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Acrolein is produced endogenously after traumatic brain injury (TBI) and is 

considered a primary mechanism for secondary damage occurring after TBI. We are 

using frontal cortex networks derived from mouse embryos and grown on 

microelectrode arrays in vitro to monitor the spontaneous activity of networks and the 

changes that occur after acrolein application. Networks exposed to acrolein exhibit a 

biphasic response profile. An initial increase in network activity, followed by a decrease 

to 100% activity loss in applications ≥ 50 µM. In applications below 50 µM, acrolein was 

not toxic but generated activity instability with coordinated but irregular population busts 

lasting for up to 6 days. The increase in activity preceding toxicity may be linked to a 

decrease in free spermine, a free radical scavenger that modulates Na+, K+, Ca+ 

channels as well as NMDA, Kainate, and AMPA receptors. Action potential wave shape 

analysis after 20 and 30 µM acrolein application revealed a concentration-dependent 

15-33% increase in peak to peak amplitude within minutes after exposure.  For the 

same concentrations of acrolein (50 µM), the time required to reach 100% activity loss 

(IT100) was longer in serum-free medium than in medium with 5% serum, in which IT100 

values were reduced by a factor of 4.  The greater toxicity in the presence of serum may 

be explained by acrolein adducts on serum proteins. These reaction products have 

been shown by other labs to be toxic in cell culture. This in vitro system could be used 

to expand biochemical analyses such as acrolein-induced spermine depletion and may 



 

provide an effective platform for investigating cell culture correlates of secondary TBI 

damage. 
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CHAPTER 1 

INTRODUCTION 

Reactive aldehydes are a biomarker of oxidative stress, generated through 

several metabolic pathways (Cerevelli, 2004; Murray-Stuart, 2004; Wood, 2007). 

Acrolein is the most reactive aldehyde, and is a more potent toxicant than hydrogen 

peroxide in cell culture (Sharmine et al 2001). It catalyzes reactive oxygen species 

(ROS), possesses a half-life that is orders of magnitude greater than any known ROS, 

can continue self-propagation through initiation of lipid peroxidation and ROS formation, 

and is further generated by oxidase enzyme up-regulation (Ghilarducci et al., 1995). 

The presence of acrolein within a cell is followed by an ionic imbalance, ATP depletion, 

proteolysis and oxidative stress (Sullivan et al., 1998). Exogenous exposure to 

aldehydes or acrolein can induce oxidative stress and acrolein generation within tissues 

of all types (LoPachin & Gavin, 2014). 

In chemical structure, acrolein is the smallest aldehyde and is a strong 

electrophile, meaning it is electron deficient. This property makes acrolein seek an 

(electron rich) nucleophile to covalently bond via Michaels addition (Lopachin & Gavin, 

2014). Adducts of acrolein inactivate and impair enzymes, DNA, and structural proteins 

inhibiting cellular processes.  Mitochondria, thiol groups and cysteine amino acid 

residues are normal targets for acrolein adduction. Enzymes and co-factors are 

inhibited by acrolein adduction, leading to a mitochondrial permeability state and 

inhibition of ATP production. (Picklo, 2000; Lijuan, 2006; Tsutsu, 2014).  

Defense mechanisms exist for electrophilic compounds within the cell. 

Glutathione transferase is a group II CYP enzyme responsible for deactivation of 
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electrophilic chemicals. Glutathione is a strong nucleophile that readily conjugates with 

acrolein and undergoes N-acetylation to produce S-(3-oxopropyl)-N-acetylcysteine 

(OPMA).  Oxidation of this product to OPMA-S-oxide creates an even more toxic 

compound than acrolein (Stevens & Maier, 2008).   

 

 Significance in Neurophysiology 

 Acrolein is produced endogenously within neural tissue after traumatic brain 

injury (TBI) and is a biomarker for head or spinal injury (Tsutsui, 2014; Shi et al., 2015; 

Cebak et al., 2016). Acrolein and its aldehyde derivatives were found to be the primary 

mechanism for secondary damage that occurs weeks to months after a TBI, 

concussion, or surgical procedure on the spine (Cebak et al., 2016). This chemical is 

also found in high concentrations in neurodegenerative diseases (i.e. Alzheimer’s, 

Parkinson’s, multiple sclerosis, stroke and vascular ischemia).  

 There is an abundance of literature on the cytotoxic mechanisms of acrolein. 

Very little literature on the functional effects of acrolein on electrically excitable cells, 

such as neurons, exists within current literature. Now I will cover the known 

mechanisms by which acrolein can induce excitotoxicity, increasing secondary damage 

after the initial physical insult. 

There is a period of increased NMDA receptor activation and associated 

excitotoxicity after TBI, this lasts for only a few hours in a mouse model, and 1-2 days in 

a human model. This is followed by electrophysiological inhibition (Bullock et al., 1992; 

Biegon et al., 2004; Krishnamurthy et al., 2016). The same functional manifestations 

have been implicated in stroke and cerebral ischemia, where acrolein is also produced 
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endogenously. There is no current knowledge on the functional response of networks 

when exposed to acrolein in neural tissue. This response is life threatening and, in a 

laboratory setting, has value for developing innovative pharmacotherapy to treat 

secondary damage after sustaining a TBI. 

 Acrolein is generated by and catalyzes lipid peroxidation, also forming free 

radical reactions. Following a TBI, increased activity of amine oxidase (AO) and 

spermine oxidase (SO) produces excess acrolein as a byproduct of enzymatic catalysis 

(Tomitori, 2005; Caldwell, 2015). These enzymes are important in the production of 

polyamines. Polyamines are found in all human tissue systems, with the highest 

concentrations found in brain tissue. They play a regulatory role in the membrane 

potential and action potential production of neurons.  

 Spermine, a polyamine, modulates the N-methyl-D-aspartic acid (NMDA) 

receptor function as well as inwardly rectifying potassium channels (Zapia et al., 1980; 

Morris & Mayer, 1993; Tsutsui, 2014). Spermine also plays a regulatory role in sodium 

(Na+) channels; and its depletion has shown to increase spontaneous spiking and 

hyper-synchronized discharge in cortical neurons (Fleidervish et al., 2008). Spermine is 

present at a 2.0 mM concentration within the nucleus and is released during oxidative 

stress because it functions as a direct free radical scavenger (Ha et al., 1998). Tsutsui, 

2014 demonstrated: acrolein adducts to spermine and other polyamines via Michaels 

addition. The amine-acrolein adducts polymerize in favor the formation of 

diazacyclooctanes. The decrease in free spermine within a neuron would lead to an 

increase in spontaneous spiking and coordinated bursting, increasing NMDA activation, 

AO and SO activation, ROS formation and ultimately oxidative stress. 
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 The presence of NMDA receptor hyper-activation and excitotoxicity after a TBI in 

mice has been implicated along with the process of secondary damage (Beigon et al., 

2004, Krishnamurthy et al., 2016). Increased activation of NMDA receptors and 

excitotoxicity have been classified as key components to the pathophysiology of 

secondary damage after TBI (Yi & Hazell, 2006; Werner & Engelhard, 2007; Greve & 

Zink, 2009). The latest key component to secondary damage, the presence of acrolein, 

was published in 2016 (Cebak et al.).  Free radical scavengers were able to mitigate the 

typical degeneration seen post TBI (ibid). 

