et al. 1985, 

Hall 2005). 

Mature bone is organized as either trabecular (spongy) bone or more densely organized 

compact (cortical) bone (Figure A.1). The basic unit of cortex, the osteon, is generally a 

cylindrically shaped structure of approximately 200μm diameter. This osteon is constructed of 

concentric lamellae, each of which is approximately 5μm thick and composed of mineralized 

collagen fibrils (Shipman et al. 1985, Hall 2005). 

Collagen fibrils are built from heterotrimeric tropocollagen proteins, each approximately 

300nm long, 1.5nm wide, and 290k Da in mass (Figure A.2). The right-handed triple helix of 

tropocollagen is composed of three left-handed helical chains (2-α1, 1-α2). Each of the α-chains 

is built from a repeated structural motif of (Glycine-X-Y)n, where n is generally ≥ 300 residues, 

“X” is often a proline (PRO) followed by  “any” amino acid, or “X” can be any amino acid 

followed by hydroxyproline (HYP) (Fratzl et al. 2004, Fratzl and Weinkamer 2007, Hulmes 2008). 

The tropocollagen triple helix is organized so that the glycine (GLY) residues are directed 

inward toward the central axis: because the R-group of GLY is a single hydrogen atom, steric 

interference is minimized and the tropocollagen is more stable. All residues in the X and Y 

positions, largely PRO and HYP, as well as lysine (LYS), hydroxylysine (HYL), and others, are 
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directed outward. Residue abundance and percentage values are presented by α1 and α2 

chains in Table A. 1. Hydrogen bonding between α-chains and cross-links between HYL and LYS 

stabilize the triple helix (Fratzl et al. 2004, Fratzl and Weinkamer 2007, Hulmes 2008). 

Collagen fibrils form when tropocollagens align in a parallel but non-registered, 

staggered orientation (Figure A.2). Staggering of tropocollagens leads to 32nm areas of overlap 

and gaps that are 35nm wide, for a total collagen periodicity of 67nm. The fibrils are then 

stabilized by additional hydrogen bonding and cross link formation. Mineralization occurs 

within the gaps via approximately 3nm thick plates of mineral that likely form by nucleation 

(Shipman et al. 1985, Fratzl et al. 2004, Fratzl and Weinkamer 2007). 

 

 
Figure A. 1. Hierarchical structure of bone. Reprinted from Science and Engineering C volume 31, R. Weinkamer 
and P. Fratzl. “Mechanical adaptation of biological materials – examples of bone and wood,” 2011, pages 1164-73. 
With permission from Elsevier. http://dx.doi.org/10.1016/j.msec.2010.12.002. 
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Figure A. 2. Collagen structure and organization. Collagen molecules self-assemble in a quarter-staggered array 
into microfibrils to form collagen fibrils with characteristic periodic D-spacing. Reprinted from PLOS One volume 
11: e0166392, S. Canelón and J. Wallace, “β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking 
Causes In Vitro Changes in Collagen Morphology and Molecular Composition,” 2016.  Reprinted under CC BY. 
https://doi.org/10.1371/journal.pone.0166392. 
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Table A. 2. Amino acid (AA) count per 1000 residues and calculated %AA composition in 
collagen (I) α1 and α2 chains. Reported values have been rounded. *Combined proline and 
hydroxyproline. **Combined lysine and hydroxylysine.  Sequence data were acquired from the 
UniProt Consortium (Uniprot 2017). Data presented in the table below are modified from 
output generated at Bioinformatics.org (Stothard 2000).  

Amino Acid (AA) Symbol 
α1 (per 1000 

residues) 
α2 (per 1000 

residues) 
Glycine G 328 (33%) 337 (34%) 
Proline P 227* (23%) 196* (20%) 
Alanine A 114 (11%) 104 (10%) 
Arginine R 50 (5%) 53 (5%) 
Glutamic acid E 46 (5%) 43 (4%) 
Serine S 37 (4%) 31 (3%) 
Lysine K 36** (4%) 30** (3%) 
Aspartic acid D 32 (3%) 23 (2%) 
Glutamine Q 28 (3%) 21 (2%) 
Leucine L 20 (2%) 33 (3%) 
Valine V 20 (2%) 39 (4%) 
Threonine T 17 (2%) 18 (2%) 
Phenylalanine F 14 (1%) 12 (1%) 
Asparagine N 10 (1%) 23 (2%) 
Isoleucine I 7 (1%) 17 (2%) 
Methionine M 7 (1%) 5 (<1%) 
Tyrosine Y 4 (<1%) 5 (<1%) 
Histidine H 3 (<1%) 12 (1%) 
Cysteine C 0 0 
Tryptophan W 0 0 
        
AA Class (totals)       
        Aliphatic G,A,V,L,I 488 (49%) 529 (53%) 
        Aromatic F,W,Y 18 (2%) 16 (2%) 
        Sulphur C,M 7 (1%) 5 (<1%) 
        Basic K,R,H 89 (9%) 94 (9%) 
        Acidic B,D,E,N,Q,Z 117 (12%) 111 (11%) 
        Aliphatic hydroxyl S,T 54 (5%) 49 (5%) 
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APPENDIX B 

QUALITATIVE AND QUANTITATIVE METHODS USED FOR THE ASSESSMENT OF THE 

POSTMORTEM INTERVAL (PMI)
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Presentation of multiple qualitative and quantitative methods (Sections 1 – 10) for the assessment of the postmortem interval (PMI). 
Included abbreviations: Sect (Section), Microscop (Microscopy), Qual. (Qualitative), Autofl. (Autofluorescence), TGA 
(thermogravimetric analysis), Radionucl. (radionuclide), MIR (mid-infrared), NIR (near infrared), ARF (University of Tennessee 
Anthropological Research Facility), Arch (archaeological), Hx (historical). 

Sect. Reference Technique Samples and Methodology Results 
.1 Megyesi PMI Retrospective study of forensic cases (n=68), known  Well-fit loglinear relationship between PMI  
  et al. 2005 Formula PMI (0-200days). Used written and photodocumentation.  and TBS, ADD and TBS. Noted that most cases 
      All cases surface finds. Quantified decomposition originated from Illinois/Indiana 
      changes by body region (head, trunk, limbs) by   
      developing point system, summed points for Total Body   
      Score (TBS). Calculated Accumulated Degree Days (ADD),   
      summed mean daily temperatures for PMI. Examine   
      ADD-TBS relationship   
  Vass 2011   Presented formulae developed from decomposition  Both equations worked well when applied to 
      studies conducted at ARF. Equations for surface remains  actual forensic cases originating from 
      (humidity, scored decomposition, temperature) and buried  environments similar to those near ARF 
      remains (scored decomposition, temperature, soil moisture,    
      adipocere)   

.2 Berg 1963 Microscop. Technique review. Author recommendation to examine  Diminished optical activity in older remains due to  
      decalcified bone under polarized light loss of organic content and infiltration of new 
        mineral from soil. Remnants of fat within Haversian 
        systems may indicate PMI≤50yr. 
  Shackleford   Examined thin sections of bone and dentine with electron  Note a collagen periodicity of 640Å in fresh 
  & Wyckoff   microscopy. Samples were collected from nonhuman bone material, with diminishing periodicity as PMI 
  1964   dated to the Miocene, Pleistocene, and Pliocene, as well as  increased. Periodicity around 600Å by 25kya- 
      modern human dentine and modern bovine long bone 1mya (Pleistocene) and 500Å by 13-25mya  
        (Miocene). Technique is best suited for ancient 
        bone. 
  Race et al.   Examined thin sections of bone collected from 14kya human Observed similar decrease in collagen periodicity 
  1968   remains (Nubian desert) with electron microscopy from fresh (640Å) to archaeological (600Å). 
  Yoshino   Human humeri (n=51) placed in three environments:  Superficial damage and shallow bacterial tunneling 
  et al. 1991   surface (33), buried (15), at sea (4). Placed in environments surface sample by 15yr. Extensive superficial and 
      for 15yr, sampled accordingly. Examined with SEM endosteal damage by 5yr on buried samples, with  
      (SE mode) increased tunneling to mid-cortex with longer PMI. 
        Superficial damage on sea samples by 4-5yrs. 

 
Sect. Reference Technique Samples and Methodology Results 
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.2 Bell   Mixed human samples (n=11) from forensic cases; long  General agreement with Yoshini et al. 1991. Noted 
  et al. 1996   bone fragment, ribs, teeth, PMI 3mo-83yr. Cases originated focal demineralization on longbone fragment 
      from terrestrial, intertidal, and lacustrine environs. (terrestrial, PMI=3mos) and a rib (intertidal,  
      Interested in how quickly bone damage may occurring PMI. PMI=15mos). Longbone fragment found in scat 
      Examiner with SEM (BSE)   

.3 Berg 1963 Qual. Review chapter of previously attempted techniques, Longterm burial (arch) in carbonate-heavy soils yield 
    Methods includes reactivity of cortex with 3M HCl (test for soil high reactivity; diminished fluorescence under UV  
      carbonate infiltration), cortical fluorescence under UV with increased PMI (collagen loss), continuous 
      light, cortical specific gravity (SPGR), and cortical staining blue-white fluorescence on newer materials;  
       with Nile Blue and Indophenol SPGR ≤ 1.7g/ml; indicates arch; diminished affinity  
        for Nile Blue with greater PMI (decreased organics) 
        increased affinity for Indophenol (relative increase 
        of mineral content as organics decrease and 
        mineral infiltrates) 
  Knight &   Primarily human long bone cortex (n=68), PMI 1-3000yr.  Staining with Nile Blue/Indophenol and reaction 
  Lauder    Includes cortical staining with Nile Blue and Indophenol, with HCl are poor discriminators; diminished  
  1967   reaction with HCL, nitrogen content in bone powder, nitrogen content with PMI (>3.5gm% indicates <50yr); 
      amino acid (AA) content in bone powder (paper  diminished AA content with increased PMI (>7 AA's 
      chromatography), reaction with benzidine (surfaces  eluted indicates <100yr); positive benzidine reaction 
      and powder) UV cortical fluorescence indicates ≤ 100-150yr; diminished fluorescence with  
        PMI (continuous blue fluorescence generally 
        indicates recent) 
  Bada &   Examination of racemization (conversion) of amino Notes increased ratio of R:L form at longer PMI. 
  Helfman   acids from the typical L-form to the R-form as Racemization highly dependent upon recovery 
  1975   PMI increases environment (e.g. pH, moisture, temperature). Can  
        potentially calibrate with radionuclide data.  
        Technique is only potentially of use when dealing 
        with remains that are 1000s of years old 
  Facchini &   Human femoral shaft cortex (n=71), classes include:  Diminished benzidine reaction (powder) intensity  
  Pettener    1935-45 (10), 1600-1800 (11), 700-1000 CE (10),  as PMI increases, with some false positives in arch 
  1977   100-300 CE (11), 650-450 BCE (20), 1700-1500 BCE (10).  samples (iron oxide infiltration); diminished  
      Tests include: application of benzidine (detect blood)  fluorescence with increased PMI by 200-350yr; 
      to bone powder and whole cortex, cortical fluorescence  decrease SPGR with PMI,  1.9g/ml indicates <350yr, 
      under UV (366nm), and specific gravity (SPGR) 1.5g/ml indicates greater than 1000yr 
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Sect. Reference Technique Samples and Methodology Results 
.4 Introna Luminol Powdered human femoral shaft cortex (n=80). 5 PMI  No reaction >80, Strong reaction ≤ 3yr. Variable 
  et al. 1998   Classes (1mo-3yr, 10-15yr, 25-35, 50-60, >80). Expose  for classes between (some false negatives) 
      powder to luminol, record reaction to video under    
      alternate light examine image pixel variation   
  Ramsthaler   Powdered human femoral shaft cortex (n=80). 4  Strong reaction recent cases. False positives in 
   et al. 2009   classes (For 1995-2002; For 1965-1972; Hx cem 1878-1902;  some hx and arch remains 
      Arch burials 1st-3rd century CE). Expose powder to   
      luminol, view reaction   
  Ramsthaler    Powdered human femoral shaft cortex (n=39),  Positive reaction <10yr; false negative reactions 
  et al. 2011   PMI <10yr-1000+ yr. Expose powder to luminol, view  11-100yr. False positives in 101-1000+ yr, likely due 
      reaction to Fe(III)oxide infiltration 

