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CHAPTER 1

INTRODUCTION

Magnetic plasma expulsion seeks to prevent plasma from entering a given region

by creating a magnetic field distortion in the area such that charged particles of either

sign follow the distorted magnetic field lines away from the area of interest. Magnetic

plasma expulsion techniques may allow instrumentation access to the interiors of plasmas and

may also make alternative approaches for magnetic plasma confinement possible. Magnetic

plasma expulsion has the potential to improve currently existing technologies in the areas of

accelerator physics and plasma trapping. This work seeks to evaluate and model magnetic

plasma expulsion with an eye towards these applications.

Chapter 2 examines magnetic plasma expulsion in the context of controlling a space-

charge neutralized ion beam. Space-charge neutralized ion beam control is more complex

than control of charged beams. While focusing techniques for charged beams have been

widely studied, many of the tools available for controlling charged beams are not suitable

for charge-neutralized beams. Presented here is a scheme for controlling charge-neutralized

beams using a distortion of a magnetic guide field via the presence of two current carrying

wires. The extent to which the beam can be controlled is evaluated using a classical trajectory

Monte Carlo simulation.

Building on these results in the beam case, Chapter 3 uses a particle-in-cell simula-

tion with the Warp code to study magnetic plasma expulsion in the presence of a trapped

Maxwellian distributed plasma. The same distortion of a magnetic guide field with two

current carrying wires is used. Some conditions for achieving magnetic plasma expulsion are

reported. In this case the envisioned application is a plasma trap augmented by embedded

magnetic field producing coils such as two coaxial solenoids or levitated rings. The extent

to which a given area can be shielded from an impinging plasma is studied.

In Chapter 4, additional considerations of magnetic plasma expulsion are examined.

An area in need of study with magnetic plasma expulsion is the difference in motion ex-
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perienced by species of the plasma that have different masses. This will be studied in an

electron/proton plasma. The mass of a proton is 42.85 times larger than the mass of an

electron and as such, both the gyro radius and the thermal speed of the particles will be

significantly different. This difference in speed leads to distinctly different time scales of

interest which could potentially lead to the development of phenomena not seen in the case

of equal mass opposite charged plasmas such as plasma sheathing around the cylindrical

material surfaces or asymmetric losses between the two plasma species. For applications of

magnetic plasma expulsion to be developed, an understanding of these phenomena must be

gained. However, it is computationally expensive to simulate an electron-proton plasma as

a result of the vastly different time scales involved. Computational methods are explored to

circumvent this.

Previous work only reported loss rates as a fraction of the simulated plasma with

no consideration to exactly where those lost particles came from. Characterization of the

phase space that lost particles come from in the simulation could yield improvements to the

existing design.

Depending on the methods used, a simulation in computational equilibrium may be

drastically different than the same system in a physical experiment. Several permutations

of a base case simulation are examined to determine what effects various computational

boundaries have on the over all results of the simulation.
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CHAPTER 2

MAGNETIC CONTROL OF A SPACE-CHARGE NEUTRALIZED ION BEAM
1

2.1. Introduction

Charge neutralized beams have applications in a number of fields. Several studies

have been carried out in the area of drift compression of a neutralized ion beam for the

purpose of studying high energy density plasmas and fusion conditions [1]. Quality thin film

deposition has been shown to depend on space charge neutralization as well [2]. Control

of charge-neutralized ion beams must be handled differently than traditional set-ups used

on charged ion beams. As such, novel complications and opportunities arise. For example,

the work here uses a concept initially explored within a plasma confinement context [3]

to exert control on a charge-neutralized ion beam. Deflection of a charge-neutralized ion

beam is constrained by certain conditions however [4], and beam control can be difficult

since standard electric field based techniques may not be effective. Ion beams can be space-

charge neutralized when injected into a field free region with a source of electrons [5], and

transport of space-charge neutralized, unmagnetized ion beams has been investigated using

a spatially periodic field to confine a plasma which serves as the source of electrons that

neutralize the ion beam in flight [6]. Studies have also been carried out using a spatially

periodic field to confine ions that drag along electrons such that the two species system of

particles can be considered a neutralized drifting plasma [7]. Certain issues surrounding pure

charged ion beam transport specifically for intense beam applications can be solved using

charge-neutralization. An example is the mutual repulsion caused by the space charge of

the beam in flight. This “blow up” of the beam diameter is one of the primary limitations

on transport and final spot size for a given beam, and charge-neutralization allows for the

beam’s space charge to be suppressed [8]. Many areas of physics, from heavy ion fusion

1This chapter is presented in its entirety from Physics Procedia, 66, 2015, 148-155 with permission from
Elsevier
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studies [9, 10, 11, 12] to spectroscopy [13] to ion implantation [14, 15] and propulsion [16],

benefit from a beam that is charge-neutralized.

2.2. Equations and Description of Simulation

Consider a charge-neutralized ion beam that travels parallel to a uniform magnetic

field. Suppose magnetic field generating wires are immersed as shown in 2.1 in the beam’s

path in such a way as to create shielded regions which the beam deflects around. Targets

could be moved vertically into place near the wires while the shielding magnetic field is active.

Once in position, the wire current is shut off allowing a processing step to take place (e.g., ion

implantation or thin film deposition). Automation of the target insertion/extraction could

lead to significantly increased throughput of targets. Applications that alter only small

surface areas would benefit most from this such as drill bit hardening or certain treatments

for small medical equipment like scalpel blades etc. In the work presented here, the shielding

field is assumed to be the field produced by two straight, parallel, infinitesimally thin wires.

Thus, the total magnetic field is a superposition of a uniform field and that produced by

the wires. Larger arrays of wires lead to a spatially periodic field [17], which may serve to

provide a larger number of regions that can be simultaneously shielded.

The magnetic field near the region of interest can be described in two parts: A

constant uniform field B0 defined to be in the z direction, and a field generated by two

infinitesimally thin, parallel, current carrying wires in the x,y plane

(1) B(x, y, z) = Bmβ(
x

S
,
y

S
,
z

S
) +B0k̂ .

Here,

(2)

β(xn, yn, zn) = [− zn
(xn − 1)2 + z2n

, 0,
(xn − 1)

(xn − 1)2 + z2n
]− [− zn

(xn + 1)2 + z2n
, 0,

(xn + 1)

(xn + 1)2 + z2n
]

and Bm = µ0I
2πS

is the standard expression for the magnetic field at a distance S from a single

wire with I the magnitude of current, µ0 the permeability of free space, and S half the

distance between the wires. Note that the currents carried by the two wires must flow in

opposite directions to generate a magnetic field as shown in 3.2.
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Figure 2.1. Two targets (horizontal lines) placed near two wires (solid dots)

are shielded by the wires’ magnetic fields. An ion beam travels along the z axis

from negative to positive (bottom to top) as indicated by the arrow. In the

left panel particles, represented by colored lines, are deflected around the area

near the targets by the magnetic field generated by the shielding wires. When

the wire currents are turned off, beam processing such as ion implantation or

thin film deposition occurs. 5



Studying the trajectories of charged particles in this field is possible with a classical

trajectory Monte Carlo simulation. To keep the results most generally applicable, all pa-

rameters are normalized [17]. Normalization is achieved by setting mn = qn = Kn = Sn = 1.

Here mn is the normalized mass, qn is the normalized charge, Kn is the normalized kinetic

energy, and Sn is the normalized length. Other parameters needed for the simulation are

defined using their un-normalized counterparts. The position is normalized as rn = r
S

, the

velocity as vn = v
√

m
K

, the acceleration as an = amS
K

, time as tn = t( 1
S

)
√

K
m

, and magnetic

field as Bn = BqS√
mK

. The un-normalized counterparts are then solved for and substituted into

the Lorentz force law, ma = qv × B. A normalized version of the Lorentz force law is then

obtained:

(3) an = vn ×Bn.

In executing the Monte Carlo simulation, this vector equation is solved numerically. However,

an expression for the combined normalized magnetic field is needed.

Returning to the uniform field B0, B0 can be used to define a parameter r0,

(4) B0 =

√
2mK

q2r20
.

r0 is the cyclotron radius of a particle trajectory in the uniform field B0 with kinetic energy

K associated with motion transverse to the magnetic field. Combining the expressions for

the various magnetic fields into a single normalized expression yields

(5) Bn(xn, yn, zn) =
sgn(q)

√
2

r0n
[β0β(xn, yn, zn) + k̂ ].

Here, sgn(q) = q/|q| is the sign of charge, β0 = Bm/B0 is the field strength ratio, and

r0n = r0
S

is the normalized cyclotron radius. Revisiting Eq. (3) and splitting it into vector

components yields the normalized equations of motion,

(6)

x′′n(tn) =
sgn(q)

√
2

r0n
(y′n(tn)(1 + β0βz[xn(tn), yn(tn), zn(tn)])− z′n(tn)β0βy[xn(tn), yn(tn), zn(tn)]) ,
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(7)

y′′n(tn) =
sgn(q)

√
2

r0n
(z′n(tn)β0βx[xn(tn), yn(tn), zn(tn)]− x′n(tn)(1 + β0βz[xn(tn), yn(tn), zn(tn)])) ,

(8)

z′′n(tn) =
sgn(q)

√
2

r0n
(x′n(tn)β0βy[xn(tn), yn(tn), zn(tn)]− y′n(tn)β0βx[xn(tn), yn(tn), zn(tn)]) .

These equations are solved numerically via a classical trajectory Monte Carlo simulation for

single particles. Note that all forces in the system are conservative. Thus, conservation of

energy will hold for particles in the system. However, conservation of energy is not employed

within the simulation, so evaluating the total kinetic energy difference between the initial

and final points of a trajectory can serve as an indicator of numerical accuracy for the

simulation.[17] The kinetic energy of the simulated trajectories varies typically by less than

0.01% in the present work.

Two cylindrical regions, one centered at each wire, are each defined with a normalized

radius an inside of which no trajectories pass. The size of these regions is some function of

the ratio of strengths between the two parts of the total magnetic field β0 = Bm/B0 and

the normalized cyclotron radius r0n. This parameter an is the parameter of interest and

has values 0 < an < 1. an cannot have larger values because at least a few trajectories pass

between the wires relatively unimpeded (see 2.1). Each value of an is numerically determined.

Evenly spaced test points are spread across the range of an at increments of 0.01, though any

arbitrarily fine resolution could be used. For each value of an, every combination of values

for 0 < r0n < 5 and 0 < β0 < 5 in increments of 0.1 is simulated to determine if any prevent

all trajectories from crossing within the circle described by an by evaluating the position of

the simulated particle in relation to the wires at each time step of the equation of motion

solution. The maximum values used for r0n and β0 were determined by executing several

successively finer grained simulations over very large ranges and finding that no behavior of

interest appears to exist past the ranges stated here.

The initial conditions for particle trajectories are

xn(0) = xn0 = Rx,(9)
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yn(0) = yn0 = 0,(10)

zn(0) = zn0 = −5,(11)

at time tn = 0. Here, Rx has a range of

−2 < Rx < 2

and is a random number equally likely to have any value in the above range. This insures

that particle trajectories are initially spread evenly across the entire region of the deformed

magnetic field near the wires enabling comprehensive simulation of effects. Due to the kinetic

energy being normalized to 1 = Kn = 1
2
v2n0, each particle’s initial normalized speed is

√
2.

The simulated particles are considered to be a monoenergtic beam. Thus, the initial velocity

components are as follows:

vnx(0) = vnx0 = 0,(12)

vny(0) = vny0 = 0,(13)

vnz(0) = vnz0 =
√

2 .(14)

Equations 9−14 are the six initial conditions needed to solve the equations of motion. Each

trajectory is simulated for a maximum time tn,max = 20 |zn0|
vnz0

= 100√
2
.

2.3. Evaluation of Simulation Results

2.3 and 2.4 illustrate separately the relationships an versus β0 and an versus r0n. The

fits in 2.3 are

(15) an(1.5, β0) = 0.395 ∗ erfc[0.829(1.733− β0)] ,

(16) an(3.0, β0) = 0.339 ∗ erfc[0.571(2.517− β0)] ,

(17) an(4.5, β0) = 0.297 ∗ erfc[0.492(3.080− β0)] ,

8



where erfc[] is the complementary error function. The fits for both 2.3 and 2.4 were deter-

mined using the least squares method. In 2.4, the fits are

(18) an(r0n, 1.5) = −0.093 + 0.038 ∗ r0n + 1.093 ∗ e−r0n ,

(19) an(r0n, 3.0) = 0.666− 0.093 ∗ r0n + 0.334 ∗ e−r0n ,

(20) an(r0n, 4.5) = 0.817− 0.078 ∗ r0n + 0.182 ∗ e−r0n .

In both cases, the fits match the data to within 6.4% determined by the largest residuals.

The shielded radius increases with increasing field ratio β0, but decreases with increas-

ing cyclotron radius r0n. Note however, that the maximum radius of the shielded region is

approximate because a finite number of trajectories is simulated (160 in this case). Simula-

tions over larger sample sizes and finer resolutions can refine the edge of the shielded region

to any arbitrary certainty desired given enough computation time.

The results obtained match the trend that would be expected from the system. As the

field strength Bm of the wires becomes larger, the field ratio gets larger, and an increase

in the radius of the shielded region is seen. Conversely, as the uniform field strength B0

becomes significantly larger than the wire field, the effects of the wire fields are suppressed.

Varying the cyclotron radius effectively gives the shielded radius as a function solely of the

field strength B0.

2.5 presents a surface plot of the relationship between all three parameters. As ex-

pected, larger values of an may be achieved with smaller values of r0n and larger values of

β0. A two parameter fit expression for an is found by assuming independence (and therefore

separability) between r0n and β0:

(21) an(r0n, β0) = [0.367− 0.044 ∗ r0n + 0.215 ∗ e−r0n ] ∗ [
1

2
∗ 2.097 ∗ erfc[

1.896− β0√
2 ∗ 1.896

]] .

Here, the fitting constants are determined via the least squares method. Equation (21)

9



matches the simulated data in 2.5 to within 40.4%. By way of example, given a wire sep-

aration of 10cm such that S = 0.05m and a 5KeV singly charged Boron ion beam with

B0 = Bm = 0.5T such that β0 = 1, r0 = 6.7cm and r0n = 1.3. This would make the

unnormalized shielded radius a = an ∗ S = 1.2cm.

2.4. Conclusion

Proposed here is a two wire control scheme for directing charge-neutralized ion beams

and selectively shielding their targets. The regions shielded by the wire fields are quantified

as cylindrical with a normalized radius an. A relationship between the shielded radius an,

the ratio of strengths between the two parts of the magnetic fields β0 and the normalized

cyclotron radius r0n is found via a classical trajectory Monte Carlo study. The resultant

numerical values were fit using an exponential decay relationship between the shielded radius

an and the normalized cyclotron radius r0n and an error function relationship between the

shielded radius and β0n.