The increase in PO, ROS, and acrolein activates microglial cells which induce 

genetic changes in surrounding astrocytes (Patel, 2016). These changes create a 

pathogenic astrocyte, labeled A1, which alters transcription to inhibit the abilities of 

facilitating neuronal survival, outgrowth, synaptogenesis and phagocytosis (Liddelow, 

2017). The astrocytic glutamate transporter is down regulated in A1 astrocytes, leaving 

excess glutamate in the synapse (Yi & Hazell, 2006; Landgehem, 2006; Lin, 2012; 

Guerriero, 2015). This means that oxidative stress from increased activity could 

promote the further generation of acrolein, a self-catalyzing compound with the longest 

half-life of any ROS.  

Post TBI induced epilepsy is positively correlated with TBIs that include 

hemorrhaging. In the literature, a 24-hour window exists for treatment to avoid post TBI 

induced epilepsy and this is suggested by the death of important inhibitory interneurons 

(which are highly sensitive to oxidative stress) during TBI induced excitotoxicity 

(Sloviter, 2011).  Langer et al demonstrated in 2011 that treatment with a low affinity, 

noncompetitive NMDA antagonist in the first 24 hours after TBI reduced the death of 
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important inhibitory interneurons. This also reduced post TBI induced epilepsy (Langer 

et al., 2011). 

 The project represents an in vitro, exogenous exposure to acrolein in murine 

mouse frontal cortex neuronal networks for quantitative insight into the functional 

changes that occur in electrophysiology generation of acrolein. The biochemical nature 

already known about this compound in current literature reveals a possibility that 

acrolein can induce functional changes important in the process of secondary damage 

and degeneration following a physical insult. This study aims to elucidate the functional 

changes when acrolein is added to a neuronal network without any of the other 

variables which are generated along with TBI. 
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CHAPTER 2 

METHODS 

Microelectrode Array (MEA) Fabrication 

All MEAs used in this study were fabricated in the Center for Network 

Neuroscience (CNNS) photolithography laboratory at the University of North Texas by 

undergraduate volunteers (Christopher Pino and Jake Gray). The MEA fabrication 

technique has been published in detail previously (Gross, 1979; Gross et al 1985; 

Gross, 1994). 

MEAs are 5 x 5 cm glass plates coated with of film of indium-tin oxide (ITO). 

Conductors are photoetched and then insulated with 2-3 mM thick polysiloxane resin 

(methyltrimethoxysilane). The electrodes are constructed by laser de-insulation which 

creates 20 mM diameter craters. The exposed ITO is coated with gold to decreased 

impedance. The center of the MEA has a 1.0 mm2 recording area comprised of 64 

microelectrode terminals. 

Fig. 2.1. Neuronal cells on a 64 electrode micro electrode array (MEA). Bodian stain. 
CNNS archives. 
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 Frontal Cortex Cell Culture 

 The frontal cortices of E16 mouse embryos are isolated in a sterile balanced salt 

solution, dextrose-1, sucrose, glucose, and HEPES buffer (D1SGH). This solution 

moistens and stabilizes the osmolarity of the tissue for mincing with surgical scalpels. 

The D1SGH is aspirated and replaced with 5.0 ml of 0.05% trypsin and 1.5% DNase II 

solution. The minced tissue is incubated for 13 minutes at 37 o C.  The entire solution is 

aspirated by pipette and replaced by 5.0 ml of Dulbecco’s modified Eagle medium 

(DMEM). Tissue is given 3.0-5.0 minute to settle at the bottom of the 15 ml centrifuge 

the medium is then aspirated and replaced by fresh DMEM. This new suspension is 

given 3.0-5.0 minutes to settle and then the medium is aspirated and replaced by 8.0 ml 

of DMEM. The tissue is triturated gently, 5.0-7.0 times, then sampled for cell count on 

the hemocytometer. Cell density is adjusted to 70,000 cell per 100 (700,000 cells per 

ml) using DMEM for dilution of cells. Cells are pipetted onto MEAs (previously coated in 

poly-D-Lysine and laminin), in a 100 µL volume and incubated at 38.0 o C in 10% CO2. 

After 1.0-2.0 hr for adhesion, cells receive a 3.0 ml volume of DMEM with 5.0-10% fetal 

bovine serum. Cells develop in this medium until the third day in vitro (DIV). At this 

point, the medium is exchanged with DMEM with 5% horse serum. Routine feeding is 

conducted biweekly. 

Once the glial carpet is 100% confluent, serum is decreased to 2% for control of 

glial cell growth. Networks are allowed 4 weeks to develop before experimentation. 

GABAa agonists and antagonists are used routinely to test pharmacological responses 

of cultured networks. 
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 Selection of a Network for Experimentation 

 Phase contrast microscopy is used to monitor network growth and development. 

When the network has fully developed (~ 4 weeks), selection is based upon a criterion 

that combines microscopy and laboratory equipment. This is necessary for time 

efficiency as well as experimental success. The criteria are based on several 

parameters. 

 The first criterion is morphology. Cytoplasmic membrane characteristics, cell 

density, density of processes connecting cells within the network, stressed or dying 

cells, activated glial cells and glial carpet density. 

 The second criterion is the network location. If the network adheres to a location 

off center from the MEA, no electrophysiological data can be obtained. This makes the 

culture a candidate for time lapsed microscopy experiments only. 

 The third criterion is the MEA condition. loss of gold increases the electrode 

impedance.  Cracks lower the shunt impedance, resulting in a loss of signal., 

 The fourth criterion is osmolarity. Sampling of 10 µL network medium inside the 

clean room is taken outside to be measured by the osmometer.  

 If a culture passes all four of these criteria, it is selected for experimental setup. 

Further selection methods are discussed in the next section, once electrophysiological 

data is available.   

 

 Electrophysiological Monitoring 

 MEAs with mature, monolayer networks have pharmacological histiotypic 

electrophysiological responses, like the parent tissue (Gross et al.,, 1993; Gross & 
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Gopal., 2006; Potter & DeMarse, 2001; Johnstone et al., 2010). Tissue is transferred 

from a Petri dish inside the incubator, into a chamber that functions as an external 

incubator while allowing for amplification of electronic signals. The chamber is opaque 

with a window for phase contrast microscopy, closed to external air with an ITO cap to 

minimize heat loss, dehydration, contamination and maintain constant life support 

conditions (osmolarity, pH and temperature).  The ITO window is heated to prevent 

condensation and allow microscopic observation during the entire experiment. 