.5 Ramsthaler  Autofl. Human femoral shaft cortex (n=39). Expose sectioned Overall negative correlation between PMI and 
  et al. 2011   cortex to UV light (254nm, 366nm) fluorescence. Newest bone diminished  
        fluorescence due to grease 
  Hoke    Long bone cortices (n=213), hx/arch (79 human,  Forensic cases generally blue (newer) or mixed.  
  et al. 2013   76 nonhuman), PMI 90-1000+ yr, and degreased forensic  PMI 90-150 cases typically mixed to yellow/brown. 
      cases (58) PMI 8-60yr. Developed index system to classify  PMI 151-1000 increase in amount of Blue,  
      fluorescent color (Blue, Mixed, Yellow/Brown) disappears >1000yr 

.6 Villanueva TGA Human long bone fragments (n=34), primarily modern  Best at differentiating newest cases from ancient 
   et al. 1976   cases (PMI 0-100yr), limited hx/arch. Placed in furnace material 
       and measured mass loss as function of temperature   
  Raja    Porcine ribs recovered from buried swine, PMI 3mos-7rs.  Precipitous mass loss at associated peaks first 2yr 
  et al. 2009   Placed in furnace, measured loss of water (50-200°C),  of PMI. Gradual decrease in mass loss beyond 2yr 
      organics (600°C), and CO2 evolved from apatite   

.7 Schwarcz  Citrate Porcine ribs (7), forensic cases (6, mixed elements),  Loglinear decline of citrate vs. time for porcine bone. 
  et al. 2010   ARF cadaver ribs (3). Porcine ribs buried (6), recovered  Developed a regression. Forensic cases lower 
      at 1mo intervals. Assayed bone citrate in citrate than porcine (extended PMI). 
       samples from procine ribs, forensic samples, ARF Developed a regression to predict PMI from citrate 
       samples. Forensic cases recovered from surface content, suggested further research with much  
        larger sample with broader PMI 
  Kanz    Femoral shaft and temporal squamosa from 20  General overestimation of PMI on bagged remains. 
  et al. 2014   disinterred cemetery burials (n=40), PMI 27-52yr. All  Considerable underestimation of PMI on non- 
      remains unembalmed, in collapsed caskets; half of remains  bagged remains. Suggested further research (buried 
      also in body bags. Assayed bone citrate from selected  research (buried vs. surface) 
      samples, applied regression developed by    
      Schwarcz et al. 2010   
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Sect. Reference Technique Samples and Methodology Results 
.8 Neis Radionucl. Occipital bone (n=9), unburied individuals, deaths Sr90 ranged from high in recent samples to non- 
  et al. 1999   1931-1994. Measured levels of artificial isotope (Sr90)  significant in oldest samples 
      in samples   
  Swift   Femoral shaft samples (n=15) from exhumed cemetery  Po210 decreases with PMI, inverse correlation for 
  et al. 2001   remains that had been moved to ossuaries, PMI 15-77yrs. U234/U238 with PMI. Artificial isotopes (Pu239-240,  
      Examined amount of natural isotope Po210 (decay from   Cs137) only present in those that died after 
      Pb210), ratio of U234/U238, presence of artificial isotopes beginning of nuclear age 
  Schrag   Used vertebrae collected from autopsies (1960-2001) to  Identified 10 cases as non-significant (e.g. hx/arch), 
  et al. 2012   build Sr90 calibration curve ("bomb curve"). Measured  sharpened ranges for other. Noted Sr90 in some arch 
      amount of Sr90 and Po210 in 30 skeletal cases recovered  remains (diagenesis) and leaching of Po210 from 
      from 2001-2009. Used Po210 decrease (Swift et al 2001) to  some forensic cases found on surface (leaching out) 
      target position on Sr90 bomb curve.   
  Speller   Multidisciplinary Case study, juvenile cranium recovered  C14 levels indicated decedent born 1958-1962, death 
  et al. 2012   in 1968. Used C14 from tooth enamel to determine ranges  1963-1968; with bioprofile, search narrowed. ID 
      for birth and death years. Radionuclide data coupled  made via mtDNA comparison, 4.6yr old, missing 
      with mtDNA profile and anthropological profile (filtering) since 1965 (drowning) 

.9 Howe MIR Porcine ribs recovered from buried carcasses,  Observed negative logarithmic relationship 
  et al. 2012   PMI 3-23mos. Examined with FTIR spectrometer, used  between PMI and 1) organic phase, 2) inorganic 
      spectra to examine relationship between PMI and organic  phase. Weak positive relationship between PMI  
      content, carbonate content, and crystallinity index  and CI 
      (CI - crystal ordering)   
  Patonai   Human thoracic vertebrae (n=76). Modern specimens (36)  Both indices could discriminate between the two 
  et al. 2013   from forensic and clinical cases. Arch. (40) with PMI  groups. Higher CI index values observed in arch; 
      approximately 1000-6000yr.Examined with FTIR spectrometer,  higher C/P index values forensic and medical cases.  
      used bands to calculate CI and carbonate/phosphate Separate peak (francolite) indicates arch. 
      (C/P) index   

.10 Dogra NIR Sectioned porcine ribs allowed to decay in lab setting.  Limited success for predictive model (days by 
  2009   Collected daily spectra with NIR spectrometer for 90 days.  spectrum); slightly better on classification model 
      Attempted to build predictive and classification models (month by spectrum).  
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APPENDIX C 

ABSORPTION BANDS FOR RELEVANT FUNCTIONAL GROUPS IN NIR SPECTROSCOPY.
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Appendix C. Absorption bands for relevant functional groups in NIR spectroscopy. Wavelength is in (nm). Image was acquired from ASD PANalytical 
(www.asdi.com). 
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APPENDIX D 

SCATTER-EFFECTS PLOTS GENERATED IN UNSCRAMBLER X 10.4
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Figures D. 1 – D. 10. Scatter effects plots for Set A and Set B samples. Each sample is plotted 
against an average sample. Slope differences are indicative of multiplicative scattering, and 
offset differences indicate additive effects. 
 

 
Figure D. 1. Scatter effects plot for the full Set A analysis set (n=314), raw 460-2360nm selected. Slope and offset 
differences indicate multiplicative and additive scattering. 
 

 
Figure D. 2. Scatter effects plot for the Set A two-class forensic/non-forensic model training set (n=220), raw 460-
2360nm selected. Slope and offset differences indicate multiplicative and additive scattering. 
 

 
Figure D. 3. Scatter effects plot for the Set A two-class forensic/non-forensic model training set (n=220), SNV-
transformed 460-2360nm selected. Slope and offset differences are partially corrected following transformation. 
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Figure D. 4. Scatter effects plot for the Set A two-class forensic/non-forensic model training set (n=220), SG1-
transformed 1400-2200nm selected. Slope and offset differences are partially corrected following transformation. 
 

 
Figure D. 5. Scatter effects plot for the Set A two-class forensic/non-forensic model training set (n=220), SG2-
transformed 1400-2200nm selected. Slope and offset differences are partially corrected following transformation. 
 
 

 
Figure D. 6. Scatter effects plot for the full Set B analysis set (n=223), raw 460-2360nm selected. Slope and offset 
differences indicate multiplicative and additive scattering. 
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Figure D. 7. Scatter effects plot for the Set B two-class forensic/non-forensic model training set (n=157), raw 460-
2360nm selected. Slope and offset differences indicate multiplicative and additive scattering. 

 

 
Figure D. 8. Scatter effects plot for the Set B two-class forensic/non-forensic model training set (n=157), SNV-
transformed 460-2360nm selected. Slope and offset differences are partially corrected following transformation. 
 

 
Figure D. 9. Scatter effects plot for the Set B two-class forensic/non-forensic model training set (n=157), SG1-
transformed 1400-2200nm selected. Slope and offset differences are partially corrected following transformation. 
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Figure D. 10. Scatter effects plot for the Set B two-class forensic/non-forensic model training set (n=157), SG2-
transformed 1400-2200nm selected. Slope and offset differences are partially corrected following transformation. 
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APPENDIX E 

TRAINING AND TEST SAMPLES USED FOR MODEL CONSTRUCTION AND EXTERNAL VALIDATION
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Tables E. 1 – E. 6. Selected training and test set samples used for model building and external 
validation. Class assignments are as follows: 1) Two-class forensic/non-forensic models (Class 0 
= forensic, Class 1 = non-forensic); 2) Three-class models (Class 0 = PMI days – 4.9 years, Class 1 
= PMI 5 – 71 years, Class 2 = PMI 500 –  900 years); 3) Two-class forensic models (Class 0 = PMI 
days – 4.9 years, Class 1 = 5 – 71 years). 
 
Table E. 1. Training and test set samples for two-class forensic samples models. Spectra were 
collected from the longitudinally-cut surface (Group A). 