10



Figure 2.2. Illustration of the combined magnetic field in (x,z) plane. The

solid dots represent the wires extending parallel to the y axis.
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Figure 2.3. an versus β0 for values r0n = 1.5 (circles), r0n = 3.0 (squares),

r0n = 4.5 (diamonds). The lines are Eqs. (15)-(17).
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Figure 2.4. an versus r0n for values β0 = 1.5 (circles), β0 = 3.0 (squares),

and β0 = 4.5 (diamonds). The lines are Eqs. (18)-(20).
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Figure 2.5. Surface plot of an versus β0 versus r0n.
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CHAPTER 3

MAGNETIC PLASMA EXPULSION 1

3.1. Introduction

The purpose of magnetic plasma expulsion is to keep plasma from entering a given

boundary, in contrast to magnetic plasma confinement which seeks to contain plasma within a

given boundary. The concept of magnetic plasma expulsion presented here is related to work

recently reported for control of space charged neutralized ion beams,[18] though early studies

were conducted in a fusion plasma context.[3] When used in conjunction with magnetic

plasma confinement, magnetic plasma expulsion may allow the insertion of instrumentation

into a magnetically confined plasma without adversely affecting the confinement properties

or purity of the confined plasma. Further, plasma confinement may actually be enhanced via

the insertion of field generating electrodes, particle emitters, or particle collectors that control

space-charge effects. There exists a known correlation between the electric potential profile

of the interior of certain plasmas and the formation of confinement-enhancing transport

barriers.[19, 20, 21]

Tokamaks induce a toroidal current within the plasma, eliminating the need for

plasma-embedded magnetic coils to achieve a rotational transform. Before the develop-

ment of tokamaks, however, there were several confinement schemes studied that employed

multiple current carrying magnetic coils embedded entirely within the plasma.[22, 23, 24]

Although these alternative schemes had some highly desirable properties, plasma loss to the

support structure of the embedded coils unacceptably deteriorated confinement. Magnetic

plasma expulsion may provide an enabling technology for embedding multiple magnetic coils

within a plasma, without significant particle loss at the connections to the embedded coils.

Early research indicates that when losses to electrical connections and mechanical supports

1This chapter is presented in its entirety from Physics of Plasmas 25, 012508 (2018) with permission from
American Institute of Physics
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are sufficiently small, classical plasma confinement via certain configurations of multiple

plasma-immersed coils may occur.[22, 23, 24] It should also be noted that a Lockheed Mar-

tin team is investigating a magnetic fusion reactor concept, which uses multiple magnetic

coils embedded within the plasma.[25] Additionally, it was recently reported that a net en-

ergy gain is theoretically possible in an inertial electrostatic confinement concept which also

uses embedded magnetic coils.[26] This work may benefit both endeavors.

Collaborations such as ALPHA, ATRAP, ASACUSA, AEGIS, and GBAR are in-

volved in studying antimatter in the form of antihydrogen.[27, 28, 29, 30, 31, 32, 33, 34]

Current research is focused on comparisons of spectroscopic data between hydrogen and

antihydrogen for CPT (charge conjugation, parity transformation, time reversal) symmetry

violation studies and on gravity experiments.[29, 30, 35, 36, 37] Production of antihydro-

gen by ALPHA, ATRAP, and ASACUSA has been achieved via three-body recombination

within plasmas confined by nested Penning traps. One of the difficulties limiting antihydro-

gen research is the quantity of low speed experimentally suitable antihydrogen that nested

Penning traps can produce, due in part to particle drifts.[38, 39]

New alternatives to nested Penning traps are desirable that can generate low speed

antihydrogen in much larger quantities than presently possible. Alternative approaches may

also be desirable for achieving electron-positron plasma confinement. The study of such plas-

mas could enhance the understanding of new phenomena, such as the formation of magneto-

bound states of positronium.[40] Magnetic plasma expulsion may provide one avenue for the

advancement of alternative plasma confinement approaches that employ plasma-embedded

magnetic coils.[26] Levitated multiple magnetic coil designs have been proposed,[41, 42] but

physically supporting such coils and providing electrical connections might be accomplished

with magnetic plasma expulsion techniques.

By way of example, an alternative plasma confinement concept based on finite-length

coaxial solenoids is illustrated in 3.1. Using a pair of coaxial solenoids with oppositely

directed magnetic fields, the magnetic mirror effect could be used to axially confine a plasma

within the inner solenoid. In addition, the coaxial design would have “closed” magnetic
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field lines that do not cross any material structures at which plasma particles may be lost.

Particles in the loss cone of the magnetic mirrors would recirculate back into the inner

solenoid by following closed field lines. Such field lines are deflected around the cylindrical

material surfaces of metal tubes located between the outer and inner solenoids by using a

localized magnetic expulsion field as illustrated in 3.2. Mechanical supports and electrical

connections could pass to the inner solenoid by being located inside of the cylindrical material

surfaces.

Section 3.2 describes a particle-in-cell simulation used to study magnetic plasma ex-

pulsion. Section 3.3 describes a parametric study of magnetic plasma expulsion. A discussion

and concluding remarks can be found in Sec. 3.4.

3.2. Simulation of Magnetic Plasma Expulsion

3.2.1. Magnetic Field Model

Suppose that one or more cylindrical objects are to be passed through a magnetized

plasma in such a way as to minimize the effect that their presence has on the plasma’s

magnetic confinement. For example, cylindrical material surfaces could enclose electrical

connections and/or mechanical supports. In the vicinity of the cylindrical material surfaces,

assume that the magnetic plasma confinement approach produces an approximately uniform

magnetic field. An additional field is to be added to keep the plasma expelled from the region

near the cylindrical material surfaces. The total magnetic field is then a superposition of

a uniform field and whatever additional field is used to achieve magnetic plasma expulsion.

For a two-cylinder configuration, the expulsion field is approximated as the field produced

by two straight, parallel, infinitesimally thin wires. The combined magnetic field is

(22) B(x, y, z) = Bmβ(
x

S
,
y

S
,
z

S
) +B0k̂ .

Here,

(23) β(xn, yn, zn) =

[
− zn

(xn − 1)2 + z2n
, 0,

(xn − 1)

(xn − 1)2 + z2n

]
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[a] [b]

Figure 3.1. Illustration of an alternative plasma confinement approach con-

sisting of two coaxial solenoids. (a) The cylindrical material surfaces of two

metal tubes cross the space between the solenoids. These cylindrical material

surfaces could enclose mechanical supports and electrical connections to the

inner solenoid. (b) The magnetic field produced by the two coaxial solenoids.

The outer solenoid is not shown. Plasma would be confined along closed mag-

netic field lines that enclose the inner solenoid. Two methods would be used

to mitigate the loss of plasma particles to the cylindrical material surfaces.

Magnetic mirrors would be formed from a field strength gradient along field

lines between points within the interior solenoid, where the field is weaker, and

points between the solenoids, where the field is stronger. Loss of plasma to

the cylindrical material surfaces that cross the space between the two solenoids

would also be inhibited by the use of magnetic plasma expulsion to redirect

magnetic field lines around the cylindrical material surfaces.
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−
[
− zn

(xn + 1)2 + z2n
, 0,

(xn + 1)

(xn + 1)2 + z2n

]

and Bm = µ0I/(2πS) is the standard expression for the magnetic field strength at a distance

S from a single wire, with I the magnitude of current, and µ0 the permeability of free

space. (x, y, z) denotes Cartesian coordinates, while (xn, yn, zn) denote Cartesian coordinates

normalized by S. The currents carried by the two wires must flow in opposite directions

to generate the field shown in 3.2. The current in these wires generates an expulsion field

characterized by Bm, which is defined to be the magnitude of the magnetic field at the

coordinate system origin generated by a single wire at a distance S. A uniform magnetic

field approximating the confinement field is superimposed in the z direction parallel to the

unit vector with magnitude B0.

3.2.2. Computational Model

A study of plasma behavior is carried out with a Particle-in-Cell (PIC) simulation

using the code Warp.[43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] Warp has the underlying

physics coded into the field solver and particle mover such that it solves for the potential

from all particles at predetermined grid points, calculates the total electromagnetic fields ex-

perienced by each particle, and moves particles according to the Lorentz force law. Detailed

explanations on PIC methods can be found in the literature.[55] A guiding center approxi-

mation is assumed for the particles during simulation by using an implicit “Drift-Lorentz”

mover, which allows time steps larger than the gyro period to be taken. The positional

uncertainty as a result of the implicit mover’s inability to resolve the gyromotion is less than

that introduced by the time step and considered negligible. A detailed description can be

found in the literature.[56, 44]

With the exception of singularities at the wire locations x = ±S, z = 0 in 3.2, the

field can be discretized over a numerical mesh grid. A small offset is added to the field

description during the discretization to ensure that the wire singularities parallel to the y
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axis do not overlap the mesh grid. The discretized components of Eq. (1) are

Bx = (BmS)

[
− k

(i− S)2 + k2 + δ
+

k

(i+ S)2 + k2 − δ

]
,(24)

By = 0,(25)

Bz = (BmS)

[
i− S

(i− S)2 + k2 + δ
− i+ S

(i+ S)2 + k2 − δ

]
+B0.(26)

Here, i = (x0xstep−xshift), k = (z0zstep− zshift), and 0 < x0 < xgrid, 0 < z0 < zgrid in integer

steps, where xgrid and zgrid are the number of grid points in their respective directions. xshift

and zshift are added to center the coordinate origin of the simulation inside the simulation

volume. xstep and zstep are the grid spacings for a given mesh resolution, and δ is a slight

offset for the wire positions to ensure a field singularity doesn’t land on a mesh point.

A simulated cubic volume with side L is created with particle absorbing boundary

conditions on all faces. The space is divided up with a grid, and the external magnetic

field described above is passed to Warp in component form on all the grid points. Dirichlet

boundary conditions with potential set to zero are used on the boundaries of the simulation

at ±L/2 values of the x, y, and z coordinates.

Two cylindrical regions, one centered at each wire that produces the expulsion field,

are each defined with a radius r and each represents a cylindrical material surface with a

particle absorbing boundary.

3.2.3. Parameter Values and Base Results

Confinement of an electron-positron plasma is considered. Macroparticles of each

species are introduced at starting points equally likely to be anywhere within two source vol-

umes. The two source volumes are located at (−5 cm < xi < 5 cm,−5 cm < yi < 5 cm, −4.8

cm < zi < −4.75 cm) and (−5 cm < xi < 5 cm,−5 cm < yi < 5 cm, 4.75 cm < zi < 4.8 cm)

where xi, yi, zi are the starting positions of the created macroparticles. Macroparticles are

computational particles that represent a certain number of plasma particles determined by

the macroparticle “weight.” Since the Lorentz force law depends on the charge to mass ratio,

and a macroparticle has the same charge to mass ratio as the plasma particles represented,
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a macroparticle will have the same trajectory as a single plasma particle. This allows for

simulation of larger systems of plasma particles in a more computationally efficient manner.

Both electron and positron macroparticles are introduced with fully Maxwellian velocity

distributions in the x and y dimensions. Half Maxwellian velocity distributions are used

in the z dimension, with either a positive or negative z velocity component, such that the

macroparticles are initially directed into the simulated volume. The expulsion field gener-

ating wires are each displaced a distance S = 1 cm from the coordinate origin, and the

magnetic plasma expulsion field parameter Bm is equal to the magnetic plasma confinement

field strength B0, with Bm = B0 = 1 T. The L = 10 cm side cubic simulation volume is

divided up with a xgrid × ygrid × zgrid = 200× 200× 200 grid, such that the grid spacing is

xstep = ystep = zstep = 0.5 mm. xshift = zshift = 5 cm, and δ = 1× 10−50. The temperature

of the electron-positron plasma is T = 40 K. 400 macroparticles are inserted into the sim-

ulated volume every time step, consisting of 100 electron macroparticles and 100 positron

macroparticles created in each of the two source volumes.

Each simulation is run for a time tmax = 90 µs divided up into 90, 000 time steps

of length tstep = 1 ns. The total run time is more than 22 times a 10 cm time-of-flight

time based on the thermal speed of the plasma particles. The thermal speed is calculated

as vth = (kT/m)1/2, where k is Boltzmann’s constant, T is the temperature and m is the

mass of a plasma particle. For a magnetic field strength of 1 T, the thermal gyroradius

is (mkT )1/2/(eB) = 1.4 × 10−5 cm where e is the elementary charge. The thermal gyro-

radius is three orders of magnitude smaller than the grid spacing, and the guiding center

approximation is considered valid.

A line-averaged number density is used to determine a ratio Ω of the length L = 10

cm of the side of the cubic simulation volume to the column Debye length λD, Ω = L/λD.

Unless noted otherwise, all values of Ω are reported at time t = tmax. To calculate the

column Debye length, the total number of macroparticles is determined in cell columns with

dimensions ∆x = L/xgrid, ∆y = L, ∆z = L/zgrid. The line-averaged number density is
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calculated as

(27) n =
wNpositrons + wNelectrons

∆V
.

Here, w = 10 is the macroparticle weight equal to the number of plasma particles per

macroparticle, Npositrons is the number of positron macroparticles in the cell column with

volume ∆V = ∆x∆y∆z, and Nelectrons is the number of electron macroparticles in the

same cell column. Since the magnetic field has no y dependence, and the guiding center

approximation is considered valid, line averaging effectively reduces the spatial distribution

of the density to two dimensions. The line-averaged number density n is used to calculate

the column Debye length in one cell column as λD = [(ε0kT )/(nq2)]1/2. Here, ε0 is the

permittivity of free space. Where n = 0, the column Debye length is set to λD = 1×1012 cm

making Ω effectively zero. Values Ω > 1 are where the column Debye length λD is smaller

than the simulated length scale L. Values Ω > 200 are where the column Debye length is

smaller than the grid spacing, making the simulation susceptible to numerical instabilities.

Values of Ω are used to generate the contour plot in 3.3, based on a simulation that had the

parameter values defined thus far. 3.3 shows a density-type plot of Ω, with the cylindrical

material surfaces moved to locations chosen for a base case. In the base case, the cylindrical

material surfaces have a radius r = 0.5 cm each and are centered at x = ±S, z = 0. The

cylindrical material surfaces extend the entire length of the simulated y dimension. Small

areas of low density can be seen at the four corners of 3.3. These artifacts stem from the

magnetic field curvature in the simulation region as seen in 3.2. Magnetic field lines near

the simulation borders curve into the boundaries of the simulation, which in turn cause

artificial losses to particle populations following these field lines. The losses do not affect

the plasma behavior near the cylindrical material surfaces. It is possible for macroparticles

that are initially created near x = 0 and that have a sufficiently large velocity component

in the z dimension to pass between the cylindrical material surfaces. Such behavior was

more prevalent in a previously reported classical trajectory Monte Carlo study,[18] when a

monoenergtic beam was considered to be incident on a similar magnetic field configuration.
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To characterize how effective the expulsion field is, a normalized loss rate κ is defined.

κ is defined as the rate of particle loss to the cylindrical material surfaces with Bm > 0 divided

by the rate of particle loss to the cylindrical material surfaces when Bm = 0. Smaller values

for κ are considered more desirable, indicating fewer macroparticles are able to cross into the

expulsion region. To determine the normalized loss rate κ, two other parameters are defined.