 The chamber is placed on an inverted, phase contrast microscope to allow for 

simultaneously electrophysiological and morphological monitoring. Details on the 

experimental setup have been described previously (Gross and Schwalm, 1994; Gross 

et al., 1994). Cultures are kept at 37 o C with a within a range one of ± 1.0 o C. A 

continuous 10 ml/min stream of medical grade 10% CO2 in air flows into the chamber 

cap to maintain pH in the range of 7.3 to 7.5. The phenol red indicator of the stock 

media for pharmacology is used for qualitative measurement of pH for the duration of 

the experiment. Quantitative hydrogen ion concentrations from pH meters are used to 

accurately measure medium when a 100 µL volume is available for measurement.  

Osmolarity measurements require only a10 µL test volume and could be made 

through the course of the entire experiment. When measuring osmolarity, to control for 

sampling errors due to stratification, 50% of the medium is withdrawn temporarily from 

the chamber and a 10.0 µL volume is taken from this sample. 

 Two chambers were used for these studies: a single network M-4 chamber with 

two Luer ports and a total volume of 2 mL, and a dual network M-5 chamber with 

separate wells of 1 mL volume and two Luer ports each. In each case one port is used 
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for water addition from a syringe pump to compensate for evaporation and maintain 

osmolarities. The other Luer port is used for medium changes, extraction of medium 

samples and test substance application (Fig. 2.1).  

 Test substance application: 100-300 µL medium sample is withdrawn from the 

network chamber via the Luer port into a syringe. The syringe is withdrawn and the test 

substance is injected into the syringe tip by with a micropipette. The syringe with 

medium is inserted into the chamber Luer port where another small amount of medium 

is carefully withdrawn and mixed with the medium containing the test substance. The 

test substance and medium mixture is slowly returned into the network chamber.  

 
Fig. 2.2. Electrophysiological and life support setup: (Left) M4 chamber which records 
from a single network. 32 preamplifiers (Plexon Inc.) are attached to either side.  (Right) 
M5 chamber which allows for the recording of two separate networks, each in their own 
chemical environment. CNNS Archives. 
 

 The amplification is achieved in two stages. A 100-fold fixed amplification with 32 

preamplifiers positioned to the left and right of the chamber and a variable second stage 

amplifier that can adjust total amplification up to 20,000. Normal amplification levels are 

10,000 to 12,000. Spikes can be identified by wave shapes (wave shape template 

algorithm, Plexon inc Dallas). With good signal to noise ratios is possible to separate 

four wave shapes on one physical channel in real time (Fig. 2.3). Primary network 
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activity is displayed as real time spike raster display from wave shape crossings of a 

threshold with a resolution of 25 µsec. 

 An additional custom CNNS program (Vernac) plots total activity or average 

activity per min which allows visualization of changes in network activity. This is a 

convenient, simple display used for all experiments. 

 
Fig. 2.3. Common displays of the Plexon Omniplex system. (A)  Real time extracellular 
firing of each individual unit that has been selected. (64 channels).  (B): High signal to 
noise ratios (SNR) in a 32-channel recording system. Under these conditions, 
waveshape separation is possible with high precision and a maximum of 4.  
 

 Methods for Analysis of Electrophysiological Data 

Network spike production was plotted as mean or total spikes per minute for the 

entire experiment. Each minute, the total activity was divided by the active channels 

(floating average). An active channel was defined as one with at least 10 discriminated 

spike signals per minute. Such a display allowed the monitoring of the evolution of 

A B 
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activity and represented the primary real time contact with the network. Burst activity 

was monitored with the Plexon raster display and quantified offline. 

Activity from different networks was never pooled, and changes were normalized 

as percent decreases from network-specific reference activity that was maintained in a 

stable state for a minimum of 60 min (native activity) before acrolein experiments. 

Neurophysiological parameters were quantified from spike rate plots using NEX 

analysis programs (NEX Technologies). All Plexon time stamps are stored with a 25 µs 

resolution and a raster plot of all channels can be re-created for the entire experiment.  

Segments of such data are used in several figures in this thesis to depict complex 

changes in activity.  Sigmoidal fits to dose-response data were obtained either with 

Excel XL Stat and with Origin V-7. 

Irreversible activity decreases were obtained at single concentrations and key 

values were expressed as IT100, i.e. the time when activity had decayed 100%. 

 

 Acrolein Storage, Preparation, and Administration 

Table 2.1. Globally Harmonized System (GHS) Hazard Classification of Acrolein 

 

Flammable liquids Category 2 
Acute Oral Toxicity Category 2 
Acute Inhalation Toxicity Category 1 
Acute Dermal Toxicity Category 2 
Skin Corrosion   Category 1B 
Serious Eye Damage Category 1 
Acute Aquatic Toxicity Category 1 
Chronic Aquatic Toxicity Category 1 
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According to the University of California Berkley, it is standard operating 

procedure to wear gloves, a lab coat, ANSI-approved safety goggles, cotton based 

clothing and closed toe shoes. Work should take place under a laboratory type fume 

hood with sash position closed.  In order to comply with this, as well as ensure 

additional protection between fume hood and experiment, a carbon activated mask was 

an addition to this experiment’s standard operations. The CAL/OSHA permissible 

exposure limit (PEL) is 0.1 ppm (0.25mg/m3). 

 Acrolein storage: acrolein is an auto-ignitable auto-oxidant. It must be stored in a 

cool, dry, hypoxic environment to ensure its stability. Source acrolein bottle must be 

filled with nitrogen before being placed back into 4-8 o C. 

Table 2.2. Chemical and Toxic Properties of Acrolein 

Chemical formula C3H4O 
Molecular weight 56.06 g/mol 
Melting point/freezing 
point 

-87 o C (- 125 o F) 

Boiling point 52.2  o C (125.5 o F) 
Odor threshold 0.21 ppm 
Skin protection Handle with gloves, minimum 

thickness 0.3 mm 
Body protection A lab coat and sterile sleeves 
Respiratory protection Carbon activated gas mask 
USA. Occupational 
Exposure Limits 
(OSHA) - Limits for Air 
Contaminants  

0.10 ppm 0.250000 mg/m3 
 

ACGIH Threshold 
Limit Values (TLV)  

0.10 ppm 
 

 

Each experiment required a new solution because of the instability and high 

reactivity of acrolein. Depending on the experimental concentration, either ultrapure 

H2O or DMEM stock solutions was used to dilute the source acrolein solution. Sterility 
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procedures are maintained between the source acrolein bottle (Sigma) and solution 

(DMEM or ultrapure H2O). 