Training Set   
Class 0 Class 1   

5 93 222 31   
6 108 223 42   

17 135 226 75   
32 147 229 77   
38 158 232 125   
45 205 234 198   
65 206 329 220   
66 210   228   
67 212   322   
81 214   324   
82 215   333   

Test Set   
4 70 225 23   

33 72 313 144   
34 91 325 209   
40 109 332 217   
41 197   309   
44 201   311   
49 216   323   
64 224   334   

 
 
 
 
 
 
 
 
 
 
 
 
    

 
 
 
 
 
 
 
 
 
 
 
 
  



138 

 
Table E. 2. Training and test set samples for three -class forensic models. Spectra were collected 
from the longitudinally-cut surface (Group A). 

Training Set  
Class 0 Class 1 Class 2  

5 93 222 31 288  
6 108 223 42 301  

17 135 226 75 302  
32 147 229 77 303  
38 158 232 125    
45 205 234 198    
65 206 329 220    
66 210   228    
67 212   322    
81 214   324    
82 215   333    

Test Set  
4 70 225 23 294  

33 72 313 144 297  
34 91 325 209 300  
40 109 332 217    
41 197   309    
44 201   311    
49 216   323    
64 224   334    
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Table E. 3. Training and test set samples for two-class forensic/non-forensic models. Spectra 
were collected from the longitudinally-cut surface (Group A). 

Training Set 
Class 0 Class 1 

2 38 77 121 153 234 316 134 273 
3 39 84 122 154 238 317 162 274 
4 40 86 123 155 240 320 165 275 
5 42 87 125 156 242 321 168 276 
6 45 89 126 158 245 322 169 277 
7 46 90 127 194 246 323 171 281 
8 47 91 128 195 251 324 175 284 
9 49 94 129 196 253 325 176 285 

10 50 95 130 197 255 327 177 288 
11 51 96 131 201 256 328 178 289 
15 52 97 132 202 257 329 179 290 
17 53 99 135 205 258 330 180 292 
19 55 100 136 211 259 331 181 293 
20 56 101 137 213 260 332 182 294 
21 57 103 138 214 261 334 183 296 
22 58 104 139 215 263 335 184 297 
23 59 105 140 217 267 336 186 299 
25 60 108 142 221 280 338 189 300 
26 61 110 144 222 286 339 190 301 
28 68 111 146 224 309 340 233 303 
29 69 114 147 226 311 341 248   
32 71 115 148 227 312 342 249   
33 72 116 150 229 313 343 266   
34 73 117 151 230 314 344 270   
36 75 119 152 232 315   271   

Test Set 
1 48 78 106 157 210 252 133 278 

13 54 79 107 159 212 254 166 279 
14 62 80 109 160 216 262 167 282 
18 63 81 112 161 218 264 170 283 
24 64 82 118 198 220 287 187 291 
27 65 85 120 200 223 310 188 295 
31 66 88 124 204 225 318 191 298 
37 67 92 141 206 228 319 219 302 
41 70 93 143 207 231 333 250   
43 74 98 145 208 235   269   
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44 76 102 149 209 237   272   
 

Table E. 4. Training and test set samples for two-class forensic samples models. Spectra were 
collected from the longitudinally-cut surface (Group B). 

Training Set 
Class 0 Class 1 

5 67 23 
6 70 31 

12 82 77 
17 91 125 
33 93 144 
41 135   
65 147   
66 158   

Test Set 
4 64 42 

32 72 75 
38 81 334 
40 92   
49 325   

 

Table E. 5. Training and test set samples for three -class forensic models. Spectra were collected 
from the longitudinally-cut surface (Group B). 

Training Set 
Class 0 Class 1 Class 2 

5 67 23 166 
6 70 31 171 

12 82 77 185 
17 91 125 219 
33 93 144   
41 135     
65 147     
66 158     

Test Set 
4 64 42 186 

32 72 75 188 
38 81 334 281 
40 92     
49 325     
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Table E. 6. Training and test set samples for two-class forensic/non-forensic models. Spectra 
were collected from the longitudinally-cut surface (Group B). 

Training Set 
Class 0 Class 1 

2 33 62 90 117 145 255 133 190 
4 35 63 91 118 146 256 134 191 
5 37 64 93 119 147 259 162 219 
6 38 65 95 123 149 261 163 233 
8 39 67 96 125 150 262 168 266 

12 45 69 97 126 151 263 170 281 
13 47 70 98 127 152 267 173   
14 48 71 101 128 153 286 174   
15 51 73 102 129 154 318 175   
17 52 74 104 130 156 325 177   
18 53 75 105 131 157 334 178   
19 54 76 107 132 158 336 180   
20 55 78 108 135 161 339 182   
21 56 79 110 136 200 340 183   
22 57 80 111 137 246 341 184   
23 58 81 112 140 247 342 185   
25 59 85 113 141 251 343 186   
27 60 86 115 142 253 344 188   
32 61 87 116 143 254   189   

Test Set 
1 28 44 82 103 138 245 164 181 
3 29 46 84 106 139 252 165 187 
7 31 49 88 109 144 257 166   
9 36 50 89 114 148 264 167   

10 40 66 92 120 155 265 169   
11 41 68 94 121 159 335 171   
24 42 72 99 122 160 337 176   
26 43 77 100 124 211 338 179   
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APPENDIX F 

CLASSIFICATION MODELS THAT WERE NOT REPORTED IN CHAPTER 5
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Tables F. 1 – F. 8. Remaining models not reported in the Results Section, including models 
constructed on raw and transformed spectral data.  
 
Table F. 1. Tables are separated by model type, including a) two-class models (forensic/non-
forensic), b) two-class models (forensic samples only), and c) three-class models. Numbers in   
“( )” represent the number of components or factors used in a given model. Cells in white 
represent cross-validated model accuracies as a percentage (LDA-PCA and SVM-PCA) or as 
RMSECV and R2 for PLSDA. Areas in grey represent accuracies (%) from model application to the 
test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 95.8 (2) Model: 96.8 (2) RMSE = 0.2259 (2) RMSE = 0.2434 (2) Overall = 61.7 

      R2 = 0.6873 R2 = 0.9258 Class 0 = 57.3 
  (2) Overall = 95.7 (2) Overall = 90.4 (2) Overall = 95.7 (2) Overall = 92.5 Class 1 = 79.0 
  Class 0 = 98.7 Class 0 = 98.6 Class 0 = 98.6 Class 0 = 97.3 Both = 35.1 
  Class 1 = 84.2 Class 1 = 57.9 Class 1 = 57.9 Class 1 = 73.7 Neither = 2.1 
B Model: 95.5 (3) Model: 96.8 (2) RMSE = 0.1948 (3) RMSE = 0.2092 (3) Overall = 36.4 

      R2 = 0.7165 R2 = 0.9479 Class 0 = 33.9 
  (2) Overall = 90.9 (2) Overall = 83.3 (3) Overall = 86.4 (3) Overall = 92.3 Class 1 = 50.0 
  Class 0 = 96.4 Class 0 = 96.4 Class 0 = 96.4 Class 0 = 98.2 Both = 53.0 
  Class 1 = 60.0 Class 1 = 10.0 Class 1 = 30.0 Class 1 = 50.0 Neither = 4.6 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 90.0 (2) Model: 87.5 (2) RMSE = 0.3484 (2) RMSE = 0.3415 (3) Overall = 50.0 

      R2 = 0.3912 R2 = 0.8164 Class 0 = 65.0 
  (2) Overall = 85.7 (2) Overall = 67.9 (1) Overall = 75.0 (3) Overall = 84.1 Class 1 = 12.5 
  Class 0 = 90.0 Class 0 = 95.0 Class 0 = 80.0 Class 0 = 95.0 Both = 28.6 
  Class 1 = 75.0 Class 1 = 0.0 Class 1 = 62.5 Class 1 = 50.0 Neither = 14.3 
B Model: 90.0 (2) Model: 95.0 (3) RMSE = 0.2943 (3) RMSE = 0.3481 (1) Overall = 38.5 

      R2 = 0.5382 R2 = 0.8485 Class 0 = 40.0 
  (2) Overall = 84.6 (2) Overall = 69.2 (3) Overall = 92.3 (1) Overall = 76.9 Class 1 = 33.3 
  Class 0 = 90.0 Class 0 = 90.0 Class 0 = 90.0 Class 0 = 100.0 Both = 30.8 
  Class 1 = 66.7 Class 1 = 0.0 Class 1 = 100.0 Class 1 = 0.0 Neither = 23.1 
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c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 88.6 (3) Model: 88.6 (2) Cl 0: RMSE = 0.3203 Cl 0: RMSE = 0.3910 Overall = 54.8 

           (5) R2 = 0.5435       (3) R2 = 0.3885 Class 0 = 65.0 
      Cl 1: RMSE = 0.3240 Cl 1: RMSE = 0.3556 Class 1 = 12.5 

           (5) R2 = 0.4401       (3) R2 = 0.8082 Class 2 = 100.0 
      Cl 2: RMSE = 0.0999 Cl 2: RMSE = 0.1041 Both = 29.0 
           (5) R2 = 0.8062       (3) R2 = 0.8808 Neither = 9.7 
  (2) Overall = 87.1 (2) Overall = 67.4 (5) Overall = 83.9 (6) Overall = 80.7   
  Class 0 = 90.0 Class 0 = 95.0 Class 0 = 95.0 Class 0 = 95.0   
  Class 1 = 75.0 Class 1 = 0.0 Class 1 = 50.0 Class 1 = 37.5   
  Class 2 = 100.0 Class 2 = 66.7 Class 2 = 100.0 Class 2 = 100.0   
B Model: 88.0 (2) Model: 96.0 (2) Cl 0: RMSE = 0.3312 Cl 0: RMSE = 0.3699 Overall = 43.8 

           (2) R2 = 0.5241       (3) R2 = 0.3160 Class 0 = 40.0 
      Cl 1: RMSE = 0.3689 Cl 1: RMSE = 0.3292 Class 1 = 33.3 
           (2) R2 = 0.1493       (3) R2 = 0.8307 Class 2 = 66.7 
      Cl 2: RMSE = 0.0729 Cl 2: RMSE = 0.1124 Both = 25.0 

           (2) R2 = 0.9605       (3) R2 = 0.9210 Neither = 25.0 
  (2) Overall = 87.1 (2) Overall = 87.5 (2) Overall = 81.3 (3) Overall = 75.0   
  Class 0 = 90.0 Class 0 = 90.0 Class 0 = 100.0 Class 0 = 100.0   
  Class 1 = 75.0 Class 1 = 66.7 Class 1 = 0.0 Class 1 = 0.0   
  Class 2 = 100.0 Class 2 = 100.0 Class 2 = 100.0 Class 2 = 66.7   
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Table F. 2. Model and test set classification accuracies for SNV-transformed data (1400-
2200nm) presented by Study Set (A and B). Tables are separated by model type, including a) 
two-class models (forensic/non-forensic), b) two-class models (forensic samples only), and c) 
three-class models. Numbers in “( )” represent the number of components or factors used in a 
given model. Cells in white represent cross-validated model accuracies as a percentage (LDA-
PCA and SVM-PCA) or as RMSECV and R2 for PLSDA. Areas in grey represent accuracies (%) from 
model application to the test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 94.5 (2) Model: 95.9 (2) RMSE = 0.2371 (2) RMSE = 0.2284 (4) Overall = 40.4 