χ is defined (with Bm > 0) as the number of particles lost to the cylindrical material surfaces

between times tmax/2 and tmax divided by the number of particles introduced during the same

time period. χmax is defined as the maximum fraction of particles that would be lost with

Bm = 0, and χmax is calculated analytically. In the case where no expulsion field is present,

Bm = 0, the fraction of all simulated particles lost to the cylindrical material surfaces should

approach the fractional area χmax = Acms/Asim in the limit where tmax tends to infinity and

the thermal gyro radius tends to zero. Here, Acms = 2(2rL) is the cross-sectional area of both

volumes enclosed by the cylindrical material surfaces in the z = 0 plane, and Asim = L2 is the

cross-sectional area of a source region. The values χmax = Acms/Asim = 0.1, 0.2, 0.3, 0.4 are

used for values of r = 0.25, 0.5, 0.75, 1.0 cm, assuming that the guiding center approximation

is valid, and that tmax is sufficiently large. The parameter κ is calculated as κ = χ/χmax.

For the base case, 14macroparticles are lost the the cylindrical material surfaces between

tmax/2 and tmax while 1.8 × 107 macroparticles are injected in the same time period. With

χmax = 0.2, the value of the normalized loss rate is κ = 3.9× 10−6.

3.3. Parametric Study of Magnetic Plasma Expulsion

3.3.1. Limits on Parameter Value Variations

There are some computational considerations regarding macroparticle weight and

plasma temperature. Macroparticle weights that are too large can lead to numerical insta-

bilities, while large plasma temperatures can lead to unacceptable positional uncertainty. A

series of simulations with variations in macroparticle weight or plasma temperature were run

to determine how each parameter individually affected the normalized loss rate κ with the

magnetic expulsion field turned off, Bm = 0. If Bm is set to zero, the value of the normalized

loss rate κ is expected to be near unity.
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The results for the normalized loss rate κ versus macroparticle weight variation with

Bm = 0 are found in 3.4. As the macroparticle weight increased past a critical value, the

values of the normalized loss rate κ exhibit a decrease attributed to the gradual onset of a

numerical instability, which caused some particles to be reflected in the z dimension back

toward a source region. Values of the macroparticle weight less than w = 100 exhibited less

than a 15% deviation from the expected value of unity. For w = 100, the Debye lengths

calculated for a single cell, hereafter referred to as “cell Debye lengths,” can reach values

smaller than the grid spacing in some cells. For w = 10, all cell Debye lengths are larger

than the grid spacing. If the cell Debye length is smaller than the grid spacing, numerical

instabilities can occur as a result of non-physical interactions.[57]

At sufficiently high plasma temperatures, macroparticles can cross appreciably large

sections of the simulated volume in one time step. An erroneously low value for the normal-

ized loss rate κ can be reported at high plasma temperatures, because a macroparticle can

have a large enough speed to travel through sections of the cylindrical material surfaces in

a single time step and not be counted as lost. A plasma temperature study was performed

to determine the compatibility of the choice of time step with various plasma temperatures

by varying the value of T with 40 K ≤ T ≤ 4.0 × 107 K, with Bm = 0, and with the

macroparticle field solver turned off. 3.5 shows the resulting normalized loss rate κ versus

plasma temperature. The field solver is turned off so as to observe particle motion that comes

solely from thermal energy and interaction with the external magnetic field configuration.

The blue circles are simulated data points, while the yellow squares are values predicted

by a model. For the model, the guiding center approximation is assumed valid, such that

all particles move only in the z direction along uniform magnetic field lines with infinitesi-

mally small gyroradii. The model is defined with a coordinate system translation in the x

dimension on the range 0 < x ≤ r, where r = 0.5 cm is the radius of a cylindrical material

surface region and x = 0 is the cylindrical material surface center in the x dimension. Since

Bm = 0, any particle starting within 0 < x ≤ r will follow a uniform field line, intersect

with the cylindrical material surface and should be counted as lost. However, determining
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if a particle meets the criterion for being lost only occurs at certain times separated by time

steps. A spatial step δz = vztstep is defined as the distance a particle moves during a single

time step tstep traveling at speed, vz. For the model, a normalized loss fraction is defined as

κmodel =
χ

χmax
= Pdetect, where χ is written as χ = Pdetectχmax. Pdetect is the probability that

a particle is detected by the simulation as being incident on a cylindrical material surface

and thus lost. Particles are equally likely to start anywhere between 0 < x ≤ r, such that

fd(x) = 1/r is the probability density function describing the particle initial x coordinates.

Particles have a half Maxwellian initial velocity distribution, such that a probability density

function for particle velocity can be written as

(28) fv(vz) =

[∫ ∞
0

e−mv
2
z/(2kT ) dvz

]−1
e−mv

2
z/(2kT ).

With the two probability density functions, Pdetect is

(29) Pdetect=

∫ ∞
0

∫ r

0

Pfdfv dx dvz,

where P is the probability for a particle with initial coordinate (x, vz) to be detected,

P=


c

δz
δz > c

1 δz ≤ c

and c = 2
√
r2 − d2 is the chord length across the cylindrical material surface at coordinate

x. Numerical integration yields the model in 3.5.

By taking Bm = 0, and with the macroparticle field solver turned off, the expected

normalized loss rate approaches one, κ → 1.0, as tmax → ∞. A significant deviation from

the expected normalized loss rate κ = 1.0 is attributed to the positional uncertainty inherent

at higher plasma temperatures. As T increases, those temperatures that recover within 15%

the expected normalized loss rate (κ ≥ 0.85) are considered to be within acceptable limits

for predicting particle loss to the cylindrical material surfaces. Those plasma temperatures

that show a larger deviation from the expected loss rate (κ < 0.85) in 3.5 would require
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a smaller time step to more accurately simulate magnetic plasma expulsion. Temperatures

below T = 4.0× 106 K are considered to be within acceptable limits (see 3.5).

3.3.2. Debye Length

A change in the column Debye length of the plasma can be accomplished by varying

either the plasma temperature or the macroparticle weight. The effect of plasma tempera-

ture and macroparticle weight variation on the normalized loss rate κ is compared using a

parameter Ωp, which is defined to have the value of Ω at a point away from the distortion

at x = 4.0 cm, z = 4.0 cm and is intended to represent the value of Ω in the undisturbed

plasma. 3.6 shows the results. The maximum value of κ in 3.6 is κ = 7.25 × 10−5. For the

value of Ωp > 100, κ is zero. The simulated data are taken using base case values, other than

the parameter that is varied. For the plasma temperature variations, a macroparticle weight

of w = 10 is used, while for the macroparticle weight variations, a plasma temperature of

T = 40 K is used. In the base case, the value of Ωp is Ωp = 46.05, which, for T = 40 K,

corresponds to a line-averaged density of 4.04× 1010 m−3.

3.3.3. Magnetic Plasma Expulsion Field and Cylindrical Material Surface Radius

A parameter scan is performed over 0.5 T ≤ Bm ≤ 4.0 T in increments of 0.5 T, and

over 0.25 cm ≤ r ≤ 1.0 cm in increments of 0.25 cm, with other parameters having base case

values. 3.7 shows values of the normalized loss rate κ for the permutations of r and Bm. κ

varies from a maximum value of κ = 0.059 for r = 1.0 cm and Bm = 0.5 T, to a minimum

value of κ = 1.11× 10−6 for r = 0.25 cm and Bm = 2.5 T. For a given value of r, κ is larger

than 0.01 for Bm less than a threshold value. The value of κ is smaller than 10−5 for values

of Bm greater than the threshold value. The threshold value of Bm increases with r.

3.3.4. Magnetic Plasma Confinement Field

3.8 shows the results of a variation of the uniform field strength B0. Despite being

an implicit particle mover, the drift-Lorentz mover in Warp retains information about the

gyroradius. When the gyroradius sizes are sufficiently large, the values for the normalized

loss rate κ can be affected. The gyroradius of a charged particle is rg = (mv⊥)/(|q|B) where
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m is the mass, |q| is the absolute value of charge, B is the magnitude of the magnetic field,

and v⊥ is the particle’s velocity component perpendicular to the magnetic field. Due to a

non-negligible gyroradius, macroparticles that would otherwise follow magnetic field lines

around the distortion can be lost to the cylindrical material surfaces causing an increase

in the normalized loss rate. The increase in κ in 3.8 is attributed to the effect of a finite

gyroradius size.

3.3.5. Charge Separation

A phenomenon that should be considered is that of charge separation. Charge sep-

aration may occur as plasma particles travel around the expulsion region due to a sign

dependent cross-magnetic-field drift experienced by the plasma particles. The resulting non-

neutrality causes an electric field to form. To assess the effect, a simulation is run with

base case parameter values except for a variation of the uniform magnetic field strength,

5.0× 10−6 T ≤ B0 ≤ 0.5 T. Due to the symmetry of the simulation about the x = 0 plane,

the y component of the electric field on only one side of the expulsion region, along 1.5 cm

≤ x ≤ 5 cm, y = 0, z = 0 is recorded. The maximum value of the electric field at t = tmax is

used to estimate the maximum E×B drift velocity of the particles as vdrift =
|E×B|
B2

. 3.9

shows the results of the study. For magnetic field values near the base case, the maximum

drift velocity is several orders of magnitude below the thermal speed.

3.3.6. Particle Mass

An electron-positron plasma has been considered up to this point, with all particles

having the same mass. The effect of changing the particle mass is evaluated by also con-

sidering a proton-antiproton plasma. Two simulations are compared. One simulation is the

base case electron-positron plasma. The other simulation is a proton-antiproton plasma with

base case parameter values, except that the time step is increased by a factor of the square

root of the mass ratio, tstep = 42.85 ns. With such a change, equal numbers of particles are

introduced in the two simulations, and the particles travel the same average distance during

a time step.
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For the electron-positron base-case simulation, 14 macroparticles are lost to the cylin-

drical material surfaces between times tmax/2 and tmax, 1.8×107 macroparticles are injected

into the simulation volume during the same time period, χmax = 0.2, and the value of the

normalized loss rate is κ = 3.9 × 10−6. For the proton-antiproton plasma simulation, 16

macroparticles are lost to the cylindrical material surfaces between times tmax/2 and tmax,

1.8×107 macroparticles are injected into the simulation volume during the same time period,

χmax = 0.2, and the value of the normalized loss rate is κ = 4.4 × 10−6. Figure 3.10 shows

a density plot of the proton-antiproton plasma. The magnetic plasma expulsion behavior is

nearly the same as in Fig. 3.3 for an electron-positron plasma. However, there is a noticeable

stream of particles traversing the gap between the two cylindrical material surfaces, indicat-

ing that plasma particles with greater mass may more readily pass between the cylindrical

material surfaces.

Two more simulations are compared with the same parameter values as the preceding

two, except with the value r = 0.25 cm. Three (3) macroparticles are lost to the cylindrical

material surfaces in both the electron-positron plasma simulation and the proton-antiproton

plasma simulation, corresponding to κ = 1.6× 10−6 for each simulation.

3.4. Discussion and Concluding Remarks

Magnetic plasma confinement approaches have been proposed in the past that would

require magnetic-field-producing coils to be embedded within the confined plasma. The

development of magnetic plasma expulsion techniques may provide an enabling technology

to shield mechanical supports and electrical connections attached to such embedded coils by

redirecting the local magnetic field near such structures.

By way of example, a plasma confinement approach using magnetic plasma expulsion

was described (see 3.1). This approach would use two coaxial solenoids, with a pair of metal

tubes passing between the solenoids. Mechanical supports and electrical connections could

be contained in the tubes. There would exist magnetic field lines that would pass through

the inner solenoid and also the metal tubes were it not for the implementation of magnetic

plasma expulsion. Due to the implementation of magnetic plasma expulsion, these field
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lines become closed and do not intersect with the metal tubes. Plasma particles following

such field lines could then recirculate be into the inner solenoid where the magnetic field is

weakest. Plasma within the inner solenoid may be confined by a magnetic mirror with closed

field lines. As noted, plasma particles do pass between the tubes. It may be possible to utilize

the magnetic null lines generated by the localized field distortion as a source of particles for

injection into the device. Such injection schemes could help to control the neutrality, density

and temperature of the confined plasma.

Investigation of the concept of magnetic plasma expulsion was carried out here using

a Particle-in-Cell simulation. A system of magnetically confined electron-positron plasma

near cylindrical material surfaces was modeled. Without magnetic plasma expulsion, plasma

particles could follow field lines that pass intersect with the metal tubes and be lost. A

figure of merit κ was defined as the ratio of losses to the metal tubes both with and without

magnetic plasma expulsion present. Values for the figure of merit were found to be much less

than one for a number of parameter values. It is concluded that magnetic plasma expulsion

may reduce the effects associated with material objects passing through an electron-positron

plasma and possibly other plasmas with similar parameter values. Augmenting current

plasma trap designs with magnetic plasma expulsion concepts may provide a way to trap

larger amounts of plasma for study. Magnetic plasma expulsion is also equally effective on

plasma particles regardless of their charge sign which reduces the complexity of potential

trap designs compared to electrostatic trap design equivalents.
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Figure 3.2. Illustration of the redirected magnetic field associated with mag-

netic plasma expulsion used in combination with magnetic plasma confine-

ment. The plasma confinement field is approximated as being uniform near

two cylindrical material surfaces (thick solid circles). The expulsion field is

approximated as being produced by two straight wires (solid dots) located

within the two cylindrical material surfaces. Loss of plasma to the cylindrical

material surfaces would be inhibited by the use of magnetic plasma expulsion

to redirect plasma along the modified magnetic field.
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Figure 3.3. A density-type plot of Ω for the base case. The color at a given

point represents the value of Ω at that point.
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Figure 3.4. Normalized loss rate κ versus macroparticle weight w with base

case parameter values, except with Bm = 0 and with different values for the

macroparticle weight w.
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Figure 3.5. Normalized loss rate κ versus plasma temperature T . The sim-

ulations are run with base case parameter values, except with Bm = 0, the

macroparticle field solver turned off, and the plasma temperature varied. Blue

circles are simulated data, while yellow squares are values predicted by an

analytical model.
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Figure 3.6. Normalized loss rate κ versus Ωp. For variations of macroparticle

weight (blue circular dots), the temperature is T = 40 K, and the values are

w = 0.1 (Ωp = 4.49), w = 1.0 (Ωp = 14.35), w = 10 (Ωp = 40.73), w = 100

(Ωp = 108.44). For variations of plasma temperature (yellow squares), the

macroparticle weight is w = 10, and the values are T = 40 K (Ωp = 46.05),

T = 400 K (Ωp = 7.53), T = 4, 000 K (Ωp = 1.12), T = 40, 000 K (Ωp = 0.14).

Otherwise, base case parameter values are used. The value of κ is zero for

Ωp = 108.44 and the point is not shown.
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parameter Bm for r = 0.25 cm (circles), r = 0.5 cm (squares), r = 0.75 cm

(diamonds) and r = 1.0 cm (triangles).
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B0 in Tesla, with base case values otherwise.
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Figure 3.9. Maximum E×B drift speed nomalized by the thermal speed at

S + r ≤ x ≤ L/2, y = 0, z = 0. All parameter values are the same as the base

case, expect for the value of B0.

37



Figure 3.10. Same as 3.3, except for a proton-antiproton plasma, with an

increased time step.
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CHAPTER 4

ADDITIONAL CONSIDERATION FOR MAGNETIC PLASMA EXPULSION

4.1. Introduction

Magnetic plasma expulsion is defined as using a magnetic field to prevent plasma from

entering a given region. Used in conjunction with traditional magnetic plasma confinement

schemes, magnetic plasma expulsion may allow greater control over the motion of a confined

plasma. Given that magnetic plasma expulsion relies solely on magnetic field distortions,

magnetic plasma expulsion is predicted to be effective for both positive and negative charges

and in the proposed configuration, does not have a time varying component.