Table 2.3. Acrolein Solution Prep 

Chemical Solvent(s) 40 mM Bicuculline 
(in Network Prior) 

Acrolein Diethyl Acetate 
(Stabilized in 4% 
Hydroquinone) (ADA) 

DMEM with 5% serum 
DMEM stock (serum free) 

yes 

Acrolein (stabilized in 10% 
Hydroquinone) AHQ 

DMEM stock (serum free) 
Ultrapure H2O 

yes 

Analytical Acrolein Ultrapure H2O no 
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CHAPTER 3 

RESULTS 

The following results were obtained with a cell culture model that has shown 

utility for exploring the origins of spontaneous activity and study the internal dynamics of 

neuronal ensembles.  It has also found realistic applications to pharmacology and 

toxicology. This approach provides the unique ability to simultaneously record 

electrophysiological data derived from frontal cortex networks while observing the 

network morphology. This is not possible in any in vivo model system due to the 

biological complexity. Data is presented in 4 sections representing the 4 different 

chemicals tested: acrolein diethyl acetate (ADA), acrolein stabilized in hydroquinone 

(AHQ), analytical (pure) acrolein (AA), and hydroquinone (HQ). The latter substance 

was investigated to determine if it contributed to the toxicity seen in AHQ and ADA 

experiments because their use as a stabilizer. Each section will begin with a table of 

experiments, show electrophysiology responses, dose response curves, and conclude 

with microscopy. 

Acrolein Diethyl Acetate (ADA) 

Acrolein diethyl acetate is a similar, but larger and less volatile aldehyde in 

comparison to acrolein itself. It is stabilized in 4% HQ to prevent auto-oxidation of the 

compound. A protocol for a single application of ADA and utilizing the response variable 

of time was constructed in this process.   
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Table 3.1. Table of ADA Experiments 

 
Exp. 
 

ADA 
(mM) 

 

# of 
Channels 

 

Culture 
date  

 

Exp. 
Date 

 

Age 
(days) 

 
MA005 44 33 1.19.16 3.2.16 41 
MB005 88 27 1.19.16 3.2.16 41 
MA006 47.6 36 1.19.16 3.10.16 49 
MA004 7 37 1.19.16 2.24.16 28 
MA011 120 37 2.2.16 3.23.16 49 
MB011 240 22 2.2.16 3.23.16 49 
MA014 47 33 1.19.16 4.5.16 84 
MA008 12 23 2.2.16 3.15.16 42 
MA007 34 30 2.2.16 3.16.16 43 
MB007 34 5 2.2.16 3.16.16 43 
MA009 1 45 2.2.16 3.17.16 44 
MB009 1 32 2.2.16 3.17.16 44 
MB009B 1,000,000 32 2.2.16 3.17.16 44 
MA010 6 12 2.2.16 3.18.16 45 
MA012 30 0 2.2.16 3.28.16 55 

 

3.1.1 ADA Response Profiles 

Fig. 3.1 shows the reduction in spike activity from four different networks 

exposed to different concentrations of ADA.  Percent loss of activity is plotted against 

time on a linear scale.  In this case, a 50% loss is identified as an IT50.  Whereas the 

activity decrease is concentration dependent, with higher concentrations leading to a 

more rapid loss of activity, the effect of serum was unexpected and is paradoxical., The 

two experiments in serum-free medium take much longer to lose their activity.  Since 

serum is known to bind a variety of substances, therewith decreasing the effective 

concentration of the toxicant, it is generally observed that a serum-free environment 

offers less protection, leading to a more rapid decay of network activity.  This is not 

observed in these experiments and is presently without explanation. The IT50 of ADA in 

the presence of serum is 48 and 90 min for 88 and 44 mM ADA (Fig. 3.1). The IT50 of 

ADA in serum free medium was 225 and 300 min for 50 and 34 mM.  This is a 
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substantial shift, indicating an increased potency in the presence of biomolecules found 

in serum. 

 
Fig. 3.1. Network activity responses to single ADA applications are concentration and 
medium dependent. Linear plots with polynomial fitting show expected concentration-
dependence but paradoxical effects of serum-containing medium.  IT50 values at 44 
and 88 mM in serum are 90 and 50 min respectively.  In serum-free medium IT50 values 
at 30 and 50 mM are 300 and 235 min, respectively.  The insert amplifies the two 
response curves obtained in serum-containing medium. NOTE: serum-free responses 
were biphasic (not shown; ~10-20% increases for 50-100 min). 
 

 Fig. 3.2 plots the IT100 values for all ADA experiments with single applications 

(n=6).  In the range from 6 mM to 1 Molar, a log-log plot provides a linear function.  Two 

experiments received a full medium change :10 and 6 hr after ADA application.  These 

data points (see triangles) remain on the trend line, indicating that the toxicity of ADA is 

established at an early time (perhaps less than 15 min) and cannot be reversed by 

medium changes. 
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Fig. 3.2. Log-log plot of the time until 100% activity decrease vs ADA concentration in 
serum-free medium). Two experiments received a medium change: 10 min after 12 mM 
and 6 hr. after 7 mM ADA application (circled markers above).  However, spike 
termination does not deviate from the log-log function. These observations imply that 
the ADA effect is established very early after exposure and cannot be reversed by 
medium changes.  
 

 The raw data that has led to the graphs shown in Fig. 3.3 is displayed in Fig. 3.3. 

for the 50 mM serum-free experiment.  This sequence of 30 sec time segments shows 

the increased activity ignored in Fig. 3.3.  Burst rates rise temporarily form 36 bpm in 

the reference state, to 42 bpm 2 min after application and reach 78 bpm at 100 min.  

The activity decreases thereafter. The IT50 level activity shown in Fig. 3.3 D reveals that 

the decay in bursting is dominated by an increase in burst period as well as by a 

shortening of the burst duration.  
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Fig. 3.3. Change in network pattern after 50 mM ADA. Burst rate increases for 50 
minutes before decreasing from reference activity range. (A) Raster display of reference 
spike activity, disinhibited by 40 mM bicuculline. (B) Decrease in period between 
population bursts 1 minute after 50 mM ADA application. (C) 100 minutes post ADA 
application showing a continued decrease in spike period without loss of burst 
coordination. (D) Raster spike display at the IT50. (E) 5 hr after the ADA application.  
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3.1.2 ADA Dose Responses 

Low concentration titrations (3 mM ADA) show no immediate effect in reference 

spike activity until 24 mM. A decrease in active units is not observed until 45 mM. Two 

full medium changes could not recover spike activity. The observed EC50 for an instant 

effect in spike rate from reference after application was 30 mM ADA. 