     R2 = 0.6557 R2 = 0.9347 Class 0 = 25.3 
  (2) Overall = 95.7 (2) Overall = 95.7 (2) Overall = 96.8 (4) Overall = 94.7 Class 1 = 100 
  Class 0 = 98.7 Class 0 = 98.7 Class 0 = 100 Class 0 = 100 Both = 53.2 
  Class 1 = 84.2 Class 1 = 84.2 Class 1 = 84.2 Class 1 = 78.9 Neither = 1.1 
B Model: 94.3 (2) Model: 96.2 (2) RMSE = 0.2139 (2) RMSE = 0.2379 (2) Overall = 56.1 

      R2 = 0.6583 R2 = 0.6444 Class 0 = 57.1 
  (2) Overall = 89.4 (2) Overall = 89.4 (2) Overall = 87.9 (2) Overall = 92.3 Class 1 = 50.0 
  Class 0 = 100.0 Class 0 = 94.6 Class 0 = 98.2 Class 0 = 100.0 Both = 39.4 
  Class 1 = 30 Class 1 = 50.0 Class 1 = 30.0 Class 1 = 40.0 Neither = 3.0 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 80.0 (3) Model: 87.5 (2) RMSE = 0.3712 (1) RMSE = 0.3551 (4) Overall = 32.1 

      R2 = 0.3879 R2 = 0.8201 Class 0 = 45.0 
  (2) Overall = 82.1 (2) Overall = 75.0 (1) Overall = 85.7 (4) Overall = 78.6 Class 1 = 0.0 
  Class 0 = 100.0 Class 0 = 90.0 Class 0 = 100.0 Class 0 = 85.0 Both = 35.7 
  Class 1 = 37.5 Class 1 = 37.5 Class 1 = 37.5 Class 1 = 62.5 Neither = 28.6 
B Model: 80.0 (3) Model: 85.0 (5) RMSE = 0.2951 (4) RMSE = 0.4002 (1) Overall = 15.4 

      R2 = 0.5355 R2 = 0.7998 Class 0 = 10.0 
  (2) Overall = 84.6 (2) Overall = 84.6 (4) Overall = 84.6 (1) Overall = 76.9 Class 1 = 33.3 
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 80.0 Class 0 = 100.0 Both = 61.5 
  Class 1 = 66.7 Class 1 = 33.3 Class 1 = 100.0 Class 1 = 0.0 Neither = 23.1 
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c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 77.3(2) Model: 84.1 (2) Cl 0: RMSE = 0.3632 Cl 0: RMSE = 0.3272 Overall = 38.7 
           (2) R2 = 0.4130      (6) R2 = 0.5717 Class 0 = 45.0 
      Cl 1: RMSE = 0.3843 Cl 1: RMSE = 0.3242 Class 1 = 0.0 

           (2) R2 = 0.2122      (6) R2 = 0.8405 Class 2 = 100.0 
      Cl 2: RMSE = 0.1092 Cl 2: RMSE = 0.0411 Both = 53.2 

           (2) R2 = 0.8557      (6) R2 = 0.9814 Neither = 1.1 
  (2) Overall = 83.9 (2) Overall = 83.9 (2) Overall = 77.4 (6) Overall = 83.9   
  Class 0 = 100.0 Class 0 = 100.0 Class 0 = 100.0 Class 0 = 95.0   
  Class 1 = 37.5 Class 1 = 37.5 Class 1 = 12.5 Class 1 = 50.0   
  Class 2 = 100.0 Class 2 = 100.0 Class 2 = 100.0 Class 2 = 100.0   
B Model: 88.0 (2) Model: 88.0 (2) Cl 0: RMSE = 0.3362 Cl 0: RMSE = 0.3949 Overall = 18.75 

           (3) R2 = 0.5094      (2) R2 = 0.2201 Class 0 = 10.0 
      Cl 1: RMSE = 0.3473 Cl 1: RMSE = 0.3798 Class 1 = 0.0 

           (3) R2 = 0.2464      (2) R2 = 0.7746 Class 2 = 66.7 
      Cl 2: RMSE = 0.0686 Cl 2: RMSE = 0.0884 Both = 56.3 

           (3) R2 = 0.9469      (2) R2 = 0.9512 Neither = 25.0 
  (2) Overall = 83.9 (2) Overall = 81.3 (3) Overall = 81.3 (2) Overall = 75.0   
  Class 0 = 100.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 100.0   
  Class 1 = 37.5 Class 1 = 33.3 Class 1 = 66.7 Class 1 = 0.0   
  Class 2 = 100.0 Class 2 = 66.7 Class 2 = 66.7 Class 2 = 66.7   
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Table F. 3. Model and test set classification accuracies for SNV-transformed data (1425-
1750nm) presented by Study Set (A and B). Tables are separated by model type, including a) 
two-class models (forensic/non-forensic), b) two-class models (forensic samples only), and c) 
three-class models. Numbers in “( )” represent the number of components or factors used in a 
given model. Cells in white represent cross-validated model accuracies as a percentage (LDA-
PCA and SVM-PCA) or as RMSECV and R2 for PLSDA. Areas in grey represent accuracies (%) from 
model application to the test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 95.0 (2) Model: 94.5 (2) RMSE = 0.2361 (1) RMSE = 0.2453 (2) Overall = 24.5 

     R2 = 0.6586 R2 = 0.9247 Class 0 = 6.7 
  (2) Overall = 95.7 (2) Overall = 95.7 (1) Overall = 95.8 (2) Overall = 94.7 Class 1 = 94.7 
  Class 0 = 98.7 Class 0 = 98.7 Class 0 = 98.7 Class 0 = 100 Both = 70.2 
  Class 1 = 84.2 Class 1 = 84.2 Class 1 = 84.2 Class 1 = 78.9 Neither = 1.1 
B Model: 94.3 (2) Model: 95.5 (2) RMSE = 0.2144 (1) RMSE = 0.2129 (3) Overall = 22.7 

      R2 = 0.6567 R2 = 0.9461 Class 0 = 16.1 
  (2) Overall = 90.9 (2) Overall = 90.9 (2) Overall = 87.9 (3) Overall = 92.3 Class 1 = 60.0 
  Class 0 = 98.2 Class 0 = 96.4 Class 0 = 98.2 Class 0 = 100.0 Both = 69.7 
  Class 1 = 50.0 Class 1 = 60.0 Class 1 = 30.0 Class 1 = 40.0 Neither = 3.0 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 80.0 (2) Model: 82.5 (2) RMSE = 0.3809 (1) RMSE = 0.3295 (5) Overall = 35.7 

      R2 = 0.2725 R2 = 0.8503 Class 0 = 50.0 
  (2) Overall = 82.1 (2) Overall = 82.1 (1) Overall = 82.1 (5) Overall = 82.1 Class 1 = 0.0 
  Class 0 = 100.0 Class 0 = 100.0 Class 0 = 100.0 Class 0 = 95.0 Both = 50.0 
  Class 1 = 37.5 Class 1 = 37.5 Class 1 = 37.5 Class 1 = 50.0 Neither = 10.7 
B Model: 85.0 (2) Model: 85.0 (2) RMSE = 0.2852 (4) RMSE = 0.3292 (3) Overall = 7.7 

      R2 = 0.5662 R2 = 0.8646 Class 0 = 0.0 
  (2) Overall = 84.6 (2) Overall = 84.6 (4) Overall = 92.3 (3) Overall = 76.9 Class 1 = 33.3 
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 90.0 Both = 61.5 
  Class 1 = 66.7 Class 1 = 33.3 Class 1 = 100.0 Class 1 = 33.3 Neither = 30.8 
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c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 81.8 (2) Model: 84.1 (2) Cl 0: RMSE = 0.3547 Cl 0: RMSE = 0.3288 Overall = 41.9 
           (3) R2 = 0.4401      (5) R2 = 0.5677 Class 0 = 50.0 
      Cl 1: RMSE = 0.3567 Cl 1: RMSE = 0.3244 Class 1 = 0.0 

           (3) R2 = 0.3214      (5) R2 = 0.8403 Class 2 = 100.0 
      Cl 2: RMSE = 0.0601 Cl 2: RMSE = 0.0487 Both = 45.2 

           (3) R2 = 0.9563      (5) R2 = 0.9739 Neither = 9.7 
  (2) Overall = 83.9 (2) Overall = 83.9 (3) Overall = 83.9 (5) Overall = 80.7   
  Class 0 = 100.0 Class 0 = 100.0 Class 0 = 100.0 Class 0 = 100.0   
  Class 1 = 37.5 Class 1 = 37.5 Class 1 = 37.5 Class 1 = 25.0   
  Class 2 = 100.0 Class 2 = 100.0 Class 2 = 100.0 Class 2 = 100.0   
B Model: 88.0 (2) Model: 88.0 (2) Cl 0: RMSE = 0.3162 Cl 0: RMSE = 0.3043 Overall = 18.5 

           (4) R2 = 0.5659      (5) R2 = 0.5369 Class 0 = 10.0 
      Cl 1: RMSE = 0.3212 Cl 1: RMSE = 0.2895 Class 1 = 0.0 

           (4) R2 = 0.3553      (5) R2 = 0.8691 Class 2 = 66.7 
      Cl 2: RMSE = 0.0611 Cl 2: RMSE = 0.0559 Both = 56.3 

           (4) R2 = 0.9722      (5) R2 = 0.9805 Neither = 25.0 
  (2) Overall = 83.9 (2) Overall = 81.3 (4) Overall = 87.5 (5) Overall = 87.5   
  Class 0 = 100.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 100.0   
  Class 1 = 37.5 Class 1 = 33.3 Class 1 = 100.0 Class 1 = 33.3   
  Class 2 = 100.0 Class 2 = 66.7 Class 2 = 66.7 Class 2 = 100.0   
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Table F. 4. Model and test set classification accuracies for SNV-transformed data (460-2360nm) 
presented by Study Set (A and B). Tables are separated by model type, including a) two-class 
models (forensic/non-forensic), b) two-class models (forensic samples only), and c) three-class 
models.  Numbers in “( )” represent the number of components or factors used in a given 
model. Cells in white represent cross-validated model accuracies as a percentage (LDA-PCA and 
SVM-PCA) or as RMSECV and R2 for PLSDA. Areas in grey represent accuracies (%) from model 
application to the test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 94.5 (2) Model: 95.0 (2) RMSE = 0.2217 (2) RMSE = 0.2542 (2) Overall = 26.6 