An area in need of study with magnetic plasma expulsion is the effect mass differences

between the positive and negative plasma species have on the magnetic plasma expulsion

configuration. For example, due to a factor of 42.85 difference in the mass between an

electron and a proton, both the gyro radius and the thermal speed of the particles will be

significantly different. This difference in speed leads to distinctly different time scales of

motion which could potentially lead to the development of phenomena not seen in the case

of equal mass opposite charged plasmas such as plasma sheathing around the cylindrical

material surfaces or asymmetric losses between the two plasma species. For applications

of magnetic plasma expulsion to be developed, an understanding of how mass affects the

plasma motion must be gained. Simulating the creation of equilibrium from first principles

in an electron-proton plasma is computationally expensive however, as a result of the vastly

different time scales involved in the plasma motion. Computational methods are explored

to circumvent this using two same mass opposite charged pre-simulations to establish a

preliminary equilibrium more quickly than from first principles.

Previous work only reported loss rates as a fraction of the simulated plasma with no

consideration to exactly where those lost particles came from.[58] For practical configurations

of magnetic plasma expulsion, all particles start on magnetic field lines that do not intersect

with anything in the central region, but particles are still lost because of cross magnetic field
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drift. Characterization of the phase space that lost particles come from in the simulation

could yield improvements to the existing design and insight into the cross magnetic field

drift process that leads to particle losses.

Depending on the methods used, a simulation in computational equilibrium may be

drastically different than the same system in a physical equilibrium.[59] One way to check

the soundness of a computational equilibrium in absence of experimental data, is to alter the

computational bounds of the simulation and examine what if any effect the alteration has

on the resulting computational equilibrium. Several permutations of a base case simulation

are examined to determine what effects various computational boundaries have on the over

all results of the simulation.

4.2. Establishing a Base Case

Magnetic plasma expulsion relies on a localized time independent magnetic field dis-

tortion to redirect plasma away from a given area. The field consists of an element approx-

imating the confining field, and an element approximating the distortion field. As was the

case in the previous work, the confining magnetic field will be approximated as a uniform

magnetic field in the z direction with a value B0, while the distorting magnetic field will be

approximated as due to two infinitesimally thin infinite wires that produce a field strength

of Bm at a distance S. The wires are offset from the origin of the simulation by the distance

S such that the value Bm is measured at the simulation origin.[58] The following external

magnetic field is imposed onto the simulation volume.

(30) B(x, y, z) = Bmβ(
x

S
,
y

S
,
z

S
) +B0k̂

with

(31) β(xn, yn, zn) =

[
− zn

(xn − 1)2 + z2n
, 0,

(xn − 1)

(xn − 1)2 + z2n

]
−
[
− zn

(xn + 1)2 + z2n
, 0,

(xn + 1)

(xn + 1)2 + z2n

]
and Bm = µ0I/(2πS) is the standard expression for the magnetic field strength at a distance

S = 1 cm from a single wire, with I the magnitude of current, and µ0 the permeability
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of free space. The introduced magnetic field represents two current carrying wires creating

magnetic plasma expulsion within a confinement field. The current in these wires generates

an expulsion field characterized by Bm, which is defined to be the magnitude of the magnetic

field at the coordinate system origin generated by a single wire at a distance S. A uniform

magnetic field approximating the confinement field is superimposed in the z direction having

magnitude B0. For these investigations, B0 = 1.0 T, and 1.0 T ≤ Bm ≤ 4.0 T. To carry

out these studies, a particle-in-cell simulation is constructed similar to the previous work

but with a few notable changes.[58] The invariance of the magnetic field in the y direction

is leveraged to create a simulation that is functionally the same as previous work, but is

computationally more efficient.[58] The simulation volume has side lengths XL = ZL = 10

cm and YL = 1 cm. With the increased computational efficiency, the resolution of the particle

in cell grid is able to be increased from a cell volume of 1.25 × 10−10 m3 to a cell volume

of 8.0× 10−12 m3 which allows for a more accurate solution to the particle motion. Motion

in the y dimension still contributes to the overall behavior near the field distortion so the

simulation can not be fully two dimensional.

Cylindrical material surfaces centered on the current carrying wires have a radius

of r and represent structural connections or instrumentation that is being passed through

a confined plasma and needs to be shielded. Any particles that contact these surfaces are

removed from the simulation and lost. In the base case and in previous work, these surfaces

are purely computational boundaries.[58]

Losses are defined in the same manner as in previous work[58]. A normalized loss

rate κ is defined to characterize losses to the cylindrical material surfaces. κ is defined as the

rate of particle loss to the cylindrical material surfaces with Bm > 0, B0 > 0 divided by the

rate of particle loss to the cylindrical material surfaces when Bm = 0, B0 > 0. χ is defined

(with Bm > 0, B0 > 0) as the number of particles lost to the cylindrical material surfaces

between times tmax/2 and tmax divided by the number of particles introduced during the

same time period. χmax is defined analytically as the maximum number of particles that

would be lost with Bm = 0, B0 > 0 between times tmax/2 and tmax divided by the number

41



of particles introduced during the same time period. In the case where no expulsion field is

present, Bm = 0, B0 > 0, the fraction of all simulated particles lost to the cylindrical material

surfaces should approach the fractional area χmax = Acms/Asim in the limit where tmax tends

to infinity. Here, Acms = 2(2rL) is the cross-sectional area of both volumes enclosed by the

cylindrical material surfaces in the z = 0 plane, and Asim = XLYL is the cross-sectional area

of a source region where XL and YL are the lengths of the x and y simulation dimensions

respectively. The value χmax = Acms/Asim = 0.2 is used for a cylindrical material surface

radius of r = 0.5 cm, assuming that the guiding center approximation is valid, and that tmax

is sufficiently large. The parameter κ is calculated as κ = χ/χmax.

The parameter Ω is used to examine how plasma is distributed in the simulation

volume. Ω = L/λD is defined as the longest dimension in the simulation L = 10 cm, divided

by the line-averaged Debye length. Unless otherwise noted, all values of Ω are reported at

t = tmax. λD is calculated as the measurement of the Debye length in each cell volume of the

simulation, averaged in the y dimension such that all cells with the same x and z coordinates

are averaged together to give λD. Where the number density in a given cell is zero and thus

the Debye length incalculable, the value of Ω is set to zero. Values of Ω ≥ 1 represent areas

where the Debye length of the local plasma is smaller than the largest simulated dimension.

Values of Ω greater than the number of grid points in the largest dimension represent areas

where the Debye length of the local plasma is smaller than the grid spacing used in the

simulation.

Hereafter, reference to the base case simulation refers to a simulation with the follow-

ing parameters: Bm = B0 = 1.0 T, S = 1.0 cm, r = 0.5 cm, XL = ZL = 10 cm and YL = 1

cm. 40 particles per time step are introduced into the simulation with 10 electrons and 10

positrons coming from each of the two simulated emission regions at −5.0 cm ≤ x ≤ 5.0 cm,

−5.0 cm ≤ y ≤ 5.0 cm, −4.92 cm ≤ z ≤ −4.9, and 4.9 cm ≤ z ≤ 4.92. The temperature

for the plasma is T = 40 K and the timestep is tstep = 1.0 × 10−9 s with the simulation

being run for 90, 000 time steps. The particles have a Maxwellian velocity distribution in x

and y, and a half Maxwellian velocity distribution in z such that all particles are initially
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directed towards the z = 0 midplane of the trap. The computational grid for the particle-

in-cell solvers is 500 × 50 × 500 corresponding to the x, y, and z dimensions respectively.

The field solver is an implicit solution method developed by the Warp developers called the

drift-Lorentz mover that allows for much larger time steps than would be possible with an

explict particle in cell field solver.[56] Figure 4.1 shows a density type plot of Ω for base

case parameter values. The effect of various alterations to the base case parameters will be

compared against this base result.

4.3. Efficient Equilibrium with Differing Masses

Simulating an electron-proton plasma equilibrating in an empty simulation volume is

computationally very expensive. Due to the significant difference in thermal speeds, electrons

and protons created in a space charge neutralized configuration at the edges of the simulation

volume as in the previous work rapidly experience a charge separation as the electrons reach

the middle of the simulation volume long before the protons do. This motion is transitory

and will eventually damp out, but a very large number of time steps is required to reach an

equilibrium condition. Plasmas with charged species of different masses are both common

and important to the field however so an examination of magnetic plasma expulsion in the

context of differing mass species is necessary. To circumvent the thermal speed mismatch,

simulations of differing mass species are run in two stages: A ’primer’ stage and a ’seeded’

stage for each given combination of parameters. The primer simulations are run with equal

mass opposite charge species. This setup allows the simulated particle injection to remain

space charge neutralized and equilibrium forms much faster because there is no need to

wait for charge separation to damp out. The species chosen for the primer simulations are

electron-positron, and proton-antiproton. These two-species plasmas will equilibrate into

very similar equilibrium configurations. Once equilibrium is achieved, the phase space of all

the particles is recorded. The recorded phase space of the electrons and protons is passed

to the seeded electron-proton simulation and used to create an equilibrium starting point

from which the seeded simulation advances using a time step that resolves the lighter species

motion.
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For the primer simulations, 40 macroparticles with a weight w = 10 and a temperature

T = 40 K were introduced into the system each timestep. The species used are equal

mass opposite charged species and have Maxwellian velocity distributions in the x and y

dimensions and a half Maxwellian velocity distribution in the z dimension such that all

created particles travel towards the z = 0 midplane of the simulated volume. 10 positive

particles and 10 negative particles are introduced from two emission regions with dimensions

(−5 cm < xi < 5 cm,−5 cm < yi < 5 cm, −4.9992 cm < zi < −4.999 cm) and (−5 cm

< xi < 5 cm,−5 cm < yi < 5 cm, 4.999 cm < zi < 4.9992 cm) where xi, yi, zi are the

starting positions of the created macroparticles. The simulation is run for tmax = 90000

timesteps. For the electron-positron simulation, tstep = 1 ns. For the proton-antiproton

simulation, tstep = 42.85 ns to account for the mass difference in thermal motion and allow

both simulations to have similar time of flights for their respective species. The grid for the

primer simulations is 500× 50× 500 in the x, y, and z dimensions respectively. The implicit

drift-Lorentz mover is used in each two-species plasma.

For the seeded simulations, the electron and proton phase spaces from the corre-

sponding primer simulations are used to establish an equilibrium particle population in the

simulation volume. A time step of tstep = 1 ns is used to resolve electron time scale motion

using the implicit drift-Lorentz field solver in Warp. Particles are injected into the simu-

lation only when particles of the equilibrium population exit the simulation or are lost to

the cylindrical material surface regions, and new particles are regenerated using the same

parameters as in the primer simulations in order to maintain the established equilibrium.

Figure 4.2 shows a density type plot of Ω for the electron-proton plasma equilibrium estab-

lished in the seeded simulation. The plot is functionally identical to Fig. 4.1 indicating the

equilibrium established in the primer sims is maintained in the seeded sim. Particle losses

increased to 4 macroparticles lost between t = tmax/2 and t = tmax. Figure 4.3 shows the

z = 0 midplane array of potential values at each grid point in the electron-proton plamsa.

The blue areas indicate areas of negative potential as a result of the accumulation of negative

space charge. Due to their smaller cyclotron radius, electrons are able to drift closer to the
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cylindrical material surface regions without being lost, and over time an electron-confining

sheath appears to form near the cylindrical material surface regions. Further investigations

are needed to determine the longer term effects of this sheath. Sheathing formation was not

seen in the case of equal mass opposite charge species, indicating the effect is dependent on

a mass difference between the two species.

4.4. Characterization of Losses in the Base Case

In previous work, particles lost to the computational bounds of the cylindrical ma-

terial surface regions were recorded in aggregate and reported as the value κ with no con-

sideration for their originating phase space.[58] An analysis of the phase space lost particles

originate from in the base case is conducted here to gain insight into the cross magnetic field

motion necessary for particle to be lost to the cylindrical material surface regions. In a single

base case simulation, so few particles are lost that an examination of the lost particle phase

space would not be possible with proper statistics. To accumulate the proper statistics,

the base case simulation is run repeatedly recording the birth phase space of each particle

lost until an acceptable number of lost particles are accumulated. A population of 120 lost

electrons and 120 lost positrons is accumulated using this method.

Figure 4.4 shows a histogram of observed x starting positions of lost particles in the

base case. All particles lost in the base case were observed to originate within the central 1%

of the x dimension directly in line with the magnetic null regions in the simulation volume.

Particles that enter the simulation in the central 1% of the x dimension interact with the

magnetic null regions that exist on the x = 0 plane as a result of the superposition of the

two external magnetic fields. For base case simulation parameters, particle interaction with

the null regions appears to be necessary for particles to be lost.

Figure 4.5 shows where on the cylindrical material surface regions the lost particles

impacted. Cross referencing the particle loss locations with Fig. 3.3 reveals that the loca-

tions particles are lost at coincides with the area where plasma most closely approaches the

cylindrical material surfaces, and the area where the local magnetic field has the strongest

curvature.
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To characterize what caused particles to be lost to the cylindrical material surface

regions, a version of the base case simulation is run where particle-electric field interactions

are turned off, and only the particles lost in previous simulations are introduced. Since

achieving an equilibrium state is not a concern, the simulation is allowed to run for tstep =

45, 000 time steps for computational expediency. Particles that are still lost in this case

are considered lost due to cross magnetic field drift associated with passing near the null

region. Particles that are not lost in this case are considered lost in the base case as a result

of both passing near the null region and interacting with the surrounding plasma’s electric

field flucuations. Figure 4.6 shows a snapshot of the simulation with particle-electric field

interactions turned off at step tstep = 17, 939. Many of the particles previously lost in the

base case simulation now exhibit stable closed loop orbits very near the cylindrical material

surface regions instead of impacting onto the surfaces. This observation combined with the

highly localized origination of lost particles seen in Fig. 4.4 supports the hypothesis that

losses to the cylindrical material surface regions are primarily caused by particles interacting

with the null regions, drifting onto closed loop magnetic field lines around the cylindrical

material surface regions, and then particles transport into the cylindrical material surface

regions by interactions with the plasma at their outer edges.

Some particles were lost in the case where particle-electric field interactions were

turned off. Of the 120 electrons, 46 were lost. Of the 120 positrons, 35 were lost. These

particles are considered lost as a result of null region induced cross magnetic field drift.

Another feature observed in Fig. 4.6 is the clear separation of charge species the cause

of which currently remains an open question. The author speculates that the cause of this

apparent separation of losses by charge sign is due to the sign dependence of the direction

of gyro motion. Positive particles gyrate in one direction, while negative particles gyrate in

the opposite direction. When the lost particles interact with the null region prior to their

loss, this sign dependent directionality causes the particles to self sort.
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4.5. Effect of Different Computational Boundaries

Computational equilibrium reached during simulations of magnetic plasma expulsion

is examined. Magnetic plasma expulsion refers to using a distortion of a confining magnetic

field to redirect a plasma around a given area. In the envisioned application, this area would

be populated with instrumentation or even parts of the containment device and shielded

from exposure to the confined plasma. These components could also potentially be biased,

grounded, or insulated. A key feature to study in characterizing magnetic plasma expulsion

is the equilibrium behavior of the plasma near the distortion field.