 
Fig. 3.4. Dose response for ADA on a single culture disinhibited with 40 mM bicuculline. 
(A) Titrations with 3 mM ADA until the total concentration of 54 mM (18 titrations). Activity 
loss was irreversible with two medium changes. decrease in spike activity as a function 
of ADA concentration. The observed IC50 was: 38 mM ADA, and TC50: was 48 mM (B) 
Percent decrease from reference spike activity is on the y axis and the concentration 
increases along the X axis. 
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3.1.3 Morphological Responses 

The time lapse microscopy of ADA experiments exhibited a granular cytoplasm 

and beading of processes, known as Wallerian degeneration See Fig. 3.5 A and D for 

the loss of an axon, granulation of the glial carpet, and retraction of the soma from and 

ovoid shape to a circular one. In the absence of specific staining, axons cannot always 

be visually identified.  However, in all ADA time lapse microscopy, processes extending 

from cell bodies, would bead and disappear in a time period (n=3).  

 
Fig. 3.5. Morphological responses to 50 mM ADA. (A) Directly after dose.  White arrow 
identifies axon. (B) 30 minutes after dose, axon is showing signs of Wallerian 
degeneration (see insert). (C) Axon has degenerated, leaving debris. (D) Axon debris is 
gone, full tissue retraction and soma shape changes. The white arrow displayed stays 
the same length and represents a 50% decrease in space between soma and process. 
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 Acrolein Stabilized in 10% Hydroquinone (AHQ) 

All data on acrolein in 10% HQ is preliminary data. Due to an ongoing 

backorder, this chemical was unattainable from Sigma Aldrich or Fisher scientific 

through the period of July 2017-January 2018, when the lab protocol expired and 

cell culture was permanently closed down. The original July order was cancelled 

in November 2017 when it was stated by the company that they could not 

guarantee the shipment of this chemical in the foreseeable future. At this time, 

the analytical source acrolein became backordered as well. 

Table 3.2. Acrolein HQ Experiments 

Exp. 
 

Concentration 
mM 

Channels 
 

Culture 
 Date 

Experiment 
Date  

Age 
weeks 

MA016 60 30 4.26.16 6.1.16 67 
MA017 1,100 21 4.26.26 6.8.16 74 
MA018 213 45 4.26.16 6.16.16 82 
MA021 2580 17 4.26.16 6.28.16 90 
MB021 13200 10 4.26.16 6.28.16 90 
MA022 50 22 6.28.16 8.3.16 36 
MA019 3,000 Histology 6.28.16 7.27.16 28 
MA020 50 Histology 6.28.16 7.28.17 29 

 

3.2.1 AHQ Dose Response 

AHQ exhibited a relationship between time and concentration. For 

concentrations < 2 mM a biphasic profile was observed. First phase: increase in 

spike activity, followed by a decrease to 100% in spike activity. In concentrations 

> 2 mM, there rapid loss of activity.  

One hundred percent activity loss from reference plotted against AHQ 

concentration reveals a relationship (in comparable medium), there is a sigmoidal 
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relationship. The linear segment of the sigmoidal curve has the concentrations 

0.5 - 2.0 mM.  

 
Fig. 3.6. Response in percent change of spike activity from reference after application of 
AHQ. (A) Lower concentrations exhibit a biphasic response profile. The first profile is an 
increase in spike rate from reference, followed by a decrease in spike rate and then a 
decrease in active channels. AHQ concentrations at 2mM cause an instantaneous 
decrease in spike activity as well as active channels. (B) AHQ concentration is plotted 
against time until 100% activity loss in experiment that did not contain serum.  
 

After low concentrations of AHQ were applied into network medium, a biphasic 

response was seen. The first phase began with an increase in spike activity that was 

followed by a 100% decrease in spike rate. 
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When 5% serum was added to one experiment, there was no biphasic response 

profile. The exact same AHQ concentration with serum had a very different profile (Fig. 

3.7). 

 
Fig. 3.7. Decrease in spontaneous activity measured as percent of reference overtime 
for two 50 mM AHQ experiments: one in medium with serum and the other in serum free 
medium. The IT50 with the presence of serum is 350 min, without serum it is 1,200 min    
 

3.2.2 Changes in Network Spike Patterns 

 Immediately after application, population burst rate increased rapidly and 

continued to increase during this phase profile. Periods of increased population bursts 

would dominate the first phase. New units would appear on the oscilloscope that had 

not been above noise levels prior to application. 
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 At 1.1 mM AHQ, this same profile was observed over a period of 10.0 min. The 

coordination is sustained until total spike activity is below 90% reference activity. At this 

point, all activity is lost, and unable to be revived by a medium change. The death 

profile is either reduction in ignition sites or neural ignition failure. 

 
Fig. 3.8. Network spike production and patterns change after 60 mM AHQ. (A) Raster 
display of spontaneous network spike production, disinhibited by the GABAA antagonist 
bicuculline (one-minute data segments). (B) After 60 mM AHQ dose, the burst rate 
increases with time(C) 1,000 minutes after dose:  continued inter spike period decrease. 
(D) The 300% increase of total spike activity over the 1,690 min of activity. The 
interrupted period of time (rectangle) represents amplifier shutoff for chamber 
adjustment. The circle shows a temporary decrease from a sudden osmotic shift. A 
medium change could not reverse the complete lose in spike activity.  
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Fig. 3.9. A 1.1 mM AHQ application after 1.0 hr of stable reference spike activity. (A) 
Raster display of reference burst activity with 40 mM bicuculline. (B) The exact time 
period of 1.1 mM AHQ application the activity increased from a spike rate of 450 
spk/min to 650 spk/min Population burst rate increases rapidly with coordination. 
Activity decay is characterized decreased burst rate with sustained coordination. 
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3.2.3 Morphology 

 
Fig. 3.10. Morphological responses to 50 mM AHQ application on a frontal cortex 
network. (A) Directly after application (B) One hr after, the yellow box outlines two 
neurons with loss of processes and cytoplasmic granulation (C) Three hr after, total loss 
of processes. 
 

In Fig. 3.10, beading of cell body processes is observed in picture B. Total 

loss of all processes is observed in picture C.  

When a 10 mM dose of AHQ was given to the network, an instantaneous 

response occurred on the morphological level. Lipid protrusions of the membrane began 

exiting the glial carpet and certain areas of the processes connected to the cell body 

being followed. Note: at high concentrations, acrolein is a fixative. 
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Fig. 3.11. A 10 mM AHQ on a frontal cortex network. (A) Right after 10mM AHQ dose. 
(B) 5 minutes after dose, lipid bubbles emanate from glia cells (white arrows. Note: 
Putative disintegration of peripheral dendrites (black arrows). 
 

 Hydroquinone (HQ) 

Hydroquinone was a stabilizer in the acrolein used in ADA and AHQ (sections 1 

& 2 of results). There is no data for toxicity of this compound on neuronal cultures.  To 

assure that HQ did not interfere with the results in that section. An HQ toxicity screening 

was conducted for pattern responses in a separate series of experiments. Networks 

were exposed to 0.1 mM HQ in the 50 mM AHQ experiments.  