      R2 = 0.6988 R2 = 0.9191 Class 0 = 10.7 
  (2) Overall = 95.8 (2) Overall = 95.4 (2) Overall = 95.7 (2) Overall = 94.7 Class 1 = 89.5 
  Class 0 = 98.7 Class 0 = 98.7 Class 0 = 98.7 Class 0 = 100 Both = 86.7 
  Class 1 = 84.2 Class 1 = 84.2 Class 1 = 84.2 Class 1 = 78.9 Neither = 0.0 
B Model: 95.5 (2) Model: 96.8 (2) RMSE = 0.1899 (2) RMSE = 0.2013 (2) Overall = 42.4 

      R2 = 0.7306 R2 = 0.7456 Class 0 = 39.3 
  (2) Overall = 90.9 (2) Overall = 89.4 (2) Overall = 89.4 (2) Overall = 90.8 Class 1 = 60.0 
  Class 0 = 96.4 Class 0 = 94.6 Class 0 = 96.4 Class 0 = 100.0 Both = 45.5 
  Class 1 = 60.0 Class 1 = 60.0 Class 1 = 50.0 Class 1 = 30.0 Neither = 3.0 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 80.0 (4) Model: 87.5 (2) RMSE = 0.3712 (1) RMSE = 0.3705 (2) Overall = 10.7 

      R2 = 0.3089 R2 = 0.8107 Class 0 = 10.0 
  (2) Overall = 85.7 (2) Overall = 75.0 (1) Overall = 85.7 (2) Overall = 85.7 Class 1 = 12.5 
  Class 0 = 100.0 Class 0 = 95.0 Class 0 = 95.0 Class 0 = 95.0 Both = 60.7 
  Class 1 = 50.0 Class 1 = 25.0 Class 1 = 62.5 Class 1 = 62.5 Neither = 25.0 
B Model: 85.0 (2) Model: 85.0 (5) RMSE = 0.3666 (1) RMSE = 0.3992 (1) Overall = 15.4 

      R2 = 0.2833 R2 = 0.8008 Class 0 = 0.0 
  (2) Overall = 76.9 (2) Overall = 76.9 (1) Overall = 84.6 (1) Overall = 76.9 Class 1 = 66.7 
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 100.0 Both = 61.5 
  Class 1 = 66.7 Class 1 = 0.0 Class 1 = 66.7 Class 1 = 0.0 Neither = 15.4 

 

 

 

 

 



150 

 

c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model: 77.3(2) Model: 93.2 (2) Cl 0: RMSE = 0.3224 Cl 0: RMSE = 0.3265 Overall = 19.3 
           (4) R2 = 0.5373      (5) R2 = 0.5737 Class 0 = 10.0 
      Cl 1: RMSE = 0.3329 Cl 1: RMSE = 0.3277 Class 1 = 12.5 

           (4) R2 = 0.4088      (5) R2 = 0.8370 Class 2 = 100.0 
      Cl 2: RMSE = 0.0987 Cl 2: RMSE = 0.0.085 Both = 41.9 

           (4) R2 = 0.8825      (5) R2 = 0.9202 Neither = 12.9 
  (2) Overall = 83.9 (2) Overall = 74.2 (4) Overall = 80.7 (5) Overall = 80.7   
  Class 0 = 95.0 Class 0 = 90.0 Class 0 = 100.0 Class 0 = 100.0   
  Class 1 = 50.0 Class 1 = 37.5 Class 1 = 25.0 Class 1 = 25.0   
  Class 2 = 100.0 Class 2 = 66.7 Class 2 = 100.0 Class 2 = 100.0   
B Model: 88.0 (2) Model: 88.0 (2) Cl 0: RMSE = 0.3431 Cl 0: RMSE = 0.3920 Overall = 12.5 

           (2) R2 = 0.4892      (2) R2 = 0.2316 Class 0 = 0.0 
      Cl 1: RMSE = 0.3602 Cl 1: RMSE = 0.3826 Class 1 = 0.0 

           (2) R2 = 0.1889      (2) R2 = 0.7713 Class 2 = 66.7 
      Cl 2: RMSE = 0.0575 Cl 2: RMSE = 0.0600 Both = 62.5 

           (2) R2 = 0.9754      (2) R2 = 0.9775 Neither = 18.8 
  (2) Overall = 83.9 (2) Overall = 75 (2) Overall = 87.5 (2) Overall = 75.0   
  Class 0 = 95.0 Class 0 = 100.0 Class 0 = 100.0 Class 0 = 100.0   
  Class 1 = 50.0 Class 1 = 0.0 Class 1 = 66.7 Class 1 = 0.0   
  Class 2 = 100.0 Class 2 = 66.7 Class 2 = 66.7 Class 2 = 66.7   
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Table F. 5. Model and test set classification accuracies for Savitzky-Golay first derivative 
transformed data (1400-2200nm) presented by Study Set (A and B). Tables are separated by 
model type, including a) two-class models (forensic/non-forensic), b) two-class models (forensic 
samples only), and c) three-class models. Numbers in “( )” represent the number of 
components or factors used in a given model. Cells in white represent cross-validated model 
accuracies as a percentage (LDA-PCA and SVM-PCA) or as RMSECV and R2 for PLSDA. Areas in 
grey represent accuracies (%) from model application to the test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 91.3 (2) Model: 79.5 (2) RMSE = 0.2263 (3) RMSE = 0.2149 (7) Overall = 48.9 
     R2 = 0.6864 R2 = 0.9422 Class 0 = 42.7 
  (2) Overall = 91.5 (2) Overall = 79.8 (3) Overall = 95.8 (7) Overall = 95.7 Class 1 = 73.7 
  Class 0 = 93.3 Class 0 = 100 Class 0 = 100 Class 0 = 98.6 Both = 43.6 
  Class 1 = 84.2 Class 1 = 0 Class 1 = 78.9 Class 1 = 84.2 Neither = 6.4 
B Model 94.3 (2) Model: 84.1 (2) RMSE = 0.1838 (6) RMSE = 0.1975 (5) Overall = 21.2 

      R2 = 0.7478 R2 = 0.9536 Class 0 = 17.9 
  (2) Overall = 90.9 (2) Overall = 84.8 (3) Overall = 89.4 (5) Overall = 92.3 Class 1 = 40.0 
  Class 0 = 100.0 Class 0 = 100.0 Class 0 = 98.2 Class 0 = 100.0 Both = 71.2 
  Class 1 = 40.0 Class 1 = 0.0 Class 1 = 40.0 Class 1 = 40.0 Neither = 6.1 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 82.5 (3) Model: 72.5 (2) RMSE = 0.3655 (3) RMSE = 0.3745 (3) Overall = 28.6 

      R2 = 0.3300 R2 = 0.8066 Class 0 = 35.0 
  (2) Overall = 82.1 (2) Overall = 71.4 (3) Overall = 82.1 (3) Overall = 75.0 Class 1 = 12.5 
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 100.0 Both = 46.4 
  Class 1 = 62.5 Class 1 = 0.0 Class 1 = 62.5 Class 1 = 12.5 Neither = 10.7 
B Model 95.0 (3) Model: 75.0 (3) RMSE = 0.3279 (2) RMSE = 0.2785 (4) Overall = 7.7 
      R2 = 0.4265 R2 = 0.9031 Class 0 = 10.0 
  (2) Overall = 92.3 (2) Overall = 76.9 (2) Overall = 92.3 (4) Overall = 92.3 Class 1 = 0.0 
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 90.0 Both = 61.5 
  Class 1 = 100.0 Class 1 = 0.0 Class 1 = 100.0 Class 1 = 100.0 Neither = 30.8 
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c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 75.0 (2) Model: 65.9 (2) Cl 0: RMSE = 0.3555 Cl 0: RMSE = 0.3961 Overall = 41.9 

           (3) R2 = 0.4376      (4) R2 = 0.3723 Class 0 = 50.0 
      Cl 1: RMSE = 0.3927 Cl 1: RMSE = 0.3560 Class 1 = 12.5 

           (3) R2 = 0.1774      (4) R2 = 0.8078 Class 2 = 66.7 
      Cl 2: RMSE = 0.1260 Cl 2: RMSE = 0.1523 Both = 32.3 
           (3) R2 = 0.8079      (4) R2 = 0.7450 Neither = 12.9 
  (2) Overall = 74.2 (2) Overall = 64.5 (3) Overall = 71.0 (4) Overall = 64.5   
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 95.0   
  Class 1 = 25.0 Class 1 = 0.0 Class 1 = 12.5 Class 1 = 12.5   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 0.0   
B Model 76.0 (2) Model: 64.0 (2) Cl 0: RMSE = 0.2872 Cl 0: RMSE = 0.2840 Overall = 12.5 

           (4) R2 = 0.6420      (4) R2 = 0.5968 Class 0 = 10.0 
      Cl 1: RMSE = 0.2807 Cl 1: RMSE = 0.2887 Class 1 = 0.0 
           (4) R2 = 0.5075      (4) R2 = 0.8698 Class 2 = 33.3 
      Cl 2: RMSE = 0.0684 Cl 2: RMSE = 0.1597 Both = 25.0 

           (4)  R2 = 0.9652      (4) R2 = 0.8406 Neither = 25.0 
  (2) Overall = 74.2 (2) Overall = 62.5 (4) Overall = 93.8 (4) Overall = 87.5   
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 90.0   
  Class 1 = 25.0 Class 1 = 0.0 Class 1 = 100.0 Class 1 = 100.0   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 66.7   
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Table F. 6. Model and test set classification accuracies for Savitzky-Golay first derivative 
transformed data (1120-1185, 1530-1720nm) presented by Study Set (A and B). Tables are 
separated by model type, including a) two-class models (forensic/non-forensic), b) two-class 
models (forensic samples only), and c) three-class models. Numbers in “( )” represent the 
number of components or factors used in a given model. Cells in white represent cross-
validated model accuracies as a percentage (LDA-PCA and SVM-PCA) or as RMSECV and R2 for 
PLSDA. Areas in grey represent accuracies (%) from model application to the test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 95.4 (4) Model: 79.5 (2) RMSE = 0.2284 (2) RMSE = 0.2213 (5) Overall = 41.5 
     R2 = 0.6806 R2 = 0.9387 Class 0 = 33.3 
  (4) Overall = 97.9 (2) Overall = 79.8 (2) Overall = 95.8 (5) Overall = 94.7 Class 1 = 73.7 
  Class 0 = 100 Class 0 = 100 Class 0 = 100 Class 0 = 100 Both = 51.1 
  Class 1 = 89.5 Class 1 = 0 Class 1 = 78.9 Class 1 = 73.7 Neither = 6.4 
B Model 94.3 (2) Model: 84.1 (2) RMSE = 0.2259 (2) RMSE = 0.2186 (3) Overall = 48.5 