Interior conductors and Neumann boundary conditions are imposed on the simulation

and compared to a standard simulation similar to the base case to examine the effect compu-

tationally imposed boundary conditions have on the equilibrium conditions of the simulated

plasma and the recorded losses.

For this study, base case parameters are used except for the following: r = 0.6 cm

for all three cases, Neumann boundary conditions are used on the simulation edges in one

simulation, and conductors biased to zero volts are used instead of an artificial computational

boundary for the cylindrical material surface regions in the third. An increase in the radius

r ensures a sizable number of particles will be lost to the central regions which allows for

a more accurate comparison of the effects of the various computational boundaries on the

number of lost particles. ’Case 1’ will refer to the simulation that has base case parameter

values except r = 0.6 cm, ’Case 2’ will refer to the simulation with r = 0.6 cm and electrically

grounded conductors used as the cylindrical material surface regions, and ’Case 3’ will refer

to the simulation with r = 0.6 cm and Neumann boundary conditions at the simulation

edges. For Case 1 the number of macroparticles lost between tmax/2 and tmax was 12, 942.

For Case 2 the number of macroparticles lost between tmax/2 and tmax was 12, 811. For Case

3 the number of macroparticles lost between tmax/2 and tmax was 12, 953. The three loss

measurements are almost within 1% of each other indicating that different computational

boundaries have a negligible effect on the overall particle loss estimates.

Computational boundaries could potentially affect more than just the particle losses,
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such as the structure of the equilibrium plasma distribution. To compare the three cases,

the distribution of Ω is used. Figures 4.7, 4.8, and 4.9 show the results. An examination

of the equilibrium plasma distribution as indicated by Ω however reveals nearly identical

equilibrium structures suggesting that the computational boundaries used have a negligible

effect on the overall equilibrium as well as the particle losses.

4.6. Conclusion

Additional characterizations of magnetic plasma expulsion were conducted to expand

on previous work.[58]

Using primer simulations with equal mass opposite charge species proved effective at

accelerating the simulation time required to achieve a computational equilibrium in a two

species plasma with differing masses. The equilibrium achieved in the seeded simulation does

not appear to deviate substantially from the equilibrium previously established in the primer

simulations. Sheathing formation was observed in the seeded electron-proton simulation.

Further examination of sheathing formation is needed, as the phenomenon was not seen in

the electron-positron plasma simulations.

Characterization of the initial phase space of particles lost to the cylindrical material

surface regions revealed that for base case parameter values, all lost particles originate very

near the x = 0 plane, while all losses occurred on the outside edges of the cylindrical material

surface regions. This is consistent with lost particles drifting through the null region and

onto magnetic field lines that take them very close to the cylindrical material surface regions.

The fact that, in the absence of particle-electric field interactions, 66% of previously lost

particles exhibited stable closed loop orbits around the cylindrical material surface regions

indicates particle-electric field interactions as well as proximity to the magnetic null regions

are significant factors when considering the effectiveness of magnetic plasma expulsion.

To investigate the effects the computational boundary conditions had on the estab-

lished equilibrium, variations of the base case simulation were examined that had r = 0.6 cm,

Neumann boundary conditions, and electrically grounded conductors in place of the cylin-

drical material surface regions. These simulations with different boundary conditions were
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compared to a simulation with base case parameter values except r = 0.6 cm. The boundary

condition changes contributed to less than a 1% difference in particles lost to the cylindri-

cal material surface regions, and did not significantly affect the values of Ω throughout the

simulation volume.
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Figure 4.1. A density type plot of Ω for the electron positron plasma for

base case parameter values. Structurally similar to previous work.
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Figure 4.2. A density type plot of Ω for the electron-proton plasma for

base case parameter values. Prominent equilibrium features appear unchanged

suggesting the equilibrium established in the primer simulations carries over

into the seeded simulation for the time scale simulated.
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Figure 4.3. A density type plot of z = 0 midplane of the electron-proton

plasma potential. The black areas are the cylindrical material surface regions.

Negative potential (blue) near the cylindrical material surface regions indicates

the formation of an electron-confining plasma sheath.
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Figure 4.7. A density type plot of the averaged in y value of Ω in the stan-

dard case for comparison to variations of the computational bounds.
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Figure 4.8. A density type plot of the averaged in y value of Ω. Comparison

to Figs. 4.7 and 4.9 reveals no discernible differences.
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Figure 4.9. A density type plot of the averaged in y value of Ω. Comparison

to Figs. 4.7 and 4.8 reveals no discernible differences.
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CHAPTER 5

CONCLUSION

Magnetic plasma expulsion has been examined and characterized for potentially novel

plasma trap applications. In Chapter 2, a relationship between the shielded radius an,

the ratio of strengths between the two parts of the magnetic fields β0 and the normalized

cyclotron radius r0n is found via a classical trajectory Monte Carlo study. The resultant

numerical values were fit using an exponential decay relationship between the shielded radius

an and the normalized cyclotron radius r0n and an error function relationship between the

shielded radius and β0n.

Chapter 3 examined magnetic plasma expulsion using the Warp particle-in-cell code.

Magnetic plasma confinement approaches have been proposed in the past that would require

magnetic-field-producing coils to be embedded within the confined plasma. The development

of magnetic plasma expulsion techniques may provide an enabling technology to shield me-

chanical supports and electrical connections attached to such embedded coils by redirecting

the local magnetic field near such structures.

By way of example, a plasma confinement approach using magnetic plasma expulsion

was described. This approach would use two coaxial solenoids, with a pair of metal tubes

passing between the solenoids. Mechanical supports and electrical connections could be

contained in the tubes. There would exist magnetic field lines that would pass through

the inner solenoid and also the metal tubes were it not for the implementation of magnetic

plasma expulsion. Due to the implementation of magnetic plasma expulsion, these field

lines become closed and do not intersect with the metal tubes. Plasma particles following

such field lines could then recirculate back into the inner solenoid where the magnetic field

is weakest. Plasma within the inner solenoid may be confined by a magnetic mirror with

closed field lines. As noted, plasma particles do pass between the tubes. It may be possible

to utilize the magnetic null lines generated by the localized field distortion as a source of

particles for injection into the device. Such injection schemes could help to control the
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neutrality, density and temperature of the confined plasma.

A system of magnetically confined electron-positron plasma near cylindrical material

surfaces was modeled. Without magnetic plasma expulsion, plasma particles could follow

field lines that intersect with the metal tubes and be lost. A figure of merit κ was defined

as the ratio of losses to the metal tubes both with and without magnetic plasma expulsion

present. Values for the figure of merit were found to be much less than one for a number

of parameter values. It is concluded that magnetic plasma expulsion may reduce the effects

associated with material objects passing through an electron-positron plasma and possibly

other plasmas with similar parameter values. Augmenting current plasma trap designs with

magnetic plasma expulsion concepts may provide a way to trap larger amounts of plasma

for study. Magnetic plasma expulsion is also equally effective on plasma particles regardless

of their charge sign which reduces the complexity of potential trap designs compared to

electrostatic trap design equivalents.

Additional characterizations of magnetic plasma expulsion were conducted to expand

on previous work in Chapter 4. Using primer simulations with equal mass opposite charge

species proved effective at accelerating the simulation time required to achieve a computa-

tional equilibrium for a two species plasma with differing masses. The equilibrium achieved

in the seeded simulation does not appear to deviate substantially from the equilibrium pre-

viously established in the primer simulations. Electron sheathing was observed in the seeded

electron-proton simulation. Further examination of the sheathing is needed as the phenom-

enon was not seen in the electron-positron plasma simulations.

Characterization of the initial phase space of particle loss to the CMS regions revealed

that for base case parameter values, all lost particles originate from very near the x = 0 line

while all losses occur on the outside edges of the cylindrical material surfaces. This is

consistent with lost particles drifting through the null region and onto magnetic field lines

that take them very close to the cylindrical material surface regions. The fact that in the

absence of particle-electric field interactions 66% of previously lost particles exhibited stable

closed loop orbits around the cylindrical material surface regions indicates particle-electric
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field interactions as well as proximity to the magnetic null regions are significant factors

when considering the effectiveness of magnetic plasma expulsion.

To investigate the effects the computational boundary conditions had on the estab-

lished equilibrium, variations of the base case simulation were examined that had r = 0.6 cm,

Neumann boundary conditions, and electrically grounded conductors in place of the cylin-

drical material surface regions. The boundary condition changes contributed to less than a

1% difference in the number of particles lost to the cylindrical material surface regions, and

did not significantly affect the values of Ω throughout the simulation volume.
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APPENDIX

COPY OF CODES USED
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A.1. Chapter 2: Mathematica

urs for 48 parts @ {a,.01,1,.01} {b,.01,5,.01} {r=1}*)

<< Utilities‘CleanSlate‘

ParallelEvaluate[CleanSlate[]];

Remove["Global‘*"];

numparts = 16;

numkerns = 16;

starta = .1;(*radius*)

startb = .1;(*ratio or strength*)

startr = .1;(*cyclotron*)

stopa = 1;

stopb = 1;

stopr = 1;

inca = .1;

incb = .1;

incr = .1;

runab := (

(*Do loop interates over the parameter a.

So whatever aspect of the sim you’d like to examine,

make that parameter a.

Works for both variable field ratios and variable forbidden zones.*)

plottrajectories = False;
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graphtable = {};

(*value of giveme comes from run notebook*)

(*

r0n=r0nfromrun;

numparts=numpartsfromrun*)

Do[

Do[

Do[

trange = 100/Sqrt[2];(*full evaluation time frame.

Almost all particles with have actual evaluation bounds \

shorter than this on the plot*)

Strikes = 0;

Trapped = 0;

Spinner = 0;

(*dimensionless wire mag field*)

beta[x_, y_,

z_] = {-z/((x - 1)^2 + z^2),

0, (x - 1)/((x - 1)^2 + z^2)} - {-z/((x + 1)^2 + z^2),

0, (x + 1)/((x + 1)^2 + z^2)};

(*this is our dimensionless total magnetic field*)

Bnorm[x_, y_, z_, Rnm_,

b1_] = (Sqrt[2]/r0n)*(beta[x, y, z] + {0, 0, b1});

(*gives our random initial particle position*)

Rx[a_] := RandomReal[{-a - 1, a + 1}];
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(*velocity definitions in DE form for solving*)

vx[t_] = Dt[x[t], {t, 1}];

vy[t_] = Dt[y[t], {t, 1}];

vz[t_] = Dt[z[t], {t, 1}];

eqnofmotion =

Cross[{vx[t], vy[t], vz[t]}, Bnorm[x[t], y[t], z[t], r0n, b]];

Do[

tau = Catch[

NDSolve[

{

Dt[x[t], {t, 2}] == eqnofmotion[[1]],

Dt[y[t], {t, 2}] == eqnofmotion[[2]],

Dt[z[t], {t, 2}] == eqnofmotion[[3]],

x[0] == Rx[a], y[0] == 0, z[0] == -5,

vx[0] == 0, vy[0] == 0, vz[0] == Sqrt[2]

},

{x[t], y[t], z[t]},

{t, 0, trange + 1.0001},

MaxSteps -> 1000000,

StepMonitor :> Which[

Sqrt[(x[t] + 1)^2 + z[t]^2] <= a, Throw[{t, 1}];,
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Sqrt[(x[t] - 1)^2 + z[t]^2] <= a, Throw[{t, 1}];,

z[t] >= 5, Throw[{t, 2}];,

t > trange, Throw[{t, 3}];

]

]

];

Which[

tau[[2]] == 1, Strikes = Strikes + 1;,

tau[[2]] == 2, Trapped = Trapped + 1;,

tau[[2]] == 3, Trapped = Trapped + 1; Spinner = Spinner + 1;

];

, {particlecount}]; (*Do loop that actually runs and solves \

for all the trajectories*)

(*ERROR CODES: -99 is no conditions were recorded ;; -45 \

strikes and trapped are not equal to the total number of particles*)

Which[

Strikes == 0 && Trapped == 0 && Spinner == 0,

AppendTo[

graphtable, {a, b, r0n, Strikes, Trapped, Spinner, -99}],

Strikes + Trapped != particlecount,

AppendTo[

graphtable, {a, b, r0n, Strikes, Trapped, Spinner, -45}],

True,

AppendTo[

graphtable, {a, b, r0n, Strikes, Trapped, Spinner, 0}]];

, {a, starta, stopa, inca}
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];(*varies forbidden radius*),

{b, startb, stopb, incb}(*varies field ratio,

can switch places with r0n when you want to run a variable \

cyclotron radius graph*)

];

, {r0n, startr, stopr, incr}];

);

If[$KernelCount < numkerns, LaunchKernels[numkerns]]

particlecount = Quotient[numparts, numkerns];

Timing[DistributeDefinitions[runab, particlecount, combinedtable,

sortscript];

setitup =

Table[ParallelSubmit[{i}, runab; graphtable], {i, 1, numkerns}];

dataout = WaitAll[setitup]][[1]]

Timing[combinedtable =

Table[{dataout[[1, dv, 1]], dataout[[1, dv, 2]],

dataout[[1, dv, 3]], Total[dataout[[;; , dv, 4]]],

Total[dataout[[;; , dv, 5]]], Total[dataout[[;; , dv, 6]]]}, {dv,

1, Length[dataout[[1]]]}];]

ratioplot =

Table[{dx,

Max[First /@

Cases[combinedtable, x_ /; x[[4]] == 0 && x[[2]] == dx]]}, {dx,

startb, stopb, incb}];

(*creates b vs a table*)

radiusplot =
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Table[{dy,

Max[First /@

Cases[combinedtable, x_ /; x[[4]] == 0 && x[[3]] == dy]]}, {dy,

startr, stopr, incr}];(*creates r vs a table*)

surfaceplot =

Table[{dx, dy,

Max[First /@

Cases[combinedtable,

x_ /; x[[4]] == 0 && x[[2]] == dx && x[[3]] == dy]]}, {dx,

startb, stopb, incb}, {dy, startr, stopr,

incr}];(*3d points b vs r vs a*)

Export["/home/rep0055/Talon_output/CAARI_14/radius_versus_ratio.csv",

ratioplot, "CSV"];

Export["/home/rep0055/Talon_output/CAARI_14/radius_versus_radius.csv",

radiusplot, "CSV"];

Export["/home/rep0055/Talon_output/CAARI_14/3d_plot_data.csv",

surfaceplot, "CSV"];

Export["/home/rep0055/Talon_output/CAARI_14/combined_data_table.csv",

combinedtable, "CSV"];

A.2. Chapter 3 Base Case: Warp

# Load Warp and various script packages

from scipy.stats import *

from warp import * # Warp code

import numpy as np

from mpi4py import MPI

setup()
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########################################################################################

xsize = 0.05

ysize = 0.05

zsize = 0.05

xgrid = 200

ygrid = 200

zgrid = 200

xstep = (2 * xsize) / xgrid

ystep = (2 * ysize) / ygrid

zstep = (2 * zsize) / zgrid

xshift = -xsize

zshift = -zsize

smallestr = 1e10

stepval = 0

testvalue = 0.000001

testevalue = 0.000001

testpvalue = 0.000001

EforbiddenX=[]