In the following data, HQ was found to have no effect on network activity in 

applications lower than 150 mM. However, HQ did show toxicity with a TD50 value of 8.6 

mM and IC50 of 3.5 mM.  It also generated instability by inducing intense bursting and 

showed high and persistent rebound activity after medium changes. For HQ 

experiments under bicuculline, there were no functional effects until 3.5 mM.  The  

experiments were run with both native networks as well as disinhibited networks with 40 

mM bicuculline in serum free medium. 
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Table 3.3. Table of HQ Experiments 

Exp. 
 

Titration 
mM 

Final 
mM 

 
Channels 

# 
Culture 
Date  

Exp. 
Date 

Age 
week

s 
MA030 5 0.032 10 07.18.17 09.07.17 57 
MB030 2.25 0.0175 21 07.18.17 09.07.17 57 
MB033  25 0.4 37 10.10.17 11.16.17 35 
MA035A 150 1.35 55 10.10.17 11.30.17 49 
MB035A 600 1.8 43 10.10.17 11.30.17 49 
MA035B 750 7.95 55 10.10.17 11.31.17 50 
MB035B 1200 16.08 43 10.10.17 11.31.17 50 
MA036 1000 14 18 10.24.17 12.01.17 60 

 

3.3.1 Responses to Low HQ Concentrations 

There was no observable effect to 25 mM titrations of HQ up to 400 mM, until receiving a 

medium change to a medium of identical osmolarlity and pH, without HQ (n=6). The 

responses were characterized by a massive increase in spike rate that increased the 

level reference activity with oscillations of super bursting (Suri, master’s thesis).  

Network pattern changes occurred immediately after medium change. There was 

an immediate change to coordinated bursting that mimicked the burst pattern of a 

disinhibited culture. 

 Applications in ranges ≥ 150 mM HQ exhibit an inhibitory response profile. The 

inhibition could not be quantified by concentration because applications ranging from 

150 mM to 1,800 mM HQ showed the same decrease to minimal activity. However, 

medium changes induced 400-800% greater activity than reference. The response 

profile of dramatically increased activity at the time of medium change would last 6-8 

hours and be followed by a period of oscillating inhibition (n=3). A second medium 
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change 12 hours after the first medium change brought reference spike activity back to 

normal with the same number of active channels (n=1) (Fig. 3.13). 

 
Fig. 3.12. Network changes to multiple additions of HQ. (A) HQ titration from 25 mM – 
400 mM. No response in spike rate until a medium change. Rapid increase in spike rate 
by 400 %( B) Nex roster display of real time spiking shows no pattern changes before 
(1) and after HQ application (2). Immediately upon removal of HQ by medium change 
(3), there was a strong change is spike patterns that lasted until a second medium 
change 12 hours later. (4) 10 min after medium change, (5) 2 hr after medium change. 
(6) 4 hr. after medium change. 
 

 This response profile of increased activity was distinguished by the re-addition of 

hydroquinone into the network. After being distinguished, it can be induced again by 

another medium change. 
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Fig. 3.13. Applications  ≥ 150 mM HQ show a decrease in spike rate. This is completely 
reversible with a medium change and induces a large increase in spike rate and 
decrease in period between spikes. Network pattern change is reproducible and 
extinguishable in the same experiment.    
 

3.3.2 Dose Response Curves 

Because of the inhibitory response of HQ, 40 mM bicuculline stabilized network 

activity to quantify its toxicity. Once disinhibited, titrations of HQ showed spike activity 

decreased at 750 mM with a functional IC50 of 1,800 mM and active channels decreased 

at 5 mM with an LC50 of 8.5 mM HQ. 

Response profile between a native network and a disinhibited network were 

dramatically different. Active channels were used to quantify this shift in response to 

HQ. When plotted with HQ concentration as the dependent variable, the IC50 for a 

native network is 450 mM. The IC50 for disinhibited network is 3.5mM. 

 

REFERENCE 
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Fig. 3.14. Dose response curve representing all hydroquinone experiments under 40 mM 
bicuculline (n=6). Dose response curve from all HQ experiment under 40 mM GABA A 
antagonist. IC50 value is 3.5 mM (pooled data from n=5).  
 

 Analytical Acrolein (AA) 

Table 3.4. Table of Experiments with Analytical Acrolein 

Exp. 
 

Concentration 
mM 

Channels 
 

Culture 
Date  

Exp. 
Date 

Age 
weeks 

MA024 100 40 06.06.17 06.29.17  29 
MB024 500 52 06.06.17 06.29.17  29 
MB025 85 21 06.06.17 07.04.17  35 
MA025 75 50 07.14.17 06.09.17 36  
MA028 18.5 27 07.14.17 09.17.17  91 
MB028 18.5 22 07.14.17 09.17.17  91 
MB029 18.5 55 07.14.17 09.09.17  83 
MA031 18 42 10.10.17 11.09.17  29 
MB031 18 45 10.10.17 11.09.17  29 

 

3.4.1 Network Response Profiles 

Analytical acrolein exhibited a biphasic profile at lethal and nonlethal 

concentrations. At 30 mM and less, there was no loss in reference activity observed in a 

6-day period after application but there was a change in reference spike activity and 
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patterns that never returned to reference. In one experiment, the change was 

extinguished with bicuculline 48 hr after 30 mM bicuculline (Fig. 3.18). As concentration 

increases, time until 100% activity loss decreases. 

 
Fig. 3.15. Network activity responses to single analytical acrolein applications in the mM 
range. Linear plots represent concentration dependent responses. 50 mM, responds 
with biphasic profile before 100% loss in activity. 30 mM and below (n=3) respond in a 
biphasic profile with no loss in reference spike activity (arrow). 
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Fig. 3.16. Network activity responses to single analytical acrolein applications in the mM 
range. In concentration < 1 mM, a biphasic response profile is observed before 100% 
loss in spike activity. 
 

 A linear log-log relationship exists between concentration and time for 100% 

activity loss. The lower concentrations would be expected to be nonlethal because is a 

pro-inflammatory compound found inside of mammalian tissue systems in periods of 

increased stress. The linear range of the sigmoidal plot is confined to 70 mM -1 mM 
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Fig. 3.17. Dose response curve for analytical acrolein. Low concentrations have no 
effect on loss of activity from reference. As the concentration gets higher the time until 
100% loss of activity decreases. 
 