      R2 = 0.6189 R2 = 0.9432 Class 0 = 51.8 
  (2) Overall = 90.9 (2) Overall = 84.8 (3) Overall = 90.9 (3) Overall = 92.3 Class 1 = 30.0 
  Class 0 = 98.2 Class 0 = 100.0 Class 0 = 98.2 Class 0 = 100.0 Both = 47.0 
  Class 1 = 50.0 Class 1 = 0.0 Class 1 = 50.0 Class 1 = 40.0 Neither = 3.0 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 77.5 (3) Model: 72.5 (2) RMSE = 0.3984 (1) RMSE = 0.3466 (5) Overall = 42.9 

      R2 = 0.2038 R2 = 0.8343 Class 0 = 60.0 
  (2) Overall = 78.6 (2) Overall = 71.4 (1) Overall = 64.3 (5) Overall = 82.1 Class 1 = 0.0 
  Class 0 = 85.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 95.0 Both = 35.7 
  Class 1 = 62.5 Class 1 = 0.0 Class 1 = 0.0 Class 1 = 50.0 Neither = 3.6 
B Model 90.0 (3) Model: 75.0 (4) RMSE = 0.2935 (2) RMSE = 0.3618 (1) Overall = 46.2 
      R2 = 0.5405 R2 = 0.8361 Class 0 = 50.0 
  (2) Overall = 84.6 (2) Overall = 76.9 (2) Overall = 92.3 (1) Overall = 76.9 Class 1 = 33.3 
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 100.0 Both = 46.2 
  Class 1 = 100.0 Class 1 = 0.0 Class 1 = 100.0 Class 1 = 0.0 Neither = 7.7 
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c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 81.8 (2) Model: 65.9 (2) Cl 0: RMSE = 0.3805 Cl 0: RMSE = 0.3315 Overall = 41.9 

           (2) R2 = 0.3556      (6) R2 = 0.5604 Class 0 = 55.0 
      Cl 1: RMSE = 0.4003 Cl 1: RMSE = 0.3243 Class 1 = 0.0 

           (2) R2 = 0.1455      (6) R2 = 0.8405 Class 2 = 66.7 
      Cl 2: RMSE = 0.0911 Cl 2: RMSE = 0.1036 Both = 32.3 
           (2) R2 = 0.8996      (6) R2 = 0.8819 Neither = 19.4 
  (2) Overall = 74.2 (2) Overall = 64.5 (2) Overall = 67.7 (6) Overall = 83.9   
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 95.0   
  Class 1 = 50.0 Class 1 = 0.0 Class 1 = 0.0 Class 1 = 50.0   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 100.0   
B Model 92.0 (2) Model: 64.0 (2) Cl 0: RMSE = 0.2790 Cl 0: RMSE = 0.316 Overall = 37.5 

           (4) R2 = 0.6622      (6) R2 = 0.5176 Class 0 = 50.0 
      Cl 1: RMSE = 0.3172 Cl 1: RMSE = 0.2718 Class 1 = 0.0 
           (4) R2 = 0.3713      (6) R2 = 0.8846 Class 2 = 33.3 
      Cl 2: RMSE = 0.0788 Cl 2: RMSE = 0.0946 Both = 37.5 

           (4) R2 = 0.9538      (6) R2 = 0.9441 Neither = 18.8 
  (2) Overall = 74.2 (2) Overall = 62.5 (4) Overall = 81.3 (6) Overall = 75.0   
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 90.0   
  Class 1 = 50.0 Class 1 = 0.0 Class 1 = 33.3 Class 1 = 33.3   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 66.7   
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Table F. 7. Model and test set classification accuracies for Savitzky-Golay second derivative 
transformed data (1400-2200nm) presented by Study Set (A and B). Tables are separated by 
model type, including a) two-class models (forensic/non-forensic), b) two-class models (forensic 
samples only), and c) three-class models. Numbers in “( )” represent the number of 
components or factors used in a given model. Cells in white represent cross-validated model 
accuracies as a percentage (LDA-PCA and SVM-PCA) or as RMSECV and R2 for PLSDA. Areas in 
grey represent accuracies (%) from model application to the test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 93.2 (3) Model: 79.5 (2) RMSE = 0.2276 (4) RMSE = 0.2329 (5) Overall = 35.1 
     R2 = 0.6828 R2 = 0.9321 Class 0 = 24.0 
  (3) Overall = 93.6 (2) Overall = 79.8 (4) Overall = 95.8 (5) Overall = 94.7 Class 1 = 79.0 
  Class 0 = 97.3 Class 0 = 100 Class 0 = 100 Class 0 = 100 Both = 60.6 
  Class 1 = 78.9 Class 1 = 0 Class 1 = 78.9 Class 1 = 73.7 Neither = 2.1 
B Model 94.3 (3) Model: 84.1 (2) RMSE = 0.1992 (5) RMSE = 0.2303 (4) Overall = 13.6 

      R2 = 0.7037 R2 = 0.6669 Class 0 = 8.9 
  (2) Overall = 87.9 (2) Overall = 84.8 (3) Overall = 90.9 (4) Overall = 92.3 Class 1 = 40.0 
  Class 0 = 96.4 Class 0 = 100.0 Class 0 = 98.2 Class 0 = 100.0 Both = 81.8 
  Class 1 = 40.0 Class 1 = 0.0 Class 1 = 50.0 Class 1 = 40.0 Neither = 1.5 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 77.5 (5) Model: 72.5 (2) RMSE = 0.3726 (2) RMSE = 0.3880 (2) Overall = 39.3 

      R2 = 0.3037 R2 = 0.7555 Class 0 = 55.0 
  (2) Overall = 75.0 (2) Overall = 71.4 (2) Overall = 78.6 (2) Overall = 75.0 Class 1 = 0.0 
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 85.0 Class 0 = 100.0 Both = 42.9 
  Class 1 = 62.5 Class 1 = 0.0 Class 1 = 62.5 Class 1 = 12.5 Neither = 10.7 
B Model 90.0 (3) Model: 75.0 (4) RMSE = 0.2573 (4) RMSE = 0.2496 (4) Overall = 15.4 
      R2 = 0.6469 R2 = 0.9222 Class 0 = 20.0 
  (2) Overall = 84.6 (2) Overall = 76.9 (4) Overall = 92.3 (4) Overall = 92.3 Class 1 = 0.0 
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 90.0 Both = 61.5 
  Class 1 = 100.0 Class 1 = 0.0 Class 1 = 100.0 Class 1 = 100.0 Neither = 23.1 
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c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 84.3 (3) Model: 65.9 (4) Cl 0: RMSE = 0.3677 Cl 0: RMSE = 0.3924 Overall = 38.7 

           (2) R2 = 0.3984      (4) R2 = 0.3842 Class 0 = 50.0 
      Cl 1: RMSE = 0.3930 Cl 1: RMSE = 0.3634 Class 1 = 0.0 

           (2) R2 = 0.1762      (4) R2 = 0.7996 Class 2 = 66.7 
      Cl 2: RMSE = 0.1471 Cl 2: RMSE = 0.1306 Both = 22.6 
           (2) R2 = 0.7382      (4) R2 = 0.8123 Neither = 12.9 
  (3) Overall = 77.4 (4) Overall = 64.5 (2) Overall = 71.0 (4) Overall = 64.5   
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 90.0   
  Class 1 = 37.5 Class 1 = 0.0 Class 1 = 12.5 Class 1 = 12.5   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 33.3   
B Model 80.0 (2) Model: 64.0 (2) Cl 0: RMSE = 0.2528 Cl 0: RMSE = 0.2594 Overall = 18.75 

           (4) R2 = 0.7225      (4) R2 = 0.6635 Class 0 = 10.0 
      Cl 1: RMSE = 0.2397 Cl 1: RMSE = 0.2746 Class 1 = 0.0 
           (4) R2 = 0.6408      (4) R2 = 0.8822 Class 2 = 66.7 
      Cl 2: RMSE = 0.0729 Cl 2: RMSE = 0.1021 Both = 50.0 

           (4) R2 = 0.9605      (4) R2 = 0.9349 
Neither = 
31.25 

  (3) Overall = 77.4 (2) Overall = 62.5 (4) Overall = 81.3 (4) Overall = 87.5   
  Class 0 = 90.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 90.0   
  Class 1 = 37.5 Class 1 = 0.0 Class 1 = 33.3 Class 1 = 100.0   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 66.7   
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Table F. 8. Model and test set classification accuracies for Savitzky-Golay second derivative 
transformed data (1235-1330, 1535-1585nm) presented by Study Set (A and B). Tables are 
separated by model type, including a) two-class models (forensic/non-forensic), b) two-class 
models (forensic samples only), and c) three-class models.  Numbers in “( )” represent the 
number of components or factors used in a given model. Cells in white represent cross-
validated model accuracies as a percentage (LDA-PCA and SVM-PCA) or as RMSECV and R2 for 
PLSDA. Areas in grey represent accuracies (%) from model application to the test set.  
 
a. Two-class models (forensic, non-forensic). Class 0 represents forensic samples with known or 
estimated PMI of less than 71 years; Class 1 represents non-forensic specimens (historic and 
archaeological origins). 

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 94.1 (3) Model: 79.5 (2) RMSE = 0.2360 (3) RMSE = 0.2408 (2) Overall = 45.7 
     R2 = 0.6618 R2 = 0.9274 Class 0 = 36.0 
  (3) Overall = 94.7 (2) Overall = 79.8 (3) Overall = 95.8 (2) Overall = 94.7 Class 1 = 84.2 
  Class 0 = 97.3 Class 0 = 100 Class 0 = 100 Class 0 = 100 Both = 47.9 
  Class 1 = 84.2 Class 1 = 0 Class 1 = 78.9 Class 1 = 78.9 Neither = 4.3 
B Model 94.3 (3) Model: 84.1 (2) RMSE = 0.2406 (2) RMSE = 0.2389 (2) Overall = 27.3 

      R2 = 0.5677 R2 = 0.9321 Class 0 = 25.0 
  (2) Overall = 90.9 (2) Overall = 84.8 (2) Overall = 90.9 (2) Overall = 92.3 Class 1 = 40.0 
  Class 0 = 100.0 Class 0 = 100.0 Class 0 = 100.0 Class 0 = 100.0 Both = 72.7 
  Class 1 = 40.0 Class 1 = 0.0 Class 1 = 40.0 Class 1 = 40.0 Neither = 0.0 

 

b. Two-class models with no archaeological samples. Class 0 represents forensic samples with 
known PMI of days to 4.9 years; Class 1 samples have known PMI of 5-71 years. 