EforbiddenZ=[]

PforbiddenX=[]

PforbiddenZ=[]

phi=[]

EposX = []

EpoxZ = []

PposX = []

PposZ = []
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delta = 1e-50

S = 0.01

beta = 1.0

r = 0.005

partslost = 0

stepcount = 0

ek = 0.5 * emass * (34821.01)**2

zlimit = 0.015

xlimit = 0.025

cellvolume=xstep*zstep*ystep

rank= MPI.COMM_WORLD.Get_rank()

uniformfieldstrength = 1.0

snapshot=90000

Bx = (np.fromfunction(lambda i, j, k:

-((beta*uniformfieldstrength*S)*((k*zstep+zshift)/(((i*xstep+xshift)-S)**2+

(k*zstep+zshift)**2 +

delta)))+((beta*uniformfieldstrength*S)*((k*zstep+zshift)/(((i*xstep+xshift)+S)**2+

(k*zstep+zshift)**2 -

delta))), (xgrid, ygrid, zgrid)))

Bz = (np.fromfunction(lambda i, j, k:

((beta*uniformfieldstrength*S)*((i*xstep+xshift-S)/(((i*xstep+xshift)-S)**2+

(k*zstep+zshift)**2 +

delta)))-((beta*uniformfieldstrength*S)*((i*xstep+xshift+S)/(((i*xstep+xshift)+S)**2+

(k*zstep+zshift)**2 -

delta))), (xgrid, ygrid, zgrid))) +uniformfieldstrength
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By = fzeros((xgrid, ygrid, zgrid))

weight = 10

#Cmax = 1

stepsize = 1

looptimes = 90000+1

#restartdump=100000/(stepsize+1)

##############################################################################################

# --- Set grid size

w3d.nx = xgrid

w3d.ny = ygrid

w3d.nz = zgrid

top.npmax = 400

top.ekin = (0.5 * emass * (34821.01)**2)/jperev

top.vbeam = 1e-50

top.dt = 1e-09

temp=40

filepath = "/home/rep0055/warpstuff/base_case/"

particle_density_file =

str(top.npmax)+"parts_per_step_weight="+str(weight)+"_temp="+str(temp)+

"_radius="+str(r)+"uni="+str(uniformfieldstrength)
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w3d.xmmin = -xsize

w3d.xmmax = xsize

w3d.ymmin = -ysize

w3d.ymmax = ysize

w3d.zmmin = -zsize

w3d.zmmax = zsize

########################################################################################

# --- Build up magnetic fields

addnewbgrd(zs=-zsize, ze=zsize, xs=-xsize, dx=xstep,

ys=-ysize, dy=ystep, bx=Bx, by=By, bz=Bz, nx=xgrid, ny=ygrid, nz=zgrid)

###########################################################################################

# --- Build up particles in the sim

electron=Species(type=Electron,name="electron",color=blue,weight=weight,fselfb=None)

positron=Species(type=Positron,name="positron",color=red,weight=weight,fselfb=None)

vthermal = sqrt((1.38065e-23*temp)/(9.109e-31))

top.ssn = nextpid()

############################################################################################################################################################

xposmin = -xsize
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xposmax = xsize

yposmin = -ysize

yposmax = ysize

zpposmin = zsize - 5*zstep

zpposmax = zsize - 4*zstep

zmposmin = -zsize + 4*zstep

zmposmax = -zsize + 5*zstep

def createelectronsupstream():

electron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zmposmin, zmposmax, size=top.npmax/4),

vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=false, lnewparticles=true)

installuserinjection(createelectronsupstream)

def createpositronsupstream():

positron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zmposmin, zmposmax, size=top.npmax/4),

vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=false, lnewparticles=true)
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installuserinjection(createpositronsupstream)

def createelectronsdownstream():

electron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zpposmin, zpposmax, size=top.npmax/4),

vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=-abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=false, lnewparticles=true)

installuserinjection(createelectronsdownstream)

def createpositronsdownstream():

positron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zpposmin, zpposmax, size=top.npmax/4),

vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=-abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=false, lnewparticles=true)

installuserinjection(createpositronsdownstream)

########################################################################################################################################################################

def partcounter():
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EposX=electron.getx(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

EposZ=electron.getz(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

PposX=positron.getx(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

PposZ=positron.getz(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

global partslost

for j in range(1, len(EposX)):

testvalueeplus = sqrt((EposX[j]+S)**2+EposZ[j]**2)

testvalueeminus = sqrt((EposX[j]-S)**2+EposZ[j]**2)

if testvalueeplus <= r:

partslost = partslost + 1

if testvalueeminus <= r:

partslost = partslost + 1

for j in range(1, len(PposX)):

testvaluepplus = sqrt((PposX[j]+S)**2+PposZ[j]**2)

testvaluepminus = sqrt((PposX[j]-S)**2+PposZ[j]**2)

if testvaluepplus <= r:

partslost = partslost + 1

if testvaluepminus <= r:

partslost = partslost + 1

if rank == 0:

with open(filepath+particle_density_file+"beta="+str(beta)+"lost.m", "a")

as myfile:

myfile.write("{%d, %d}," %(stepcount, (weight)*partslost))

EposX=[]

EposZ=[]
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PposX=[]

PposZ=[]

installbeforescraper(partcounter)

def scrapebeam():

rsqeplus = (electron.xp + S)**2 + electron.zp**2

rsqpplus = (positron.xp + S)**2 + positron.zp**2

rsqeminus = (electron.xp - S)**2 + electron.zp**2

rsqpminus = (positron.xp - S)**2 + positron.zp**2

electron.gaminv[rsqeplus <= (r)**2] = 0.

electron.gaminv[rsqeminus <= (r)**2] = 0.

positron.gaminv[rsqpplus <= (r)**2] = 0.

positron.gaminv[rsqpminus <= (r)**2] = 0.

installparticlescraper(scrapebeam)

def totalcounter():

EposX=electron.getx()

PposX=positron.getx()

electron_charge = len(EposX+1)

positron_charge = len(PposX+1)

if rank==0:

with open(filepath+particle_density_file+"beta="+str(beta)+"totalcount.m", "a")

as myfile:

myfile.write("{%d, %d}," %(stepcount,

(weight)*electron_charge+(weight)*positron_charge))

positroncharge=[]

electroncharge=[]

EposX=[]
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PposX=[]

installafterscraper(totalcounter)

def xzdensitycounter():

for i in np.linspace(-xsize, xsize, xgrid, endpoint=False):

for j in np.linspace(-ysize, ysize, ygrid, endpoint=False):

for k in np.linspace(-zsize, zsize, zgrid, endpoint=False):

EposX=electron.getx(xl=i,xu=i+xstep,yl=j,yu=j+ystep,zl=k,zu=k+zstep)

PposX=positron.getx(xl=i,xu=i+xstep,yl=j,yu=j+ystep,zl=k,zu=k+zstep)

electron_charge = weight*len(EposX+1)

positron_charge = weight*len(PposX+1)

neutrality=(positron_charge-electron_charge)/cellvolume

density=(electron_charge+positron_charge)/cellvolume

phi=getphi(ix=i,iy=j,iz=k)

if rank == 0:

with open(filepath+particle_density_file+"beta="+str(beta)+

"potential.m", "a")

as myfile:

myfile.write("{%d, %.8f, %.8f, %.8f, %.8f},"

%(stepcount, i, j, k, phi))

if density == 0:

debye_length=1e10

neut=0

else:

debye_length=sqrt((eps0*boltzmann*temp)/(density*(echarge)**2))

neut=neutrality/(density)

if rank == 0:

with open(filepath+particle_density_file+"beta="+str(beta)+
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"xzdebyelength.m", "a")

as myfile:

myfile.write("{%d, %.8f, %.8f, %.8f, %.8f},"

%(stepcount, i, j, k,(10*S)/(debye_length)))

density=0

debye_length=0

neut=0

phi=[]

positron_charge=[]

electron_charge=[]

EposX=[]

PposX=[]

def totalenergycounter():

EvelXsq=numpy.array(electron.getvx())**2

EvelYsq=numpy.array(electron.getvy())**2

EvelZsq=numpy.array(electron.getvz())**2

PvelXsq=numpy.array(positron.getvx())**2

PvelYsq=numpy.array(positron.getvx())**2

PvelZsq=numpy.array(positron.getvx())**2

magEvelsq=EvelXsq+EvelYsq+EvelZsq

magPvelsq=PvelXsq+PvelYsq+PvelZsq

Ek= numpy.sum(magEvelsq) *((0.5*9.10938356e-31)/(1.602e-19))

Pk= numpy.sum(magPvelsq) *((0.5*9.10938356e-31)/(1.602e-19))

totalenergy=weight*(Ek+Pk)

if rank==0:
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with open(filepath+particle_density_file+"beta="+str(beta)+"energy.m", "a")

as myfile:

myfile.write("{%d, %.8f}," %(stepcount, totalenergy))

EvelXsq=[]

EvelYsq=[]

EvelZsq=[]

PvelXsq=[]

PvelYsq=[]

PvelZsq=[]

magEvelsq=[]

magPvelsq=[]

Ek=[]

Pk=[]

totalenergy=[]

installafterscraper(totalenergycounter)

def E_fields():

for i in np.linspace(0, 70, 71):

xfields= getselfe(comp=’x’, ix=i, iy=100, iz=100)

yfields= getselfe(comp=’y’, ix=i, iy=100, iz=100)

zfields= getselfe(comp=’z’, ix=i, iy=100, iz=100)

if rank == 0:

with open(filepath+particle_density_file+"beta="+str(beta)+"fields.m", "a")

as myfile:

myfile.write("{%d, %.8f, %.8f, %.8f, %.8f, %.8f},"

%(stepcount, Bx[i,100,100],Bz[i,100,100], xfields, yfields, zfields))

xfields=0

yfields=0
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zfields=0

###########################################################################################################################################################

w3d.interpdk[1] = 1

w3d.interpdk[0] = 1

w3d.igradb = 1

w3d.boundxy = dirichlet

top.pboundxy = absorb

w3d.boundnz = dirichlet

top.pboundnz = absorb

w3d.bound0 = dirichlet

top.pbound0 = absorb

#top.fstype = -1

top.lrelativ = 0

top.relativity = 0

solver = MultiGrid3D()

registersolver(solver)

if rank == 0:

with open(filepath+particle_density_file+"beta="+str(beta)+"xzdebyelength.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"beta="+str(beta)+"fields.m", "a")

as myfile:
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myfile.write("{")

with open(filepath+particle_density_file+"beta="+str(beta)+"xydebyelength.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"beta="+str(beta)+"lost.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"beta="+str(beta)+"energy.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"beta="+str(beta)+"totalcount.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"beta="+str(beta)+"xycenterplane.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"beta="+str(beta)+"potential.m", "a")

as myfile:

myfile.write("{")

##########################################################################################

package("w3d")

generate()

fieldsolve()

from warp.lattice.loadgradb import setbsqgrad
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setbsqgrad(xgrid, ygrid, zgrid, -xsize, xsize, -ysize, ysize, -zsize, zsize)

for i in xrange(1, looptimes):

if stepcount >= (snapshot-1):

installafterscraper(xzdensitycounter)

step()

if stepcount >= (snapshot-1):

uninstallafterscraper(xzdensitycounter)

chop_fraction = 10.e2/(float(len(EposX)+1)+float(len(PposX)+1))

# electron.ppzx(particles=true, chopped=chop_fraction,

color="red", msize=10000, lframe=true,

pplimits=[w3d.xmmin,w3d.xmmax,w3d.zmmin,w3d.zmmax])

# positron.ppzx(particles=true, chopped=chop_fraction,

color="blue", msize=10000, lframe=true,

pplimits=[w3d.xmmin,w3d.xmmax,w3d.zmmin,w3d.zmmax])

fma()

stepcount = stepcount + 1

i = i + 1 #increments the for loops advancing the sim.

if rank == 0:
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with open(filepath+particle_density_file+"beta="+str(beta)+"xzdebyelength.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"beta="+str(beta)+"xydebyelength.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"beta="+str(beta)+"lost.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"beta="+str(beta)+"energy.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"beta="+str(beta)+"totalcount.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()
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myfile.write("}")

with open(filepath+particle_density_file+"beta="+str(beta)+"xycenterplane.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"beta="+str(beta)+"fields.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"beta="+str(beta)+"potential.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

A.3. Chapter 4 Base Case: Warp

# Load Warp and various script packages

from scipy.stats import *

from warp import * # Warp code

import numpy as np

from mpi4py import MPI

setup()
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########################################################################################

xsize = 0.05

ysize = 0.005

zsize = 0.05

xgrid = 500

ygrid = 50

zgrid = 500

xstep = (2 * xsize) / xgrid

ystep = (2 * ysize) / ygrid

zstep = (2 * zsize) / zgrid

xshift = -xsize

zshift = -zsize

smallestr = 1e10

stepval = 0

testvalue = 0.000001

testevalue = 0.000001

testpvalue = 0.000001

EforbiddenX=[]

EforbiddenZ=[]

PforbiddenX=[]

PforbiddenZ=[]

phi=[]

EposX = []

EpoxZ = []

PposX = []

PposZ = []

ltotalcount = 0
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lpartrecord = 0

lfluxcount = 0

dxelectron = []

dyelectron = []

dzelectron = []

dxpositron = []

dypositron = []

dzpositron = []

electronxbirth = []

electronybirth = []

electronzbirth = []

positronxbirth = []

positronybirth = []

positronzbirth = []

electronxdeath = []

electronydeath = []

electronzdeath = []

positronxdeath = []

positronydeath = []

positronzdeath = []

dx = []

dy = []

dz = []

xbirth = []

ybirth = []

zbirth = []

xdeath = []

ydeath = []
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zdeath = []

lostelectronxbirth=[]

lostelectronybirth=[]

lostelectronzbirth=[]

lostelectronxdeath=[]

lostelectronydeath=[]

lostelectronzdeath=[]

lostpositronxbirth=[]

lostpositronybirth=[]

lostpositronzbirth=[]

lostpositronxdeath=[]

lostpositronydeath=[]

lostpositronzdeath=[]

delta = 1e-50

S = 0.01

bm = 1.0

r = 0.005

partslost = 0

top.lsavelostpart= 1

stepcount = 0

ek = 0.5 * emass * (34821.01)**2

zlimit = 0.006

xlimit = 0.016

cellvolume=xstep*zstep*ystep

rank= MPI.COMM_WORLD.Get_rank()

uniformfieldstrength = 1.0

snapshot=90000
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Bx = (np.fromfunction(lambda i, j, k:

-((bm*uniformfieldstrength*S)*((k*zstep+zshift)/(((i*xstep+xshift)-S)**2+

(k*zstep+zshift)**2 +

delta)))+((bm*uniformfieldstrength*S)*((k*zstep+zshift)/(((i*xstep+xshift)+S)**2+

(k*zstep+zshift)**2 - delta))), (xgrid, ygrid, zgrid)))

Bz = (np.fromfunction(lambda i, j, k:

((bm*uniformfieldstrength*S)*((i*xstep+xshift-S)/(((i*xstep+xshift)-S)**2+

(k*zstep+zshift)**2 +

delta)))-((bm*uniformfieldstrength*S)*((i*xstep+xshift+S)/(((i*xstep+xshift)+S)**2+

(k*zstep+zshift)**2 -

delta))), (xgrid, ygrid, zgrid))) +uniformfieldstrength

By = fzeros((xgrid, ygrid, zgrid))

weight = 10

#Cmax = 1

stepsize = 1

looptimes = 90000+1

##############################################################################################

# --- Set grid size

w3d.nx = xgrid

w3d.ny = ygrid
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w3d.nz = zgrid

top.npmax = 40

top.ekin = (0.5 * emass * (34821.01)**2)/jperev

top.vbeam = 1e-50

top.dt = 1e-09

temp=40

filepath = "/home/rep0055/warpstuff/electron_proton/primer_sims/electron_positron/"

particle_density_file = "electron_positron"+str(top.npmax)+"parts_per_step_weight="+

str(weight)+"_temp="+str(temp)+"_radius="+str(r)+"uni="+str(uniformfieldstrength)

w3d.xmmin = -xsize

w3d.xmmax = xsize

w3d.ymmin = -ysize

w3d.ymmax = ysize

w3d.zmmin = -zsize

w3d.zmmax = zsize

########################################################################################

# --- Build up magnetic fields

addnewbgrd(zs=-zsize, ze=zsize, xs=-xsize, dx=xstep,

ys=-ysize, dy=ystep, bx=Bx, by=By, bz=Bz,
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nx=xgrid, ny=ygrid, nz=zgrid)

###########################################################################################

# --- Build up particles in the sim

electron=Species(type=Electron,name="electron",color=blue,weight=weight,fselfb=None)

positron=Species(type=Positron,name="positron",color=red,weight=weight,fselfb=None)

vthermal = sqrt((1.38065e-23*temp)/(9.109e-31))

top.xbirthpid = nextpid()

top.ybirthpid = nextpid()

top.zbirthpid = nextpid()

top.ssn = nextpid()

############################################################################################################################################################

xposmin = -xsize

xposmax = xsize

yposmin = -ysize

yposmax = ysize

zpposmin = zsize - (5*zstep)

zpposmax = zsize - (4*zstep)

zmposmin = -zsize + (4*zstep)

zmposmax = -zsize + (5*zstep)
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def createparticles():

electron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zmposmin, zmposmax, size=top.npmax/4),

vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=true, lnewparticles=true)

positron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zmposmin, zmposmax, size=top.npmax/4),

vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=true, lnewparticles=true)

electron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zpposmin, zpposmax, size=top.npmax/4),

vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=-abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=true, lnewparticles=true)

positron.addparticles(x=np.random.uniform(xposmin, xposmax, size=top.npmax/4),

y=np.random.uniform(yposmin, yposmax, size=top.npmax/4),

z=np.random.uniform(zpposmin, zpposmax, size=top.npmax/4),
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vx=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vy=np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4),

vz=-abs(np.random.normal(loc=0.0, scale=vthermal, size=top.npmax / 4)),

lallindomain=true, lnewparticles=true)

if rank == 0:

installuserinjection(createparticles)

########################################################################################################################################################################

def partcounter():

global partslost, rank, lostelectronxbirth, lostelectronybirth,

lostelectronzbirth, lostelectronxdeath, lostelectronydeath,

lostelectronzdeath, lostpositronxbirth, lostpositronybirth,

lostpositronzbirth, lostpositronxdeath, lostpositronydeath,

lostpositronzdeath

EposXbirth=electron.getxbirth(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

EposYbirth=electron.getybirth(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

EposZbirth=electron.getzbirth(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

PposXbirth=positron.getxbirth(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

PposYbirth=positron.getybirth(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

PposZbirth=positron.getzbirth(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

EposXdeath=electron.getx(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

EposYdeath=electron.gety(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

EposZdeath=electron.getz(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

PposXdeath=positron.getx(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

PposYdeath=positron.gety(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)
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PposZdeath=positron.getz(zl=-zlimit,zu=zlimit,xl=-xlimit,xu=xlimit)

if rank == 0:

for j in range(1, len(EposXdeath)):

testvalueeplus = sqrt((EposXdeath[j]+S)**2+EposZdeath[j]**2)

testvalueeminus = sqrt((EposXdeath[j]-S)**2+EposZdeath[j]**2)

if testvalueeplus <= r:

partslost = partslost + 1

np.append(lostelectronxbirth,EposXbirth[j])

np.append(lostelectronybirth,EposYbirth[j])

np.append(lostelectronzbirth,EposZbirth[j])

np.append(lostelectronxdeath,EposXdeath[j])

np.append(lostelectronydeath,EposYdeath[j])

np.append(lostelectronzdeath,EposZdeath[j])

if testvalueeminus <= r:

partslost = partslost + 1

np.append(lostelectronxbirth,EposXbirth[j])

np.append(lostelectronybirth,EposYbirth[j])

np.append(lostelectronzbirth,EposZbirth[j])

np.append(lostelectronxdeath,EposXdeath[j])

np.append(lostelectronydeath,EposYdeath[j])

np.append(lostelectronzdeath,EposZdeath[j])

for j in range(1, len(PposXdeath)):

testvaluepplus = sqrt((PposXdeath[j]+S)**2+PposZdeath[j]**2)

testvaluepminus = sqrt((PposXdeath[j]-S)**2+PposZdeath[j]**2)

if testvaluepplus <= r:
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partslost = partslost + 1

np.append(lostpositronxbirth,PposXbirth[j])

np.append(lostpositronybirth,PposYbirth[j])

np.append(lostpositronzbirth,PposZbirth[j])

np.append(lostpositronxdeath,PposXdeath[j])

np.append(lostpositronydeath,PposYdeath[j])

np.append(lostpositronzdeath,PposZdeath[j])

if testvaluepminus <= r:

partslost = partslost + 1

np.append(lostpositronxbirth,PposXbirth[j])

np.append(lostpositronybirth,PposYbirth[j])

np.append(lostpositronzbirth,PposZbirth[j])

np.append(lostpositronxdeath,PposXdeath[j])

np.append(lostpositronydeath,PposYdeath[j])

np.append(lostpositronzdeath,PposZdeath[j])

with open(filepath+particle_density_file+"bm="+str(bm)+"lost.m", "a")

as myfile:

myfile.write("{%d, %d}," %(stepcount, (weight)*partslost))

installbeforescraper(partcounter)

driftlimitpos=zsize-3*zstep

driftlimitneg=-zsize+3*zstep

def scrapebeam():

rsqeplus = (electron.xp + S)**2 + electron.zp**2

rsqpplus = (positron.xp + S)**2 + positron.zp**2
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rsqeminus = (electron.xp - S)**2 + electron.zp**2

rsqpminus = (positron.xp - S)**2 + positron.zp**2

zelectron = electron.zp

zpositron = positron.zp

electron.gaminv[rsqeplus <= (r)**2] = 0.

electron.gaminv[rsqeminus <= (r)**2] = 0.

positron.gaminv[rsqpplus <= (r)**2] = 0.

positron.gaminv[rsqpminus <= (r)**2] = 0.

electron.gaminv[electron.zp < driftlimitneg ] = 0.

electron.gaminv[electron.zp > driftlimitpos ] = 0.

positron.gaminv[positron.zp < driftlimitneg ] = 0.

positron.gaminv[positron.zp > driftlimitpos ] = 0.

installparticlescraper(scrapebeam)

def totalcounter():

global ltotalcount, rank

if ltotalcount == 1000 :

ltotalcount = 0

totE=electron.getn()

totP=positron.getn()

if rank ==0:

with open(filepath+particle_density_file+"bm="+str(bm)+"totalcount.m"

, "a") as myfile:

myfile.write("{%d, %d},"

%(stepcount, (weight)*totE+(weight)*totP))

else:

ltotalcount=ltotalcount+1
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installafterscraper(totalcounter)

def drift_delta():

global dx, dy, dz, xbirth, ybirth, zbirth,

xdeath, ydeath, zdeath, dxelectron, dxpositron,

dyelectron, dypositron, dzelectron, dzpositron,

electronxbirth, electronybirth, electronzbirth,

positronxbirth, positronybirth, positronzbirth,

electronxdeath, electronydeath, electronzdeath,

positronxdeath, positronydeath, positronzdeath, rank

dxelectron=np.append(np.subtract(electron.getx(zl=driftlimitpos, zu=zsize),

electron.getxbirth(zl=driftlimitpos, zu=zsize)),

np.subtract(electron.getx(zl=-zsize, zu=driftlimitneg),

electron.getxbirth(zl=-zsize, zu=driftlimitneg)))

dxpositron=np.append(np.subtract(positron.getx(zl=driftlimitpos, zu=zsize),

positron.getxbirth(zl=driftlimitpos, zu=zsize)),

np.subtract(positron.getx(zl=-zsize, zu=driftlimitneg),

positron.getxbirth(zl=-zsize, zu=driftlimitneg)))

transitiondx=np.append(dxelectron,dxpositron)

dx=np.append(dx,transitiondx)

dyelectron=np.append(np.subtract(electron.gety(zl=driftlimitpos, zu=zsize),
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electron.getybirth(zl=driftlimitpos, zu=zsize)),

np.subtract(electron.gety(zl=-zsize, zu=driftlimitneg),

electron.getybirth(zl=-zsize, zu=driftlimitneg)))

dypositron=np.append(np.subtract(positron.gety(zl=driftlimitpos, zu=zsize),

positron.getybirth(zl=driftlimitpos, zu=zsize)),

np.subtract(positron.gety(zl=-zsize, zu=driftlimitneg),

positron.getybirth(zl=-zsize, zu=driftlimitneg)))

transitiondy=np.append(dyelectron,dypositron)

dy=np.append(dy,transitiondy)

dzelectron=np.append(np.subtract(electron.getz(zl=driftlimitpos, zu=zsize),

electron.getzbirth(zl=driftlimitpos, zu=zsize)),

np.subtract(electron.getz(zl=-zsize, zu=driftlimitneg),

electron.getzbirth(zl=-zsize, zu=driftlimitneg)))

dzpositron=np.append(np.subtract(positron.getz(zl=driftlimitpos, zu=zsize),

positron.getzbirth(zl=driftlimitpos, zu=zsize)),

np.subtract(positron.getz(zl=-zsize, zu=driftlimitneg),

positron.getzbirth(zl=-zsize, zu=driftlimitneg)))

transitiondz=np.append(dzelectron,dzpositron)

dz=np.append(dz,transitiondz)
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electronxbirth=np.append(electron.getxbirth(zl=driftlimitpos, zu=zsize),

electron.getxbirth(zl=-zsize, zu=driftlimitneg))

electronybirth=np.append(electron.getybirth(zl=driftlimitpos, zu=zsize),

electron.getybirth(zl=-zsize, zu=driftlimitneg))

electronzbirth=np.append(electron.getzbirth(zl=driftlimitpos, zu=zsize),

electron.getzbirth(zl=-zsize, zu=driftlimitneg))

positronxbirth=np.append(positron.getxbirth(zl=driftlimitpos, zu=zsize),

positron.getxbirth(zl=-zsize, zu=driftlimitneg))

positronybirth=np.append(positron.getybirth(zl=driftlimitpos, zu=zsize),

positron.getybirth(zl=-zsize, zu=driftlimitneg))

positronzbirth=np.append(positron.getzbirth(zl=driftlimitpos, zu=zsize),

positron.getzbirth(zl=-zsize, zu=driftlimitneg))

transitionxbirth=np.append(electronxbirth,positronxbirth)

transitionybirth=np.append(electronybirth,positronybirth)

transitionzbirth=np.append(electronzbirth,positronzbirth)

xbirth = np.append(xbirth,transitionxbirth)

ybirth = np.append(ybirth,transitionybirth)

zbirth = np.append(zbirth,transitionzbirth)

electronxdeath=np.append(electron.getx(zl=driftlimitpos, zu=zsize),

electron.getx(zl=-zsize, zu=driftlimitneg))

electronydeath=np.append(electron.gety(zl=driftlimitpos, zu=zsize),

electron.gety(zl=-zsize, zu=driftlimitneg))

electronzdeath=np.append(electron.getz(zl=driftlimitpos, zu=zsize),

electron.getz(zl=-zsize, zu=driftlimitneg))

positronxdeath=np.append(positron.getx(zl=driftlimitpos, zu=zsize),

positron.getx(zl=-zsize, zu=driftlimitneg))

positronydeath=np.append(positron.gety(zl=driftlimitpos, zu=zsize),
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positron.gety(zl=-zsize, zu=driftlimitneg))

positronzdeath=np.append(positron.getz(zl=driftlimitpos, zu=zsize),

positron.getz(zl=-zsize, zu=driftlimitneg))

transitionxdeath=np.append(electronxdeath,positronxdeath)

transitionydeath=np.append(electronydeath,positronydeath)

transitionzdeath=np.append(electronzdeath,positronzdeath)

xdeath = np.append(xdeath,transitionxdeath)

ydeath = np.append(ydeath,transitionydeath)

zdeath = np.append(zdeath,transitionzdeath)

###########################################################################################################################################################

w3d.interpdk[1] = 1

w3d.interpdk[0] = 1

w3d.igradb = 1

w3d.boundxy = dirichlet

top.pboundxy = absorb

w3d.boundnz = dirichlet

top.pboundnz = absorb

w3d.bound0 = dirichlet

top.pbound0 = absorb

#top.fstype = -1

top.lrelativ = 0

99



top.relativity = 0

solver = MultiGrid3D()

registersolver(solver)

if rank == 0:

with open(filepath+particle_density_file+"bm="+str(bm)+"fields.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"bm="+str(bm)+"lost.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"bm="+str(bm)+"totalcount.m", "a")

as myfile:

myfile.write("{")

with open(filepath+particle_density_file+"bm="+str(bm)+"potential.m", "a")

as myfile:

myfile.write("{")

##########################################################################################

# ---Run Pic

package("w3d")

generate()

fieldsolve()

from warp.lattice.loadgradb import setbsqgrad
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setbsqgrad(xgrid, ygrid, zgrid, -xsize, xsize, -ysize, ysize, -zsize, zsize)

for i in xrange(1, looptimes):

if stepcount>= ((snapshot-1)/2) and lpartrecord == 0:

lpartrecord = 1 #only want this code to fire once.

installbeforescraper(drift_delta)

step()

stepcount = stepcount + 1

i = i + 1 #increments the for loops advancing the sim.