3.4.2 Spike Production and Pattern Changes 

Analytical acrolein was the first of the compounds to be examined without 

bicuculline. The spike production and pattern changes that occurred in these 

experiments were an increase in burst population rate and coordination. During the 

second response profile of population burst decrease, coordination is sustained until 

100% loss of activity. This is significant of a reduction in ignition site or neural ignition 

failure. 
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Fig. 3.18. A 30 mM application of analytical acrolein to a network after 2.5 hr of stable 
reference activity. Network spike production and patterns destabilize and increase for 
48 hours until 40 mM bicuculline application at T= + 49 hr. (A) Raster display of 
reference spike activity of a spontaneously firing network. This was the average activity 
for the 2.5 hr reference period. (B) Instant change in network spiking after 30 mM 
application. (C) T= 1 min after, increased burst rate and coordination (D)-(I) continued 
spike production and pattern change (J) decreased burst rate from 40 mM bicuculline 
application. 
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At nonlethal concentrations, pattern changes still occurred that did not return to 

reference activity in the 6 d observation period (n=2, at 20 mM AA). The pattern change 

was characterized by an increased population burst rate and coordination. The Spike 

activity display shows a dramatic increase in the range of total spikes per minute or 

paroxysmal superbursting. Changes in spike patterns between bicuculline-like bursting 

and burst packets were observed.  The latter increased in width over time. A surprising 

observation was the pattern stabilization with an addition of bicuculline (see Fig. 3.18).  

Higher concentrations, less than 1 mM, had the same response profile of 

increased burst rate and coordination. This was followed by a death profile of decreased 

burst rate with sustained coordination until total loss of activity. Fig. 3.19 demonstrates 

the raster display of this biphasic response. 

 
Fig. 3.19. A 0.5 mM analytical acrolein application after 2.5 hr of stable reference 
activity. (A) native reference activity. (B) application increases burst population rate and 
coordination. (C-E) the rate of population bursts decreases from 108 bpm to 16 bpm. 
This implies loss of ignition site or greatly reduced ignition site activity. 
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Once analytical acrolein is applied into the network, spontaneous reference spike 

activity immediately increases, and gains coordination shortly thereafter. This 

coordination is maintained when the burst rate begins to decrease. This same profile is 

seen concentrations ranging from 50 mM -0.5 mM.  The observed death profile is that of 

either reduction in ignition sites or neural ignition failure (Ham et al., 2008). Very few 

channels fire outside of the bursts which have full participation.  

 

 
Fig. 3.20. A 50 mM application of analytical acrolein to a spontaneously firing network. 
(Top) Individual channel spike activity for 3 segments of Plexon data. The Y axis is total 
spikes per minute generated by a channel and the x axis is time in minutes. (Bottom) 
Total spike activity for the entire network. After a 50 mM application, some channels 
have an inhibitory profile while other an excitatory until total loss in activity. 
 

3.4.3 Waveshape Analysis 

Wave shapes were recorded by Plexon with timestamps (µSec) that can be 
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extracted in order to display wave shapes for certain reference periods within the 

experiment. Because the wave shapes would visible grow on the Plexon channel 

display window after acrolein application, the waveshapes were analyzed further.  

In analyzed wave shapes, a 25-35% increase in amplitude is observed (Fig. 

3.21). In applications of small concentrations, experiment protocols report new wave 

shapes appearing in the channel selection after application. The narrowing of the peaks 

paired with increased amplitude are common observations when there is a shift in Na+ 

permeability. 

 
Fig. 3.21. A 20 and 30 mM analytical acrolein application increases the action potential 
amplitude in minutes and continues to slowly increase over the first phase profile of 
analytical acrolein. 
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 Summation of Acrolein Data  

The summation of acrolein data on a single graph shows a relationship between 

each compound and the time until 100% activity loss is plotted in Fig. 3.22. At 400 mM, 

the respective IT100 values are 6 minutes for analytical acrolein, 12 minutes for AHQ, 

and 28 minutes for ADA. The decreased IT100 value would be expected for analytical 

acrolein, which has no stabilizer present.  

 
Fig. 3.22. All acrolein compounds used in results section prior are summated. Only 
lethal concentrations are used in this data set. ADA and AHQ have 40 mM bicuculline, 
analytical acrolein does not). Linear trend lines are self-drawn. 
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CHAPTER 4 

DISCUSSION 

Acrolein 

Analytical acrolein experiments did not achieve the desired iterations due to a 

supplier shortage. The applications with analytical acrolein did not have bicuculline for 

stabilization but retained the same observed responses as ADA and AHQ (which 

contained 40 mM bicuculline). Analytical acrolein had the lowest IT100 values, which 

would be expected of an autooxidant that is not stabilized. 

For all three compounds: a biphasic response is observed beginning with a 

period of increased population burst rate. In experiments with 40 mM bicuculline, 

coordination was present in the reference and maintained. In the analytical acrolein 

applications (without bicuculline), coordination would appear after a 5.0-10.0 sec period 

of abnormally high, full network spiking. The increase in population burst rate was 

observed in each acrolein compound that was tested, except at very high 

concentrations when rapid activity loss dominated the initial increase of activity and 

those with 5% serum.  

The second phase is characterized by a decrease in population burst rate with 

sustained coordination until 100% activity loss for all three compounds. Burst durations 

and spikes in bursts also decreased, contributing to the loss of activity with time.  

The paradoxical effect of acrolein, an increased potency in the presence of 

serum, was observed in ADA and AHQ (see Figs 4 & 10). Acrolein has been shown to 

react with many systemic proteins via the Mailard reaction. These reaction products 

cause apoptosis and necrosis in cell culture (Conklin et al., 2012). Reaction products 
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have not yet been studied in functional networks but may be toxic by interacting with 

membrane receptors and channels that control spike production. 

One mechanism for the initial increase in activity in acrolein experiments is 

spermine, a free radical scavenger. Free concentrations of spermine decrease once 

acrolein has been generated endogenously because of adduction to free radicals and 

acrolein (Ha et al., 1998; Tsuisui et al., 2016). In normal mM concentrations, spermine 

has little effect on NMDA receptor/channel complex or voltage gates Na+ channels. 

Upon shifting to low levels in the range of 1.0-10 mM, there is an increase in NMDA 

channel opening frequency in primary cortical cultures (Rock & Macdonald, 1992).  

Other important cellular defenses against electrophilic compounds, such as 

glutathione transferase, become depleted rapidly after the generation of acrolein (Shi et 

al., 2011). In patients with kidney disease, there is a depletion in spermine levels from 

serum. Putrescine, polyamine oxidase and acrolein are increased during this period 

(Igarashi et al, 2006). Acrolein is continuously generated by spermine oxidase, which 

serves to deplete spermine levels (Igarashi et al., 2011). 