Set LDA-PCA SVM-PCA PLSDActr PLSDAcorr SIMCA 
A Model 82.5 (5) Model: 72.5 (2) RMSE = 0.3946 (1) RMSE = 0.3629 (3) Overall = 42.9 

      R2 = 0.2189 R2 = 0.7860 Class 0 = 60.0 
  (2) Overall = 75.0 (2) Overall = 71.4 (1) Overall = 75.0 (3) Overall = 67.9 Class 1 = 0.0 
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 75.0 Both = 39.3 
  Class 1 = 62.5 Class 1 = 0.0 Class 1 = 37.5 Class 1 = 50.0 Neither = 14.3 
B Model 90.0 (4) Model: 75.0 (4) RMSE = 0.3414 (1) RMSE = 0.3089 (2) Overall = 15.4 
      R2 = 0.3784 R2 = 0.8807 Class 0 = 20.0 
  (2) Overall = 84.6 (2) Overall = 76.9 (1) Overall = 84.6 (2) Overall = 84.6 Class 1 = 0.0 
  Class 0 = 80.0 Class 0 = 100.0 Class 0 = 80.0 Class 0 = 90.0 Both = 69.4 
  Class 1 = 100.0 Class 1 = 0.0 Class 1 = 100.0 Class 1 = 66.7 Neither = 15.4 
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c. Three-class models. Classes 0 and 1 represent forensic samples with known PMI (days-4.9 
years and 5-71 years, respectively); Class 2 samples are non-forensic specimens (PMI = 500 or 
900 years).  

Set LDA-PCA SVM-PCA PLSDAMC PLSDACO SIMCA 
A Model 77.3 (3) Model: 65.9 (3) Cl 0: RMSE = 0.3815 Cl 0: RMSE = 0.3910 Overall = 32.3 

           (1) R2 = 0.3524      (3) R2 = 0.3885 Class 0 = 40.0 

      Cl 1: RMSE = 0.4316 
Cl 1: RMSE = 0.3556 
(3) Class 1 = 0.0 

           (1) R2 = 0.0063      (3) R2 = 0.8082 Class 2 = 66.7 
      Cl 2: RMSE = 0.1472 Cl 2: RMSE = 0.1041 Both = 48.4 
           (2) R2 = 0.7379      (3) R2 = 0.8808 Neither = 16.1 
  (3) Overall = 67.7 (3) Overall = 64.5 (1) Overall = 64.5 (3) Overall = 74.2   
  Class 0 = 65.0 Class 0 = 100.0 Class 0 = 85.0 Class 0 = 95.0   
  Class 1 = 62.5 Class 1 = 0.0 Class 1 = 0.0 Class 1 = 12.5   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 100.0   
B Model 96.0 (2) Model: 64.0 (2) Cl 0: RMSE = 0.3446 Cl 0: RMSE = 0.3985 Overall = 25.0 

           (1) R2 = 0.4845      (2) R2 = 0.2061 Class 0 = 20.0 
      Cl 1: RMSE = 0.3997 Cl 1: RMSE = 0.3466 Class 1 = 0.0 

           (1) R2 = 0.0.0015      (2) R2 = 0.8123 Class 2 = 66.7 
      Cl 2: RMSE = 0.1104 Cl 2: RMSE = 0.1107 Both = 56.3 
           (1) R2 = 0.9093     (2) R2 = 0.9234 Neither = 18.8 
  (3) Overall = 67.7 (2) Overall = 62.5 (1) Overall = 93.8 (2) Overall = 81.3   
  Class 0 = 65.0 Class 0 = 100.0 Class 0 = 90.0 Class 0 = 100.0   
  Class 1 = 62.5 Class 1 = 0.0 Class 1 = 100.0 Class 1 = 0.0   
  Class 2 = 100.0 Class 2 = 0.0 Class 2 = 100.0 Class 2 = 100.0   

 



159 

APPENDIX G 

TESTS FOR PROTEIN OXIDATION



160 

G1.0 Examination of Potential Oxidative Changes on Cortical Samples 

G1.1 Introduction 

Recall that bone is a biphasic material comprised of approximately 30% organic content, 

the bulk of which is Type I collagen. Organic materials, including proteins such as collagen, are 

known to oxidize in biological systems in the presence of reactive species, including oxidized 

lipids, oxygen and oxygen radicals, and metal ions, to name a few (Berlett and Stadtman 1997, 

Hawkins and Davies 2001, Stadtman and Levine 2003, Davies 2005). Oxidative modifications of 

proteins may involve the protein backbone or individual amino acid side groups. Considerations 

must therefore be made about the potential for bone protein oxidation occurring, not only 

during the postmortem interval, but on the superficial surfaces and freshly exposed cortex of 

sectioned surfaces of sampled bone as well. If such changes occur, absorbance spectra 

collected from those surfaces may vary over time. 

The primary question is whether or not spectra collected from sectioned bone remain 

acceptably constant. If not, what are the likely causes for observed absorbance changes, and 

more importantly, are the changes predictable?  Sources for spectral change can be attributed 

to the following: loss of water content; loss of total organic content; potential oxidation effects, 

primarily on the collagen; and, selection of different spectral sampling points along the bone 

(Campbell, personal communication). When dealing with sampled cortex in a lab setting, the 

first two scenarios are unlikely to be sources for spectral change because 1) the bone is already 

“dry” and 2) the samples are stored in a protected environment where further collagen loss is 

minimized, i.e. no potential for additional diagenesis. 
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G1.2 Methodology 

To assess the potential for time-related protein oxidation on extracted bone samples, a 

follow-up study was conducted in February 2017 at ASD-PANalytical in Boulder, Colorado. Two 

groups of cortical samples were analyzed. The first group consisted of 16 samples that were 

used in the preliminary study conducted in May 2013 (“Resampled Set”). This set was examined 

to determine if there was a change in the absorbance spectrum between Time 1 (May 2013) 

and Time 2 (February 2017), a roughly 4 year interval. Selected samples included the following:  

“Forensic” samples 1, 2, 4, 37, 46, 47, 48, 78, 85, 86, 87, and 88; and “Non-forensic” 

(historic/archaeological) samples 165, 166, 167, and 169. 

An additional sampling group (“Dilution Set”) was comprised of six new pieces of cortex, 

four of which were exposed to dilutions of hydrogen peroxide (H2O2). This was done in order to 

determine how bone collagen reacts when exposed to a strong oxidizer over a fixed period of 

time. To assess its potential oxidative effect on absorbance spectra, cortical samples were 

exposed to varying concentrations of H2O2. Six adjacent pieces of cortex were removed from 

the anterior diaphyseal surface of a right femur. The bone, made available from the LFA 

donated study collection, was best-described as untreated and slightly greasy to the touch with 

some associated fibrous tissue. Samples were removed on 1/31/2017 with an autopsy saw, 

each having approximate dimensions and weight of 1cm x 2cm and 2.25 grams, respectively. An 

H2O2 dilution series was prepared on 2/1/2017 and is presented in Table G.1 below. Samples 1 

through 4 were placed in marked 75ml centrifuge tubes containing 15ml of diluted H2O2 (ml 

H2O2 in 100ml of ddH2O, reported as percentage; 30%, 15%, 7%, and 3%, respectively). For 

control, sample 5 was placed in tube containing 15ml of ddH2O. The final sample, number 6, 
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was placed in an empty “air-filled” tube with no added fluid. Each tube was closed, sealed in 

parafilm, placed in a tube rack, and stored in the dark under a fume hood at room temperature 

for 10 days. Samples were subsequently removed from the tubes on 2/10/2017, rinsed with 

ddH20, and allowed to air dry under the hood for an additional 10 days. After drying, LFA staff 

members assigned random numbers to each tube and reassigned the randomized samples in 

new tubes marked A through F (Table G.2). 

Resampled Set and Dilution Set spectra were collected on 2/24/2017 with a 350-2500 

Hi-Res Lab LabSpec® 4 spectrometer at ASD PANalytical in Boulder, Colorado. The general 

protocol described in Section 5.3 was used for data collection. However, it should be noted that 

this instrument, unlike the spectrometer made available through the Goetz Program, had an 

internal light source, and was the same model as the one used in the 2013 preliminary study. 

Resampled Set spectra (Time 2) were collected from the longitudinally cut surfaces of 

each cortical sample. The Time 2 spectra were later overlaid in Unscrambler with the 

corresponding Time 1 series. SNV-transformation was applied in order to remove baseline shift 

artifacts. This allowed for a direct comparison between spectra to readily identify potential 

peak changes (i.e. potential oxidative chemical change). Resultant SNV-transformed spectra are 

presented for each sample in Figures G.1 through G.16 below. 

Dilution Set spectra were collected from the superficial, transversely cut, and 

longitudinally cut surfaces for each of the six cortical samples. All collected spectra were later 

loaded into Unscrambler and SNV-transformed. These spectra are presented by group and 

surface in Figures G.17 through G.19. 
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G1.3 Results 

G1.3.1 Resample Set 

Aside from fluctuations that can be attributed to probe positioning along the sample 

edge, Time 1 and Time 2 SNV-transformed spectra were the same for forensic samples 1, 37, 

78, 85, as well as a sample 169, which was extracted from historic cemetery burial remains 

(Figures G.1, G.4, G.8, G.9, and G.16). Slight differences were noted on the remaining forensic 

samples. Numbers 47, 87, and 88 showed an elevation in the Time 2 spectra at the 1940 peak; 

as noted previously, this peak is associated with a carbonyl vibration (Figures G.6, G.11, and 

G.12). There was a minor separation between Time 1 and Time 2 spectra for samples 46 and 86 

over a broad band of roughly 1400-1880nm; this band includes peaks at 1490nm and 1730nm, 

which are often associated with N-H 1st overtones and the C-H and S-H 1st overtones, 

respectively (Figures G.5 and G.10). Note that other vibrations observed at 1490nm are 

associated with water and alcohols, as well as carbonyl groups (e.g. aldehydes, ketones, and 

amides; see Appendix B). An additional three forensic samples (2, 4, and 48) showed separation 

over the 1400-1880nm band and at the 1940nm peak (Figures G.2, G.3, and G.7). Time 1 and 

Time 2 spectra were broadly separated from 1400-2200nm on non-forensic samples 165-167 

(Figures G.13 – G.15). 