EX=numpy.array(electron.getx())

EY=numpy.array(electron.gety())

EZ=numpy.array(electron.getz())

PX=numpy.array(positron.getx())

PY=numpy.array(positron.gety())

PZ=numpy.array(positron.getz())

EvX=numpy.array(electron.getvx())

EvY=numpy.array(electron.getvy())

EvZ=numpy.array(electron.getvz())

PvX=numpy.array(positron.getvx())

PvY=numpy.array(positron.getvy())
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PvZ=numpy.array(positron.getvz())

if rank==0:

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"EX.txt",EX, delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"EY.txt",EY, delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"EZ.txt",EZ, delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"PX.txt",PX, delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"PY.txt",PY, delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"PZ.txt",PZ, delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"EvX.txt",EvX,delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"EvY.txt",EvY,delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"EvZ.txt",EvZ,delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"PvX.txt",PvX,delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"PvY.txt",PvY,delimiter=’,’)

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"Pvz.txt",PvZ,delimiter=’,’)

EposX=[]

PposX=[]

charge=getrho()

if rank==0:

for i in range(w3d.nx):

for j in range(w3d.ny):

for k in range(w3d.nz):

with open(filepath+particle_density_file+"bm="+str(bm)+"rho.m", "a")

as myfile:
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myfile.write(str((i-(xgrid/2))*xstep))

myfile.write(str(’ ’))

myfile.write(str((j-(ygrid/2))*ystep))

myfile.write(str(’ ’))

myfile.write(str((k-(zgrid/2))*zstep))

myfile.write(str(’ ’))

myfile.write(str(charge[i][j][k]))

myfile.write("\n")

electroncharge=electron.get_density()

positroncharge=positron.get_density()

if rank==1:

for i in range(w3d.nx):

for j in range(w3d.ny):

for k in range(w3d.nz):

with open(filepath+particle_density_file+"bm="+str(bm)+"debyelengths.m", "a")

as myfile:

myfile.write(str((i-(xgrid/2))*xstep))

myfile.write(str(’ ’))

myfile.write(str((j-(ygrid/2))*ystep))

myfile.write(str(’ ’))

myfile.write(str((k-(zgrid/2))*zstep))

myfile.write(str(’ ’))

if electroncharge[i][j][k]+

positroncharge[i][j][k]==0:

myfile.write(str(0))

myfile.write("\n")

else:
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chargedensity=float(electroncharge[i][j][k]

+positroncharge[i][j][k])

debye_length=sqrt((eps0*boltzmann*temp)/

(chargedensity*(echarge)**2))

myfile.write(str((10*S)/debye_length))

myfile.write("\n")

phi=getphi()

if rank == 2:

for i in range(w3d.nx):

for j in range(w3d.ny):

for k in range(w3d.nz):

with open(filepath+particle_density_file+"bm="+str(bm)+"potential.m", "a")

as myfile:

myfile.write(str((i-(xgrid/2))*xstep))

myfile.write(str(’ ’))

myfile.write(str((j-(ygrid/2))*ystep))

myfile.write(str(’ ’))

myfile.write(str((k-(zgrid/2))*zstep))

myfile.write(str(’ ’))

myfile.write(str(phi[i][j][k]))

myfile.write("\n")

tote=[]

totp=[]

for i in range(w3d.nx):

for k in range(w3d.nz):
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ylineaverage = (np.sum(electroncharge[i,:,k])+

np.sum(positroncharge[i,:,k]))/(ygrid)

if rank==2: #trying to get the lineaveraged omega values

with open(filepath+particle_density_file+

"bm="+str(bm)+"ylineaverage.m", "a")

as myfile:

myfile.write(str((i-(xgrid/2))*xstep))

myfile.write(str(’ ’))

myfile.write(str((k-(zgrid/2))*zstep))

myfile.write(str(’ ’))

if ylineaverage==0:

myfile.write(str(0))

myfile.write("\n")

else:

debye_length=sqrt((eps0*boltzmann*temp)/

(ylineaverage*(echarge)**2))

myfile.write(str((10*S)/debye_length))

myfile.write("\n")

if i==0.04/xstep and k==0.04/zstep:

with open(filepath+particle_density_file+"bm="+

str(bm)+"numberdensity.m", "a")

as myfile:

myfile.write("%.8f," %((10*S)/debye_length))

elif i==-0.04/xstep and k==0.04/zstep:

with open(filepath+particle_density_file+"bm="+

str(bm)+"numberdensity.m", "a")

as myfile:
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myfile.write("%.8f," %((10*S)/debye_length))

elif i==-0.04/xstep and k==-0.04/zstep:

with open(filepath+particle_density_file+"bm="+

str(bm)+"numberdensity.m", "a")

as myfile:

myfile.write("%.8f," %((10*S)/debye_length))

elif i==0.04/xstep and k==-0.04/zstep:

with open(filepath+particle_density_file+"bm="+

str(bm)+"numberdensity.m", "a")

as myfile:

myfile.write("%.8f," %((10*S)/debye_length))

if rank == 0:

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"xdeltas.m",

np.c_[dx,xbirth,xdeath], delimiter=’ ’)

if rank == 1:

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"ydeltas.m",

np.c_[dy,ybirth,ydeath], delimiter=’ ’)

if rank == 2:

np.savetxt(filepath+particle_density_file+"bm="+str(bm)+"zdeltas.m",

np.c_[dz,zbirth,zdeath], delimiter=’ ’)

if rank == 0:

with open(filepath+particle_density_file+"bm="+str(bm)+"lost.m", "a")

as myfile:
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myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"bm="+str(bm)+"totalcount.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"bm="+str(bm)+"fields.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")

with open(filepath+particle_density_file+"bm="+str(bm)+"potential.m", "a")

as myfile:

myfile.seek(-1, os.SEEK_END)

myfile.truncate()

myfile.write("}")
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Storry, M. Weel, A. Müllers, and J. Walz. Trapped antihydrogen in its ground state.

Phys. Rev. Lett., 108:113002, Mar 2012.

[31] H. Higaki, Y. Enomoto, N. Kuroda, K. Michishio, D.J. Murtagh, S. Ulmer, S. Van Gorp,

C.H. Kim, Y. Nagata, Y. Kanai, H.A. Torii, M. Corradini, M. Leali, E. Lodi-Rizzini,

V. Mascagna, L. Venturelli, N. Zurlo, K. Fujii, M. Otsuka, K. Tanaka, H. Imao, Y. Na-

gashima, Y. Matsuda, B. Juhsz, A. Mohri, and Y. Yamazaki. Towards the production

of anti-hydrogen beams. AIP Conference Proceedings, 1521(1):134–143, 2013.

[32] P. Scampoli and J. Storey. The aegis experiment at cern for the measurement of anti-

hydrogen gravity acceleration. Modern Physics Letters A, 29(17):1430017, 2014.

[33] P. Comini, P.A. Hervieux, and F. Biraben. Hbar production from collisions between

positronium and kev antiprotons for gbar. Hyperfine Interactions, 228(1-3):159–165,

2014.

[34] The ALPHA Collaboration. Confinement of antihydrogen for 1000 seconds. Nature

Physics, 7:558–564, 2011.

[35] C. Amole, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler,

A. Capra, C.L. Cesar, M. Charlton, A. Deller, P.H. Donnan, S. Eriksson, J. Fajans,

111



T. Friesen, M.C.Fujiwara, D.R. Gill, A. Gutierrez, J.S. Hangst, W.N. Hardy, M.E. Hay-

den, A.J. Humphries, C.A. Isaac, S. Jonsell, L. Kurchaninov, A. Little, N. Madsen,

J.T.K. McKenna, S. Menary, S.C. Napoli, P. Nolan, K. Olchanski, A. Olin, P. Pusa,

C.O. Rasmussen, F. Robicheaux, E. Sarid, C.R. Shields, D.M. Silveira, S. Stracka, C. So,

R.I. Thompson, D.P. van der Werf, and J.S. Wurtele. Resonant quantum transitions in

trapped antihydrogen atoms. Nature, 483(7390):439–443, Mar 2012.

[36] C. Amole, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, E. Butler, A. Capra, C.L.

Cesar, M. Charlton, S. Eriksson, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill,

A. Gutierrez, J.S. Hangst, W.N. Hardy, M.E. Hayden, C.A. Isaac, S. Jonsell, L. Kur-

chaninov, A. Little, N. Madsen, J.T.K. McKenna, S. Menary, S.C. Napoli, P. Nolan,

K. Olchanski, A. Olin, A. Povilus, P. Pusa, C.Ø. Rasmussen, F. Robicheaux, E. Sarid,

D.M. Silveira, C. So, T.D. Tharp, R.I. Thompson, D.P. van der Werf, Z. Vendeiro, J.S.

Wurtele, A.I. Zhmoginov, and A.E. Charman. An experimental limit on the charge of

antihydrogen. Nature Communications, 5:3955 EP –, Jun 2014.

[37] A.E. Charman. Description and first application of a new technique to measure the

gravitational mass of antihydrogen. Nature Communications, 4:1785 EP –, Apr 2013.

[38] C.A. Ordonez and R.M. Hedlof. Simulation of an aperture-based antihydrogen gravity

experiment. AIP Advances, 2(1):012176, 2012.

[39] R.M. Hedlof and C.A. Ordonez. Simulation of an antihydrogen gravity experiment

utilizing multiple apertures. AIP Conference Proceedings, 1525(1):102–105, 2013.

[40] J.R. Correa and C.A. Ordonez. Magnetobound positronium and protonium. Physics of

Plasmas, 21(8):082115, 2014.

[41] J.D. Wofford and C.A. Ordonez. Dual levitated coils for antihydrogen production. In

F.D. McDaniel, B.L. Doyle, G.A. Glass, and Y. Wang, editors, American Institute of

Physics Conference Series, volume 1525 of American Institute of Physics Conference

Series, pages 106–110, apr 2013.

[42] R.A. Lane and C.A. Ordonez. Classical trajectory monte carlo simulations of particle

confinement using dual levitated coils. AIP Advances, 4(7):–, 2014.

112



[43] A. Friedman, R.H. Cohen, D.P. Grote, S.M. Lund, W.M. Sharp, J.L. Vay, I. Haber,

and R. A. Kishek. Computational methods in the warp code framework for kinetic

simulations of particle beams and plasmas. IEEE Transactions on Plasma Science,

42(5):1321–1334, May 2014.

[44] J.L. Vay, D.P. Grote, R.H. Cohen, and A. Friedman. Novel methods in the particle-in-

cell accelerator code-framework warp. Computational Science Discovery, 5(1):014019,

2012.

[45] J.L. Vay, C.G.R. Geddes, E. Cormier-Michel, and D.P. Grote. Numerical methods for

instability mitigation in the modeling of laser wakefield accelerators in a lorentz-boosted

frame. Journal of Computational Physics, 230(15):5908–5929, 2011.

[46] S.M. Lund, T. Kikuchi, and R.C. Davidson. Generation of initial kinetic distributions

for simulation of long-pulse charged particle beams with high space-charge intensity.

Phys. Rev. ST Accel. Beams, 12:114801, Nov 2009.

[47] J.L. Vay. Noninvariance of space- and time-scale ranges under a lorentz transformation

and the implications for the study of relativistic interactions. Phys. Rev. Lett., 98:130405,

Mar 2007.

[48] S.M. Lund, S.H. Chilton, and E.P. Lee. Efficient computation of matched solutions of

the kapchinskij-vladimirskij envelope equations for periodic focusing lattices. Phys. Rev.

ST Accel. Beams, 9:064201, Jun 2006.

[49] J.L. Vay, P. Colella, J.W. Kwan, P. McCorquodale, D.B. Serafini, A. Friedman, D.P.

Grote, G. Westenskow, J.C. Adam, A. Hron, and I. Haber. Application of adaptive mesh

refinement to particle-in-cell simulations of plasmas and beams. Physics of Plasmas,

11(5):2928–2934, 2004.

[50] D.P. Grote, A. Friedman, J.L. Vay, and I. Haber. The warp code: Modeling high

intensity ion beams. AIP Conference Proceedings, 749(1):55–58, 2005.

[51] A. Friedman, D.P. Grote, and I. Haber. Threedimensional particle simulation of

heavyion fusion beams. Physics of Fluids B: Plasma Physics, 4(7):2203–2210, 1992.

[52] K. Gomberoff, J. Fajans, A. Friedman, D.P. Grote, J.L. Vay, and J.S. Wurtele. Simula-

113



tions of plasma confinement in an antihydrogen trap. Physics of Plasmas, 14(10):102111,

2007.

[53] K. Gomberoff, J. Fajans, J.S. Wurtele, A. Friedman, D.P. Grote, R.H. Cohen, and J.L.

Vay. Simulation studies of non-neutral plasma equilibria in an electrostatic trap with a

magnetic mirror. Physics of Plasmas, 14(5):052107, 2007.

[54] A. Narimannezhad, C.J. Baker, M.H. Weber, J. Jennings, and K.G. Lynn. Simulation

studies of the behavior of positrons in a microtrap with long aspect ratio. The European

Physical Journal D, 68(11):351, 2014.

[55] C.K. Birdsall. Particle-in-cell charged-particle simulations, plus monte carlo collisions

with neutral atoms, pic-mcc. Plasma Science, IEEE Transactions on, 19(2):65–85, Apr

1991.

[56] R.H. Cohen, A. Friedman, D.P. Grote, and J.L. Vay. Large-timestep mover for par-

ticle simulations of arbitrarily magnetized species. Nuclear Instruments and Methods

in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, 577(12):52–57, 2007. Proceedings of the 16th International Symposium on

Heavy Ion Inertial FusionHIF 06.

[57] L. Garrigues, G. Fubiani, and J.P. Boeuf. Appropriate use of the particle-in-cell method

in low temperature plasmas: Application to the simulation of negative ion extraction.

Journal of Applied Physics, 120(21):213303, 2016.

[58] R. E. Phillips and C. A. Ordonez. Magnetic plasma expulsion. Physics of Plasmas,

25(1):012508, 2018.

[59] K. Gomberoff, J. Wurtele, A. Friedman, D.P. Grote, and J.-L. Vay. A method for

obtaining three-dimensional computational equilibrium of non-neutral plasmas using

warp. Journal of Computational Physics, 225(2):1736 – 1752, 2007.

114


	ACKNOWLEDGMENTS
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. MAGNETIC CONTROL OF A SPACE-CHARGE NEUTRALIZED ION BEAM
	2.1. Introduction
	2.2. Equations and Description of Simulation
	2.3. Evaluation of Simulation Results
	2.4. Conclusion

	CHAPTER 3. MAGNETIC PLASMA EXPULSION
	3.1. Introduction
	3.2. Simulation of Magnetic Plasma Expulsion
	3.2.1. Magnetic Field Model
	3.2.2. Computational Model
	3.2.3. Parameter Values and Base Results

	3.3. Parametric Study of Magnetic Plasma Expulsion
	3.3.1. Limits on Parameter Value Variations
	3.3.2. Debye Length
	3.3.3. Magnetic Plasma Expulsion Field and Cylindrical Material Surface Radius
	3.3.4. Magnetic Plasma Confinement Field
	3.3.5. Charge Separation
	3.3.6. Particle Mass

	3.4. Discussion and Concluding Remarks

	CHAPTER 4. ADDITIONAL CONSIDERATION FOR MAGNETIC PLASMA EXPULSION
	4.1. Introduction
	4.2. Establishing a Base Case
	4.3. Efficient Equilibrium with Differing Masses
	4.4. Characterization of Losses in the Base Case
	4.5. Effect of Different Computational Boundaries
	4.6. Conclusion

	CHAPTER 5. CONCLUSION
	APPENDIX: COPY OF CODES USED
	A.1. Chapter 2: Mathematica
	A.2. Chapter 3 Base Case: Warp
	A.3. Chapter 4 Base Case: Warp

	REFERENCES