Waveshape data shows an increase in peak to peak amplitude in the three 

experiments that have been examined (Fig. 3.21). Shifts in Na+ permeability increases 

the action potential peak to peak amplitude. Spermine depletion to low concentrations 

influences Na+ channels leading to an increase in spontaneous spiking and hyper-

synchronized discharge in cortical neurons (Fleidervish et al., 2008). This is a 

mechanism that should be researched further, as AP amplitude increases can enhance 

exocytosis and network excitation. 
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Fig. 4.1 depicts a 30 mM application of analytical acrolein that induced an 

increase in population burst rate with coordination over 48 hours. This increased burst 

rate was extinguished by the addition of 40 uM bicuculline. There is no explanation for 

this response to a GABAA antagonist. 

 
Fig. 4.1. A network response to a 30 mM application of analytical acrolein. The upper 
Vernac display is the entire 50 hr. recording. A-D: network activity with correlated 15 sec 
spike raster plots.  The bottom panel shows the activity transition from a 40 mM 
bicuculline application (48 hours after acrolein). (A) Reference network activity. (B) One 
minute after application. (C) Twenty-eight hr. after application, sudden transition to 
paroxysmal bursting with appearance of burst packets. (D) A 40 mM bicuculline 
application decreases population burst rate while maintaining coordination. Total 
network spike production shows high stability. 
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 Hydroquinone 

 Because HQ is a stabilizer for ADA and AHQ, a toxicity screening was necessary 

to determine independent pharmacological influences of HQ.  The final concentration of 

HQ in the medium bath of ADA and AHQ experiments is listed in Table 4.1. These bath 

concentrations are far below the concentrations that have shown independent activity 

changes (Fig. 3.12).  In the presence of 40 mM bicuculline, HQ generates no 

measurable spike rate changes until 2.5 mM (2,500 mM).   

Table 4.1. Final HQ Concentration in Acrolein Experiments 

10 mM ADA 0.00608 mM HQ 
1,000 mM ADA 0.06080 mM HQ 
1,000,000 mM ADA 60.800 mM HQ 
10 mM AHQ 0.01904 mM HQ 
1,000 mM AHQ 1.90400 mM HQ 
2,000 mM AHQ 3.80800 mM HQ 

 

At concentrations of 30 mM - 2,000 mM HQ, a medium change induces a 400-

800% increase in activity with superbursting. This network pattern change has been 

seen as late as 6 hours after medium change.  

 

 Conclusion 

If post TBI-induced excitotoxicity was only a manifestation of excess glutamate in 

the synapse, then NMDA, ampa, and kainite receptor antagonists should show success 

in treatment of secondary damage (Ikonomidou, 2002; Shohami et al., 2014). The 

literature has shown that it does not.  

Cebak et al., 2016 found that phenylalazine, a free radical scavenger, not only 

successfully mitigated acrolein formation, but attenuated mitochondrial respiratory 
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dysfunction in a mouse TBI model. Along with the continued study of functional changes 

that arise from acrolein in a spontaneously firing network, the functional toxicity for 

hydralazine and phenylalazine applications should be reviewed as well. 

Changes in polyamine levels after traumatic brain injury should also be 

investigated further. Polyamines are essential for eukaryotic growth and development. 

Deregulation in polyamines is associated with many diseased states (Minois et al, 

2011). Polyamines are also important in regulation of glutamate receptor ion channels, 

inwardly rectifying K+ channels, and other channels that affect intracellular calcium 

signaling or Na+ transport (Dingledine et al., 1999; Stanfield & Sutcliffe, 2003). If there is 

a change in the polyamines after TBI and acrolein generation, this is another avenue of 

exploration for pharmaceutical intervention. 

This study characterized how acrolein induces but also terminates spike 

production when applied to spontaneously firing cortical networks. There is no current 

literature about the functional toxicity of cortical neuronal networks to acrolein, even 

though it has been shown to enhance and prolong secondary damage in TBI (Cebak et 

al., 2016). Acrolein and its functional responses should be researched further for 

efficient intervention and better long-term outcomes of TBI patients.  
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APPENDIX A 

DEFINITIONS AND ACRONYMS
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AHQ—Acrolein stabilized in 10% hydroquinone 
 
AO – Amine oxidase: and enzyme responsible for catalyzing the formation of 
polyamines 
 
ADA—Acrolein diethyl acetate 
 
Bicuculline—GABAA antagonist. Disinhibits network at 40 mM. 
 
Active channels—Channels with ten or more spikes per minute 
 
CNNS – Center for Network Neuroscience 
 
D1SGH – Dextrose-1 Sucrose Glucose Hepes: buffer solution with balanced ions for 
biological tissue 
 
DIV – Days in vitro 
 
DMEM – Dulbecco’s modified medium: nutritional solution for cell culture 
HQ—Hydroquinone, a reducing agent  
 
IC50 – Concentration that causes 50% inhibition in spikes/min 
 
IC100 -- Concentration that causes 100% inhibition in spikes/min 
 
IT100 – Time until 100% inhibition after the application of a compound at X concentration 
 
NMDA receptor – N-methyl-D-arspartate receptor: an excitatory receptor, commonly 
activated by glutamate 
 
MC—Medium change. Medium is carefully aspirated via a syringe and then replaced by 
a new medium of the same osmolarity and pH. 
 
MEA – Micro electrode array: the recording area consisting of many substrate-
integrated microelectrodes for simultaneous, extracellular recording from many sites in 
a network.   
 
Mean spikes per min: the average amount of spikes produced each minute by each 
individual unit 
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ROS – Reactive oxygen species: A chemical species which is highly reactive and 
contains an oxygen atom 
 
T – Time: time in minutes 
 
TC50 – Toxic concentration for 50% of the channels 
 
TBI – Traumatic brain injury: an insult to the brain caused by external physical force 
 
Titration – a single application given in a series of applications to elucidate a dose 
response 
 
Total spikes per min: Total spikes produced each minute by individual units 
 
Serum—Donor horse serum that is heat deactivated by proprietary source as well as 
within the lab. 
 
SO – Spermine oxidase: an enzyme responsible for catalyzing the formation of 
spermine. 
 
Spk – Spike: A single action potential 
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APPENDIX B 

SOLUTION SOURCE CONCENTRATION CALCULATIONS



50 
 

Acrolein Diethyl acetate (stabilized in 4% hydroquinone) (ADA) Solutions 

Source solution: 0.854 g / ml, 25.0 ml volume 

0.854 x 1000 ml = 854 g / L 

854 g / MW 130.18 = 6.57 M ADA Source 

 

Acrolein (stabilized in 10% hydroquinone) (AHQ) Solutions 

Source solution: 0.839 g / ml, 25.0 ml volume 

0.839 x 1000 ml = 839 g / L 

839 / MW 56.06 = 14.97 M AHQ Source 

 

Analytical Acrolein Solutions 

Source solution: 0.839 g / ml, 25.0 ml volume 

0.839 x 1000 ml = 839 g / L 

839 / MW 56.06 = 14.97 M analytical acrolein Source 
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