 

G1.3.2 Dilution Set 

Minor separation of the “air” sample spectrum (lower absorption) from the remaining 

group of spectra was noted at the 1490nm peaks for the SNV-transformed spectra collected 

from superficial or longitudinally cut surfaces (Figures G.17 and G.18, respectively). Slight 
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differences were also noted on the spectra collected from the transversely cut surfaces at 

1730nm and 1940nm. The control sample stored in air showed an elevated absorbance at 

1730nm, while the dilution series and water control sample were lower. The inverse 

relationship was observed at 1940nm (Figure G.19). 

 

G1.4 Discussion 

G1.4.1 Resample Set 

Spectrum-wide differences were noted on three of the non-forensic samples (165 – 

167). The primary issues with older bone are a combination of organic content loss over the 

extended PMI, and changes in mineral composition and organization related to diagenesis. This 

modified cortex is often characterized as relatively rough in texture with increased grain size, 

which results in uneven and grainy surfaces that produce slight changes in both probe 

orientation and incident light directed from the spectrometer probe. Coupled with variation in 

sampling point selections, separation between Time 1 and Time 2 is not unexpected. 

The samples originating in the “forensic” time frame have relatively smoother sectioned 

cortex that can be more consistently sampled. Recall that four of the forensic samples (1, 37, 

78, and 85) and historic sample 169 yielded no difference between Time 1 and Time 2; in the 

remaining eight forensic samples, only slight differences were observed. These samples were 

notable for relative high grease content (4, 88) and significant weathering and cortical 

exfoliation (2, 46, 47, 48, 86, and 87). Changes at the 1490nm and 1940nm peaks may indicate 

a relative increase in carbonyl compounds (ketones and aldehydes), which are primary 

breakdown products of amino acid oxidation via O2 gas (Stadtman and Levine 2003, Davies 
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2005). As noted, absorption peaks at 1730nm generally represent SH and CH vibrations. Due to 

its absence in mature collagen, the oxidation of cysteine is unlikely (i.e. formation of disulfide 

bonds). However, aliphatic amino acid residues account for approximately 50% of the residues 

in mature collagen (Appendix A). Accordingly, changes at this peak may represent an elevated 

concentration of methyl groups. 

 

G1.4.2 Dilution Set 

Similar to some of the forensic samples, slight changes were observed at 1730nm and 

1940nm for transverse surface spectra, and 1490nm for the superficial and longitudinal surface 

spectra. As previously noted, these peaks are most likely associated with CH and carbonyl 

vibrations. Because the six samples in the Dilution Set Differences were extracted from adjacent 

positions on a single femoral diaphysis, native composition should not change appreciably. The 

differences observed between the transverse group and the other two groups are therefore 

likely related to general osteon, and thus collagen fibril, orientation. 

 

G1.5 Conclusions 

Peak changes observed with some of the forensic samples (Resample Set), as well as the 

Dilution Set spectra, may be due to collagen oxidation; however, sampling error related to 

probe position cannot be ruled out (Campbell, personal communication). Final resolution of the 

oxidation question would require a determination of chemical composition, which was not a 

part of this study. It is important to note that although slight peak changes were present on 
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some of the Resample Set spectra, those changes were morphologically minimal and would 

likely have no impact on the classification methods developed in this study.  

 

Table G. 1. Dilution Set. Concentration of hydrogen peroxide (H2O2) is reported as a percentage 
(ml H2O2 in 100ml ddH2O). 

Sample # [H2O2] v(ml) 30% H2O2  v(ml) ddH2O Total volume (ml) 
1 30% 15 0 15 
2 15% 7.5 7.5 15 
3 7% 3.5 11.5 15 
4 3% 1.5 13.5 15 
5 0% 0 15 15 
6 Air n/a n/a n/a 

 
 
Table G. 2. Dilution Set. Blind sample assignments are reported. 

Sample # [H2O2] Random Blind Sample 
1 30% 38 B 
2 15% 93 F 
3 7% 44 C 
4 3% 2 A 
5 0% 49 D 
6 Air 55 E 
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Figure G. 1. SNV-transformed Time 1 and Time 2 spectra for forensic sample 1. 
 

 
Figure G. 2. SNV-transformed Time 1 and Time 2 spectra for forensic sample 2. Slight separation is noted broadly 
from 1400-1880nm, as well as at the 1940nm and 2040nm peaks. 
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Figure G. 3. SNV-transformed Time 1 and Time 2 spectra for sample 4. Slight separation is noted broadly from 
1400-1880nm, as well as at the 1940nm and 2040nm peaks.  
 
 

 
Figure G. 4. SNV-transformed Time 1 and Time 2 spectra for forensic sample 37. 
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Figure G. 5. SNV-transformed Time 1 and Time 2 spectra for forensic sample 46. 
 
 

 
Figure G. 6. SNV-transformed Time 1 and Time 2 spectra for forensic sample 47. A slight elevation is noted at the 
1940nm peak.  
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Figure G. 7. SNV-transformed Time 1 and Time 2 spectra for forensic sample 48. Slight separation is noted broadly 
from 1400-1880nm, as well as at the 1940nm and 2040nm peaks. 
 
 

 
Figure G. 8. SNV-transformed Time 1 and Time 2 spectra for sample 78. 
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Figure G. 9. SNV-transformed Time 1 and Time 2 spectra for forensic sample 85. 
 

 
Figure G. 10. SNV-transformed Time 1 and Time 2 spectra for forensic sample 86. A slight separation is noted 
broadly from 1400-1880nm.  
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Figure G. 11. SNV-transformed Time 1 and Time 2 spectra for forensic sample 87. A slight elevation is noted at 
1940nm. 
 

 
Figure G. 12. SNV-transformed Time 1 and Time 2 spectra for forensic sample 88. A slight elevation is noted at 
1940nm.  
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Figure G. 13. SNV-transformed Time 1 and Time 2 spectra for historic sample 165. Broad whole-spectra separation 
is noted. 
 

 
Figure G. 14. SNV-transformed Time 1 and Time 2 spectra for archaeological sample 166. Broad whole-spectra 
separation is noted.  
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Figure G. 15. SNV-transformed Time 1 and Time 2 spectra for archaeological sample 167. Broad whole-spectra 
separation is noted. 
 
 

 
Figure G. 16. SNV-transformed Time 1 and Time 2 spectra for historic sample 169.  
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Figure G. 17. SNV-transformed spectra collected from superficial surfaces of the Dilution Set. A slight separation is 
noted at the 1490nm peak. 
 

 
Figure G. 18. SNV-transformed spectra collected from longitudinally cut surfaces of the Dilution Set. A slight 
separation is noted at the 1490nm peak. 
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Figure G. 19. SNV-transformed spectra collected from transversely cut surfaces of the Dilution Set. A slight 
separation is noted at the 1730nm and 1940nm peaks. 
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APPENDIX H 

GLOSSARY OF SELECT TERMS
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ASD Viewspec ProTM version 6.2 (Viewspec):  A free software package developed by ASD Inc. for 
visualization, transformation, and export of spectral data. 

 
Camo The Unscrambler® X version 10.4 (Unscrambler):  A non-coding statistical package 

designed CAMO Software to manipulate large datasets. Unscrambler 
includes a selection of frequently used preprocessing and statistical 
modeling methods. 

 
Indico® Pro Spectral Acquisition Software package version 6.3 (IndicoPro):  A software package 

developed by ASD Inc. that is used for the settings and operation of the 
ASD/PANalytical LabSpec® 4 full range bench spectrometer. 

 
Linear Discriminant Analysis (LDA):  A statistical technique that can be used to classify two or 

more descriptive classes that are each defined by samples with multiple 
measurable variables which are not correlated. LDA maximizes the 
separation between group multivariate means while minimizing the 
variation within each group. 

 
Linear Discriminant Analysis on Principal Components (LDA-PCA):  A modification on LDA 

whereby PCA is used to reduce a large number of inter-correlated 
variables into a limited number of non-correlated principal components 
(PC), and LDA is subsequently applied to the PCs. 

 
Principal Component Analysis (PCA):  An unsupervised statistical technique that can be used to 

reduce large, complex systems of highly correlated variables into a 
limited number of uncorrelated Principal Components (PCs) that best 
explain the greatest amount of variation. PCs are used to define the axes 
for plots in a newly created component space. The greatest amount of 
variation is described by PC1, followed by the second highest in an 
orthogonal PC2, and so on. 

 
Partial Least Squares Discriminant Analysis (PLSDA):  Also known as Projection of Latent Squares 

Discriminant Analysis. A regression-based classification technique that 
reduces a large, complex system of highly correlated X-variables into a 
limited number of latent variables (LV). LVs are then regressed on Y-
variables (defined categories) in order to explain the maximum amount 
of variation in Y. 

 
Postmortem Interval (PMI):  The length of time for which an individual has been deceased 
 
Root Mean-Squared Error of Cross-Validation (RMSECV): A measure of total error for a 

calibration model. RMSECV for a predictive model is calculated from the 
difference between known training set values and predicted values, 
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where each individual sample is left out as RMSECV is iteratively 
calculated. 

 
Savitzky-Golay transformation (SG):  A preprocessing technique that can be used for spectral 

smoothing and removal of scattering effects. SG involves defining a 
symmetric smoothing window of points on either side of a central point. 
A derivative is then calculated for the central point by applying a 
polynomial function. The process is repeated for all points of the 
spectrum, resulting in a smoothed, derivatized spectrum 

 
Scattering: Scattering occurs when the reflection of light is non-specular. NIR spectra are often 

affected by additive scattering, which results from variations of path 
lengths of light into different samples, and/or multiplicative scattering, 
which is generated from surface variability, including sample differences 
in particle or grain size and texture 

 
Soft Independent Modeling of Class Analogy (SIMCA):  A classification technique whereby a 

Global PCA classifier is constructed from disjointed local PCA models for 
each descriptive class. A sample applied to the SIMCA model is classified 
based on which local PCA best describes the sample. 

 
Standard Normal Variate (SNV):  A preprocessing technique that can decrease scattering effects 

in raw spectra. For a set of spectra, an average spectral value and 
standard deviation are calculated each, after which SNV-corrected 
spectra are calculated by subtracting the mean spectral value at each 
wavelength and then dividing by the standard deviation. The resulting 
spectra are corrected for scattering and normalized. 

 
Support Vector Machine (SVM):  A classification technique based on machine learning which 

maximizes the distance between two or more groups. Groups of interest 
are separated by the hyperplane with maximum-margins, or the plane 
that is the greatest distance from the closest samples in opposing groups 
(support vectors), providing a boundary which minimizes the number of 
misclassified samples. 

Support Vector Machine on Principal Components (SVM-PCA):  A modification on SVM whereby 
PCA is used to reduce a large number of inter-correlated variables into a 
limited number of non-correlated PCs, and an SVM classifier is 
subsequently constructed using the PCs. 
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